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Highlights 27 

• First test of agent-based model for simulating faecal indicator organisms (FIOs).  28 

• Model shows skill in capturing transfer of FIOs from livestock to streams.  29 

• Quantifies sources, transfer mechanisms and host animals for FIOs reaching streams. 30 

• Potential to refine process conceptualisation (e.g. simulating FIOs from wildlife). 31 

• Model likely has scope for eventual incorporation into decision-support frameworks. 32 

  33 
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Abstract 34 

The new Model for the Agent-based simulation of Faecal Indicator Organisms (MAFIO) is applied to 35 

a small (0.42 km2) Scottish agricultural catchment to simulate the dynamics of E. coli arising from 36 

sheep and cattle farming, in order to provide a proof-of-concept. The hydrological environment for 37 

MAFIO was simulated by the “best” ensemble run of the tracer-aided ecohydrological model EcH2O-38 

iso, obtained through multi-criteria calibration to stream discharge (MAE: 1.37 L s-1) and spatially-39 

distributed stable isotope data (MAE: 1.14-3.02‰) for the period April-December 2017. MAFIO was 40 

then applied for the period June-August for which twice-weekly E. coli loads were quantified at up to 41 

three sites along the stream. Performance in simulating these data suggested the model has skill in 42 

capturing the transfer of faecal indicator organisms (FIOs) from livestock to streams via the processes 43 

of direct deposition, transport in overland flow and seepage from areas of degraded soil. Furthermore, 44 

its agent-based structure allowed source areas, transfer mechanisms and host animals contributing FIOs 45 

to the stream to be quantified. Such information is likely to have substantial value in the context of 46 

designing and spatially-targeting mitigation measures against impaired microbial water quality. This 47 

study also revealed, however, that avenues exist for improving process conceptualisation in MAFIO 48 

(e.g. to include FIO contributions from wildlife) and highlighted the need to quantitatively assess how 49 

uncertainty in the spatial extent of surface flow paths in the simulated hydrological environment may 50 

affect FIO simulations. Despite the consequent status of MAFIO as a research-level model, its 51 

encouraging performance in this proof-of-concept study suggests the model has significant potential for 52 

eventual incorporation into decision support frameworks.  53 

  54 

 55 
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1. Introduction 62 

A prerequisite to improving impaired microbial water quality in agricultural catchments is identification 63 

of the sources and transfer mechanisms which contribute faecal indicator organisms (FIOs) to streams 64 

at the sub-field scale where mitigation measures can be implemented (Oliver et al., 2007, 2016; also 65 

c.f. Greene et al., 2015; Vinten et al., 2017). In a companion paper (Neill et al., in review), limitations 66 

were identified in using existing process-based FIO models (e.g. SWAT [Sadeghi and Arnold, 2002] 67 

and INCA-Pathogens [Whitehead et al., 2016]) to understand sub-field-scale drivers of in-stream FIO 68 

dynamics that emerge at the catchment scale. Specifically, the coarse spatial discretisations often 69 

adopted by such models are inconsistent with the scales at which processes affecting FIO fate and 70 

transport operate and at which mitigation measures can be employed (Rode et al., 2010; Wellen et al., 71 

2015). Furthermore, as most FIO models are aggregative (i.e. they simulate stores and fluxes of FIOs 72 

integrated over spatial units such as grid cells), the ability to account for heterogenity amongst FIOs of 73 

different types and to trace pathways taken by individual FIOs to streams is limited (c.f. O’Sullivan et 74 

al., 2012; Reaney, 2008). Finally, most FIO models rely on skill in simulating stream discharge to 75 

indicate whether catchment hydrological functioning is being adequately captured (Cho et al., 2016). 76 

However, such data do not contain information on the velocities of water through a catchment that 77 

reflect flow path dynamics and hydrological connectivity, factors to which FIO transport is sensitive 78 

(Birkel and Soulsby, 2015; Wellen et al., 2015).  79 

 80 

Drawing on the potential offered by agent-based models for simulating individuals with heterogenous 81 

attributes that can be tracked over a simulation, Neill et al. (in review) reported the development of a 82 

new Model for the Agent-based simulation of Faecal Indicator Organisms (MAFIO) as an alternative 83 

approach to FIO modelling. The purpose of the model is to elucidate the sources and transfer 84 

mechanisms contributing FIOs to streams at the sub-field scale in small (<10 km2) agricultural 85 

catchments through simulating and tracking the fate and transport of agents representing FIOs (FIO-86 

agents) in a process-based, spatially-distributed manner. MAFIO consists of six sub-models that allow 87 

simulation of the following processes: 1) FIO loading from different livestock, including direct 88 

deposition in streams; 2) FIO die-off as a function of temperature and, for above-ground FIOs, solar 89 

radiation; 3) Precipitation-induced detachment of FIOs from faeces; 4) Surface routing of FIOs 90 

accounting for infiltration, exfiltration and lateral transport in overland flow; 5) Seepage of FIOs to 91 

streams from areas of degraded soil; 6) Channel routing with settling modelled by a distance-decay 92 

function for sediment-associated FIOs. A further key feature of MAFIO is that the hydrological 93 

environment used to simulate hydrological transfer mechanisms is provided by an external model; thus, 94 

there is scope for using hydrological models which can be robustly evaluated with respect to their 95 
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consistency with internal catchment states and process representation. Full details of the model, its 96 

operation and parameterisation can be found in the companion paper (Neill et al., in review).  97 

 98 

Here, MAFIO is applied to simulate the dynamics of E. coli in a small agricultural catchment in Scotland 99 

arising from sheep and cattle farming, in order to provide a proof-of-concept. The following specific 100 

questions are addressed: 101 

 102 

1. To what extent can MAFIO resolve the main processes driving observed dynamics of FIOs? 103 

2. What potential does MAFIO have for providing processed-based insights into microbial water 104 

quality that are relevant for management?   105 

 106 

Given the potential of tracer-aided ecohydrological models in providing robust simulations of 107 

catchment hydrological functioning (see Neill et al., in review), the model EcH2O-iso (Kuppel et al., 108 

2018a) is used to generate the hydrological environment for MAFIO following multi-criteria calibration 109 

to discharge and spatially-distributed isotope data.  110 

 111 

2. Study site 112 

The study site was the Tulloch Burn catchment (0.42 km2; Figure 1a), a sub-catchment of the Tarland 113 

Burn (71 km2) which is a tributary of the River Dee, NE Scotland. The Dee is a regional water resource, 114 

supplying >300,000 people with drinking water, and is designated a Special Area of Conservation due 115 

to the freshwater ecosystem it supports. Higher intensities of agriculture in lowland tributaries of the 116 

Dee have been linked to impaired water quality (Langan et al., 1997). As the most upstream tributary 117 

draining significant areas of agriculture, the Tarland Burn catchment became a research site for 118 

assessing diffuse- and point-sources of pollution and evaluating best management practices for 119 

mitigation (Bergfur et al., 2012). The selection of the Tulloch Burn catchment for this study was based 120 

on work that identified it as a “hot spot” for faecal contamination from 11 years of E. coli data (Neill et 121 

al., 2018).  122 

 123 

Longer-term data (2000-2010) from Aboyne meteorological station ~10 km from the Tulloch shows 124 

mean annual precipitation and potential evapotranspiration for the area to be 828 mm and 521 mm, 125 

respectively (Dunn et al. 2013). Catchment elevation ranges from 216 m to 453 m. Brown earths (41%) 126 
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and humus-iron podzols (34%) are the predominant soil-types (Figure 1b; Soil Survey of Scotland Staff, 127 

2014). These are freely-draining soils; consequently, artificial field drainage is not necessary in the 128 

catchment. There are also limited areas of non-calcareous gleys and alluvial soils, with higher elevations 129 

dominated by peaty-gleyed podzols (Figure 1b; Soil Survey of Scotland Staff, 2014). Approximately 130 

60% of the catchment is agricultural (Figure 1c). During the study, surveys showed that five fields were 131 

used for pastoral (sheep and cattle) farming (Lower/Mid Pasture [L/R] and Top Pasture) and two for 132 

arable (Lower/Upper Arable). Apart from Mid-Pasture (R), field boundaries extend beyond the Tulloch 133 

Burn catchment. Of the remaining catchment, 24% is mixed-conifer forest and 16% is heather moorland 134 

(Figure 1c).  135 

 136 

To prevent livestock access, parts of the stream are fenced-off from fields and surrounded by small 137 

riparian areas (Figure 1d). However, stretches of the stream running through Mid Pastures (R) and (L) 138 

are directly accessible to livestock, with animals able to move between Mid Pastures (R) and (L) at a 139 

discrete stream crossing-point depending on whether a gate is open (Figure 1c and e). Other discrete 140 

crossing-points can also connect Lower Pastures (R) and (L), and Lower Pasture (L) and Mid Pasture 141 

(R), again depending on gates (Figure 1c). Observation during the study found a high degree of soil 142 

compaction around all three crossing points (DS1-3 in Figure 1c) due to the concentration of livestock 143 

moving through these areas. This resulted in the soils being in a state of semi-permanent saturation 144 

(Figure 1f); therefore, these areas of degraded soil can continually seep water to the stream and may be 145 

a potential source of chronic faecal contamination (e.g. Bilotta et al., 2007).  146 

 147 

3. Data and methods 148 

3.1 Hydrometric and isotope data 149 

Hydrometric monitoring at the Tulloch Burn started in October 2016. The main study period was 150 

between 27/04/17 and 31/12/17. Daily average discharge at the catchment outlet and sites T6 and T8 151 

was derived by area-scaling discharge measurements made at the outlet of the 3.9 km2 Blackmill Burn 152 

catchment within which the Tulloch is nested. Specifically, near-concurrent discharge (Q) 153 

measurements made under identical hydroclimatic conditions at five sites within the Blackmill Burn 154 

(including the outlet of the Tulloch) with catchment areas (A) of 0.2-3.9 km2 revealed a strong 155 

relationship between discharge and area (Q = 1.85e-8×A0.97; Adj. R2: 0.99). Consequently, discharges 156 

for sites within Tulloch Burn could be derived as: 157 

 158 
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𝑄𝑇𝑢𝑙𝑋 = 𝑄𝐵𝑀 ∙ (
𝐴𝑇𝑢𝑙𝑋

𝐴𝐵𝑀
)

0.97

                                                                                                                           𝐸𝑞. 1 159 

 160 

where QTulX and ATulX are discharge and catchment area for Site X in the Tulloch Burn, respectively, and 161 

QBM and ABM are discharge and catchment area of the Blackmill Burn, respectively. This was necessary 162 

as the narrow, poorly-defined channel of the Tulloch prevented a reliable stage-discharge rating curve. 163 

The Blackmill and Tulloch Burns have comparable soils and land use causing them to exhibit similar 164 

hydrological responses. Meteorological data (precipitation, temperature, relative humidity and 165 

windspeed) were collected at 15-mintue intervals using an automatic weather station within the 166 

catchment (Figure 1a). Short- and long-wave radiation were obtained from ERA-Interim climate 167 

reanalysis (Dee et al., 2011). These data were amalgamated into daily timeseries. 168 

 169 

Isotope samples were analysed for δ2H and δ18O using a Los Gatos laser isotope analyser (precision: ± 170 

0.4‰ for δ2H and 0.1‰ for δ18O). Given higher relative precision, δ2H was used here. Daily 171 

streamwater samples at the catchment outlet were collected for isotope analysis using an ISCO-3700 172 

autosampler from 27/04/17 (Figure 1a). A layer of paraffin was added to bottles to prevent evaporation. 173 

Synoptic grab-sampling for isotopes occurred on a twice-monthly basis at sites T2-8 (Figure 1a). During 174 

the microbial observation period (Section 3.2), samples were taken twice-weekly at T6 and T8 to be 175 

coincident with samples taken for E. coli analysis. Daily bulk samples of precipitation were also 176 

collected using an ISCO-3700 autosampler.  177 

 178 

3.2 Microbial and livestock count data 179 

Within the study, a more intense field campaign was carried out between 08/06/17 and 31/08/17 (the 180 

“microbial observation period” – MOP) to collect higher-temporal-resolution data for stream E. coli 181 

concentrations and livestock counts. This corresponded to when most livestock are in the fields and 182 

potential for faecal contamination is elevated (Kay et al., 2008). Twice-weekly sampling for E. coli 183 

occurred during this period at the outlet, and from 06/07/17 at T6 and T8 to characterise spatial 184 

variability in concentrations arising from differing catchment characteristics (Figure 1a). Samples for 185 

E. coli were collected (working upstream to T8) in glass bottles sterilised by autoclaving at 123 °C for 186 

20 minutes. Care was taken not to disturb the channel bed to prevent contamination from E. coli stored 187 

in the sediment. Samples were placed in cool boxes until processing began within 6 hours of collection. 188 

Concentrations of E. coli were determined using the Colilert-18 most-probable-number (MPN) method 189 

(IDEXX Laboratories, Westbrook, Maine, USA). Samples were well-shaken to ensure uniform 190 

distribution of E. coli prior to 100 ml being decanted to provide concentrations in MPN 100 ml-1. When 191 
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high concentrations of E. coli were likely, dilutions were made using sterile Ringers’ solution. The limit 192 

of detection for undiluted samples was 1 MPN 100 ml-1. E. coli loads (MPN d-1) were derived by 193 

multiplying observed concentrations of E. coli at the outlet, T6 and T8 by average daily discharge for 194 

each respective site.  195 

 196 

Number and type of livestock in each agricultural land parcel of the catchment (Figure 1c) was recorded 197 

each sampling day. Where a land parcel represented a field with boundaries that extended beyond the 198 

Tulloch Burn catchment, the total number of livestock in the whole field was scaled by the fraction of 199 

the field falling within the land parcel. This assumed livestock would be uniformly distributed within a 200 

given field (c.f. Dorner et al., 2006; Haydon and Deletic, 2006). If livestock could move between land 201 

parcels, then the total number of livestock in all connected parcels was counted and scaled to each 202 

individually based on the fraction of the total connected area they represented. In addition, whether 203 

gates prevented livestock access to the stream at crossing points DS1-3 (Figure 1c) was also recorded. 204 

The remainder of the stream was either fenced off and inaccessible to livestock, or, for stream sections 205 

in Mid Pastures (L) and (R), permanently open to livestock (Figure 1c and e). Daily timeseries of stream 206 

access and livestock counts were generated from the twice-weekly observations by assuming any 207 

changes occurring between successive observation days did so at the mid-point between them. 208 

 209 

3.3 Setup of EcH2O-iso for the Tulloch Burn 210 

In EcH2O-iso, the spatial grid for simulations is defined by a digital elevation model (Kuppel et al., 211 

2018a). A 5×5 m resolution LandMap digital terrain model (DTM) was resampled to 30×30 m 212 

resolution for delineating the Tulloch Burn catchment and deriving local slopes and drainage directions. 213 

The relatively coarse spatial resolution was necessary to keep model runtimes manageable given the 214 

long spin-up period needed for simulated water ages to stabilise. Simulation of 22 years with a daily 215 

timestep was necessary, with the period 27/04/17 to 31/12/17 for the last year retained for further 216 

analysis. The 22-year spinup was achieved by looping meteorological and isotopic inputs for 2016-217 

2017 eleven times (c.f. Hrachowitz et al., 2010). Meteorological data before establishment of a 218 

catchment weather station (October 2016) were derived from the adjacent Aboyne and Bruntland Burn 219 

stations using statistical relationships from periods of overlapping data, whilst radiation for all of 2016 220 

was available from the ERA-Interim climate reanalysis. For altitudinal effects on precipitation and 221 

temperature, a 5.5% increase in precipitation (Ala-aho et al., 2017) and decrease of 0.6 °C (Goody and 222 

Yung, 1995) with every 100 metre elevation gain was implemented. 223 

 224 
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Parameterisation of soil hydrological properties in EcH2O-iso was based on the five mapped soil types 225 

in the catchment (Soil Survey of Scotland Staff, 2014; Figure 1b). Soil properties were assumed to be 226 

uniform within each type. To facilitate parameterisation of vegetation, land parcels of the Tulloch Burn 227 

in Figure 1c were divided into three categories: agriculture, forest and heather moorland. Based on local 228 

knowledge, agricultural areas were assumed to comprise 95% grass and 5% bare soil, forested land was 229 

assumed to comprise 68% conifers, 30% grasses and 2% bare soil, and heather moorland was assumed 230 

to comprise 95% heather and 5% bare soil. To identify parameters for calibration, an initial sensitivity 231 

analysis was undertaken following the method of Morris (1991) and Sohier et al. (2014) using eight 232 

trajectories and a radial step for evaluating the parameter space. This identified 11 soil-related, 13 233 

vegetation-related and two channel-related parameters as sensitive (Table S1), resulting in the need to 234 

calibrate 96 individual parameter values ([11×5]+[13×3]+2=96). Values of fixed parameters are given 235 

in Table S2. 236 

 237 

3.4 Multi-criteria calibration of EcH2O-iso 238 

Calibration of the 96 parameter values followed a multi-criteria approach incorporating stream 239 

discharge (outlet) and δ2H (outlet + sites T2-8) as calibration targets. Latin Hypercube Sampling was 240 

used to generate 100,000 parameter sets for EcH2O-iso, based on the sampling ranges given in Table 241 

S1. For each model run, mean absolute errors (MAEs; Willmott and Matsuura, 2005) were calculated 242 

to quantify the skill of the run in simulating the dynamics of each calibration target for the period 243 

27/04/17 to 31/12/17. For discharge, use of MAE avoided overemphasis on high-flows typical of 244 

alternatives such as the Nash-Sutcliffe efficiency statistic (Krause et al., 2005; Legates and McCabe, 245 

1999), whilst for isotopes the limited variability in observations and daily timestep of the model 246 

necessitated use of a measure of average error (c.f. Gupta et al., 2009; Schaefeli and Gupta, 2007). A 247 

single performance metric for each model run was then derived by combining MAEs for individual 248 

calibration targets via a weighted-addition (e.g. Beven, 2012). This allowed the number of observations 249 

for each calibration target to determine the influence of its associated MAE on defining overall 250 

performance of the run and enabled identification of a “best” run for use in providing the hydrological 251 

environment for MAFIO (Section 3.5.2).  252 

 253 

As MAE is dimensional with an optimal value of 0, it was necessary to convert the MAEs associated 254 

with each calibration target into dimensionless metrics that monotonically increase with model 255 

performance, prior to implementing the weighted addition. The latter need was met by calculating the 256 

metric (1-MAE), which increases with model performance to an optimum of 1 (in both instances 1 is in 257 

units of the calibration target). To remove dimensionality and obtain a metric (MAE*) for use in the 258 

weighted addition, the following equation was applied: 259 
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 260 

𝑀𝐴𝐸𝑖,𝑗
∗ =

(1 − 𝑀𝐴𝐸𝑖,𝑗) − min(1 − 𝑀𝐴𝐸)𝑗

max(1 − 𝑀𝐴𝐸)𝑗 − min(1 − 𝑀𝐴𝐸)𝑗
                                                                                        𝐸𝑞. 2 261 

 262 

where MAEi,j is the MAE associated with calibration target j for model run i and (1-MAE)j is the 263 

complete set of (1-MAE) associated with calibration target j from all 100,000 model runs. For a given 264 

run, a final goodness of fit in the range [0,1] was obtained through the weighted addition:  265 

 266 

𝐺𝑂𝐹𝑖 =  ∑ 𝑊𝑗. 𝑀𝐴𝐸𝑖,𝑗
∗

𝑛

𝑗=1

                                                                                                                                   𝐸𝑞. 3 267 

 268 

where GOFi is the goodness of fit value of run i and Wj is the weighting given to the performance metric 269 

MAE* associated with calibration target j. The weighting of a performance metric associated with a 270 

given calibration target was the fraction of observations for all calibration targets that it contained. 271 

Numbers of observations and consequent weightings for each target used in the calibration are detailed 272 

in Table 1. Following calibration, an ensemble of the 100 model runs with the highest GOF values 273 

(behavioural runs) were retained to examine model performance and uncertainty.  274 

 275 

3.5 Setup of MAFIO for the Tulloch Burn 276 

As a first test of the model, MAFIO was used to simulate the behaviour and transport of E. coli in the 277 

Tulloch Burn during the MOP. This section describes the setup of the catchment and hydrological 278 

environments of the model (see Section 3.2 of Neill et al., in review) and its parameterisation for E. 279 

coli.  280 

 281 

3.5.1 Catchment environment  282 

Table 3 of Neill et al. (in review) outlines the inputs necessary to characterise the catchment 283 

environment. Catchment extent and local drainage directions were defined from the 30×30 m DTM 284 

(identical to EcH2O-iso). The spatial distribution of land parcels and of cells containing degraded soil / 285 

the channel were defined as shown in Figure 1c. To facilitate representation of sub-grid heterogeneity 286 

in the latter, channel widths were derived from linear interpolation between field measurements of 287 

bankfull width. In addition, land parcels either adjacent to the stream (stream-associated land parcels) 288 
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or from which livestock could contribute to soil degradation were defined as those falling within the 289 

30×30 m footprint of a given cell as determined from field observations and aerial imagery (Table S3). 290 

The cell(s) immediately upslope of those containing degraded soil / the channel were defined from local 291 

drainage directions (Figure S1). Timeseries of livestock counts and access to the stream were as 292 

described in Section 3.2. 293 

 294 

3.5.2 Hydrological environment 295 

The hydrological environment of MAFIO was simulated by the “best” overall ensemble run of EcH2O-296 

iso. To qualitatively assess the potential for uncertainty in the outputs of EcH2O-iso to impact MAFIO 297 

simulations, spatial patterns of surface and groundwater flow paths and soil saturation deficit simulated 298 

over the MOP by the “best” run and by the 100 behavioural runs were compared. This indicative 299 

approach was taken as a full quantitative uncertainty analysis would require using the 100 behavioural 300 

EcH2O-iso runs to generate the hydrological environment for an ensemble of MAFIO runs, the latter 301 

necessary to account for the effect of stochasticity (see Section 3.6). Such an uncertainty analysis was 302 

beyond the scope of this initial proof-of-concept test of MAFIO; however, this will be a focus of future 303 

work. To aid in assessing process representation in MAFIO, the simulated hydrological environment 304 

was characterised by generating spatial summaries of discharge, δ2H and water ages in the stream, and 305 

of overland flow, soil saturation deficit and groundwater fluxes within the catchment, for the whole 306 

MOP and for exemplar “dry” (10/08/17) and “wet” (15/08/17) days. Here, streamwater ages denote 307 

how long water contributing to discharge spent travelling through the catchment since entering it as 308 

precipitation (Sprenger et al., 2019). 309 

 310 

3.5.3 Parameterisation of MAFIO sub-models 311 

Parameter values for the MAFIO sub-models are presented in Table 4 of Neill et al. (in review). Sheep 312 

and cattle were the only livestock reared in the catchment. Most parameter values were taken from the 313 

extensive literature on E. coli as an FIO. Exceptions were the parameters faecesConc (concentration of 314 

FIOs per gram of faeces) and agentsRepresent (number of FIOs shed in reality for which an FIO-agent 315 

is introduced into the simulation). For the former, geometric mean concentrations of E. coli in sheep 316 

and cattle faeces were determined from faecal samples collected in the catchment during 2017 and 2018 317 

(Avery et al., unpublished data). Meanwhile, the minimum value of faecesConc (4.18×105) was used 318 

for agentsRepresent. This was the minimum permissible value given available computational resources; 319 

however, similarities between simulations obtained using this value and a value of 1×108 E. coli (Data 320 

not shown) suggested that significant changes to model outputs would be unlikely if a smaller value 321 

were to be used. This provided confidence that a sufficient quantum of E. coli was simulated by MAFIO. 322 
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Despite potential uncertainty in the values of model parameters (Oliver et al., 2016), calibration was 323 

not undertaken in this initial application. This was primarily because use of stochasticity to model 324 

processes conceptualised in ABMs hinders the use of “fit-to-data” metrics (i.e. those quantifying model 325 

skill in reproducing dynamics of observed data) often used in automated calibration (Polhill and Salt, 326 

2017). This is further described in Section 3.6. A benefit to using the model uncalibrated is that it offers 327 

insight into the process consistency of the model if physically-meaningful parameter values are used 328 

(c.f. Kuppel et al., 2018a), as compensatory parameter effects on model structural deficiencies from 329 

calibration are avoided (c.f. Beven, 2019).  330 

 331 

3.6 Application of MAFIO 332 

MAFIO was applied for the MOP on a 30×30 m spatial grid using a daily time step, consistent with the 333 

spatio-temporal resolution of data characterising the catchment and hydrological environments. For 334 

initialisation, values for the fraction of damaged soil (dFrac) at DS1, DS2 and DS3 were set to 0.72, 335 

0.53 and 0.7155, respectively, based on application of Eq. 3 of Neill et al. (in review) with livestock 336 

counts made in the catchment since 01/01/17. As these counts also showed all pasture land parcels to 337 

have been grazed to some extent since the start of 2017, all were set to have FIO-agents already in the 338 

soil at initialisation as a significant soil reservoir of E. coli may persist for several months even after 339 

cessation of grazing (Muirhead, 2009). Initial numbers of FIO-agents were based on estimates of the 340 

total number of E. coli in the upper soil of each land parcel (between 4.1×109 - 9.3×1010 E. coli). These 341 

were approximated from concentrations of E. coli (in MPN g-1) measured in the top 5 cm of soil at five 342 

locations within the Lower and Mid Pasture fields (Avery et al., unpublished data) and estimates of the 343 

weight of soil in each land parcel over the same depth. 344 

 345 

An ensemble of 30 model runs using the same parameterisation and input was made for the MOP to 346 

characterise stochastic variability in MAFIO outputs (Abdou et al., 2012). Combined with the fact that 347 

natural variability intrinsic to complex systems can cause observed data to be conditional on a particular 348 

trajectory having been taken by the system, of which many may have been possible (Refsgaard et al., 349 

2007; Windrum et al., 2007), this stochastic variability characteristic of ABM outputs can complicate 350 

assessments of model performance (Brown et al., 2005). In particular, traditional “fit-to-data” metrics 351 

become inappropriate as exclusive means of evaluating ABM performance as a model that adequately 352 

represents the processes giving rise to observations could be unfairly penalised if, due to stochastic 353 

treatment of system processes, it simulates a range of plausible scenarios which may or may not include 354 

what was observed (Polhill and Salt, 2017). Whilst a “benchmark” alternative is yet to emerge, other 355 

ABM work has highlighted the value of combining quantitative performance evaluation with  356 

qualitative “checks” that focus on understanding how simulated characteristics at larger scales emerge 357 
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from the processes influencing the behaviour of individual agents and assessing the plausibility of such 358 

processes similarly effecting the phenomena under investigation in reality (Moss and Edmonds, 2005; 359 

Polhill et al., 2010; Polhill and Salt, 2017).  360 

 361 

Consequently, the following approach to performance assessment was adopted. For each ensemble run, 362 

observed and simulated E. coli loads were compared quantitatively at the outlet, T6 and T8. Since 363 

MAFIO simulates fluxes of FIO-agents, simulated loads were approximated by multiplying FIO-agent 364 

fluxes by the value of agentsRepresent. As this parameter dictates the precision to which observed loads 365 

can be simulated (c.f. Parry and Bithell, 2012), the skill of MAFIO in capturing periods of relatively 366 

more or less impaired microbial water quality was also assessed (c.f. Oliver et al., 2010; Porter et al., 367 

2017). This was achieved by calculating Z-scores showing the number of standard deviations an 368 

observed E. coli load or simulated flux of FIO-agents was away from the mean of its associated 369 

timeseries. As observations were not available for all dates, Z-scores for simulated FIO-agent fluxes 370 

were based only on simulations that overlapped with observations. Spearman’s rank correlation 371 

coefficients were also used to assess how well MAFIO captured the relative order of observed E. coli 372 

loads at each site (c.f. Porter et al., 2017). For a qualitative “check” on the model, the plausibility of 373 

simulated outputs given the potential processes influencing E. coli dynamics in the Tulloch Burn was 374 

the subject of a literature-based discussion (Section 5.1) that also considered the performance of EcH2O-375 

iso in simulating the hydrological environment. Whilst such qualitative evaluation is less robust than 376 

alternative methods based on consultation of independent experts (e.g. Moss and Edmonds, 2005; 377 

Polhill et al., 2010), the latter was beyond the scope of this initial MAFIO application.  378 

 379 

As a basis for assessing the potential of MAFIO in providing insights relevant to management, the 380 

overall flux of FIO-agents leaving the catchment in the stream (“exported FIO-agents”) was observed 381 

and further disaggregated into contributions from different livestock types and transfer mechanisms. 382 

The latter were derived from the attributes Domain type and Livestock type (see Table 2 of Neill et al., 383 

in review) of exported FIO-agents. By observing the Location memory attribute, areas where exported 384 

FIO-agents entered the stream via direct deposition and pathways taken by exported FIO-agents 385 

reaching the stream in overland flow or seepage were also identified. For each timestep, pathways were 386 

derived by quantifying the total number of exported FIO-agents that had passed through each grid cell 387 

in overland flow or seepage at any point whilst being transported from their original spawning location 388 

to the stream (i.e. pathways reflect the transport of exported FIO-agents over their entire existence, not 389 

just during the timestep in which they were exported). Meanwhile, spatial patterns of direct deposition 390 

were characterised by quantifying the total number of exported FIO-agents entering the stream via direct 391 

deposition for each cell containing a channel. For each of the 30 ensemble runs of MAFIO, timestep 392 
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totals were extracted for the example dry and wet days and further summed over the whole MOP. 393 

Median totals across the ensemble runs for each cell were then used to generate “average” maps of 394 

direct deposition and pathways taken to the stream by exported FIO-agents for each period of interest, 395 

whilst maps using ranges in totals were generated to evaluate the effect of stochastic variability in 396 

ensemble simulations. 397 

 398 

4. Results 399 

4.1 Hydrometric and isotope observations  400 

Hydroclimatic conditions in 2017 were typical for the region (Hannaford et al., 2018). The study period 401 

started out relatively dry, with only 23 mm of precipitation falling by the end of May (Figure 2a). 402 

Consequently, summer baseflows were established by mid-June (Figure 2b), despite the largest 403 

precipitation event of the study (37.2 mm d-1) occurring at the beginning of that month, two days before 404 

the MOP commenced. For the remaining summer, precipitation fell in low-intensity events that 405 

generated small discharge responses (Figure 2a-b and 3a). Sustained periods of precipitation in mid-406 

September re-wetted the catchment leading to a rise in baseflows and the largest discharge responses 407 

(up to 31 L s-1) being observed in November (Figure 2a-b).  408 

 409 

The δ2H composition of precipitation ranged between -153.1‰ and -14.9‰ (Figure 2a). By contrast, 410 

the δ2H composition of stream water at the outlet was substantially damped (range -64.2‰ to -55.0‰), 411 

though deviations in the direction of the precipitation signal were observed during events (Figure 2b). 412 

At T2-8, δ2H was similarly damped, ranging between -61.0‰ and -54.8‰ across all sites (Figure 2c). 413 

These sites behaved similarly to the outlet in terms of variability; however, the upper T7 and T8 sites 414 

had slightly more enriched δ2H values, with values then becoming more depleted towards the outlet 415 

(Figure 2c). Daily average air temperatures peaked at ~18 °C in May and June and fluctuated ~12 °C 416 

until September when temperatures fell towards a minimum of -3 °C in December (Figure 2d). Solar 417 

radiation followed a similar trajectory (Figure 2d).  418 

 419 

4.2 Microbial observation period (MOP) 420 

Microbial observations began as the hydrograph experienced a small secondary peak in response to 421 

precipitation that occurred following the 37.2 mm d-1 precipitation event (Figures 2a-b and 3a). Peak 422 

daily average temperature and solar radiation for the overall study period fell within the MOP, with the 423 

former averaging 12.7 °C and the latter 176 W m-2 (Figure 3b).  424 
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 425 

Temporal dynamics of E. coli concentrations and loads at individual sites were similar (Figure 3c-d). 426 

At the outlet, concentrations ranged from 2.3×101 to 2.0×103 MPN 100 ml-1 (Figure 3c), whilst loads 427 

varied between 4.9×107 and 4.1×109 MPN d-1 (Figure 3d). Both were highest towards the end of the 428 

MOP and lowest during early July. The latter coincided with no livestock present in fields closest to the 429 

catchment outlet (Figures 1c and 3f), suggesting that this period may have been characterised by 430 

background concentrations of E. coli. At T6, concentrations and loads varied between 4.4×101 and 431 

9.1×103 MPN 100 ml-1 and 5.0×107 and 8.7×109 MPN d-1, respectively (Figure 3c-d). Thus, whilst T6 432 

and the outlet generally experienced similar concentrations and loads of E. coli, these could be higher 433 

at the former site. T8 was generally the least-contaminated site as concentrations of E. coli were <10 434 

MPN 100 ml-1 on over half the sampling days (Figure 3c). However, concentrations could increase to 435 

102 MPN 100 ml-1, most frequently towards the end of the MOP. Loads varied between 5.8×105 and 436 

3.9×108 MPN d-1 (Figure 3d) and were, consequently, often much smaller than loads observed at the 437 

outlet and T6 (exceptions are the last three sample dates of the MOP where loads at T8 were greater 438 

than at T6). A clear response of E. coli concentrations and loads to discharge was elusive; however, a 439 

link to livestock counts was more apparent at the outlet and T6.  440 

 441 

Timeseries showing stream accessibility to livestock at the three discrete crossing points are shown in 442 

Figure 3e. Sheep were the main livestock in the catchment and were in Lower Pasture (L), Mid Pasture 443 

(R), Top Pasture or, for a short time late in the MOP, Lower Pasture (R) (Figure 3f). Cattle were briefly 444 

present in Mid Pasture (R) from late June to early July (Figure 3f).  445 

 446 

4.3 Multi-criteria calibration of EcH2O-iso 447 

The results of calibrating EcH2O-iso to discharge and spatially-distributed isotope data are summarised 448 

in Table 2 and Figure 4; calibrated parameter ranges are given in Table S1. Discharge was generally 449 

well-simulated (Table 2), with behavioural model runs successfully capturing the summer baseflows 450 

and small events that characterised the MOP alongside the re-wetting of the catchment in September 451 

and timing of the largest discharges in November (Figure 4b). The magnitudes of the latter were, 452 

however, under-estimated, as were discharges at the start of the simulation period (Figure 4b). For 453 

isotopes, the model could reproduce the markedly-damped composition of streamwater at the outlet 454 

(Table 2; Figure 4c). Isotopic variability in response to precipitation was also generally well-captured, 455 

though more extreme excursions could be simulated. Skill in simulating isotope dynamics at the 456 

synoptic sampling sites was more variable (Table 2; Figure 4d-j), likely reflecting their lower weighting 457 

in the multi-criteria calibration (Table 1) and the sparser temporal resolution of observations. 458 
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Performance was best for sites closer to the outlet, whilst simulations for sites further upstream showed 459 

greater uncertainty with some ensemble runs exhibiting poorer performance. However, performance 460 

was still maintained in the “best” overall run, with MAEs not exceeding ~3‰ at the upstream sites 461 

(Table 2). Overall, it was encouraging that EcH2O-iso generally reproduced the damped isotope signals 462 

observed at the synoptic sampling sites.  463 

 464 

4.4 Characterisation of the hydrological environment 465 

Median discharges over the MOP (Figure 5a) simulated by the “best” run of EcH2O-iso decreased in 466 

age with distance downstream (Figure 5e) but did not exhibit a clear spatial pattern in δ2H (Figure 5c). 467 

Median streamwater ages were relatively old (averaging ~1.5 years), reflecting the dominant simulation 468 

of groundwater fluxes over surface water fluxes. Overland flow was only simulated for very restricted 469 

areas, mainly limited to stream-proximal cells in the lower part of the catchment (Figure 5b). Over the 470 

MOP, cells for which overland flow was simulated generated total fluxes <1000 mm. By contrast, 471 

simulated groundwater fluxes over the MOP could be up to 4700 mm for individual cells and occurred 472 

across much of the catchment (Figure 5f). The limited extent of simulated overland flow arose from 473 

much of the soil in the catchment being in saturation deficit (Figure 5d). Highest deficits were generally 474 

simulated in the upper catchment in areas of forest and heather (Figure 1c) underlain by podzolic soils 475 

(Figure 1b); here, overland and groundwater fluxes were consequently minimal (Figure 5b and f).  476 

 477 

Stream discharges simulated for the example wet day were higher than for the dry day (Figure 6a) and 478 

consisted of younger water (median age of streamwater 399 days vs. 522 days; Figure 6e). The isotopic 479 

composition of the stream was also generally more enriched in wet conditions (Figure 6c). This, together 480 

with the lower streamwater ages, indicates increased contributions of younger overland flow and soil 481 

water to streamflow during summer wet conditions compared with the dominance of older groundwater 482 

during drier periods. However, even when wet, overland flow remained spatially limited, with just a 483 

few cells adjacent to the stream and a small number of distal, unconnected cells simulating fluxes of up 484 

to 35.7 mm d-1 (Figure 6b). In dry conditions, overland flow was generated from more restricted areas 485 

that maintained saturation by virtue of their position in flatter parts of the riparian area (Figure 6b). 486 

Overland flow was limited due to most soil being in saturation deficit in both dry and wet conditions 487 

(Figure 6d). In contrast, groundwater fluxes were active across similar spatial areas on the wet and dry 488 

days, with fluxes of up to 57.8 mm d-1 and 35.7 mm d-1 simulated for each day, respectively (Figure 6f).  489 

 490 

Assessment of the spatial outputs from the 100 behavioural runs of EcH2O-iso revealed that generation 491 

of overland flow from areas proximal to the stream and the dominance of groundwater simulated by the 492 
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“best” run was also simulated with reasonable certainty (i.e. in >50% of runs) by the ensemble (Figure 493 

7a-c). In addition, relative spatial patterns of moisture deficits were comparable (Figure 7d). However, 494 

it was possible for some behavioural runs to simulate larger areas of overland flow generation, leading 495 

to uncertainty in the exact spatial extent of surface flow paths (Figure 7c). The implications of this will 496 

be discussed with respect to assessing the adequacy of process conceptualisation in MAFIO.  497 

 498 

4.5 Performance of MAFIO 499 

Simulated E. coli loads at the outlet captured the main dynamics of observations quite well; in particular, 500 

the observed decrease in loads in early July and subsequent increase, relatively constant loads in early- 501 

to mid-August, and brief dip in loads towards the end of the MOP were all simulated (Figure 8a). 502 

However, there was a general tendency for loads to be over-predicted, with the main exceptions being 503 

at the end of the MOP and when observed loads decreased in July (Figure 8a). Z-scores at the outlet 504 

show that the model was more successful in capturing when loads were above- and below-average, with 505 

the sign of the Z-scores simulated correctly in the majority of cases (Figure 8b). Exceptions were at the 506 

end of the simulation (reflecting over-prediction of observed loads earlier on despite absolute loads at 507 

the end of the MOP being successfully captured) and on 03/07/17. Spearman’s rank correlations ranged 508 

between 0.21 and 0.30 with an average of 0.26 across the 30 ensemble runs. Stochastic variability in 509 

outlet simulations was minimal (Figure 8a-b).  510 

 511 

At T6, all ensemble runs simulated loads of zero and Z-scores below 0 whenever livestock were absent 512 

from Mid Pastures (R) or (L) (Figures 3f and 8c-d). Non-zero loads were only simulated when Mid 513 

Pasture (R) had livestock present (Figures 3f and 8c); however, simulated loads and Z-scores exhibited 514 

a high degree of stochastic variability (Figure 8c-d). Consequently, Spearman’s rank correlations varied 515 

between runs, ranging from -0.12 to 0.32. When livestock were present in Mid Pasture (R), observations 516 

generally fell within simulation bands; however, loads were under-estimated when livestock were 517 

absent (Figure 3f and 8c). For relative performance, observed Z-scores were often within the range 518 

simulated (Figure 8d). When non-zero loads were simulated, the large range in simulated Z-scores 519 

meant that MAFIO was not consistent between ensemble runs in terms of simulating loads above- or 520 

below-average. At the end of the period, observed and simulated Z-scores were similar, suggesting that 521 

MAFIO successfully captured this as a time of relatively less-impaired microbial water quality.  522 

 523 

Ensemble runs always simulated zero loads at T8 (Figure 8e). Consequently, neither Z-scores for 524 

MAFIO simulations nor Spearman’s rank correlations could be calculated. Qualitatively, the simulated 525 

behaviour was largely consistent with the low concentrations and loads of E. coli at T8 (Figure 3c-d), 526 



18 

 

and negative observed Z-scores (Figure 8f). Quantitatively, however, the simulation of zero loads was 527 

not consistent with observations.  528 

 529 

4.6 Sources and mechanisms contributing E. coli to streams 530 

To help interpret timeseries relating to exported FIO-agents, simulated effective precipitation, discharge 531 

at the outlet and storage of FIO-agents are shown in Figures 9a-b. The simulated flux of exported FIO-532 

agents (Figure 9c) strongly reflected storage dynamics of FIO-agents (Figure 9b) and livestock counts 533 

(Figure 3f). Exported FIO-agents predominantly entered the stream via seepage from degraded soil 534 

(Figure 9d) as simulated overland flow was limited (Figure 5). When overland flow did transfer FIO-535 

agents to the stream, localised spikes in export fluxes were simulated (Figure 9c-d). Contributions were 536 

non-linear due to the changing storage of FIO-agents. When cattle were in Mid Pasture (R), both 537 

seepage and direct deposition made their greatest contributions of FIO-agents to the stream (Figures 3f 538 

and 9d), reflecting the higher loading rates of E. coli from cattle (see Table 4 in Neill et al., in review) 539 

and the extensive stream access in this field (Figure 1c). Variability in flux magnitudes between 540 

ensemble runs was also greatest at this time (Figure 9c). Contributions from direct deposition were 541 

otherwise minimal, reflecting the lower loading rates of sheep (see Table 4 in Neill et al., in review) 542 

when present in Mid Pasture (R) or the limited number of discrete crossing points allowing stream 543 

access to livestock in other fields (Figures 1c and 3e). Contributions from different livestock types 544 

largely corresponded to their presence in the catchment (Figures 3f and 9e); however, a limited 545 

“memory-effect” in contributions reflected survival of FIO-agents in areas of degraded soil.  546 

 547 

Over the MOP, similar median numbers of exported FIO-agents entered the stream via direct deposition 548 

wherever livestock were present with stream access (Figures 1c, 3f and 10a). However, stochastic 549 

variability across the ensemble runs was evident (Figure 10b). Pathways taken by exported FIO-agents 550 

reaching the stream in overland flow or seepage were constrained by the limited area over which the 551 

former was generated in the catchment (Figures 5 and 10c). Fluxes of exported FIO-agents along 552 

individual pathways increased towards the stream with generation of overland flow (Figures 5b and 553 

10c); however, short pathways between areas of degraded soil and the stream were consistently 554 

followed by the largest numbers of exported FIO-agents (Figures 1c and 10c). Overall, source areas 555 

contributing exported FIO-agents to the stream over the MOP were always restricted to stream-proximal 556 

locations (Figure 10c-d). Stochastic variability in numbers of exported FIO-agents following particular 557 

pathways to the stream was usually less than for numbers being directly deposited in the stream (Figure 558 

10b and d). 559 

 560 
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On the example dry and wet days, there was a difference in the spatial distribution of cells for which 561 

the median number of exported FIO-agents entering the stream via direct deposition was non-zero 562 

(Figure 11a and c). However, similar counts of sheep in Lower Pasture (L) and Mid Pasture (R) on both 563 

days (Figure 3f) meant that when non-zero, median numbers were comparable (Figure 11a and c). In 564 

addition, stochastic variability across ensemble runs showed that on either day, direct deposition of 565 

exported FIO-agents could occur wherever livestock had stream access (Figure 11b and d). More 566 

extensive overland flow on the wet day (Figure 6b) increased the spatial extent of pathways taken by 567 

exported FIO-agents to the stream, although contributing areas were always limited to near-stream 568 

locations (Figure 11e and g). Fluxes of FIO-agents along individual pathways were elevated in wet 569 

conditions (Figure 11g) due to the increased generation of overland flow (Figure 6b). For both the dry 570 

and wet days, “average” maps indicated pathways taken by exported FIO-agents to the stream (Figure 571 

11e and g) that fully consisted of cells where overland flow was simulated (Figure 6b) or seepage from 572 

degraded soil was possible (Figure 1c). However, from considering the effect of stochastic variability 573 

between ensemble simulations (Figure 11f and h), it is apparent that in some instances, exported FIO-574 

agents had followed paths that included cells not hydrologically connected to the stream during the 575 

timestep in question (e.g. in Lower Pasture [L]; Figures 1c and 6b).  This indicates that FIO-agents 576 

previously moved and infiltrated into the soil could be exfiltrated and further transported. Stochastic 577 

variability in numbers of exported FIO-agents following particular pathways to the stream was 578 

generally lower overall for the dry event (Figure 11f and h).   579 

 580 

5. Discussion 581 

5.1 To what extent does MAFIO resolve the main processes driving observed FIO dynamics? 582 

Using models to explore issues of water quality, especially in a decision-making context, requires 583 

confidence that processes governing the determinand of interest are adequately captured (c.f. Vaché and 584 

McDonnell, 2006; Wellen et al., 2015). Consequently, the new agent-based model MAFIO was applied 585 

to the Tulloch Burn for a relatively data-rich period, in order to assess the adequacy of process 586 

representation in the model. The spatially-distributed, tracer-aided ecohydrological model EcH2O-iso 587 

provided the hydrological environment to improve confidence in the robustness of simulated 588 

hydrological processes underpinning FIO simulations (c.f. Birkel and Soulsby, 2015; Neill et al., 2019). 589 

However, whilst multi-criteria calibration to discharge and isotope data allowed elements of catchment 590 

hydrological functioning to be reasonably constrained (i.e. dominance of groundwater, generation of 591 

overland flow proximal to the stream), uncertainty persisted in the exact spatial extent of overland flow 592 

paths (Figure 7c). This can obscure whether deficiencies in FIO simulations arise from uncertainty in 593 

simulated hydrology or the need to refine process conceptualisation in MAFIO; where this may be an 594 

issue is highlighted in the discussion that follows. This also necessitates that a full quantitative 595 
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uncertainty analysis be the subject of future work (c.f. Beven and Lamb, 2017), and reinforces the need 596 

for collection of diverse datasets for use in constraining highly-parametrised models (Kelleher et al., 597 

2017; Kuppel et al., 2018b).  598 

 599 

The consistent simulation of zero loads of E. coli at T8 despite non-zero loads being observed likely 600 

indicates that process conceptualisation in MAFIO itself requires refinement (Figure 8e). This assertion 601 

arises from confidence in the lack of surface connectivity between T8 and Top Pasture (the only 602 

upstream source of livestock-derived FIOs) simulated by the “best” run of EcH2O-iso (Figure 5b), 603 

despite the overall uncertainty in the exact extent of overland flow paths (Figure 7c). Specifically, the 604 

skill of this run in capturing observed isotope dynamics at T8 (Figure 4j) indicates that no overland flow 605 

upstream of this site is plausible. Furthermore, increased tree water use in the forest separating T8 and 606 

Top Pasture (Douinot et al., 2019) combined with likely enhanced filtering of FIOs in overland flow by 607 

the forest floor (Kay et al., 2012) suggests limited opportunities for surface transport of FIOs between 608 

these locations. Given that deer and hares have been observed in the forest around T8, a possible 609 

refinement to MAFIO could be inclusion of wild animals as sources of FIOs. Indeed, wildlife (including 610 

gastropods, frogs and fish as previously unrecognised sources; Frick et al., 2018) have previously been 611 

found to significantly impact microbial water quality, even in agricultural areas (Muirhead et al., 2011). 612 

An alternative refinement could be accounting for possible sources of “naturalised” FIOs that have 613 

adapted to persist and grow in the environment (e.g. Jang et al., 2017). A key issue to consider when 614 

conceptualising the former would be the increased uncertainty in loading and die-off parameters 615 

associated with FIOs from wildlife (Guber et al., 2015). Furthermore, difficulties also exist in 616 

characterising population levels and movement of wild animals in the landscape (Tetzlaff et al., 2010). 617 

This latter issue could likely be overcome by representing wildlife movements stochastically in MAFIO. 618 

Whilst this would probably result in greater stochastic variability across ensemble simulations, it would 619 

help increase confidence that the potential impacts of wildlife as a source of FIOs are being represented. 620 

 621 

This last point is relevant when inferring process adequacy from the large spread in non-zero loads 622 

simulated at T6 (Figure 8c-d). As there were again no surface flow paths upstream of this site in the 623 

simulated hydrological environment (Figure 5b), FIO-agents could only be directly deposited in the 624 

stream by livestock in Mid Pasture (R). Given the stochastic treatment of livestock movement and, 625 

consequently, direct deposition in MAFIO, it should be expected that different ensemble runs will 626 

collectively simulate a range of possible E. coli loads dependent on when and where livestock were 627 

simulated to directly defecate in the stream (c.f. Abdou et al., 2012). Given the plausibility of direct 628 

deposition influencing microbial water quality at T6 when livestock are present in Mid Pasture (R) due 629 

to stream accessibility (Figure 1c), observed loads may reflect one particular realisation of how 630 
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livestock entered the stream and directly deposited (c.f. Windrum et al., 2007). Consequently, that 631 

observations could fall within the spread of simulated loads (Figure 8c-d) likely suggests that MAFIO 632 

is adequately representing the process of direct deposition. Thus, it cannot be concluded that the large 633 

spread in simulated non-zero loads is indicative of model inadequacy (c.f. Parker and Meretsky, 2004).  634 

 635 

A more problematic feature of simulations at T6 is the consistent simulation of zero loads when 636 

livestock were absent from Mid Pasture (R) despite observed non-zero loads (Figures 3f and 8c). This 637 

could reflect incorrect simulation of zero loads at T8, depending on the extent to which upstream 638 

locations influence microbial water quality at T6 (Neill et al., 2018; Vitro et al., 2017). Qualitative 639 

similarity between observed E. coli dynamics at T6 and T8 when livestock were absent from Mid 640 

Pasture (R) lends some support to this possibility (Figures 3c-d and f). However, uncertainty in the 641 

exact spatial extent of flow paths simulated by EcH2O-iso also means that surface connectivity between 642 

Mid Pasture (R) and the stream could have plausibly been simulated by some behavioural model runs. 643 

Such connectivity could facilitate transfer of FIOs to the stream in the absence of livestock, depending 644 

on longevity of survival (Martinez et al., 2013). Consequently, further work to reduce uncertainty in 645 

simulated flow paths is necessary to determine whether under-predictions at T6 have a hydrological or 646 

microbiological cause. A further possibility could be that a streambed reservoir of E. coli from livestock 647 

in Mid Pasture (R) exists that can be mobilised by streamflow (McDonald et al., 1982). However, this 648 

mechanism would be unlikely to explain under-predictions that occurred during times of recessional 649 

and base flows (Figures 3a and 8c; Nagels et al., 2002).  650 

 651 

Despite the tendency to over-estimate loads in absolute terms, MAFIO had most skill in capturing 652 

observed E. coli dynamics at the outlet (Figure 8a-b). Furthermore, stochastic variability in simulations 653 

was reduced compared to T6 (Figure 8a-d). Combined, these results suggest that potential process 654 

deficiencies impacting upstream sites had less influence here. This likely reflected greater opportunities 655 

for FIO-agents to reach the stream via seepage and transport in overland flow generated by areas 656 

proximal to the stream in the lower catchment (Figures 1c, 5 and 9). The promising performance at the 657 

outlet suggests the model reasonably well-captures these highly-localised mechanisms of FIO transfer 658 

as dominant drivers of impaired microbial water quality at this location. This is further supported by 659 

relative confidence in EcH2O-iso simulations of overland flow generation close to the stream and spatial 660 

patterns of soil saturation deficit underpinning seepage (Figure 7a and d) and would be consistent with 661 

the likely importance of localised sources of FIOs in the wider Tarland Burn (Neill et al., 2018). The 662 

over-estimation of loads at the outlet, however, highlights there is scope for improving the degree to 663 

which simulations capture the detail in observations. Consequently, several avenues for model 664 
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refinement are identified that may help increase correspondence between observed and simulated loads 665 

at the outlet and lead to more nuanced simulation of general FIO dynamics.  666 

 667 

Many parameters relating to the loading, die-off, and transport of FIOs are characterised by uncertainty 668 

(Cho et al., 2016). Therefore, in addition to a quantitative assessment of how flow path uncertainty in 669 

EcH2O-iso affects MAFIO simulations, a sensitivity analysis and calibration of MAFIO parameters 670 

should also be conducted. This may help better-constrain parameters and improve simulations whilst 671 

enhancing understanding of how parameter uncertainty is propagated into model outputs (e.g. Beven, 672 

2006). However, limitations in using “fit-to-data” metrics to assess ABM performance likely means 673 

that alternative automated calibration procedures will need developing (c.f. Polhill and Salt, 2017). 674 

MAFIO has also been applied at relatively coarse spatial (30×30 m) and temporal (1-day timestep) 675 

resolutions in this initial application. Whilst this spatial scale is finer than permitted by most process-676 

based FIO models (e.g. Dorner et al., 2006; Whitehead et al., 2016), resolving non-linearities in the fate 677 

and transport of FIOs arising from the effects of small-scale heterogenity in the landscape (e.g. micro-678 

topography influencing flow paths; Frei et al., 2010) or processes operating at sub-daily timescales (e.g. 679 

intra-storm precipitation dynamics; McKergow and Davies-Colley, 2010) may be necessary for more 680 

nuanced simulation of FIO dynamics. Finally, alternative methods of allowing MAFIO to simulate the 681 

large populations of FIOs found in catchments could be trialled. One possibility is use of “super-682 

individuals” (Scheffer et al., 1995). Like FIO-agents, these are introduced into a simulation for every 683 

given number of real individuals. However, this number is then assigned to the super-individual as an 684 

attribute that is influenced by controlling processes, which may give a more complete simulation of 685 

dynamics that would be observed if all individuals were represented explicitly (Scheffer et al., 1995). 686 

Exploring these avenues for model refinement will be a focus of future work.  687 

 688 

5.2 What potential does MAFIO have for providing process-based insights into microbial water quality 689 

that are relevant for management? 690 

The preceding discussion highlights the status of MAFIO as a research-level model. However, 691 

application to Tulloch Burn still provided insight into how an agent-based approach has significant 692 

potential for identifying drivers of microbial water quality at scales relevant for management.  693 

 694 

Management of microbial water quality at the farm scale is always likely to have financial implications 695 

for the farmer (Oliver et al., 2007). Consequently, information aiding spatial targeting of cost-effective 696 

and efficient mitigation measures is desirable (c.f. Oliver et al., 2018, Vinten et al., 2017). The facility 697 

to interrogate the Domain type and Location memory attributes of exported FIO-agents in MAFIO 698 
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permits insights into the transfer mechanisms and source areas contributing FIOs to streams, which may 699 

have significant value in this respect. For the Tulloch Burn, for example, it was revealed that whilst 700 

overland flow could cause spikes in the flux of exported FIO-agents during events, its limited capacity 701 

to transport FIO-agents to the stream in both time and space meant that seepage from areas of degraded 702 

soil was always the dominant transfer mechanism (Figures 9-11). Overall, this led to exported FIO-703 

agents being sourced from locations highly proximal to the stream under all conditions (Figures 10-11). 704 

As the skill of MAFIO in simulating observed E. coli dynamics at the outlet suggests these localised 705 

mechanisms are dominant drivers of microbial water quality (Figure 8a-b), an implication is that small-706 

scale interventions (e.g. building bridges between fields separated by the stream or preventing livestock 707 

access to stream-proximal locations capable of generating overland flow) could result in significant 708 

improvements to microbial water quality without the need for larger-scale and more costly measures 709 

(e.g. reducing stocking densities or extensive use of buffer strips; Cuttle et al., 2006). 710 

 711 

Quantitative microbial risk assessment (QMRA) can further assist in selection of mitigation measures 712 

by providing a basis for assessing how risks presented by faecal pathogens to human health can be 713 

reduced through management (Haas et al., 2014; Strachan et al., 2005). Usually, a dose-response model 714 

estimates the likelihood of an adverse health effect occurring based on an input dosage of pathogens 715 

(Haas et al., 2014). Direct quantification of pathogens in water is not common, however, due to their 716 

lower occurrence with respect to FIOs and the costly methods necessary for their enumeration 717 

(Geldreich, 1996). Therefore, it may be necessary to estimate exposure based on the prevalence of 718 

pathogens in animals responsible for contaminating the medium humans come into contact with (c.f. 719 

Strachan et al., 2002). In this regard, MAFIO simulations attributing contributions of exported FIO-720 

agents to different livestock types (Figure 9e) could prove useful. Furthermore, the agent-based model 721 

structure could allow direct simulation of pathogenic organisms alongside non-pathogenic FIOs, subject 722 

to sufficient data availability to inform parameterisations or rule sets associated with pathogenic FIO-723 

agents (c.f. Hipsey et al., 2008). 724 

 725 

A characteristic of MAFIO which also has potential management value is the ability to model processes 726 

stochastically. This can enable greater representation of how both natural variability and uncertainty in 727 

simulated processes propagate to predictions of microbial water quality, which may be useful for 728 

decision making (c.f. Brouwer and De Blois, 2008). Indeed, application of MAFIO to the Tulloch Burn 729 

highlighted how simulated E. coli loads may demonstrate considerable spread due to variability and 730 

uncertainty in how livestock use the landscape and, consequently, directly defecate in streams (c.f. 731 

Oliver et al., 2010). However, full realisation of this value would be contingent on the development of 732 
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appropriate calibration methods for ABMs which quantify how parameter and structural uncertainty 733 

also propagate to model outputs, as discussed earlier.  734 

 735 

A final important point relates to the data requirements of MAFIO and its consequent transferability. 736 

As previously highlighted, availability of diverse observations corresponding to model outputs will 737 

benefit calibration / validation of the model and its associated hydrological environment simulator (c.f. 738 

Kelleher et al., 2017; Kuppel et al., 2018b). However, where such observations exist, it is not necessary 739 

that model inputs be derived from site-specific data such as those available in this study following 740 

intensive monitoring at the Tulloch Burn. For example, nationally-available datasets combined with 741 

simple assumptions regarding grazing practices could provide the spatial arrangement of fields within 742 

a catchment along with livestock counts that vary in space and time (e.g. Oliver et al., 2010, 2018). 743 

Furthermore, use of local datasets (e.g. regarding stream fencing as in Dymond et al., 2016) alongside 744 

one-off farm surveys or farmer interviews (Oliver et al., 2007, 2009) could sufficiently characterise the 745 

spatial distributions of stream accessibility to livestock and areas of degraded soil. Other necessary 746 

catchment characteristics can be derived from widely-available data (e.g. elevation, soil types, etc.) 747 

integrated into a geographical information system. Finally, where site-specific data on FIO 748 

concentrations in faeces and soil are unavailable, estimates may be derived from literature values (e.g. 749 

Dorner et al., 2006; Hipsey et al., 2008; Whitehead et al., 2016). Consequently, it should be possible to 750 

apply MAFIO to less intensively-studied catchments. It is also important to emphasise that any 751 

hydrological model could be used to provide the hydrological environment for MAFIO as long as its 752 

consistency with catchment hydrological functioning can be robustly assessed. 753 

 754 

6. Conclusions 755 

This work provided a proof-of-concept application for MAFIO, an agent-based model designed to 756 

unravel the spatio-temporal dynamics of sources and transfer mechanisms contributing FIOs to streams 757 

at the sub-field scale. Performance in simulating observed E. coli dynamics in the Tulloch Burn 758 

catchment showed that the model has skill in capturing the transfer of FIOs from livestock to streams 759 

via the processes of direct deposition, overland flow and seepage from areas of degraded soil. This 760 

assessment was aided by EcH2O-iso, the hydrological environment simulator for MAFIO, identifying 761 

generation of overland flow close to the stream and dominance of groundwater in the catchment with 762 

some confidence following multi-criteria calibration to discharge and isotope data. However, 763 

uncertainty in the exact spatial extent of overland flow paths simulated by EcH2O-iso meant it was not 764 

always clear whether deficiencies in MAFIO performance reflected a hydrological or microbiological 765 

cause. This identified the need for a quantitative assessment of uncertainty propagation from EcH2O-766 
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iso to MAFIO to be the subject of future work. Nonetheless, under-prediction of observed E. coli loads 767 

in the upper catchment implied the need to consider “naturalised” or wildlife sources of FIOs in the 768 

model, and it was further possible to identify several avenues relating to issues of scale and calibration 769 

that could be explored to improve model performance.  770 

 771 

Despite the present status of MAFIO as a research-level model, this application revealed how the agent-772 

based structure of the model allowed it to have significant potential for informing management. 773 

Interrogation of the attributes of FIO-agents exported from the catchment could reveal insights into 774 

source areas, transfer mechanisms and livestock contributing FIOs to the stream, providing information 775 

that could inform implementation of efficient, cost-effective mitigation measures. Furthermore, the 776 

potential to model processes stochastically in MAFIO allowed the effects of natural variability and 777 

uncertainty in processes influencing microbial water quality to be characterised, which may have value 778 

in a decision support context. Whilst this proof-of-concept study identified possible refinements that 779 

could be made to MAFIO, once addressed, it is likely that the model could have substantial value in 780 

underpinning decision support frameworks aimed at mitigating impaired microbial water quality. 781 

 782 

Software and data availability 783 

The source code for MAFIO as used in this work is available via the University of Aberdeen PURE 784 

repository: https://doi.org/10.20392/66f74663-ece3-4a52-8bed-f0cf52d0831a.  785 

The source code for EcH2O-iso is available at: https://bitbucket.org/sylka/ech2o_iso/src/master_2.0/.   786 

The Tulloch Burn datasets used in this study are available from the lead author on request. 787 
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Figures 1011 

 1012 

Figure 1: The Tulloch Burn catchment, with maps showing a) An overview of the catchment and 1013 

monitoring locations; b) Soil types based on Soil Survey of Scotland Staff (2014); c) Designations of 1014 

land parcels and cells containing a channel (potentially with an area of degraded soil) as provided to 1015 

MAFIO. In the latter, the appearance of “L” or “R” in cells containing a channel denote the permanent 1016 

direct accessibility of the stream to livestock in Mid Pastures (L) and (R), respectively, whilst DS1-3 1017 

are the designations given to the three areas of degraded soil associated with discrete stream crossing 1018 

points. The stream in (a) and all data in (b) and (c) are presented on the 30×30 m grid utilised by EcH2O-1019 

iso and MAFIO. Also provided are drone-based aerial images of the catchment showing examples of 1020 

d) Fencing-off of the stream from adjacent fields and areas of soil degradation; e) Sections of the stream 1021 
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directly accessible to livestock. For context, selected field and degraded soil designations, and 1022 

approximate sampling locations are provided in the aerial images using the same symbols as in a). An 1023 

example of soil degradation (DS3) in the catchment is shown in (f). 1024 

  1025 
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 1026 

Figure 2: For the full study period, observed timeseries of a) Precipitation and its associated isotopic 1027 

composition; b) Daily average discharge at the catchment outlet and its associated isotopic composition; 1028 

c) Isotopic compositions of streamwater at synoptic sampling sites; d) Daily average temperature and 1029 

solar radiation. 1030 

  1031 



37 

 

 1032 

Figure 3: For the microbial observation period, timeseries of observed a) Precipitation and daily 1033 

average discharge at the catchment outlet; b) Daily average temperature and solar radiation; c) 1034 

Concentrations of E. coli (plotted on a log scale); d) E. coli loads (plotted on a log scale); e) Accessibility 1035 

of the stream to livestock at the discrete crossing points (DS1-3 in Figure 1c); f) Sheep and cattle counts. 1036 

The red and blue dashed lines denote the example dry and wet days, respectively. In (c) and (d), MPN 1037 

= most-probable-number. In (e), the abbreviations LP and MP refer to Lower Pasture and Mid Pasture, 1038 

respectively. 1039 

  1040 
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 1041 

Figure 4: Timeseries of a) Precipitation; b) Observed and modelled discharge at the catchment outlet; 1042 

c-j) Observed and modelled isotopes at the catchment outlet and synoptic sampling sites. Shaded areas 1043 

show the 90% spread of simulations from the behavioural ensemble, whilst the solid blue line shows 1044 

the “best” simulation. The red and blue dashed lines denote the example dry and wet days, respectively. 1045 

Note the different y-scales between isotope data for the outlet (c) and for the synoptic sampling sites 1046 

(d-j), necessary to show the greater spread of the simulations for the latter. 1047 

  1048 
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 1049 

Figure 5: Maps showing for the microbial observation period a) Median stream discharge; b) Total 1050 

overland flow; c) Median stream δ2H; d) Median soil saturation deficit; e) Median streamwater age; f) 1051 

Total groundwater flow, based on the "best" ensemble run of EcH2O-iso. Overland (b) and groundwater 1052 

(f) flows are plotted on log scales for clarity, with areas of white denoting fluxes of 0. MOP = Microbial 1053 

observation period. 1054 
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 1055 

Figure 6: For the example dry and wet days, maps showing a) Discharge; b) Overland flow; c) 1056 

Streamwater δ2H; d) Soil saturation deficit; e) Streamwater age; f) Groundwater flow, based on the 1057 

"best" ensemble run of EcH2O-iso. Overland (b) and groundwater (f) flows are plotted on log scales for 1058 

clarity, with areas of white denoting fluxes of 0. 1059 
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 1060 

Figure 7: Comparison of spatial simulations made by the “best” run of EcH2O-iso and by an ensemble 1061 

of 100 behavioural runs: a) Spatial extent of cells with total overland flow (OLF) fluxes greater than 0 1062 

mm over the microbial observation period (i.e. “Active flowpath”) simulated by the “best” run and 1063 

>50% of the ensemble; b) As (a) but for groundwater (GW); c) Histogram quantifying the number of 1064 

ensemble runs in which different numbers of cells were simulated to have total OLF or GW fluxes 1065 

greater than 0 mm over the microbial observation period (solid lines denote the “best” run); d) Spatial 1066 

patterns of median soil saturation deficit over the microbial observation period simulated by the “best” 1067 

run and of the median of the median deficits simulated by the behavioural ensemble. MOP = Microbial 1068 

observation period.  1069 

 1070 
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 1071 

Figure 8: Comparison of observed and simulated E. coli loads and Z-scores for a-b) The catchment 1072 

outlet; c-d) T6; e-f) T8. In the latter, only observed Z-scores are given due to all ensemble runs of 1073 

MAFIO simulating fluxes of zero FIO-agents for all timesteps. For modelled data, the square marker 1074 

represents the median Z-score across the 30 ensemble runs of MAFIO, whilst the error bars/shaded 1075 

areas denote the range of Z-scores/simulated loads. The red and blue dashed lines denote the example 1076 

dry and wet days, respectively. Loads are plotted on a log scale.  1077 

  1078 
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 1079 

Figure 9: Timeseries of a) Effective precipitation and discharge simulated by the "best" ensemble run 1080 

of EcH2O-iso; and b) FIO-agents stored in the catchment at the end of each timestep; c) Flux of FIO-1081 

agents exported from the catchment; d) Mechanisms by which exported FIO-agents reached the stream; 1082 

e) Contributions of exported FIO-agents from sheep and cattle, based on the 30 ensemble runs of 1083 

MAFIO. The red and blue dashed lines denote the example dry and wet days, respectively. All scales 1084 

are linear. 1085 

  1086 
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 1087 

Figure 10: For the whole microbial observation period and based on the 30 ensemble runs of MAFIO, 1088 

maps showing the median number or range in numbers of exported FIO-agents a-b) Directly deposited 1089 

in the stream for each cell containing a channel or c-d) That passed through each grid cell in the course 1090 

of being transported to the stream in overland flow or seepage. The scale reflects the log10-transformed 1091 

median number/range in numbers and is common to all maps. Areas of white denote medians/ranges of 1092 

0. 1093 

  1094 
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 1095 

Figure 11: For the exemplar dry day and based on the 30 ensemble runs of MAFIO, maps showing the 1096 

median number or range in numbers of exported FIO-agents a-b) Directly deposited in the stream for 1097 

each cell containing a channel or e-f) That passed through each grid cell in the course of being 1098 

transported to the stream in overland flow or seepage. Equivalent maps for the wet day are shown in (c-1099 

d) and (g-h), respectively. The scale reflects the log10-transformed median number/range in numbers 1100 

and is common to all maps. Areas of white denote medians/ranges of 0. 1101 

  1102 
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Tables 1103 

Table 1:  The number of observations for each calibration target and the weighting for each target in 1104 

the multi-criteria calibration. 1105 

 1106 

Dataset Number of observations Calibration weighting 

Discharge: Outlet 249 0.396 

Isotopes: Outlet 242 0.385 

Isotopes: T2 16 0.025 

Isotopes: T3 16 0.025 

Isotopes: T4 16 0.025 

Isotopes: T5 16 0.025 

Isotopes: T6 28 0.045 

Isotopes: T7 16 0.025 

Isotopes: T8 29 0.046 

Total 628 1.0 

 1107 

  1108 
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Table 2: The mean absolute error (MAE) for simulations of discharge and isotope data by the “best” 1109 

run of EcH2O-iso (Best MAE), and summary statistics for simulations by the 100 behavioural runs.   1110 

 1111 

Dataset Best MAE Mean MAE Min - Max MAE 

Discharge: Outlet 1.37 L s-1 1.56 L s-1 1.24 - 2.04 L s-1 

Isotopes: Outlet 1.41‰ 1.99‰ 1.12 - 3.68‰ 

Isotopes: T2 1.30‰ 2.06‰  1.02 - 3.82‰ 

Isotopes: T3 1.14‰ 2.13‰ 0.95 - 3.82‰ 

Isotopes: T4 2.73‰ 3.57‰ 0.83 - 6.20‰ 

Isotopes: T5 2.69‰ 3.56‰ 1.00 - 6.25‰ 

Isotopes: T6 2.00‰ 3.36‰ 0.86 - 6.51‰ 

Isotopes: T7 3.02‰ 4.64‰ 1.55 - 8.21‰ 

Isotopes: T8 2.52‰ 4.23‰ 1.30 - 8.08‰ 

 1112 

  1113 
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Supplementary Material 1114 

Appendix A: Parameterisation of EcH2O-iso 1115 

The sampling and calibrated ranges of parameters found to be sensitive in EcH2O-iso are given in Table 1116 

S1, whilst fixed values of insensitive parameters are detailed in Table S2.  1117 

 1118 

Table S1: The sampling and 90%-spread calibrated ranges of soil, vegetation and channel parameters identified 1119 

as sensitive in the application of EcH2O-iso to Tulloch Burn. Additional information on parameter definitions can 1120 

be found at: https://ech2o-iso.readthedocs.io/en/latest/Setup.html 1121 

 1122 

Parameter Sampling range 

[90% spread of calibrated range] 

Soil  Brown earths Humus-iron 

podzol 

Noncalcareous 

gley 

Peaty-gleyed 

podzol 

Alluvial 

      

Total soil depth (m) 1-4 

[1.1-3.9] 

1-4 

[1.1-3.8] 

1-4 

[1.2-3.8] 

1-4 

[1.2-3.8] 

1-4 

[1.3-3.9] 

Depth of 1st hydrological 

layer (m) 

0.05-0.25 

[0.066-0.25] 

0.05-0.25 

[0.071-0.24] 

0.05-0.25 

[0.059-0.24] 

0.05-0.25 

[0.069-0.24] 

0.05-0.25 

[0.068-0.24] 

Depth of 2nd hydrological 

layer (m) 

0.05-0.5 

[0.082-0.49] 

0.05-0.5 

[0.073-0.48] 

0.05-0.5 

[0.088-0.49] 

0.05-0.5 

[0.067-0.45] 

0.05-0.5 

[0.096-0.45] 

Porosity (m3 m-3) 0.4-0.6 

[0.41-0.59] 

0.4-0.6 

[0.42-0.60] 

0.4-0.6 

[0.41-0.58] 

0.4-0.8 

[0.43-0.76] 

0.4-0.6 

[0.41-0.58] 

Porosity exponential decay 

constant (m-1) 

1-20 

[1.8-18.7] 

1-20 

[2.1-18.4] 

1-20 

[1.7-18.0] 

1-20 

[1.6-19.0] 

1-20 

[1.9-19.5] 

Saturated horizontal hydraulic 

conductivity (ms-1) 

 

1×10-5-0.01 

[7.05×10-5-

0.0022] 

1×10-5-0.01 

[9.79×10-5-

0.0073] 

1×10-5-0.01 

[3.72×10-4-

0.0087] 

1×10-5-0.01 

[1.53×10-4-

0.0093] 

1×10-5-0.01 

[2.84×10-4-

0.0095] 

Hydraulic conductivity 

exponential decay constant 

(m-1) 

1-20 

[1.5-18.4] 

1-20 

[1.6-18.6] 

1-20 

[2.2-19.3] 

1-20 

[1.4-19.0] 

1-20 

[1.6-19.2] 

Anisotropy (-) 1×10-3-0.6 

[0.035-0.55] 

1×10-3-0.6 

[0.027-0.58] 

1×10-3-0.6 

[0.029-0.57] 

1×10-3-0.6 

[0.043-0.56] 

1×10-3-0.6 

[0.022-0.57] 
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Brooks-Corey lambda (-) 3-15 

[3.4-13.6] 

3-15 

[3.4-13.9] 

3-15 

[3.6-14.6] 

3-15 

[3.6-14.2] 

3-15 

[3.5-13.9] 

Air-entry pressure head (m) 0.05-0.8 

[0.11-0.76] 

0.05-0.8 

[0.12-0.76] 

0.05-0.8 

[0.15-0.75] 

0.05-0.8 

[0.11-0.74] 

0.05-0.8 

[0.080-0.75] 

Tension threshold for mobile 

water (m) 

1-100 

[11.3-96.4] 

1-100 

[12.1-94.8] 

1-100 

[5.1-94.0] 

1-100 

[10.4-92.8] 

1-100 

[6.9-95.3] 

Vegetation Grasses Conifers Heather   

Root profile exponential 

decay constant (m-1) 

1-20 

[2.0-18.9] 

1-20 

[1.8-18.9] 

1-20 

[1.9-18.5] 

  

Maximum stomatal 

conductance (ms-1)  

3×10-3-0.05 

[0.0039-0.045] 

3×10-3-0.05 

[0.0068-0.047] 

3×10-3-0.05 

[0.0048-0.046] 

  

Soil water potential below 

which there is complete 

stomatal closure (-MPa) 

2-6 

[2.2-5.9] 

2-6 

[2.3-5.7] 

2-6 

[2.6-5.8] 

  

Soil water potential above 

which there is no soil water 

limitation to stomatal 

conductance (-MPa) 

0.1-1 

[0.18-0.96] 

0.1-1 

[0.12-0.94] 

0.1-1 

[0.12-0.93] 

  

Stomatal sensitivity to light  

(-) 

200-500 

[228.9-482.6] 

200-500 

[223.6-492.0] 

200-500 

[208.5-488.8] 

  

Stomatal sensitivity to vapour 

pressure deficit (-) 

1×10-3-3×10-3 

[1.2×10-3-

2.9×10-3] 

1×10-3-3×10-3 

[1.1×10-3-

2.9×10-3] 

1×10-3-3×10-3 

[1.1×10-3-

2.9×10-3] 

  

Minimum temperature of 

comfort (°C) 

-5-5 

[-4.1-4.4] 

-5-5 

[-4.5-4.7] 

-5-5 

[-4.2-4.6] 

  

Optimal temperature (°C) 6-24 

[7.6-23.3] 

6-24 

[6.9-22.8] 

6-24 

[6.9-23.2] 

  

Maximum temperature of 

comfort (°C) 

25-40 

[26.0-38.9] 

25-40 

[26.0-39.9] 

25-40 

[25.9-38.8] 

  

Maximum interception 

storage per unit leaf area 

index (m) 

5×10-5-5×10-3 

[8.81×10-5-

0.0031] 

5×10-5-5×10-3 

[1.51×10-4-

0.0048] 

5×10-5-5×10-3 

[4.00×10-4-

0.0047] 

  

Albedo (-) 0.1-0.25 

[0.11-0.25] 

0.05-0.25 

[0.062-0.24] 

0.1-0.25 

[0.11-0.24] 

  

Light attenuation coefficient 

(-) 

0.4-0.7 

[0.42-0.69] 

0.4-0.7 

[0.42-0.68] 

0.4-0.8 

[0.42-0.76] 
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Emissivity (-) 0.9-0.99 

[0.91-0.99] 

0.9-0.99 

[0.90-0.99] 

0.9-0.99 

[0.90-0.98] 

  

Channel      

Resistance to groundwater 

seepage to channel (-) 

5×10-3-0.5 

[0.028-0.47] 

    

Manning’s n 1-50  

[8.2-47.5] 

    

  1123 
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 1124 

 1125 

Parameter Value Source 

Soil  Brown 

earths 

Humus-

iron 

podzol 

Non -

calcareous 

gley 

Peaty-

gleyed 

podzol 

Alluvial  

Terrain random 

roughness (-) 

0.05 Maneta and 

Silverman, 2013 

Residual soil moisture 

(m3 m-3) 

Min{0.05, 0.25 * Hydrological layer porosity} Local expertise 

Soil to bedrock 

leakance (-) 

0 Local expertise 

Soil albedo 0.3 Maneta and 

Silverman 

(2013) 

Soil emissivity 0.98 Maneta and 

Silverman 

(2013) 

Heat capacity of dry 

soil (J m3 K-1) 

1.12×106 1.19×106 1.11×106 1.20×106 1.10×106 Local expertise 

Thermal conductivity of 

dry soil (W m-1K-1) 

0.137 0.125 0.138 0.124 0.140 Local expertise 

Soil depth with 

negligible heat 

exchange (m) 

2 Maneta and 

Silverman 

(2013) 

Temperature at bottom 

thermal layer (°C) 

10 Maneta and 

Silverman 

(2013) 

Snowmelt coefficient (m s-

1 °C-1) 

4.1×10-8 Maneta and 

Silverman 

(2013) 

Snow to rain temperature 

threshold (°C) 

2 Maneta and 

Silverman 

(2013) 

Vegetation Grasses Conifers Heather    

Table S2: Fixed values of uncalibrated parameters in EcH2O-iso 
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Initial LAI (m2 m-2) 2 2.9 1.6   Albrektson 

(1984); Calder 

et al. (1984); 

Moors et al. 

(1998) 

Stem density (m-2) § - 0.1 200   Local expertise 

Vegetation age (years) § - 30 7   Local expertise 

Basal area (m2) § - 0.0195 1.3×10-5   Albrektson 

(1984); Wallén 

(1980) 

Vegetation height (m) 0.5  10 0.4   Local expertise 

Root mass (g m-2) 1000 800 250   Aerts et al. 

(1989) ; 

Oleksyn et al. 

(1999) 

NPP/GPP Ratio (-) 0.35 0.47 0.47   Lozano-Parra et 

al. (2014)  

Canopy quantum 

efficiency (gC J-1)  

1.8×10-6 3.0×10-6 1.8×10-6   Landsberg et al. 

(2005) 

Max forest age (years) § - 500 40   Landsberg et al. 

(2005) 

Leaf carbon allocation 

coefficient a (-)§ 

- 2.235 2.235   Lozano-Parra et 

al. (2014) 

Leaf carbon allocation 

coefficient b (-)§ 

- 0.006 0.006   Lozano-Parra et 

al. (2014) 

Stem carbon allocation 

coefficient a (-)§ 

- 3.3 3.3   Lozano-Parra et 

al. (2014) 

Stem carbon allocation 

coefficient b (-)§ 

- 3.0×10-7 3.0×10-7   Lozano-Parra et 

al. (2014) 

Wilting point (m3 m-3) 0.05 0.12 0.06   Maneta and 

Silverman 

(2013) 

Specific leaf area (m2 g-

1) 

2.3×10-2 8.0×10-3 9.5×10-3   Landsberg et al. 

(2005); Poorter 

and De Jong 

(1999) 
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Specific root area (m2 

kg-1) 

1.1×10-2 6.5×10-2 2.2×10-2   Kuppel et al. 

(2018) 

Crown to stem diameter 

ratio (-)§ 

- 0.25 0.25   Landsberg and 

Waring (1997) 

Tree shape coefficient (-

)§ 

- 0.4 0.4   Landsberg and 

Waring (1997) 

Wood density (gC m-2) § - 2.2×105 2.2×105   Landsberg and 

Waring (1997) 

Maximum tree height to 

stem diameter ratio (-)§ 

- 15 150   Landsberg and 

Waring (1997); 

Wallén (1980) 

Minimum tree height to 

stem diameter ratio (-)§ 

- 5 5   Landsberg and 

Waring (1997) 

Leaf turnover rate (s-1) 3.17×10-8 1.20×10-8 1.00×10-8   Lozano-Parra et 

al. (2014); 

Maneta and 

Silverman 

(2013)  

Max leaf turnover rate 

under water stress (s-1) § 

- 1.8×10-8 1.8×10-8   Landsberg and 

Waring (1997) 

Sensitivity of leaf 

turnover rate to water 

stress (-)§ 

- 0.2 0.2   Landsberg and 

Waring (1997) 

Max leaf turnover rate 

under temperature stress 

(s-1) § 

- 1.8×10-8 1.8×10-8   Landsberg and 

Waring (1997) 

Sensitivity of leaf 

turnover rate to 

temperature (-)§ 

- 1.8×10-8 1.8×10-8   Landsberg and 

Waring (1997) 

Cold temperature stress 

threshold (°C) § 

- 1 1   Landsberg and 

Waring (1997) 

Root turnover rate (s-1) 3.17×10-8 2.7×10-8 1.0×10-8   Landsberg and 

Waring (1997) 

Canopy-scale water use 

efficiency (gC m-1) 

800 680 3335   Gordon et al. 

(1999); Hobbie 

and Colpaert, 

(2004) 
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Empirical tree water use 

coefficient (-)§ 

- 0.6 0.6   Landsberg and 

Waring (1997) 

Empirical tree water use 

exponent (-)§ 

- 7 7   Landsberg and 

Waring (1997) 

Dry grass 

decomposition rate (s-1) 

¢ 

8.5×10-7 - -   Lozano-Parra et 

al. (2014) 

Temperature threshold 

triggering dry grass 

decay (°C) ¢ 

18 - -   Lozano-Parra et 

al. (2014) 

§ Ligneous species only; ¢ Herbaceous species only 

       

 1126 

  1127 
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Appendix B: Sub-grid characterisation of channel cells in MAFIO 1128 

To enable sub-grid heterogeneity in MAFIO to be represented, it is necessary to specify several 1129 

characteristics for cells containing an area of degraded soil / the channel. Figure S1 shows the Seepage 1130 

and Channel IDs associated with such cells and their corresponding upslope contributing cells. The 1131 

latter are used in deriving attributes of the spatial grid for the former. Channel widths, land parcels and 1132 

livestock access associated with each cell are given in Table S3. 1133 

 1134 

 1135 

 1136 

 1137 

  1138 

Figure S1: Maps showing a) The seepage IDs of cells with areas of degraded soil and their associated immediate upslope 

contributing areas; b) The channel IDs of cells containing a channel and their associated immediate upslope contributing 

areas. Cells containing the area of degraded soil / channel are those intersected by the “Channel” line. 
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 1139 

 1140 

Channel 

ID 

Seepage 

ID 

Channel 

Width (m) 

Land parcel(s) Livestock Access 

1 - 0.37 Lower Pasture (L) and (R) No 

2 - 0.37 Lower Pasture (L) and (R) No 

3 - 0.40 Lower Pasture (L) and (R) No 

4 - 0.45 Lower Pasture (L) and (R) No 

5 - 0.48 Lower Pasture (L) and (R) No 

6 1 0.51 Lower Pasture (L) and (R) Gate* 

7 - 0.55 Lower Pasture (L) and (R) No 

8 - 0.57 Lower Pasture (L) and (R) No 

9 - 0.62 Lower Pasture (L) and (R) No 

10 - 0.64 Lower Pasture (L) and Lower 

Arable 

No 

11 - 0.61 Lower Pasture (L) and Lower 

Arable 

No 

12 - 0.59 Lower Pasture (L) and Lower 

Arable 

No 

13 - 0.57 Lower Pasture (L) and Lower 

Arable 

No 

14 - 0.54 Lower Pasture (L) and Lower 

Arable 

No 

15 - 0.53 Lower Pasture (L) and Forest No 

16 - 0.52 Lower Pasture (L) and Forest No 

17 - 0.49 Lower Pasture (L) and Forest No 

18 - 0.43 Forest No 

19 - 0.37 Forest No 

20 2 0.32 Lower Pasture (L) and Mid 

Pasture (R) 

Gate* 

Table S3: The properties of cells containing areas of degraded soil / the channel necessary for the representation of sub-

grid heterogeneity. 
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21 3 0.40 Mid Pastures (L) and (R) Yes for (R); 

Gate* for (L) 

22 - 0.48 Mid Pastures (L) and (R) Yes for (R) 

23 - 0.52 Mid Pastures (L) and (R) Yes for (R) 

24 - 0.50 Mid Pastures (L) and (R) Yes for (R) 

25 - 0.46 Mid Pastures (L) and (R) Yes for (R) 

26 - 0.44 Mid Pastures (L) and (R) Yes for (R) 

27 - 0.41 Mid Pasture (L) Yes 

28 - 0.35 Mid Pasture (L) Yes 

29 - 0.30 Forest Yes 

30 - 0.26 Forest Yes 

31 - 0.21 Forest Yes 

32 - 0.17 Forest Yes 

33 - 0.12 Forest Yes 

34 - 0.06 Forest Yes 

35 - 0.01 Forest Yes 

* Variable livestock access depending on gate opening 

 1141 

 1142 

  1143 
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