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Abstract 

This paper modifies the BEKK-GARCH model based on the empirical results of the VAR model 

to analyze the dynamic volatility spillover effect between the European Union allowance (EUA) 

and certified emissions reduction (CER) markets during the second and third phases of the 

European Union Emission Trading System (EU ETS). The empirical results show that (1) an 

asymmetric volatility spillover effect exists between the EUA and CER markets and that the 

EUA market has a more significant volatility spillover effect on the CER market, and (2) the 

volatility spillover effect between the EUA and CER becomes weaker in phase III since the 

European Commission has limited the substitution of CER for EUA more strictly and the global 

carbon reduction requirements have become less demanding. Our study can help investors and 

managers of carbon market to have a more comprehensive understanding of the information and 

risk transmission mechanism between the EUA and CER markets, thus, providing them with a 

basis make investment decisions and formulate policies. 

 

Keywords: Carbon financial market; Volatility spillover effect; VAR model; BEKK-GARCH 

model 
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1 Introduction 

The economic development of countries is strongly correlated with their energy 

consumption level (Rajalingam and Srivastava, 2020). In recent years, with the rapid economic 

growth of countries, an increasing level of energy consumption has led to a large number of 

greenhouse gas emissions, and resulted in abnormal climate and ecological changes. Therefore, 

climate change has become a challenge to which people are paying ever-increasing attention 

(Feria-Domínguez et al., 2018; Zeng et al., 2017), and a low-carbon economy has become an 

important target worldwide. Since December 1997, the Kyoto Protocol has required industrialized 

countries to sign greenhouse gas (or carbon) reduction agreements. Under the protocol's 

restrictions, carbon dioxide emission rights have become new assets that differ from both 

commodity futures and financial assets (Medina and Pardo, 2013), ultimately forming a carbon 

finance (or trading) market dominated by carbon dioxide emissions rights. 

Carbon markets are a globally accepted tool for climate change mitigation because they 

provide cost-efficient solutions (Sousa et al., 2014). To date, the most effective system is the EU 

ETS. The EU ETS assumes the form of a cap and trade as follows: companies can obtain EUA, 

the initial allocation of carbon emissions, free of charge according to certain criteria or pay by 

auction. Companies whose actual emissions fall below their allowance can sell EUA in the 

carbon market, and those that exceed their allowance must buy EUA. The EU ETS is divided 

into three phases. The first phase (2005-2007) focused on testing the EU ETS policies and 

systems. In the second phase (2008-2012), i.e., the Kyoto period, the participants expanded to 
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countries outside Europe. During the third phase, which began in 2013 and will last until 2020, 

the auction method has been widely introduced. 

The EU ETS not only trades in EUA but is also closely linked to global carbon reduction. 

The Clean Development Mechanism (CDM) proposed by the Kyoto Protocol is designed to 

encourage emission reductions by non-Annex I Parties. The core feature is the ability of a 

company to invest in CDM projects in non-Annex I countries to offset some of its carbon 

emissions by the amount of carbon reductions generated by the projects (CER). Therefore, CER 

can also be traded on the EU ETS market as a carbon offset. However, the offset of the CER has 

been criticized (Kamdem et al., 2016; Nazifi, 2013) since CER reduces the market price of EUA, 

i.e., the cost of the enterprise to emit carbon dioxide, and undermines efforts to reduce emissions 

in Europe. Therefore, starting from the second phase, the European Commission stipulated that 

the average amount of CER used by enterprises covered by EU ETS shall not exceed 13.4% of 

the total allowance. During the third phase, only the CER from the least developed regions that is 

accepted by all EU Member States can be used as a substitute for EUA. 

Studying the relationship between EUA and CER markets is significant. On the one hand, 

CER can replace EUA to some extent to fulfill the commitment to reduce carbon emissions; thus, 

market participants may find arbitrage opportunities between the two markets, thereby influencing 

the related structure of carbon prices in the market (Kanamura, 2016). On the other hand, the prices 

of EUA and CER respectively represent the European carbon market price and world carbon price 

(Chevallier, 2011). Some basic factors influencing carbon price, such as energy price, weather, and 
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policies have an impact on the EUA and CER markets, resulting in a linkage effect between them. 

Therefore, studying the relationship between the EUA market and CER market can not only help 

the market managers and investors understand the rules of the EU ETS market, but also assist them 

in understanding the mechanism of information flow and risk transfer between the European 

carbon market and other carbon markets in the world. Consequently, such efforts may reduce the 

investment risks of EU ETS, and make contributions to promote the global carbon emission 

reduction. 

Some scholars have studied the relationship between the EUA and the CER market. For 

example, Chevallier (2010b) and Koop and Tole (2013) have both confirmed the causal 

relationship between the EUA market and CER market, and found that the EUA market plays a 

dominant role in their relationship. However, at present, most studies on the relationship between 

EUA and CER markets focus on the return spillover effect, that is, the information transmission 

relationship between returns, while few studies on volatility spillover effect, that is, the 

information transmission relationship between volatilities or risks. 

Since the establishment of the carbon market, its price has changed dramatically, and 

there are more uncertainties and higher risks in the carbon market compared with the traditional 

financial market (Chai & Zhou, 2018; Zhu et al., 2020). Therefore, exclusively analyzing the 

return spillover effect cannot help us fully understand the relationship between the carbon market 

and other markets. It is necessary to study the volatility spillover effect of the carbon market in 

order to better grasp its mechanism of information and risk transmission. Many scholars have 
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conducted research on the volatility spillover effect of the carbon market. For example, Reboredo 

(2014) studies the volatility spillover effect between the oil market and the EU carbon market. 

Zhang and Sun (2016) study the time-varying relationship and the volatility spillover effect 

between EU carbon allowance futures prices and energy prices. Wu et al. studies the volatility 

spillover effects between the EU carbon emission rights market and three energy futures markets 

(crude oil, natural gas, and coal). Most of these studies have confirmed the volatility spillover 

effect between the carbon market and the energy market. Unlike these studies, our main objective 

is to explore the volatility spillover effects between different carbon markets within the EU ETS 

and to extend the research to the third phase of the EU ETS.  

Although the existing literature has found that the correlation between EUA and CER 

markets is time-varying (Chevallier, 2011; Kamdem et al., 2016), most studies related to EUA and 

CER markets have examined the second phase of EU ETS. After the EU ETS entered phase III, 

scholars have not studied whether the changes in policies and international carbon emission 

reduction environment would affect the relationship between EUA and CER. Instead, this paper 

pays special attention to the following questions: (1) is there any volatility spillover effect on the 

EUA and CER markets? If so, is this effect between the two markets symmetrical? (2) Will the 

relationship between EUA and CER market, especially the risk transmission mechanism, change 

as EU ETS enters the third phase? 

To answer these questions, we first study the impacts that different phases of EU ETS have 
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on the carbon market structure. Generally, the event study is widely used to study the impact of 

policies or special events on market returns (Fan et al., 2017; Seyedimany, 2019). However, the 

event study is only applicable to the short-term effects of events. In this paper, we adopt the Unit 

root test with structural breaks to discuss the impact of policies and environmental changes in 

different phases of the EU ETS on the market structure of EUA and CER. The results show that 

Phase III of the EU ETS has an impact on the structure of EUA and CER markets with a 

four-month delay, thus, ignoring the structural breaks might lead to invalid conclusions (Salisu and 

Oloko, 2015). 

Then, we analyze the changes in volatility spillover effects between the EUA and CER 

markets in different phases according to the structural break dates. The GARCH-BEKK model is 

a very useful method for analyzing volatility spillover effects. It can not only ensure the positive 

definiteness of the covariance matrix, minimize the number of parameters that need to be 

estimated, but also capture a market’s volatility spillover effects on itself and on other markets at 

the same time. Therefore, this paper adopts the GARCH-BEKK model for our research. In order to 

make the results more accurate, we refer to the method of Agren (2006). We first use the VAR 

model to study the return spillover effect between the EUA market and CER market, and then 

modify the BEKK-GARCH model to study the volatility spillover effect between the EUA and 

CER markets based on the empirical results of the VAR model. In general, our study finds that 

there is an asymmetric volatility spillover effect between the EUA and CER markets. Furthermore, 

the relationship between these two markets weakens in the third phase of the EU ETS. That is to 
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say, the strict restrictions on the use of CER by the European Commission and the decrease in 

carbon emission reduction pressure among countries have made the EUA and CER markets more 

fragmented. 

Our study makes up for the lack of research on the development of EU ETS in the third 

phase among the existing studies. Moreover, it provides timely, effective, and practical insights as 

well as policy implications for investors and government managers. From a pragmatic perspective, 

this paper can help investors improve their abilities to predict carbon market risks, thereby 

reducing their investment risks. In terms of policies, this article can help carbon market managers 

fully understand the mechanism of information and risk transmission between the EUA market and 

CER market, and recognize the impact that changes in policies have on the correlation between 

these two markets, providing references for future policy-making. 

Our study can also provide experience and a reference for other carbon emissions trading 

systems. The EU ETS was established early and is not only the largest but also the most mature 

carbon emissions trading system. The price changes of EU ETS products are similar to global 

economic indicators (Gürler et al., 2016) and play an important role in the market pricing of 

international carbon credits. Worldwide, some countries are actively establishing carbon finance 

markets to achieve emission reductions. For example, China has established seven carbon 

emission trading pilots and launched the Chinese Certified Emission Reduction (CCER) to offset 

carbon emissions. Studies investigating the volatility spillovers of EUA and CER in the EU 

carbon market can help those countries build a more efficient carbon market. 
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The contributions of this paper are as follows: first, we extend studies related to the 

volatility spillover effects between the EUA and CER markets to the third phase of the EU ETS. 

The results show that after EU ETS entered the third phase, changes in policies and the 

international carbon emission reduction environment not only changed the structure of the EUA 

and CER markets, but also had an impact on the relationship between EUA and CER markets. In 

the phase Ⅲ of the EU ETS, the European Commission's strict restrictions on the use of CER led to 

the weakening of the volatility spillover effect between the EUA market and CER market. 

Furthermore, we modify the BEKK-GARCH model based on the empirical results of the VAR 

model, and verify the reliability of the estimated results through robustness tests, which contribute 

to the study of spillover effects in the carbon market. 

The structure of this paper is as follows: section 2 provides a review of previous research; 

section 3 describes the theoretical models and the data used; section 4 shows the empirical 

results; and section 5 presents the conclusions and implications. 

 

2 Literature review 

 

2.1 External correlation of EU carbon financial markets 

Scholars have studied the EU ETS and conducted numerous empirical analyses of the 

factors related to the EU carbon emissions rights market. These scholars believe that many 

factors are associated with the price of carbon emissions rights, including energy demand and 
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price, external environment and policy decision. 

Dutta (2018) studies the influence of oil market uncertainty on EUA price volatility by 

improving the EGARCH model, and found that the influence of crude oil volatility index on 

EUA market is asymmetric. Uddin et al. (2018) use typical c-vine copula and c-vine conditional 

value-at-risk (CoVaR) models to find that carbon assets can provide diversified benefit for 

investment in energy commodities, such as crude oil, natural gas, ethanol, heating oil, coal and 

gasoline. Hammoudeh et al. (2015) use a nonlinear autoregressive distributed lag (NARDL) 

model to find that carbon prices are affected by the prices of crude oil, natural gas, coal and 

electricity. Balcılar et al. (2016) use MS-DCC-GARCH model to find time-varying cross-market 

correlations and volatility spillover effects between EU carbon futures prices and electricity, coal 

and natural gas futures prices. Conrad et al. (2012) study the price of EUA at high-frequency 

with the GARCH model and find that it is affected by the decisions of the European Commission. 

Tang et al. (2017) find that the market mechanism and external environment are the main factors 

influencing the price fluctuations of the EUA and CER. 

 

2.2 Internal correlation of EU carbon financial markets 

The factors affecting the price of carbon trading rights include not only external factors 

but also the interactions between different markets within the carbon trading market, including 

carbon futures, spot markets and EUA and CER markets. Many scholars have conducted 

research investigating these internal interactions. 
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Regarding studies related to the spillover effects of EUA futures and spot, Chevallier 

(2010a) finds that there is cointegration between EUA spot and futures when structural breaks 

are not considered. Rittler (2012) uses high-frequency (i.e., 10- and 30-minute frequency) data to 

study the EUA market and finds that the futures market plays a leading role in the price 

discovery process. He also finds volatility spillover effects from futures to the spot market. 

Regarding studies investigating the relationship between EUA and CER markets, some 

scholars have studied the factors influencing the price difference between EUA and CER. Nazifi 

(2013) identifies the factors that impact the dynamics of the price spread between EUAs and 

CERs by detecting the changes in their structural relationship and finds that the price 

inconsistency between the two markets is caused by the different market frameworks, access 

constrains on the use of CERs and the uncertainty associated with CERs. Kanamura (2016) finds 

that the EUA volume has an impact on EUA-sCER swap transactions by using inverse 

Box-Cox-type marginal abatement cost (MAC) curves and simple emissions reduction volume 

processes. 

Some scholars have studied the interactions between EUA and CER. Mansanet-Bataller 

et al. (2011) study the price relationships between EUAs and CERs, and their central results 

show that the price differences between EUAs and CERs are mainly driven by EUA prices and 

market microstructure variables and less importantly by emissions-related fundamental drivers; 

the authors also find that EUAs are the leading factor in the price formation of sCERs. Koop and 

Tole (2013) model the spot and future prices of an EUA along with the price of a CER by using 
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flexible multivariate time series methods that allow for time variation in the parameters and find 

evidence of contemporaneous causality among these three variables with EUA futures price 

playing a dominant role in driving this relationship. In addition, some studies have found that the 

relationship between EUA and CER changes over time. Chevallier (2011) uses a 

DCC-MGARCH model to analyze the dynamic correlation between EUAs and sCERs and finds 

that the correlation coefficient between the two markets changes dynamically over time in the 

range of [0.01; 0.90]. Kamdem et al. (2016) use the wavelet method to model the interactions 

between EUA and CER futures prices in Phase II and find that the co-movement between the two 

markets changes over time and frequency. 

 

2.3 Research methods of volatility spillover effects 

The concept of volatility spillover effect was first proposed by Ross (1989). He believed 

that the information flow between markets created variations in volatility. Therefore, relevant 

information can be derived from volatility changes, and market volatility plays a key role in 

information transmission. Theoretically, the volatility spillover effect quantifies the rate of 

information flow from one market to another (Shen et al., 2018), and the direction of volatility 

spillover represents the direction of information flow. Specifically, if market A has a volatility 

spillover effect on market B, the information on market A (such as shocks and price volatilities) 

will be transmitted to market B, contributing to price volatilities in market B. On the other hand, 

from the perspective of modern finance, volatility represents the risk of assets. Therefore, the 
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essence of volatility spillover effect is the transmission of risks between markets. 

 Many scholars have conducted research related to the volatility spillover effects of 

various markets, especially financial markets. These scholars use a variety of research methods, 

including the VAR model, the GARCH model, the copula model and wavelet analyses. 

Diebold and Yilmaz (2012) propose a measure for studying volatility spillover effects 

based on forecast error variance decomposition (FEVD) from a generalized VAR model. This 

method is used to analyze the volatility spillover effect of the US asset market. Nazlioglu et al. 

(2013) study the fluctuating conduction mechanism between oil and agricultural commodities 

(i.e., corn, soybean, wheat, and sugar) by using the variance causality test and impulse response 

functions before and after the food crisis. 

There are many types of GARCH models. Hegerty (2016) uses a multivariate GARCH 

analysis to examine the spillover effects of important commodity prices and outputs, exchange 

rates, interest rates, and inflation in major emerging markets. Green et al. (2018) investigate 

volatility spillovers to electric power from large exogenous shocks in the prices of gas, coal, and 

carbon emissions allowances in the German energy market by using a general VAR-BEKK 

model and the volatility impulse response function methodology. Sarwar et al. (2019) investigate 

the volatility spillover effect between stock market returns and crude oil returns in the top three 

Asian oil-importing countries by using the BEKK-GARCH, DCC-GARCH, cDCC-GARCH and 

GO-GARCH estimation techniques. 

Wavelet theory is a powerful mathematical tool used for time series analyses. In recent 



 

 14 

years, Wavelet theory has attracted the attention of many scholars. Khalfaoui et al. (2015) 

combine the bivariate GARCH-BEKK model with a wavelet multiresolution analysis to capture 

the multiscale features of the mean and volatility spillovers between time series. Sousa et al. 

(2014) characterize the interrelation among CO2 prices, energy prices (electricity, gas and coal) 

and economic activity by using a multivariate wavelet analysis, which operates in the time 

frequency domain. Nasreen et al. (2020) study the dynamic linkages between oil price and stock 

indices of clean energy and technology companies by using wavelet coherency, phase differences 

and spillover analysis. Additionally, the copula model is often combined with other methods to 

study the volatility spillover effects. Uddin et al. (2018) model the multivariate tail dependence 

structure and spillover effects across energy commodities, such as crude oil, natural gas, ethanol, 

heating oil, coal and gasoline, with c-vine copula and CoVaR models. Yu et al. (2019) use the 

copula and VAR-BEKK-GARCH models to study the volatility spillovers between the oil and 

stock markets.  

 

2.4 Review of the research status and hypothesis testing 

The EU carbon finance market is an emerging market that is not yet fully mature. 

Therefore, scholarly research related to such a market mostly addresses influencing factors or 

market effectiveness. The energy commodity market is mainly related to the EU ETS market, 

and external environment and policy factors also affect the prices of the EU ETS. 

In internal EU research investigating the carbon finance market, scholars mainly study 
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the interactions between futures and spot in the EUA market and the relationship between the 

EUA market and CER market. The results show that EUA and CER markets have spillover 

effects and that EUA is in a dominant position in this relationship. In addition, Chevallier (2011) 

and Kamdem et al. (2016) find that the correlation between the EUA and CER markets is 

time-varying. However, most studies are limited to the second phase of the EU ETS. 

Based on previous studies, this paper analyzes the volatility spillover effects of the EUA 

and CER markets during the second and third phases of EU ETS and proposes the following 

hypotheses: 

Hypothesis 1: There are volatility spillover effects between the EUA and CER markets in 

phase II, and the EUA market plays a dominant role in the relationship between 

the two markets. 

Hypothesis 2: The third phase of EU ETS has an impact on the relationship between the 

EUA and CER markets. In phase III, the volatility spillover effects of EUA and 

CER weaken or even disappear. 

Our assumptions are realistic. According to the policy of the European Commission, CER 

can replace EUA to some extent but not completely. Therefore, the assumptions that there are 

volatility spillover effects between the two markets and that the EUA market is in a dominant 

position are reasonable. However, in phase III, the European Commission has restricted the 

substitution of CER for EUA more strictly, only CER from the least developed areas can be used 

as a substitute for EUA. Therefore, we believe that the volatility spillover effect between EUA 
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and CER will weaken in phase III. 

To test whether the hypothesis is correct, we used the breakpoint unit root test, VAR 

model and BEKK-GARCH model, which is modified based on the empirical results of the VAR 

model, to analyze the volatility spillovers between the EUA and CER markets during the second 

and third phases of the EU ETS. 

 

3 Methodology and data 

 

3.1 Breakpoint unit root test 

There are two types of stability tests for a time series containing structural breakpoints. 

The first type is the IO Test (innovational outlier test), which assumes that the occurrence of 

structural breaks is a gradual process. The second type is the AO Test (additive outlier test), 

which assumes that structural breaks occur instantaneously. In this paper, we use the IO Test, 

assuming that the series with a trend and intercept has an intercept breakpoint. The test equation 

is as follows: 

yt = μ + βt + θDUt(Tb) + ωDt(Tb) + ρyt−1 + ∑ ci∆yt−i + ut

k

i=1

                                                     (1) 

where DUt(Tb) is an intercept break variable. DUt(Tb) = 1 if t ≥ Tb and 0 otherwise. Dt(Tb) 

is a one-time break dummy variable. Dt(Tb) = 1 if t = Tb and 0 otherwise. k represents the 

lag order, which is determined according to the Schwarz criterion (SC) to correct the possible 
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autocorrelation in the time series. The t-statistic for the estimated value of parameter ρ is used 

for testing the null hypothesis that tρ̂(ρ̂ = 1), indicating that yt is notstationary, versus the 

alternative hypothesis that tρ̂(ρ̂ < 1), indicating that yt  is stationary. Tb  is the structural 

breakpoint date, and the date that maximizes the t statistic of the intercept break variable (tθ̂) is 

selected as the date of the structure breakpoint. 

 

3.2 VAR model 

The VAR model essentially examines the dynamic interactions among multiple variables 

and has been widely used (Arouri et al., 2012; Cummins, 2013). Its general form is as follows: 

Rt = μt + Φ1Rt−1 + Φ2Rt−2 +··· +ΦpRt−p + εt          (2) 

where 𝑅𝑡 is a 2×1 vector of the EUA and CER market returns and μt is a 2×1 vector of 

constants. Φi, i = 1, …, p are 2 × 2 matrices of the coefficients, and εt is a 2 × 1 vector of the 

error terms. 

It is necessary to determine whether the entire VAR model is applicable according to the 

stable condition of the entire system, i.e., by calculating the value of the feature root polynomial. 

Comparing the calculated modulus of the inverse of the eigenvalue with 1, if the modulo of the 

inverse of the eigenvalue is equal to 1, the VAR model is not stable and needs to be 

re-established; if the modulus of the inverse of the eigenvalue is less than 1, the VAR model is 

suitable. 
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3.3 BEKK-GARCH model 

This paper modifies the bivariate BEKK-GARCH(1, 1) model to study the volatility 

spillover effects of the daily return time series of the EUA and CER futures markets and reveals 

the direction of volatility spillovers and the information transmission paths in EU carbon 

financial markets. 

The BEKK-GARCH model is a multivariate GARCH model originally proposed by 

Engle and Kroner (1995) that has been widely used to investigate volatility spillovers between 

markets (Wu and Li, 2013; Han et al., 2019). According to Agren (2006), the mean equation is 

modified based on the empirical results of the VAR model and is shown in section 4. The 

conditional variance equation is as follows: 

Ht = CC′ + A′(εt−1εt−1
′ )A + B′Ht−1B             (3) 

where εt = (ε1t
ε2t

) is a 2 × 1 vector of the error terms from the mean equation and follows a 

normal distribution, Ht = (h11,t h12,t

h21,t h22,t
) is the conditional variance-covariance matrix, and C =

( c11    0
c21 c22

) is the lower triangular matrix. A = (a11 a12
a21 a22

) and B = (b11 b12
b21 b22

) are both 2nd-order 

square matrices, and if C′C is positively definite, Ht is positive. 

h11,t is the conditional variance of the first market, h22,t is the conditional variance of 

the second market, and h12,t is the conditional covariance between the two markets. The above 

three formulas represent the current market volatility. a11 and a22 in matrix A represent the 

ARCH effect of the sequence, which is used to represent the time-varying characteristics of the 

fluctuation. b11 and b22 in matrix B represent the GARCH effect of the sequence, which is 
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used to reflect the continuous characteristics of the fluctuation. a12 and a21 in matrix A refer to 

the impact conduction effects of different markets. b12 and b21 in matrix B refer to the wave 

conduction effect of different markets (also called the cross-wave effect). These two effects are 

collectively referred to as the volatility spillover effect. 

We use the Wald test to test the volatility spillover effect between different markets; the 

null hypothesis is aij = bij =  0, indicating that there is no volatility spillover from market i to 

market j, and the alternative hypothesis is aij
2 + bij

2 ≠  0, indicating that there is a volatility 

spillover from market i to market j. 

 

3.4 Data description 

 

3.4.1 Data selection and processing 

Having multiple exchanges, the EU ETS is currently the world's most extensive and 

highest volume carbon financial trading market. This paper selects the settle price of the 

continuous futures contract of the EUA and CER of the European Climate Exchange (ECX) as 

the sample data. Since the first phase of the EU ETS is experimental, and no CER futures 

products are introduced, this paper empirically studies only the volatility spillover effects of the 

second and third phases of the EU ETS. 

We collected the EUA and CER futures prices from March 14, 2008 to July 27, 2017. We 

also consider the daily observations for the three-month Euribor rate, the Citi Economic Surprise 
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Index and FTSE100 index as a reflection of the macro economy. In total, 2,445 sets of data were 

used as the research samples. If data are missing due to holiday breaks, this paper uses the data 

from the previous day to fix this problem. The sample size of the data in this paper is very large, 

which makes it more likely that we can draw conclusions that are close to the real situation. The 

data are derived from the Wind Economic Database, as shown in Table A.1. 

The rate of return is an important indicator of price volatility, and its variance or standard 

deviation can be used to reflect the risk characteristics and volatility characteristics of a market. 

Compared with the price, the rate of return has more excellent statistical characteristics, 

rendering it more suitable for the empirical analysis in this paper. Therefore, to better study the 

volatility spillover effects of EUAs and CERs and overcome the problem that the price changes 

are too small, we study the characteristics of the market daily rate of return series, which is 

defined and calculated by the formula below: 

𝑅𝑡 = (𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝑡−1) ∗ 100                                                      

(4) 

 

3.4.2 Descriptive statistics and basic characteristics analysis 

To test the return rate series of the EUA and CER futures markets and their volatility 

characteristics, line charts of the prices and return rates of the two markets were plotted. In Figs. 

1-4, RE represents the return of EUA futures, and RC represents the return of CER futures. 
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Fig. 1. Chart depicting the EUA futures market price. 

 

0

4

8

12

16

20

24

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

CER

1 2 3 4

 

Fig. 2. Chart depicting the CER futures market price. 
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Fig. 3. Sequence diagram of the EUA futures market yield. 
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Fig. 4. Sequence diagram of the CER futures market yield. 

 

We can perform a preliminary analysis based on the observed trend of EUA and CER 

prices and yields. As shown in Figs. 1 and 2, the price trend of EUA and CER is very similar. In 

quadrant 1, which spanned from March 2008 to February 2009, the prices of EUA and CER 

futures both underwent a process of first rising and then falling. Since June 2008, EUA futures 

prices have dropped from 29 euros to approximately 8 euros, while CER futures have dropped 

from 23 euros to approximately 7.5 euros. The drop in carbon prices in 2008 coincided with the 

global economic crisis, which not only strongly affected the real economy but also affected the 

carbon finance market. Due to the global economic recession caused by the financial crisis, the 

output of enterprises was reduced, and the carbon emission rights market was oversupplied, 

leading to a rapid decline in EUA and CER prices. 

In quadrant 2, from February 2009 to May 2011, the futures prices of EUA and CER both 

recovered and stabilized within a reasonable range. The price of EUA futures fluctuated by 

approximately 14 euros, and the price of CER futures fluctuated by approximately 12 euros. 

In quadrant 3, which spanned from May 2011 to April 2013, the outbreak of the European 

debt crisis contributed to the continuous downturn of the European economy, and the continuous 

decline in demand for carbon emission rights led to another collapse in the EUA and CER futures 

prices. The EUA futures fell to approximately 3 euros, while the CER futures fell even faster. 

In quadrant 4, which represents data collected after 2013, the EU ETS begun its third 
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phase. There are a large number of unused carbon emission rights in phase II because of the 

impact of the global economic crisis and the European debt crisis. Therefore, the European 

Commission allowed EUA and CER at the end of phase II to be transferred to phase III for 

interphase use, resulting in a continuous oversupply of carbon emission rights. In addition, the 

European Commission limited the use of CER in countries, such as China and India, in phase III. 

Therefore, in phase III, the prices of EUA and CER have not significantly recovered, and the 

prices of CER are still depressed. 

As shown in Figs. 3 and 4, overall, the yield of CER futures market volatility is greater 

than that of the EUA futures market. The CER market has a greater level of uncertainty than the 

EUA market. 

In basic data statistical analyses, the standard deviation reflects the degree of dispersion 

of financial assets in a certain period and is an evaluation index of the risk of financial assets. 

Skewness and kurtosis generally illustrate the normality of the yield as follows: skewness can 

indicate whether the distribution of the data is symmetrical, and kurtosis can indicate the shape 

of the data. The Jarque-Bera (JB) test is used to test whether the data follow a normal distribution. 

In addition, the Ljung-Box Q-statistics test and ARCH-LM test are used to test the significance 

of autocorrelation and ARCH effects, respectively. 

Table 1 shows the basic characteristics of the EUA and CER futures market yield time 

series based on the results of the Ljung-Box Q-statistics test and ARCH-LM test. Based on the 

mean and standard deviation of the EUA and CER market returns, the EUA market has higher 
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returns and smaller standard deviations, suggesting that it has strong profitability and low market 

risk. The EUA market yield series has a skewness of -0.85 and a kurtosis of 21.10, indicating that 

the sequence has a “left-biased and high-thin” distribution pattern compared with a normal 

distribution (skewness is 0, kurtosis is 3); the JB value is 33648.57, which is significant at the 1% 

level. Therefore, the null hypothesis is rejected, i.e., the rate of return is nonnormally distributed. 

The skewness of the CER market yield series is 9.75, and kurtosis is 384.17, indicating that this 

sequence has a "right-biased and high-thin" distribution compared with a normal distribution; the 

JB value is 12171661, which is significant at the 1% level. Therefore, the null hypothesis is 

rejected, i.e., the sequence is nonnormally distributed. The results of the Ljung-Box Q-statistics 

tests show that both EUA and CER market yield sequences have autocorrelation. In addition, the 

ARCH-LM tests reject the null hypotheses that there are no ARCH effects, indicating that both 

EUA and CER market yield sequences have ARCH effects. 

 

Table 1. Basic characteristics of the EUA and CER futures market return rate 

 RE RC 

 Mean -0.0600 -0.1801 

 Maximum  24.0515  294.4439 

 Minimum -43.4736 -138.6294 

 Std. Dev.  3.2358  10.0130 

 Skewness -0.8470  9.7531 

 Kurtosis  21.0986  348.1736 
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 Jarque-Bera  33648.57***  12171661*** 

LB-Q(15) 64.1977*** 192.7274*** 

ARCH-LM 16.2690*** 3.3080** 

Note: LB-Q(15) is the Ljung-Box Q-statistic for autocorrelation at lag 15. ARCH-LM is the 

F-statistic of the Lagrange multiple test for the ARCH effect with the lags set to 3. *** and ** 

denote significance at the 1% and 5% levels, respectively. 

 

4 Empirical results and analysis 

 

4.1 Breakpoint unit root test 

This paper uses the breakpoint unit root test to determine whether the EUA and CER 

market returns data are stable at level. The specific results are shown in Table 2. The test results 

show that the return rates of the EUA and CER futures markets are stable. In addition, if a 

structural break in the unit root equation is allowed, the break dates of the EUA and CER 

markets were both in April 2013, which is consistent with the time when the EU ETS entered 

phase III. Therefore, we can conclude that Phase III of the EU ETS had an impact on the 

structure of both the EUA and CER markets but with a four-month delay.  

 

Table 2. Results of the unit root test with structural breaks 

Variables t-statistic 5% level Break Date Result 
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RE -37.4619 -4.6435 4/18/2013 Stationary 

RC -36.3111 -4.6435 4/04/2013 Stationary 

In the following empirical study, the EUA and CER market yield sequence is divided into 

two samples based on the structural break dates. The first sub-sample, i.e., from March 14, 2008 

to April 10, 2013, is regarded as the second phase of the EU ETS. In addition, the second 

sub-sample, i.e., from April 11, 2013 to July 28, 2017, is regarded as the third phase of the EU 

ETS. 

 

4.2 VAR analysis of the return spillover effect 

 

4.2.1 Analysis of the VAR model results 

The choice of the number of lag periods has a significant impact on the VAR estimation 

as different lag periods could result in different analysis results. In general, when the order is 

large, the data can be free from the influence of error autocorrelation, and the market information 

can be accurately estimated; however, when the order is too large, the degree of freedom of the 

data is affected. According to the Akaike information criterion (AIC) and Schwarz criterion (SC), 

the lag order of the VAR model in phase II and phase III is both 2. 

Fig. 5 shows the results of the AR root test of the VAR model in phase II; all 

characteristic roots are in the unit circle, indicating that the model is stable. Therefore, we can 

establish the VAR(2) model of the returns of the EUA and CER futures markets in phase II, and 
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the results are shown in Table 3. 

 

Table 3. Estimated results of the VAR(2) model in Phase II 

 RE RC 

RE(-1)  0.0460  0.0713 

 [ 1.5355] [ 1.1015] 

RE(-2) -0.0694** -0.2704** 

 [-2.3316] [-4.1988] 

RC(-1)  0.0004 -0.2550** 

 [ 0.0267] [-8.6052] 

RC(-2) -0.0057  0.1087** 

 [-0.4164] [ 3.6793] 

C -0.1285 -0.5405** 

 [-1.5287] [-2.9726] 

Log likelihood -7592.4642 

AIC  11.5102 

SC  11.5494 

Notes: The numbers in brackets are the empirical t-statistics of the estimated coefficients. 

**denotes significance at the 5% level. 
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Fig. 5. Characteristic Root Test of the VAR(2) model in phase II. 

 

In phase II, in the EUA market, the 2nd-order lag return rate of the EUA futures market 

has an impact on the current rate of return of -0.07 (T = -2.33), passing the significance test, and 

the coefficient is negative. The results show that the return in the second period before the EUA 

market could affect the current market returns in the opposite direction and indicates that the 

EUA futures market reflects information slowly. In the CER market, the 1st-order lag return rate 

of the CER futures market has an impact on the current return of -0.26 (T = -8.61), and the 

2nd-order lag return rate has an impact on the current return of 0.11 (T = 3.68), both passing the 

significance test. These results show that the returns of the first two periods of the CER market 

could affect the current market returns. We also find that compared with the EUA futures market, 

the CER futures market reflects more information. 

The 2nd-order lag return rate of the EUA futures market has an impact on the current 
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return rate of the CER futures market of -0.27 (T = -4.20), passing the significance test and 

indicating that the CER market has an impact on the EUA market in the opposite direction. 

However, the impacts of all lag return of the CER market on the return EUA market do not pass 

the significance test, indicating that CER’s return has no effect on EUA's return. 

In summary, we find that there is a lead-lag relationship between the EUA market and CER 

market in phase II. Specifically speaking, the EUA market has a one-way return spillover effect on 

the CER market. The historical return of the EUA market has a significant negative impact on the 

return of the CER market, suggesting that high returns in the EUA market are more likely to lead to 

low returns in the CER market. This can occur because CER can partially replace EUA. When the 

EUA market has high return, investors in the carbon market will focus on it instead and reduce 

investments in the CER market, resulting in a decline in the liquidity and lower return of the CER 

market. Additionally, when the EUA market has a low return, the consequence is opposite. Our 

conclusion shows that in phase II, investors can use the return information on the EUA futures 

market to predict the price of CER futures market, indicating that EUA and CER markets are 

closely linked during this phase. 

Fig. 6 shows the results of the AR root test of the VAR model in phase III. All 

characteristic roots are in the unit circle, indicating that the model is stable. Therefore, we can 

establish the VAR(2) model of the returns of the EUA and CER futures markets in phase III, and 

the results are shown in Table 4. 
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Fig. 6. Characteristic Root Test of the VAR(2) model in Phase III. 

 

Table 4. Estimated results of the VAR(2) model in Phase III 

 RE RC 

RE(-1) -0.0485 -0.0612 

 [-1.6370] [-0.5658] 

RE(-2) -0.1392**  0.0351 

 [-4.7001] [ 0.3240] 

RC(-1) -0.0097 -0.1858** 

 [-1.1809] [-6.2136] 

RC(-2) -0.0043  0.0610** 

 [-0.5309] [ 2.0500] 

C  0.0129  0.1061 

 [ 0.1263] [ 0.2849] 

Log likelihood -7362.5003 
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AIC  13.1769 

SC  13.2218 

Notes: The numbers in brackets are the empirical t-statistics of the estimated coefficients. 

**denotes significance at the 5% level. 

In phase III, in the EUA market, the 2nd-order lag return rate of the EUA futures market 

has an impact on the current return of -0.14 (T = -4.70), passing the significance test and 

showing that the EUA market has an autocorrelation and that the market reflects information 

slowly. In the CER market, the 1st-order lag return rate of the CER futures market has an impact 

on the current return of -0.19 (T = -6.21), and the 2nd-order lag return rate has an impact on the 

current return of 0.06 (T = 2.05), passing the significance test. These results show that the CER 

market has an autocorrelation and reflects its information quickly. We also find that compared 

with the EUA futures market, the CER futures market reflects more information. 

The influence of the lag return rate of the EUA market on the current return rate of the 

CER market does not reach significance, indicating that the information in the EUA futures 

market has no effect on the CER market’s return. Similarly, the impact of the lag return rate of 

the CER market on the current return rate of the EUA market does not reach significance, 

indicating that the information in the CER futures market has no effect on the EUA market’s 

return. 

Accordingly, we conclude that there is no return spillover between the EUA and CER 

markets in phase III. The result shows that, in phase III, investors cannot use the information on 
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the EUA market to predict prices of the CER market, and that there is a trend of fragmentation 

between the EUA and CER markets. This phenomenon takes place because, in phase III, the 

European Commission has strictly restricted CER's substitution of EUA to reduce the correlation 

between the two markets. In addition, the global economic crisis and the European debt crisis 

allowed many unused carbon allowances at the end of the second phase of the EU ETS to be 

transferred to the third phase, resulting in a continuous oversupply in the EUA market and 

ultimately reducing the pressure on the industrial operators to reduce emissions. As a result, the 

volatility spillover effect of the EUA market on the CER market has been weakened to zero. 

 

4.2.2 Granger causality test 

Since the coefficients in the VAR model system are usually very large, the conclusions 

obtained by analyzing the model coefficient estimates are often not sufficiently accurate, and 

relying on tools such as the Granger test, impulse response function (IRF) and variance 

decomposition is necessary. The Granger test can be used to determine whether all hysteresis 

items of a variable have an effect on the current values of the other variables; thus, this test has 

been widely used (Geng et al., 2017; Kamdem et al., 2016). 

Table 5 shows the results of the Granger causality test of RE and RC in phases II and III. 

 

Table 5. Granger causality tests 

Sample period Dependent variable Chi-square Prob. 
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Phase II RE 0.1964 0.9065 

 RC 18.7068 0.0001*** 

Phase III RE 1.4901 0.4747 

 RC 0.4408 0.8022 

Note: *** indicates the rejection of the null hypothesis at the 1% level of significance. 

As shown in Table 5, in both phase II and phase III, the CER futures’ return is not the 

Granger cause of the EUA futures’ return. However, in phase II, at the significance level of 1%, 

the EUA return is the granger cause of the CER return, which is consistent with the results above 

and the results reported by Koop and Tole (2013) and Nazifi (2013). 

Therefore, we can draw the conclusion that in the return spillover effect of EUA and CER, 

EUA plays a dominant role, and the return spillover effect between the two markets has 

weakened to zero in phase III. The EUA market plays a leading role in the relationship between 

the two markets; one reason is that the main function of CER is to replace EUA to reduce the 

emission reduction costs of producers; the other reason is that, when compared with the CER 

market, the EUA market is more mature and larger in its market scale, thus contributing to a greater 

impact on the CER market. 

 

4.2.3 Impulse response function (IRF) 

Since the coefficients reflect only some dynamic relationships, it is impossible to capture 

the comprehensive dynamic relationship. Scholars tend to focus on the entire process by which 

one factor affects another. In this case, the dynamic influence of each factor can be reflected 
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more comprehensively by drawing an IRF graph because the IRF captures the dynamic impact 

path. 

According to the above analysis, the EUA and CER markets only have one-way return 

spillovers in phase II. Therefore, we only analyze the impulse response function graph of EUA 

and CER in phase II as shown in Fig. 7. 
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Fig. 7. The result of impulse response between EUA returns and CER returns in phase II 

Figure 7 shows the impact of a standard deviation shock on the error term of EUA or CER 

return on the current value and future value of its own or of another market’s rate of return. It also 

describes the time path of the response of EUA and CER returns to the returns of impulse shocks of 
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their own market or another market. Among them, the abscissa axis represents the lag period of the 

shocks (one period is one day); the ordinate axis indicates the response degree of RE or RC; the 

solid line stands for the response of EUA or CER return to each shock; the dotted line shows the 

deviation band of positive and negative responses, which is twice of the standard deviation. 

In phase II, when the EUA futures market is impacted by a standard deviation of its own, 

it can react quickly with a response degree of 3.04 in the first period, followed by a sudden drop. 

Additionally, the response in the second to third periods in the future is low with a response 

degree of 0.14 and -0.22, respectively; then, it stabilizes to zero. In addition, before the third 

period, the effect of the EUA futures market on its own impact is positive, and the subsequent 

impact effect becomes negative, indicating that the effect of the EUA futures market on its own 

income sequence is first positive and then negative. 

The impact of CER market information on the EUA market is neither timely nor sensitive. 

When the CER market has an impact on the EUA market, the EUA market’s response degree is 

almost zero. This result shows that the CER market has no impact on the return of the EUA 

market, which is consistent with the results of the VAR model. 

When the CER futures market is impacted by a standard deviation of the EUA futures 

market, it can respond quickly with a response degree of 2.52 in the first period, followed by a 

sharp fall to -0.43 in the second and third periods, and eventually stabilizes to zero. In addition, 

the impact of the EUA market on the CER returns in the first period is positive and then becomes 

negative, revealing that the impact of the EUA market on the CER market is first positive and 
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then negative. 

 When the CER futures market is impacted by itself, it can react quickly with a response 

degree of 6.07 in the first period, followed by a sharp fall. The response degree in the second, 

third and fourth periods in the future is -1.55, 1.05 and -0.44, respectively. After the sixth period, 

the response degree tends to be zero. 

The analysis result of the impulse response function shows that, in the second phase, when 

the EUA market receives a positive shock, the CER market will also be impacted accordingly. The 

influence of this shock will first be positive and then be negative, eventually, it will stabilize. 

This is because when the EUA market is shocked by a standard deviation, its return will rise 

significantly after one day. Since CER is a substitute for EUA, the return of CER will also increase. 

Afterwards, investors in the market will transfer a large amount of funds to the EUA market, which 

would cause the CER market to drop in liquidity and return in the next two days. However, when 

the CER market is shocked, the EUA market's return will not be affected. 

 

4.2.4 Variance decomposition 

Variance decomposition can decompose the variance of a variable in a VAR model into 

each perturbation term; thus, variance decomposition can be used to analyze the relative degree 

of the response of a variable to all other factors. 

According to the above analysis, the EUA and CER markets only have one-way return 

spillovers in phase II. Therefore, we only analyze the variance decomposition of RE and RC in 
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phase II as shown in Table 6. 

 

Table 6. Results of the variance decomposition of EUA returns and CER returns in phase II 

Variance Decomposition of RE Variance Decomposition of RC 

Period S.E. RE RC Period S.E. RE RC 

1  3.0370  100.0000  0.0000 1  6.5690  14.7539  85.2461 

2  3.0403  100.0000  5.33E-05 2  6.7621  14.3216  85.6784 

3  3.0484  99.9868  0.0132 3  6.8571  14.3167  85.6833 

4  3.0484  99.9862  0.0138 4  6.8712  14.2581  85.7419 

5  3.0485  99.9861  0.0139 5  6.8753  14.2413  85.7587 

6  3.0485  99.9860  0.0140 6  6.8762  14.2377  85.7623 

7  3.0485  99.9860  0.0140 7  6.8764  14.2368  85.7632 

8  3.0485  99.9860  0.0140 8  6.8765  14.2366  85.7634 

9  3.0485  99.9860  0.0140 9  6.8765  14.2366  85.7634 

10  3.0485  99.9860  0.0140 10  6.8765  14.2366  85.7634 

The variance decomposition results of the EUA futures market show that the return rate 

of the EUA futures market is almost all from its own variance and not affected by the CER 

futures market, which is consistent with the results above. 

Regarding the return of the CER market, the variance ratio derived from the EUA market 

return rate accounts for 14.75% in the first period and then gradually decreases and stabilizes at 

approximately 14.24%. In comparison, the proportion of variance of RC in the first period is 

85.25%; then, this proportion gradually increases and finally stabilizes at approximately 85.76%. 
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In general, the variance of RC still accounts for the majority of the variance decomposition of its 

own market; thus, the CER futures market has an absolute advantage over its own price. 

The variance decomposition results show that, in the second phase, the shock of the EUA 

market has a significant impact on the CER market, while the shock of the CER market has almost 

zero impact on the EUA market. This conclusion is consistent with the analysis of the impulse 

response function. Moreover, we also find that whether it is the EUA market or the CER market, 

the change in the current returns is mainly affected by the previous returns. 

 

4.3 BEKK-GARCH estimation of the volatility spillover effect 

According to Agren (2006) and Yu et al. (2019), the bivariate BEKK-GARCH model 

based on the VAR model can effectively study the volatility spillover effect between markets. 

The results of the VAR model revealed that there is only one-way return spillover effect of EUA 

on CER market in phase II of the EU ETS, while there was no return spillover effect between the 

EUA and CER markets in phase III. Therefore, we modify the mean equation of the 

BEKK-GARCH model as follows: 

Conditional mean equation in phase II 

r1t = μ1 + δ11r1,t−1 + π11r1,t−2 + ε1t             (5) 

r2t = μ2 + δ21r1,t−1 + δ22r2,t−1 + π21r1,t−2 + π22r2,t−2 + ε2t       (6) 

Conditional mean equation in phase III 

r1t = μ1 + δ11r1,t−1 + π11r1,t−2 + ε1t             (7) 
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r2t = μ2 + δ22r2,t−1 + π22r2,t−2 + ε2t             (8) 

where 𝑟1 and 𝑟2 are the returns of the EUA and CER markets at time t and ε1t and ε2t are 

the error terms. 

The results of the BEKK-GARCH(1,1) model of the EUA and CER futures markets in 

phase II are shown in Table 7. The results shown in Table 7 are divided into three parts. The first 

part shows the estimated results of the conditional mean equation. The second part shows the 

results of the conditional variance-covariance equation, which addresses the volatility spillover 

effects. The model diagnostics are presented at the end of the table; the Ljung-Box Q-statistics 

show that there are no serial correlations in the standardized residuals and the squared 

standardized residuals. 

 

Table 7. Estimated results of the BEKK-GARCH model in phase II 

Coefficients RE (i=1) RC (i=2) 

Conditional mean equation 

REt-1 0.0598 (2.3446)** -0.0810 (-2.5431)** 

REt-2 -0.0326 (-1.2699) -0.0929 (-2.5613)** 

RCt-1  0.1473 (4.7943)*** 

RCt-2  0.0953 (2.9428)*** 

Constant 0.0181 (0.3168) -0.0123 (-0.2247) 

Conditional variance-covariance equation 

c1i 0.3325 (7.7980) ***  

c2i 0.2647 (4.3817) *** -0.2371 (-8.0173)*** 
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a1i 0.2817 (12.8899) *** -0.2062 (-6.4093) *** 

a2i -0.0416 (-2.9749) *** 0.5357 (16.2496) *** 

b1i 0.9359 (126.2331) *** 0.0607 (4.2349) *** 

b2i 0.0283 (5.3506) *** 0.8788 (66.9019) *** 

Model diagnostics 

Q(15) 6.0766 14.2113 

Q2(15) 18.3380 10.0604  

Log-L -5524.2932 

Obs. 1321 

Note: The t-statistics are shown in parentheses. The numbers 1 and 2 represent the returns of the 

EUA market and CER market. ***, ** and * denote significance at the 1%, 5% and 10% levels, 

respectively. Q(15) and Q2(15) are the Ljung-Box Q-statistics of the standardized residuals 

and squared standardized residuals at lag 15.  

In the estimate results of the conditional variance-covariance equation, the parameters 

𝑎11、𝑏11、𝑎22 and 𝑏22 are all significant at the 5% level, indicating that both the EUA and 

CER markets have an impact conduction effect and a wave conduction effect on themselves. 

Thus, the volatilities of the two markets are influenced by their own past shocks and past 

volatilities. In addition, the estimated values of 𝑏11 and 𝑏22 are both greater than the estimated 

values of 𝑎11 and 𝑎22, suggesting that compared with historical shocks, historical volatilities 

have a more significant impact on the prices of the EUA market and CER market. This result can 

help us understand the transmission mechanism of carbon futures market risk to itself during the 

second phase. First, unexpected events in the EUA or CER market may stimulate higher 
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volatilities of its own market prices. Second, volatilities in the EUA or CER market during a 

certain period may cause higher volatilities in the future. 

The parameters 𝑎12 and 𝑏12 are both significant at the 5% level, indicating that the 

EUA market has a unidirectional impact conduction effect and a wave conduction effect on the 

CER market. Therefore, the fluctuation in the return rate of the EUA market will affect the 

fluctuation in the return rate of the CER market in both the long term and short term. 

The parameters 𝑎21 and 𝑏21 are both significant at the 5% level, indicating that the 

CER market has a unidirectional impact conduction effect and a wave conduction effect on the 

EUA market. Therefore, the fluctuation in the return rate of the CER market will affect the 

fluctuation in the return rate of the EUA market in both the long term and short term. 

By comparing 𝑎12 and 𝑎21, we find that the effect of information from the EUA market 

to the CER market is greater than that from the CER market to the EUA market. By comparing 

𝑏12 and 𝑏21, we conclude that the volatility of the EUA return rate has a greater effect on the 

fluctuation in the CER returns. Therefore, in phase II, the EUA and CER markets have volatility 

spillover effects, and the volatility spillover effect of EUA on CER is more significant. 

In order to study the direction of the volatility spillover effect between the EUA and CER 

markets in phase Ⅱ, we conduct Wald test on the parameters, as shown in Table 8. In the Wald 

test, the null hypothesis is aij = bij =  0, indicating that there is no volatility spillover from 

market i to market j, and the rejection of the null hypothesis indicates that there is volatility 

spillover from market i to market j. 
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Table 8. Wald test results of volatility spillover effect in phase II 

Null hypothesis Wald test statistic(Chi-Squared) Prob. 

H0: a12 = b12 = 0 43.2072  0.0000 

H0: a21 = b21 = 0 32.7849 0.0000 

Note: The numbers 1 and 2 represent the returns of the EUA market and CER market.  

According to table 8, the null hypotheses that “the EUA market does not have a one-way 

volatility spillover effect on the CER market” and “the CER market does not have a one-way 

volatility spillover effect on the EUA market” are rejected. These results indicate that there is a 

mutual volatility spillover effect between the EUA and CER markets in phase II. This result can 

help us understand the risk transmission mechanism between EUA and CER futures markets in 

phase II. First, unexpected events and volatilities in the EUA market can result in volatilities in the 

CER market. Second, unexpected events and volatilities in the CER market can also lead to 

volatilities in the EUA market. Since both EUA and CER can be used to fulfill the industrial 

operators’ commitment to carbon emission reduction, when unexpected events or sharp volatilities 

occur in the EUA futures market, the increase in uncertainties and risks will drive industrial 

operators and investors to invest in CER futures, contributing to an increase in demand for CER 

futures, and resulting in volatilities in CER futures prices. When the risks of the CER market 

increases, the situation is similar. 

The results of the BEKK-GARCH(1, 1) model of the EUA and CER futures markets in 



 

 44 

phase II are shown in Table 9. The Ljung-Box Q-statistics show that there are no serial 

correlations in the standardized residuals and squared standardized residuals. 

 

Table 9. Estimated results of the BEKK-GARCH model in phase III 

Coefficients RE (i=1) RC (i=2) 

Conditional mean equation 

REt-1 -0.0432 (-1.3303)  

REt-2 -0.1440 (-5.0139)***  

RCt-1  -0.1157 (-1.5083) 

RCt-2  0.0112 (0.3127) 

Constant 0.1032 (1.7693)* 0.2501 (0.8504) 

Conditional variance-covariance equation 

c1i 0.2851 (2.3701) **  

c2i 10.7532 (41.1713) *** -0.0005 (-5.50e-05) 

a1i 0.3460 (11.9467) *** 0.2010 (2.2797) ** 

a2i 0.0019 (0.2785) 0.6390 (10.1986) *** 

b1i 0.9382 (96.8015) *** -0.2444 (-1.6334)  

b2i 0.0024 (0.2479)  0.0312 (0.2797)  

Model diagnostics 

Q(15) 10.0865 10.0788 

Q2(15) 1.0335 0.0225 

Log-L -7084.9582 

Obs. 1119 

Note: The t-statistics are shown in parentheses. The numbers 1 and 2 represent the returns of the 
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EUA market and CER market. ***, ** and * denote significance at the 1%, 5% and 10% levels, 

respectively. Q(15) and Q2(15) are the Ljung-Box Q-statistics of the standardized residuals 

and squared standardized residuals at lag 15.  

In the estimate results of the conditional variance-covariance equation, the parameters 

𝑎11、𝑏11 are both significant at the 5% level, indicating that the EUA market has an impact 

conduction effect and a wave conduction effect on itself. Thus, the volatility of the EUA market 

is influenced by its own past shocks and past volatilities. Additionally, the estimated values of 

𝑏11 is greater than the estimated values of 𝑎11, indicating that compared with historical shocks, 

historical volatilities have a more significant impact on the prices of the EUA market. This result 

can help us understand the transmission mechanism of EUA futures market risk to itself during the 

third phase. First, unexpected events in the EUA market may stimulate higher volatilities of its 

market prices. Moreover, volatilities in the EUA during a certain period may cause higher 

volatilities in the future. 

𝑎22 is significant at the 5% level, while 𝑏22 is not significant, indicating that the CER 

market only has an impact conduction effect on itself. Thus, the volatility of the CER market 

returns is only influenced by its own past shocks. This result shows that unexpected events in the 

CER market may stimulate higher volatilities of its market price, while the historical volatilities 

of the CER market price has no effect on its market price. 

𝑎12 is significant at the 5% level, indicating that the EUA market has a unidirectional 

impact conduction effect on the CER market. However, 𝑏12 is not significant at the 5% level, 
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and there is no wave conduction effect from the EUA market to CER market. Therefore, the 

EUA market affects the fluctuation in the return rate of the CER market only in the short term. 

𝑎21 and 𝑏21 are both not significant at the 5% level, indicating that the fluctuation in the 

return rate of the EUA market is not affected by the CER market in both the long term and short 

term. 

In order to study the direction of the volatility spillover effect between the EUA and CER 

markets in phase Ⅱ, we conduct Wald test on the parameters, as shown in Table 10. 

 

Table 10. Wald test results of volatility spillover effect in phase III 

Null hypothesis Wald test statistic(Chi-Squared) Prob. 

H0: a12 = b12 = 0 7.6271 0.0221 

H0: a21 = b21 = 0 0.7806 0.6768 

Note: The numbers 1 and 2 represent the returns of the EUA market and CER market. 

According to table 10, the Wald tests reject the null hypothesis that “the EUA market 

does not have a one-way volatility spillover effect on the CER market" but do not reject the null 

hypothesis that “the CER market does not have a one-way volatility spillover effect on the EUA 

market”. This finding indicates that only the EUA market has a one-way volatility spillover 

effect on the CER market in phase III. This result can help us understand the risk transmission 

mechanism between EUA and CER futures markets in the third phase. In this phase, only 

unexpected events and volatilities in the EUA market can cause volatilities in the CER market. 
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Unexpected events and volatilities in the CER market have no effect on the price of the EUA 

market. In other words, only the risks in the EUA market can be transmitted to the CER market, 

and investors can predict the risks in the CER market based on the risks in the EUA market, but 

they cannot predict the risks in the EUA market based on those in the CER market. 

By comparing the estimated results in phase II and phase III, it can be observed that there 

is a two-way volatility spillover effect between the EUA and CER markets in phase II. However, 

in phase III, the volatility spillover effect between the two markets is weakened, and only the 

EUA market has a one-way volatility spillover effect on the CER market. This conclusion shows 

that, in the third phase, decrease in carbon emission reduction pressure caused by the oversupply of 

EUA and the restrictions on the use of CER by the European Commission have led to 

fragmentation of the EUA and CER markets, which reduces the investment risks of market 

participants. 

 

4.4 Impact of macroeconomic variables 

According to Nazifi (2013) and Conrad et al. (2012), economic activities affect the EUA 

and CER markets; to test the robustness of the main results, we added macroeconomic variables 

that might affect the market relationship between EUA and CER to the mean equation of the 

BEKK-GARCH model. These macroeconomic variables include the Euribor rate (three-month), 

the Citi Economic Surprise Index for the euro zone and the FTSE100 index. Among these 

variables, the three-month Euribor rate can accurately reflect the supply and demand of 
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short-term funds in the financial market. The Citi Economic Surprise Index is a measure of the 

state of the economy; when this index is positive, the economy is performing better than widely 

expected, and when it is negative, the economy is performing worse than expected. In addition, 

the FTSE100 index measures economic strength and development. Because all the three 

macroeconomic variables are non-stationary series in phase II and phase III, we use their first 

difference (dFTSE100, dEURIBOR and dCESIEUR) in the analysis, as shown in Table A.2. The 

estimated results are shown in Table 11-13, and the results are consistent with the study above. 

We can also find that the returns of the EUA and CER markets are affected by the stock market 

and the Euribor rate in Phase II; however, the impact of the Euribor rate on the carbon market 

weakens to zero in Phase III. 

 

Table 11. Estimated results of the BEKK-GARCH model with macroeconomic variables in 

phase II 

Coefficients RE (i=1) RC (i=2) 

Conditional mean equation 

REt-1 0.0575 (2.2897) ** -0.0656 (-3.4041) *** 

REt-2 -0.0242 (-1.0119) -0.0816 (-2.4653) ** 

RCt-1  0.1167 (6.0131) *** 

RCt-2  0.0915 (3.1898) *** 

Constant 0.0043 (0.0817) -0.0135 (-0.2652) 

dFTSE100 0.0076 (9.1711) *** 0.0058 (6.7896) *** 
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dEURIBOR 10.0178 (3.2156) *** 8.2640 (2.6961) *** 

dCESIEUR -0.0026 (-0.5754) -0.0022 (-0.4788) 

Conditional variance-covariance equation 

c1i 0.3423 (7.0610) ***  

c2i 0.2746 (3.5028) *** 0.2152 (8.0763) *** 

a1i 0.2094 (9.1595) *** -0.2467 (-8.2173) *** 

a2i 0.0669 (4.3012) *** 0.5872 (20.0061) *** 

b1i 0.9831 (135.1471) *** 0.0874 (6.4482) *** 

b2i -0.0308 (-5.5405) *** 0.8505 (67.0600) *** 

Model diagnostics 

Q(15) 5.6308 10.5560 

Q2(15) 19.9368 8.9458 

Log-L -5499.9956 

Obs. 1321 

Note: The t-statistics are shown in parentheses. The numbers 1 and 2 represent the returns of the 

EUA market and CER market. ***, ** and * denote significance at the 1%, 5% and 10% levels, 

respectively. Q(15) and Q2(15) are the Ljung-Box Q-statistics of the standardized residuals 

and squared standardized residuals at lag 15. 

 

Table 12. Estimated results of the BEKK-GARCH model with macroeconomic variables in 

phase III 

Coefficients RE (i=1) RC (i=2) 

Conditional mean equation 
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REt-1 -0.0589 (-1.8292) *  

REt-2 -0.1431 (-4.6453) ***  

RCt-1  -0.1051 (-1.3159) 

RCt-2  0.0166 (0.4534) 

Constant 0.1183 (1.8718) * 0.3045 (1.0422) 

dFTSE100 0.0040 (4.2276) *** 0.0050 (0.8441) 

dEURIBOR 12.4816 (0.6186) 30.6725 (0.2426) 

dCESIEUR 0.0215 (1.6185) 0.0524 (0.9135) 

Conditional variance-covariance equation 

c1i -0.2434 (-2.1519) **  

c2i -10.7480 (-43.9261) *** 0.0018 (1.78e-04) 

a1i 0.3430 (12.3959) *** 0.2045 (2.2146) ** 

a2i 0.0021 (0.3296)  0.6430 (10.2263) *** 

b1i 0.9405 (110.7887) *** -0.2131 (-1.6595) * 

b2i 0.0029 (0.3100) 0.0426 (0.3877) 

Model diagnostics 

Q(15) 8.7070 9.8159 

Q2(15) 1.0385 0.0226 

Log-L -7074.5864 

Obs. 1119 

Note: The t-statistics are shown in parentheses. The numbers 1 and 2 represent the returns of the 

EUA market and CER market. ***, ** and * denote significance at the 1%, 5% and 10% levels, 

respectively. Q(15) and Q2(15) are the Ljung-Box Q-statistics of the standardized residuals 

and squared standardized residuals at lag 15. 
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Table 13. Wald test results of volatility spillover effect with macroeconomic variables 

Null hypothesis Wald test statistic(Chi-Squared) 

 Phase II Phase III 

H0: a12 = b12 = 0 68.7552 *** 

(0.0000) 

7.3231 ** 

(0.0260) 

H0: a21 = b21 = 0 30.8604 *** 

(0.0000) 

1.1308 

(0.5681) 

Note: The P values are shown in parentheses. The numbers 1 and 2 represent the returns of the 

EUA market and CER market. *** and ** denote significance at the 1% and 5% levels, 

respectively. 

 

5 Conclusions and policy implications 

EUA and CER are two important components of the EU ETS; they represent the carbon 

price of European countries and developing countries respectively. Therefore, studying the 

relationship between these two markets can help managers understand the operating rules of the 

carbon market and provide a basis for the unified management of the carbon market. Unlike 

existing literature, this paper mainly studies the transmission mechanism of volatility information 

between the EUA and CER markets, and extends the study to the third phase of the EU ETS. 

The volatility spillover effect represents the information flow between markets, and its 



 

 52 

essence is the transmission of risks between markets. Studying the volatility spillover effects 

between the EUA and CER markets will help investors and managers in the carbon market 

understand the internal information and risk transmission rules of the carbon market, and make 

scientific and reasonable decisions to better respond to the risk of carbon price volatilities. In 

addition, comparing the changes in the volatility spillover effects between the EUA and CER 

markets in the second and third phases of the EU ETS can help to analyze the impact of changes in 

the EU ETS policies and the environment on the internal relations of the carbon market, providing 

experience and reference for the construction of the EU and other countries' carbon markets. 

In this paper, we first conduct a breakpoint unit root test on the returns of EUA and CER 

futures. Consequently, we find that the market structure of the EUA and CER markets has changed 

once the EU ETS entered the third phase with a four-month delay, indicating that the policy and 

environmental changes in different phases of EU ETS have an impact on both the EUA and CER 

markets. Based on this result, we analyze the return spillovers and volatility spillovers of these two 

markets in different phases according to the structural break dates. 

In order to make the results more accurate, we refer to the method of Agren (2006) and 

modify the BEKK-GARCH model based on the return spillover effect between the EUA and CER 

markets. Through methods such as VAR model, Granger causality test, impulse response function 

and variance decomposition, we find that only EUA has a unidirectional effect on CER in phase II, 

and in phase III, there are no return spillovers between the two markets. We also find that both the 
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EUA market and the CER market are affected by themselves, but the CER market reflects more 

frequently and rapidly on its own information. 

Then, we use the improved GARCH-BEKK model to study the volatility spillover effect 

between the EUA and CER markets. The conclusion is that there is a two-way volatility spillover 

effect between the EUA and CER markets in phase II. In both the short-term and long-term, the 

volatilities of EUA and CER market returns affect each other, and the EUA market has a more 

significant volatility spillover effect on the CER market. However, in phase III, only the EUA 

market has a unidirectional volatility spillover effect on the CER market, and the volatilities of the 

EUA market return affect the volatilities of the CER market return in the short term. 

Finally, we verify the robustness of the results through robustness tests. 

In general, we find that the EUA and CER markets have an asymmetric volatility spillover 

effect and that the EUA market dominates in the information transmission process. Furthermore, 

we also find that, after EU ETS enters the third phase, the volatility spillover effect between the 

EUA and CER markets becomes weaker, and that only the EUA market has a unidirectional 

volatility spillover effect on the CER market. 

Our conclusion confirms the hypothesis of this paper, which infers that, within the carbon 

market, information flows mainly from the EUA market to the CER market. In other words, shocks 

in the EUA market will result in price volatilities in the CER market, but the risk of the CER 

market is less capable of predicting EUA market risk. Even in the phase Ⅲ of the EU ETS, the 
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risk of the EUA market cannot be predicted based on the CER market. Our conclusion also 

confirms that changes in policies and the environment at different phases of the EU ETS will affect 

the internal relationship of the carbon market. As the EU ETS entered the third phase, the 

European Commission has limited the substitution of CER for EUA more strictly; only CER from 

least developed regions that is accepted by all EU Member States can be used as a substitute for 

EUA in phase III. Moreover, international carbon emission reduction requirements have become 

more relaxed, making the EUA and CER markets more fragmented. 

Our research has implications for both investors and carbon market managers. From the 

perspective of carbon market investors, on the one hand, the volatility spillover effect of EUA and 

CER markets in the third phase of EU ETS has been significantly reduced, indicating that the 

market risks faced by carbon market investors have been reduced. Thus, they can use EUA and 

CER futures to design appropriate hedging strategies. On the other hand, since the EUA market 

still has a risk spillover effect on the CER market, investors in CDM projects need to pay attention 

to preventing the EUA market from adding input risk to the CER market. Investors should also 

focus on the volatility of the EUA market price and make a more accurate prediction of the 

volatility of the CER price, so that they may adjust investment strategies in time to deal with the 

risk spillover of the EUA market. 

For carbon market managers, due to the asymmetric volatility spillover effect between the 

EUA market and the CER market, changes in the EUA market’s return rate are likely to increase 
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the risk of price volatilities in the CER market. Therefore, when formulating relevant policies, 

managers should consider the impact of EUA market volatilities on the CER market, and establish 

a risk prevention and management mechanism for the carbon market to better manage spillover 

effects between markets and reduce risks. Second, our research finds that changes in carbon 

market policies and the international carbon emission reduction environment have a significant 

impact on the relationship between EUA and CER markets. Therefore, managers need to consider 

the impact of policy changes on the internal relationship of the carbon market when formulating 

policies. At the same time, managers can also manage the relationship between the EUA market 

and the CER market by formulating relevant policies. 

In summary, this article mainly studies the volatility spillover effect between EUA and 

CER markets, and confirms that changes in policies and the international carbon emission 

reduction environment during different phases of the EU ETS have a significant impact on the 

relationship between EUA and CER markets. Our research helps investors and managers in the 

carbon market make reasonable decisions. However, this paper also has limitations. First, the 

research object of this paper is the EU carbon futures market, the relationship between the EUA 

and CER spot markets needs to be further studied. Second, this paper does not propose specific 

risk management methods based on the results of empirical research. In future research, we will 

further study the risks of the carbon market and propose feasible investment portfolio plans. 

 

 



 

 56 

 

Acknowledgements 

The authors acknowledge the valuable comments and suggestions provided by our colleagues. 

The authors are grateful to the anonymous reviewers, whose comments have helped us improve 

the manuscript. 

 

Funding 

This research is partially funded by the National Natural Science Foundation of China 

(71473010), Capacity Building of Science and Technology Innovation Services (Research 

Category) in 2019—Beijing Basic Research Business Expenses in Beijing University of 

Technology (011000546320503) and (011000546320532). 

 

Declarations of interest 

The authors declare that they have none conflicts of interest. 

 

Data availability 

The Data availability come from Table A.1. Data source. 

Appendix 

Table A.1. Data source 

Variables Content Data source 



 

 57 

EUA price European Union allowance futures 

price (settle price) 

Wind Database (www.wind.com.cn) 

CER price Certified emissions reduction 

futures price (settle price) 

Wind Database (www.wind.com.cn) 

FTSE100 FTSE100 index Wind Database (www.wind.com.cn) 

EURIBOR Three-month Euribor rate Wind Database (www.wind.com.cn) 

CESIEUR Citi Economic Surprise Index for 

the euro zone 

Wind Database (www.wind.com.cn) 

 

Table A.2. The results of the augmented Dickey-Fuller Unit Root Test 

Sample period Variable t-Statistics Prob. Result 

Phase II FTSE100 -2.7368 0.2218 Non-stationary 

EURIBOR -1.4846 0.8347 Non-stationary 

CESIEUR -2.3699 0.3952 Non-stationary 

dFTSE100 -37.4634 0.0000 Stationary 

dEURIBOR -8.2199 0.0000 Stationary 

dCESIEUR -33.2408 0.0000 Stationary 

Phase III FTSE100 -2.4128 0.3726 Non-stationary 

EURIBOR -2.0611 0.5664 Non-stationary 

CESIEUR -2.4911 0.3325 Non-stationary 

dFTSE100 -32.5889 0.0000 Stationary 

dEURIBOR -11.0094 0.0000 Stationary 

dCESIEUR -33.6299 0.0000 Stationary 

Note: Trend and intercept are included in the test equation, and the lag length is determined 

according to the Schwarz criterion (SC). 
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