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ABSTRACT
Chaos is shown to occur in the flexible shaft rotating-lifting (FSRL) system of the mono-silicon crystal puller.

Chaos is, however, harmful for the quality of mono-silicon crystal production. Therefore, it should be suppressed.
Many chaos control methods have been proposed theoretically and some have even been used in applications.
For a practical plant displaying harmful chaos, engineers from a specified area usually face with the challenge to
identifying chaos and to suppressing it by using a proper method. However, despite of the existing methods, chaos
control method selection in the FSRL system is not a trivial task. For example, for the OGY method, if one cannot
find a practical adjustable parameter, then the OGY method cannot be applied. An impulsive control method is being
proposed which is efficiently able to suppress chaos in the FSRL system. The selection of the control parameters is
obtained by using the Melnikov method. Simulation results show the correctness of our theoretical analysis and the
effectiveness of the proposed chaos control method.

1 Introduction
As a compact dynamics in nonlinear deterministic system with sensitive dependence on initial conditions, chaos started

to attract attention after Lorenz analyzed the chaotic dynamics in a weather prediction process [1]. There were lots of chaotic
phenomena reported in different fields, for instance, Refs. [2-5]. On one hand, some chaos properties are beneficial in
different engineering fields. For example, the ergodicity of chaos is used for optimization algorithms [6], the broad spectrum
property for spread spectrum communication [7], electromagnetic noise reduction [8], liquid mixing [9], road roller [10],
and soil compactor [11]. The sensitive dependence on initial condition and on parameter are used in secure communication
and encryption [12-15], and the Lyapunov spectrum invariance property is used for improving wireless communication
performance [16-18]. In this cases, there were some state of art chaos anti-control methods reported to generate chaos from
original non-chaotic systems [19-24]. On the other hand, the presence of chaos were reported in industrial plants, such as
liquid level control system [25], mill roller system [26], and motor drive system [27], all do compromise the performance
of the system. In such cases, chaos need to be suppressed. Since the seminal work of Ott-Grebogi-Yorke on controlling
chaos [28], many chaos control methods have been proposed. In general, chaos control methods can be divided into two
types according to whether the state feedback is being used. Typical feedback methods include linear state feedback [29],
nonlinear state feedback [30] and time-delay feedback [31]; typical chaos control methods without state feedback include
periodic perturbation [32] and impulse control [33]. Although there exist many chaos control methods with different features,
it is not a trivial task to identify a suitable method to eliminate chaos in a special engineering plant. For example, if the
plant has not adjustable parameter, then the OGY method cannot be used. Another example is the avoidance of chaos in
a permanent magnet synchronous motor (PMSM), reported in [34]. There are only two variables, i.e., quadrature axis and
direct axis stator voltages among three state variables, available for manipulation. Therefore, any control method requiring
three manipulated variables regulation will be ineffective to apply to the PMSM system[30].
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Fig. 1. The simplified schematic diagram of the FSRL system.

Chaotic dynamics in the FSRL system of the crystal puller was unknown until the work in [35], which reported sys-
tematically the nonlinear dynamics in the FSRL system. Due to lack of theoretical insight to the chaotic dynamics in the
past, engineers tried conventional methods to avoid, what seemed to be a strange phenomenon, by fine manufacturing and
mechanical adjustments of some parts of the device, as well as, avoiding the process parameter causing chaotic motion in the
crystal producing procedure. However, nonlinear dynamics is an inherent property of the system, and, as such, researchers
in the field has to play an active role. Because of our analysis of the FSRL system [35], we find that it is difficult to control
or regulate such a practical system, because no manipulated variable can be used and no parameter can be regulated in real
time. To solve this problem, we propose an impulse control method to regulate rotation speed of the system intermittently,
so as to impose as little impact as possible on the crystal growing process. The controller parameters selection is derived by
using the Melnikov method [36].

The remaining of the paper is organized as follows. In section 2, the complex dynamics of the FSRL system is revisited.
In section 3, an impulsive control method is proposed specific for chaos control in the FSRL system, and the parameter
selection rule is derived using the Melnikov method. The conclusions is given in section 4.

2 System model and the analysis of the controlled system
A simplified schematic diagram of the FSRL system in the crystal seeding stage is given in Fig. 1. In the seeding

stage, the crystal seed with 10 mm in diameter is fixed at the end of the systems flexible shaft using a special designed
metal clamping device, so that the mass of the total seed and metal can be assumed as a mass point. However, due to the
imperfection of the manufacture, the rotating disk might have eccentricity, the actual suspension point O′ deviates from the
central axis. Under the action of rotation, the eccentric effect causes the periodic perturbation F(t).

The modeling details can be found in [35], we learn that the FSRL system can be treated as a mass point rotating along
vertical central axis. Using the Lagrange’s equation, the dynamic equation of the FSRL system can be given as:

θ̈ =
r
l
ω

2 cos(ωt)+ω
2 sinθcosθ− g

l
sinθ− ξ

m
θ̇, (1)

where θ is the angle (position) between the shaft direction and the rotation center vertical axis, θ̇ (speed) is the time derivative
of θ, θ̈ (acceleration) is the time derivative of θ̇, ω is the rotation speed, l is the length of flexible shaft from the fixed point
to the crystal seed, m is the mass of the crystal seed, ξ is the damping coefficient, r is the eccentric distance from the shaft
normal point and g is the gravitational acceleration.

Then, let the above equation convert to dimensionless ones and rewrite it as state space equations:

ẋ1 = x2

ẋ2 = AΩ
2 cos(Ωt)+Ω

2 sinx1 cosx1− sinx1− cx2, (2)



Fig. 2. (a) The phase portrait and the Poincaré section map for Ω = 1.2, A = 0.16, and c = 0.1 are shown in the upper panel and in the
lower panel, respectively. (b) The phase portrait and the Poincaré section map for Ω = 1.2, A = 0.2, and c = 0.15 are shown in the upper
panel and in the lower panel, respectively. (c) The phase portrait and the Poincaré section map for Ω = 1.2, A = 0.27, and c = 0.2 are
shown in the upper panel and in the lower panel, respectively.

where x1 = θ, x2 = θ̇, A and Ω are the amplitude and frequency of the external excitations respectively, c is the dimensionless
damping constant. It should be noticed that the excitation frequency is consistent with the system rotation speed, which is
different from the general parametric pendulum.

System (2) can exhibit various dynamical behaviors, including period doubling bifurcation, symmetry-breaking bifur-
cation, interior crisis and chaotic motion [35]. Figure 2 shows the phase portrait and the corresponding Poincaré section map
for Ω = 1.2 with different A and c. In Fig. 2a, A = 0.16, c = 0.1, in Fig. 2b, A = 0.2, c = 0.15, in Fig. 2c, A = 0.27, c = 0.2.
These complex chaotic behaviors are harmful for the quality of mono-silicon crystal production. Therefore, to get rid of this
behaviour, we propose an impulsive control to suppress chaos in the FSRL system.

The rotation motor drives the rotating disk through belt pulley, the rotation speed is determined by the crystal growth
technique. Therefore, the rotating disk is controlled to work at the appropriate rotation speed through the rotation motor. Due
to the special property of the system, there is no state measurement available, no parameter to be tuned (or perturbed), the
only manipulated variable is the rotation speed. However, the rotation speed is generally determined by the crystal growth
technique, which can not be set as willing. Therefore, the control input should affect the speed as tine as possible. We
select rotation speed as control input, and propose impulse control to have tine effect on average rotation speed. we define a
positive impulse as speed increasing and a negative impulse as speed decreasing, which is applied the rotation speed Ω.

Considering the working principle of FRSL system, we apply a periodic impulse to Ω, the equation of the controlled
system is then given as follow:

ẋ1 = x2

ẋ2 = A(P(t))2 cos((P(t))+(P(t))2 sinx1 cosx1

− sinx1− cx2,

P(t) = Ω+u(t) (3)

where u(t) is defined as an impulse function with period T = 2π/Ω, which is expressed as:

u(t) =
∞

∑
n=0

h(t−nT ), (4)

with



(a) (b)

Fig. 3. (a) The state variable x1 is plotted with parameters ∆ = 0.54 and κ =−0.85 using blue solid line, magenta dashed line indicates
the applied impulse. (b) The corresponding steady state phase portraits after impulse control is activated.

h(t) =

{
κ, −∆ < t < ∆

0, otherwise,
(5)

2∆ being the impulse duration and κ is the impulse amplitude. We argued in the next section that the chaotic behavior of the
system can be suppressed by a proper design of the above impulse control.

Figure 3a shows state x1 of system (3) and the impulse applied to the system where Ω = 1.1, c = 0.1, and A = 0.2, and
the impulse control is activated at t=100s. The state variable x1 is plotted by a blue solid line, the impulse applied is plotted
by a magenta dashed line. Figure 3b shows the steady state phase portrait of the system after the impulse control gose into
effect. It can be observed that the chaotic motion in the system is suppressed and is replaced by a periodic motion after the
proposed impulse control is imposed.

3 Impulse control parameter design using the Melnikov method
In this section, an impulse control method is proposed for suppressing chaos in the crystal seeding stage of the FRSL

system. Simulations are performed to validate the effectiveness of the proposed method.
In the following, we present the parameter selection procedure for chaos suppression using impulse control.
Since ∆ is small, using cos(Ωt) as an approximation of cos(P(t)), the controlled system equation (3) can be rewritten

as:

ẋ1 = x2

ẋ2 = A(Ω+u(t))2 cos(Ωt)+(Ω+u(t))2 sinx1 cosx1

− sinx1− cx2, (6)

Theorem 1. For system (3), if the impulse duration ∆ and the impulse amplitude κ satisfy the inequality (7), the chaotic
behavior is eliminated.

∆ <

2c
A
× (

ln(
√

α2 +1−α)√
α2 +1

+α)−πΩ2Φ(Ω)

(2Ωκ+κ2)(Φ(Ω)+Ψ(n))
, (7)

where

Φ(Ω) = sin[
Ω

α
sinh−1(α)]× sech(

Ωπ

2α
), (8)



Fig. 4. The pairs of (∆,κ) above the curve indicated can be used to suppress chaotic motion.

and

Ψ(n) =
N

∑
n=1

[(n−1)sin
Ω

α
sinh−1(α)× sech(

Ωπ

2α
(n−1)

− (1+n)sin
Ω

α
sinh−1(α)× sech(

Ωπ

2α
(1+n)]. (9)

Proof: Let Ωt = τ; system (3) can be written as:

ẋ = f (x)+
1
Ω

g(x,τ),

where

x =
(

x1
x2

)
,

f (x) =
(

x2/Ω

((Ω+u(τ))2 sinx1 cosx1− sinx1)/Ω

)
,

g(x) =
(

0
A(Ω+u(τ))2 cosτ− cx2

)
.

The Melnikov function for system (3) is:

M(τ) =
∫ +∞

−∞

f (q0
+(τ))∧g(q0

+(τ),τ+ t0)dτ

=
∫ +∞

−∞

x0
2(τ)

Ω
[A(Ω+u(τ+ t0))2 cos(τ+ t0)

− cx0
2(τ)]dτ. (10)

Following the mathematical analysis given in the Appendix, we have:



Fig. 5. (a) The state variable x1 is plotted with parameters ∆ = 0.57 and κ =−0.93 using blue solid line, magenta dashed line indicates
the impulse applied; (b) The corresponding steady state phase portrait after impulse control is activated.

M(t0) = A(2πΩ
2 +4Ωκ∆+2κ

2
∆)×Φ(Ω)sin(t0)

+2A
N

∑
n=1

(2Ωκ+κ
2)×ψ(n)

−4c[
ln(
√

α2 +1−α)√
α2 +1

+α]. (11)

where

Φ(Ω) = sin[
Ω

α
sinh−1(α)]× sech(

Ωπ

2α
), (12)

ψ(n) =
sin(n∆)

n
(n−1)sin

Ω

α
sinh−1(α)

× sech(
Ωπ

2α
(1−n)sin(t0−nt0)

− sin(n∆)

n
(1+n)sin

Ω

α
sinh−1(α)

× sech(
Ωπ

2α
(1+n))sin(t0 +nt0), (13)

According the theory in [36], the necessary condition for homoclinic chaos is that M(t0) is equal to zero. This provides
a design criterion for chaos suppression, i.e., if M(t0)< 0 is satisfied for all t0, then no chaos exists.

Since ∆ is small, sin(n∆)/n≈ ∆, |sin(t0)|< 1, we obtain:

M(t0)< A(2πΩ
2 +4Ωκ∆+2κ

2
∆)×Φ(Ω)

+2A∆× (2Ωκ+κ
2)Ψ(n)

−4c[
ln(
√

α2 +1−α)√
α2 +1

+α]< 0, (14)



Fig. 6. (a) The state variable x1 is plotted with parameters ∆ = 0.63 and κ =−0.724 using blue solid line, magenta dashed line indicates
the impulse applied; (b) The corresponding steady state phase portrait after impulse control is activated.

where

Ψ(n) =
N

∑
n=1

[(n−1)sin
Ω

α
sinh−1(α)× sech(

Ωπ

2α
(n−1)

− (1+n)sin
Ω

α
sinh−1(α)× sech(

Ωπ

2α
(1+n)].

(15)

Substituting (12) and (15) into (14), we finally get that if:

∆ >

2c
A
× (

ln(
√

α2 +1−α)√
α2 +1

+α)−πΩ2Φ(Ω)

(2Ωκ+κ2)(Φ(Ω)+Ψ(n))
(16)

then M(t0)< 0 for all t0, and chaos is eliminated. The theorem is proved.
The relationship between κ and ∆ for chaos suppression is given in Fig. 4, where the system parameters Ω= 1.1,c= 0.1,

and A = 0.2. Chaos is quenched in the controlled system if the pairs (∆,κ) are above the curve. The theorem gives us the
parameter range to control chaos in FSRL system.

Simulations are carried out to confirm the validity of the criterion given by inequality (16). Choosing the parameter pair
(∆,κ) = (0.57,−0.93) and (∆,κ) = (0.63,−0.724), when the proposed impulse control is activated at 100s, the simulation
results are given in Figs. 5 and 6. Figures 5a and 6a show the state variable x1, and the corresponding applied impulse. It
can be seen that x1 is stabilized resulting in a periodic state after a transient state after the controller is applied. Figures 5b
and 6b depict the corresponding steady state phase portraits, respectively.

4 Conclusions
Chaos in the FSRL system causes defects in the silicon crystal growth quality, which need to be avoided. Therefore

in this paper, the Melnikov method is used to suppress the chaotic dynamical behaviour. An impulse control is proposed
to eliminate chaos. We also derive the parameter selection rule for impulse control to suppress chaos using the Melnikov
method. We have found that the impulse control is simple, not requiring state feedback, and it is an effective control technique
to control chaos in the FSRL system.
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Appendix
In this appendix, the calculation of the Melnikovs function (11) is carried out. Recalling (10) as follows:

M(τ) =
∫ +∞

−∞

x2(τ)

Ω
[A(Ω+u(τ+ t0))2 cos(τ+ t0)

− cx2(τ)]dτ

=
∫ +∞

−∞

1
Ω
× −2α2 sinh(ατ\Ω)

α2 + cosh2(ατ\Ω)
[A(Ω+u(τ+ t0))2

× cos(τ+ t0)− c
−2α2 sinh(ατ\Ω)

α2 + cosh2(ατ\Ω)
]dτ

P(t) = (Ω+u(t))2 is also a periodic signal and it can be represented in terms of the Fourier series PN(t),

PN(t) = (Ω2 +
2Ωκ∆

π
+

κ2∆

π
)

+
N

∑
n=1

(
4Ωκ

nπ
+

2κ2

nπ
)sin(n∆)cos(nτ)

(A1)

As indicated in [36], the two homoclinic orbits for the unperturbed system of (2) are already obtained,

q0
+(t) = (2cot−1(

1
α
)coshαt,− 2α2 sinhαt

α2 + cosh2
αt

),

and

q0
−(t) = (−2cot−1(

1
α
)coshαt,

2α2 sinhαt
α2 + cosh2

αt
).

with q0
+(t) , (10) becomes (A2)(in next page),

where

Φ(Ω) = sin[
Ω

α
sinh−1(α)]× sech(

Ωπ

2α
),

and



ψ(n) =
sin(n∆)

n
(n−1)sin

Ω

α
sinh−1(α)

× sech(
Ωπ

2α
(1−n)sin(t0−nt0)

− sin(n∆)

n
(1+n)sin

Ω

α
sinh−1(α)

× sech(
Ωπ

2α
(1+n))sin(t0 +nt0),

By this way, we can derive Eq. (11).
The derivation for q0

−(t) can be derived in the same way.

M(t0) =
∫ +∞

−∞

1
Ω
× −2α2 sinh(ατ\Ω)

α2 + cosh2(ατ\Ω)
[A(Ω2 +

2Ωκ∆

π
+

κ2∆

π
)+

N

∑
n=1

(
4Ωκ

nπ
+

2κ2

nπ
)sin(n∆)cos(nτ))cos(τ+ t0)

− c
−2α2 sinh(ατ\Ω)

α2 + cosh2(ατ\Ω)
]dτ

= A(Ω2 +
2Ωκ∆

π
+

κ2∆

π
)
∫ +∞

−∞

1
Ω
× −2α2 sinh(ατ\Ω)

α2 + cosh2(ατ\Ω)
cos(τ+ t0)dτ

+A
N

∑
n=1

(
4Ωκ

nπ
+

2κ2

nπ
)sin(n∆)

∫ +∞

−∞

1
Ω
× −2α2 sinh(ατ\Ω)

α2 + cosh2(ατ\Ω)
cos(nτ)cos(τ+ t0)dτ

− c
∫ +∞

−∞

1
Ω
× (
−2α2 sinh(ατ\Ω)

α2 + cosh2(ατ\Ω)
)2 dτ

= A(Ω2 +
2Ωκ∆

π
+

κ2∆

π
)×2πsin(

Ω

α
sinh−1(α))sech(

πΩ

2α
)sin(t0)

+A
N

∑
n=1

(
4Ωκ

nπ
+

2κ2

nπ
)sin(n∆)

∫ +∞

−∞

1
Ω
× −2α2 sinh(ατ\Ω)

α2 + cosh2(ατ\Ω)
[cos(n(τ+ t0)+(τ+ t0))

+ cos(n(τ+ t0)− (τ+ t0))]dτ

−4c(
ln(
√

α2 +1−α)√
α2 +1

+α)

= A(Ω2 +
2Ωκ∆

π
+

κ2∆

π
)×2πsin(

Ω

α
sinh−1(α))sech(

πΩ

2α
)sin(t0)

+A
N

∑
n=1

(
4Ωκ

nπ
+

2κ2

nπ
)sin(n∆)π(n−1)sin(

Ω

α
sinh−1(α))sech(

πΩ

2α
(n−1))sin((n−1)t0)

−A
N

∑
n=1

(
4Ωκ

nπ
+

2κ2

nπ
)sin(n∆)π(n+1)sin(

Ω

α
sinh−1(α))sech(

πΩ

2α
(n+1))sin((n+1)t0)

−4c(
ln(
√

α2 +1−α)√
α2 +1

+α)

= A(2πΩ
2 +4Ωκ∆+2κ

2
∆)×Φ(Ω)sin(t0)+2A

N

∑
n=1

(2Ωκ+κ
2)×ψ(n)−4c[

ln(
√

α2 +1−α)√
α2 +1

+α]. (A2)
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