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A model of spin-lattice relaxation for spin-1/2 nuclei in the presence of a residual dipole-dipole coupling
has been presented. For slow dynamics the model predicts a bi-exponential relaxation at low frequencies,
when the residual dipole-dipole interaction dominates the Zeeman coupling. Moreover, according to the
model a frequency-specific relaxation enhancement, referred to as Dipolar Relaxation Enhancement
(DRE) in analogy to the Quadrupole Relaxation Enhancement (QRE) is expected. The frequency position
of the relaxation maximum is determined by the amplitude of the residual dipole-dipole interaction.
Experimental examples of relaxation properties that might be attributed to the DRE are presented. The
DRE effect has the potential to be exploited, in analogy to QRE, as a unique source of information about
molecular dynamics and structure.
� 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The potential of NMR relaxation studies to reveal dynamical
properties of molecular and ionic systems is widely known. How-
ever, the information provided by relaxation experiments per-
formed only at a single resonance frequency (magnetic field) is
limited to dynamical processes occurring on the time scale of the
reciprocal frequency. In this respect, Fast Field-Cycling (FFC) tech-
nology [1,2] introduced (literally speaking) a new dimension to
NMR relaxation studies – namely, the possibility to vary the mag-
netic field in a very broad range: from about 1 kHz to 120 MHz (re-
ferring to 1H resonance frequency). NMR relaxation experiments
performed versus the resonance frequency are often referred to
as NMR relaxometry, while relaxation rates (spin-lattice or spin-
spin) plotted as a function of the frequency are called relaxation
dispersion profiles.

The first great advantage of NMR relaxometry is the opportu-
nity to probe in a single experiment dynamical processes on a time
scale from ms to ns, independently of the mechanism of the
motion [3-5]. The second, unique advantage of this method is the
possibility to unambiguously determine the mechanism of motion
[3-9]. According to spin relaxation theories [10-15], relaxation
rates are given as linear combinations of spectral density functions
being Fourier transforms of the corresponding time correlation
function characterizing the dynamical process causing stochastic
fluctuations of the spin interactions that lead to relaxation. As
the mathematical form of the correlation function (and, hence,
the spectral density) depends on the mechanism of motion (like
isotropic and anisotropic rotation and translation), the shape of
the relaxation dispersion profile reflects the nature of the dynamics
[16-26].

Progress in NMR relaxometry has led to an extensive develop-
ment of spin relaxation theories. The ‘‘classical” relaxation theory
[10-14] assumes that the energy level structure of the spin system
is entirely determined by the Zeeman interaction. This assumption
holds only at high magnetic fields, because then other spin cou-
plings, like quadrupole interaction, zero field splitting for paramag-
netic systems or dipole-dipole interactions, are negligible
compared to the Zeeman interaction. Relaxation models based on
this assumption break down, for obvious reasons, at low and inter-
mediate magnetic fields when other spin interactions become
comparable with the Zeeman coupling.

The remarkable experimental opportunities offered by FFC
technology pose a great theoretical challenge from the viewpoint
of providing appropriate theoretical models including complex
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quantum-mechanical effects caused by an interplay between dif-
ferent spin interactions. One of the effects is the so called Quadru-
pole Relaxation Enhancement (QRE) [21,27-39]. The QRE manifests
itself as frequency specific maxima of the 1H or 19F spin-lattice
relaxation rates referred to as quadrupole peaks. The maxima are
associated with dipole-dipole interactions between spin-1/2 nuclei
(I = 1/2) and nuclei of the spin quantum number S � 1 possessing a
quadrupole moment. For slow dynamics the energy level structure
of the S-spin nucleus (for instance 14N) is determined by a superpo-
sition of its quadrupole and Zeeman interactions. This implies that
at some magnetic fields the resonance frequency of the spin-1/2
nucleus matches the transition frequencies of the S-spin nucleus
between its energy levels. At these magnetic fields the I-spin mag-
netization can be taken over by (transferred to) the S-spin. The fas-
ter decay of the I-spin magnetization can be interpreted as a
frequency specific increase of the relaxation rate. This scenario
should be considered as a limiting case, because QRE effects are
also observed for intermediate-scale dynamics, however, then the
theoretical model is much more cumbersome [21,27-31], because
one cannot treat the quadrupole coupling as a time independent
contribution to the energy level structure. The effort put into the
development of the theory of QRE effects has turned out to be
highly rewarding. The quadrupole peaks have been observed for
a variety of systems, from ionic and molecular solids of different
kinds [27-29] via proteins [32-34] to tissues [34-36]. In the last
case, the QRE effects are considered as potentially important diag-
nostic biomarkers for use with FFC magnetic resonance imaging
(MRI) [35,37]. The QRE effects have also given rise to a completely
new concept of MRI contrast [38-40].

In this paper we consider the influence of residual dipole-dipole
interactions between spin-1/2 nuclei on their spin-lattice relax-
ation at low fields. Residual (time-independent) dipole-dipole
interactions are expected to be mainly present in solids and macro-
molecules, including biomolecules. The work can be treated as a
continuation of the efforts to formulate theoretical models of spin
relaxation processes beyond the high-field limit. One should be
aware that the theoretically-predicted effects of residual dipole-
dipole interactions are much more difficult to observe experimen-
tally than QRE. The reason for that is twofold: first, not only specific
conditions regarding the time scale of dynamical processes must
be met, but also the dynamics must be anisotropic to create a
residual dipole-dipole coupling; second, the effects are supposed
to be present at low fields when the experimental procedures are
much more demanding and the relaxation rates often reach the
limit of FFC relaxometers. Nevertheless, we are of the opinion that
it is important to become aware of the effect (in analogy to QRE we
shall call it Dipolar Relaxation Enhancement, DRE) because if
detected and properly theoretically modeled it has a potential as
a source of information about molecular dynamics and can turn
out to be an important factor for materials science studies and
medical diagnosis based on the FFC technique.

2. Theory

Let us consider two protons of spin quantum numbers

I1 ¼ I2 ¼ 1=2 placed in a low, external magnetic field, B
!

0, and cou-
pled by a dipole-dipole interaction represented by a Hamiltonian
HDD I1; I2ð Þ. The dipole-dipole Hamiltonian can be split into two
parts:

HDD tð Þ ¼ HDD tð Þ� �þ HDD tð Þ � HDD tð Þ� �� � ¼ Hres
DD þ Hfluc

DD tð Þ ð1Þ
The first term, HDD tð Þ� � ¼ Hres

DD, describes a part of the dipole-
dipole interactions being a result of a long time averaging. This
term is referred to as a residual dipolar coupling and its non-zero
value is caused by anisotropy of molecular motion. The residual
dipolar interaction does not fluctuate in time with respect to the

laboratory frame. The second term, H Lð Þ;fluc
DD tð Þ, describes the

stochastically fluctuating part of the dipole-dipole interaction.
The concept of splitting the total dipole-dipole coupling into the
residual and fluctuating parts can be described in terms of a time
correlation function C tð Þ. According to the Lipari-Szabo model
[12,41], for molecules experiencing a local, anisotropic dynamics
and undergoing at the same time an overall motion on a much
longer time scale, the correlation function takes the form (assum-
ing exponential correlation functions for both dynamical contribu-

tions): C tð Þ ¼ 1� S2
� �

exp �t=sf
� �þ S2exp �t=ssð Þ, where sf and ss

denote correlation times of the fast and slow dynamical processes,
respectively; S2 is referred to as an order parameter. This formula
means that in the first step (in a short time) the correlation func-
tion decays from unity to the S value as a result of the fast, aniso-
tropic motion, and then, in the second step, it eventually decays to
zero at long times due to the slow motion. When ss >> T1 (T1

denotes the spin-lattice relaxation time) the slow process is not

seen and one can write: C tð Þ ¼ 1� S2
� �

exp �t=scð Þ þ S2, where

the first term corresponds to the Hamiltonian Hfluc
DD tð Þ fluctuating

with a correlation time sc ¼ sf , while S reflects the presence of
the time independent residual dipole-dipole coupling, Hres

DD. The
explicit form of the Hres

DD Hamiltonian expressed in the laboratory
(L) frame determined by the direction of the external magnetic
field, yields [15,42,43]:

Hres
DD I1; I2ð Þ ¼ Cres

X2
m¼�2

�1ð ÞmD2
0;�m hML;/MLð ÞT2

m I1; I2ð Þ ð2Þ

where Cres is the amplitude of the residual dipolar coupling, while
the angles hML ¼ h and /ML ¼ / describe the orientation of a
molecule fixed frame (M) with respect to the laboratory frame (L).
For simplicity the principal axes system of the residual dipolar
coupling is chosen as the molecular frame. The spin tensor
operators are defined as: T2

0 I1; I2ð Þ ¼ 1ffiffi
6

p 2I1zI2z � 1
2 I1þI2� þ I1�I2þð Þ	 


,

T2
�1 I1; I2ð Þ ¼ � 1

2 I1zI2� þ I1�I2zð Þ, T2
�2 I1; I2ð Þ ¼ 1

2 I1�I2�, while the
Wigner rotation matrices are given as [15,42,43]:

D2
0;0 h;/ð Þ ¼ 1

2 3cos2h� 1
� �

, D2
0;�1 h;/ð Þ ¼ �

ffiffi
3
2

q
coshsinhexp �i/ð Þ,

D2
0;�2 h;/ð Þ ¼ �

ffiffi
3
8

q
sin2hexp �2i/ð Þ. The main Hamiltonian, determin-

ing the energy level structure of the pair of spins, I1 � I2, consists of
the Zeeman Hamiltonians of these spins and Hres

DD; assuming that the
spins are equivalent, it yields:H0 I1; I2ð Þ ¼ x I1z þ I2zð Þ þ Hres

DD I1; I2ð Þ,
where x denotes the resonance frequency of the spins. The energy
levels can be obtained by diagonalizing the matrix representation of
the Hamiltonian in the basis nj i ¼ m1;m2ijf g, where m1 and m2 are
magnetic quantum numbers of the spins I1 and I2, respectively. We
shall refer to this basis as a Zeeman basis as it is formed from the
eigenfunctions of the Zeeman Hamiltonian. Introducing the label-
ling: 1j i ¼ 1

2 ;
1
2

�� �
, 2j i ¼ 1

2 ;� 1
2

�� �
, 3j i ¼ � 1

2 ;
1
2

�� �
, 4j i ¼ � 1

2 ;� 1
2

�� �
, one

obtains:

H0 I1;I2ð Þ h;/ð Þ½ �¼

xþ Cres

2
ffiffi
6

p D2
0;0 �Cres

4 D2
0;�1 �Cres

4 D2
0;�1

Cres

2 D2
0;�2

Cres

4 D2
0;1 � Cres

2
ffiffi
6

p D2
0;0 � Cres

2
ffiffi
6

p D2
0;0

Cres

4 D2
0;�1

Cres

4 D2
0;1 � Cres

2
ffiffi
6

p D2
0;0 � Cres

2
ffiffi
6

p D2
0;0

Cres

4 D2
0;�1

Cres

2 D2
0;2 �Cres

4 D2
0;1 �Cres

4 D2
0;1 �xþ Cres

2
ffiffi
6

p D2
0;0

2
6666664

3
7777775
ð4Þ

The energy levels of the I1 � I2 spin system are then given by the
eigenvalues, Ea h;/ð Þ, of the Hamiltonian matrix of Eq.4, while the

corresponding eigenfunctions waj i ¼ P4
n¼1

can h;/ð Þ nj i are expressed
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as linear combinations of the nj i ¼ m1;m2ij functions. The func-
tions aj if g form the eigenbasis of the spin system, while their pairs

waj i wb

� �� ¼ q
�
ab

n o
give a set of coherences evolving in time accord-

ing to the Redfield relaxation theory, i.e. following the set of equa-
tions [11,12,14,15,43-46]:
R
�
abab ¼ Cfluc

� �2
	 ½�f 1

24 c	a1ca1 � c	a2ca2 � c	a3ca3 þ c	a4ca4 � c	a2ca3 � c	a3ca2 � c	b1cb1 þ c	b2cb2 þ c	b3cb3 � c	b4cb4 þ c	b2cb3 þ c	b3cb2
� �2

þ 1
16 �c	a1ca2 � c	a1ca3 þ c	a2ca4 þ c	a3ca4 þ c	b1cb2 þ c	b1cb3 � c	b2cb4 � c	b3cb4
� �2

þ 1
4 c	a1ca4 � c	b1cb4
� �2

gJð0Þ � P4
c¼1;c–a

f 1
24 c	a1cc1 � c	a2cc2 � c	a3cc3 þ c	a4cc4 � c	a2cc3 � c	a3cc2
� �2

þ 1
16 �c	a1cc2 � c	a1cc3 þ c	a2cc4 þ c	a3cc4
� �2

þ 1
16 c	a2cc1 þ c	a3cc1 � c	a4cc2 � c	a4cc3
� �2

þ 1
4 c	a1cc4
� �2

þ 1
4 c	a4cc1
� �2

gJ xca
� �

� P4
c¼1;c–b

f 1
24 c	b1cc1 � c	b2cc2 � c	b3cc3 þ c	b4cc4 � c	b2cc3 � c	b3cc2
� �2

þ 1
16 �c	b1cc2 � c	b1cc3 þ c	b2cc4 þ c	b3cc4
� �2

þ 1
16 c	b2cc1 þ c	b3cc1 � c	b4cc2 � c	b4cc3
� �2

þ 1
4 c	b1cc4
� �2

þ 1
4 c	b4cc1
� �2

gJ xcb
� � �

ð9bÞ
dq
�
aa0 tð Þ
dt

¼ �ixaa0q
�
aa0 tð Þ þ

X
bb0

xaa0 ¼ xbb0

R
�
aa0bb0q

�
bb0 tð Þ

ð5Þ

where xaa0 ¼ Ea � Ea0 . According to the Redfield relaxation theory

the R
�
aa0bb0 coefficients are given by the well-known expression

[11,12,14,15,43-46]:

R
�
aa0bb0 ¼ I

�
aba0b0 xab

� �þ I
�
aba0b0 xb0a0

� �� da0b0
X
c

I
�
acbc xcb

� �� dab

�
X
c

I
�
b0ca0c xb0c

� � ð6Þ

where the quantities I
�
aba0b0 xð Þ are defined as:

I
�
aba0b0 xð Þ ¼ wah jHfluc

DD wb

�� �
wa0h jHfluc

DD wb0
�� �

J xð Þ ð7Þ
where J xð Þ ¼ 1

5
sc

1þx2s2c
assuming an exponential correlation function

[10,12,15]. To calculate the relaxation rates R
�
aa0bb0 for the individual

coherences the matrix representation of the perturbing Hamilto-

nian, Hfluc
DD I1; I2ð Þ tð Þ ¼ Cfluc P2

m¼�2
�1ð ÞmD2

0;�m tð ÞT2
m I1; I2ð Þ is needed. The

representation of Hfluc
DD tð Þ in the Zeeman basis, nj i ¼ m1;m2ijf g, has

the form:

Hfluc
DD I1; I2ð Þ tð Þ

h i
¼ Cfluc 	

D2
0;0 tð Þ
2
ffiffi
6

p � D2
0;�1 tð Þ
4 � D2

0;�1 tð Þ
4

D2
0;�2 tð Þ
2

D2
0;1 tð Þ
4 � D2

0;0 tð Þ
2
ffiffi
6

p � D2
0;0 tð Þ
2
ffiffi
6

p D2
0;�1 tð Þ
4

D2
0;1 tð Þ
4 � D2

0;0 tð Þ
2
ffiffi
6

p � D2
0;0 tð Þ
2
ffiffi
6

p D2
0;�1 tð Þ
4

D2
0;2 tð Þ
2 � D2

0;1 tð Þ
4 � D2

0;1 tð Þ
4

D2
0;0 tð Þ
2
ffiffi
6

p

2
666666664

3
777777775

ð8Þ

Using the relationship, waj i ¼ P4
n¼1

can h;/ð Þ nj i, one can write:

wah jHfluc
DD tð Þ wb

�� � ¼ P4
n;k¼1

c	an h;/ð Þcbk h;/ð Þ nh jHfluc
DD tð Þ kj i. This implies that

the relaxation matrix elements can be expressed as:
R
�
aabb ¼ Cfluc

� �2
	f 1

12 c	a1cb1�c	a2cb2� c	a3cb3þ c	a4cb4�c	a2cb3� c	a3cb2
� �2

þ1
8 �c	a1cb2�c	a1cb3þ c	a2cb4þ c	a3cb4
� �2

þ1
8 c	a2cb1þ c	a3cb1�c	a4cb2� c	a4cb3
� �2

þ1
2 c	a1cb4
� �2

þ 1
2 c	a4cb1
� �2

gJ xab
� �

ð9aÞ
and R
�
aaaa ¼ � P

b–a
R
�
aabb. The elements form the 16 � 16 relaxation

matrix in the Liouville space constructed from the pairs of the

eigenfunctions waj i wb

� �� ¼ q
�
ab

n o
. The q

�
aa coherences are associated

with the population block, while the other twelve coherences,

q
�
ab; a–b, correspond to the diagonal part of the relaxation matrix.

Eq. (5) can be rewritten in the form:

d
dt

q
�h i

¼ � C
�� 


q
�h i

ð10Þ

where C
�
aba0b0 ¼ �ixaa0 þ R

�
aba0b0 . The relation between the coherences

in the eigenbasis and the Zeeman basis is given as:

q
�
ab ¼

P4
n;k¼1

c	ancbkqnk. This relation can be written in a matrix form:

q
�h i

¼ A½ � q½ �, where the transformation matrix, [A], includes the ele-

ments c	ancbk. This implies, that Eq.10 takes in the Zeeman basis the
form:

d
dt

q½ � ¼ � A½ ��1 C
�� 


A½ �
� �

q½ � ð11Þ

From this equation the time evolution of the longitudinal com-
ponent of the magnetization can be determined, for a given orien-
tation of the residual dipolar coupling with respect to the
laboratory frame, taking into account that
Izh i ¼ Iz;1 þ Iz;2

� � / q44 � q11.

3. Simulations for the special case of h ¼ 0, /=0

When the principal axes system of the residual dipolar coupling
coincides with the laboratory frame) the energy levels and the cor-
responding eigenfunctions can be expressed in the simple analyti-
cal form:

E1 ¼ xþxDD; w1j i ¼ 1j i ¼ 1
2
;
1
2

����
�

ð12aÞ
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E2 ¼ 0; w2j i ¼ 1ffiffiffi
2

p 2j i � 3j ið Þ

¼ 1ffiffiffi
2

p 1
2
;�1

2

����
�
� �1

2
;
1
2

����
�� �

ð12bÞ

E3 ¼ �2xDD; w3j i ¼ 1ffiffiffi
2

p 2j i þ 3j ið Þ

¼ 1ffiffiffi
2

p 1
2
;�1

2

����
�
þ �1

2
;
1
2

����
�� �

ð12cÞ

E4 ¼ �xþxDD; w4j i ¼ 4j i ¼ �1
2
;�1

2

����
�

ð12dÞ

where xDD ¼ Cres

2
ffiffi
6

p . In consequence one obtains the following set of

equations for the evolution of the population block of the spin
coherences, qaa, in the laboratory frame:

dq11
dt ¼� 1

4 J xþ3xDDð Þþ 1
2 J 2xð Þ	 


q11

þ1
8 J xþ3xDDð Þq22þ 1

8 J xþ3xDDð Þq33

þ1
2 J 2xð Þq44þ 1

8 J xþ3xDDð Þq23 þ 1
8 J xþ3xDDð Þq32

ð13aÞ

dq22
dt ¼�ixDDq23þ ixDDq32þ 1

8 J xþ3xDDð Þq11

� 1
8 J xþ3xDDð Þþ 1

8 J x�3xDDð Þþ 1
12 J 0ð Þ	 


q22

þ 1
12 J 0ð Þq33þ 1

8 J x�3xDDð Þq44

� 1
16 J xþ3xDDð Þþ 1

16 J x�3xDDð Þ	 

q23

� 1
16 J xþ3xDDð Þþ 1

16 J x�3xDDð Þ	 

q32

ð13bÞ

dq33
dt ¼ ixDDq23� ixDDq32þ 1

8 J xþ3xDDð Þq11 þ 1
12 J 0ð Þq22

� 1
8 J xþ3xDDð Þþ 1

8 J x�3xDDð Þþ 1
12 J 0ð Þ	 


q33

þ1
8 J x�3xDDð Þq44

� 1
16 J xþ3xDDð Þþ 1

16 J x�3xDDð Þ	 

q23

� 1
16 J xþ3xDDð Þþ 1

16 J x�3xDDð Þ	 

q32

ð13cÞ

dq44
dt ¼ 1

2 J 2xð Þq11 þ 1
8 J x�3xDDð Þq22þ 1

8 J x�3xDDð Þq33

� 1
4 J x�3xDDð Þþ 1

2 J 2xð Þ	 

q44

þ1
8 J x�3xDDð Þq23þ 1

8 J x�3xDDð Þq32

ð13dÞ
Fig. 1. 1H spin-lattice relaxation rates for a model system consisting of two spins ½.
Blue lines (solid and dashed) show two components of bi-exponential relaxation
process in the presence of a residual dipolar coupling of xDD = 1 * 104 rad/s for
different correlation times, sc, and CDD = 1 * 103 Hz. Red lines – predictions of the
‘‘classical” relaxation theory (in the absence of residual dipolar interactions). For
fast dynamics and/or a weak residual dipolar coupling both blue lines converge to a
single-exponential relaxation process represented by red lines. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
The population block of the coherences, qaa, is coupled also to
the q23 and q32 (as expected due to the degeneracy of the states
2j i and 3j i in the Zeeman basis), but, at the same time decoupled
from other coherences:

dq23
dt ¼�ixDDq22 þ ixDDq33þ 1

8 J xþ3xDDð Þq11

� 1
16 J xþ3xDDð Þþ 1

16 J x�3xDDð Þ	 

q22

� 1
16 J xþ3xDDð Þþ 1

16 J x�3xDDð Þ	 

q33 þ 1

8 J x�3xDDð Þq44

� 1
8 J xþ3xDDð Þþ 1

8 J x�3xDDð Þþ 1
12 J 0ð Þ	 


q23 þ 1
12 J 0ð Þq32

ð14aÞ

dq32
dt ¼ ixDDq22� ixDDq33þ 1

8 J xþ3xDDð Þq11

� 1
16 J xþ3xDDð Þþ 1

16 J x�3xDDð Þ	 

q22

� 1
16 J xþ3xDDð Þþ 1

16 J x�3xDDð Þ	 

q33

þ1
8 J x�3xDDð Þq44 þ 1

12 J 0ð Þq23

� 1
8 J xþ3xDDð Þþ 1

8 J x�3xDDð Þþ 1
12 J 0ð Þ	 


q32

ð14bÞ

This gives a set of six coupled equations. Its numerical solution
leads to a bi-exponential time evolution of the
Izh i ¼ Iz;1 þ Iz;2

� � / ðq44 � q11Þ quantity. Fig. 1 shows illustrative
simulations of the two relaxation rates versus the resonance fre-
quency assuming Lorentzian form of the spectral density function:

J xð Þ ¼ CDDð Þ2 sc
1þ xscð Þ2, where CDD denotes the amplitude of the fluc-

tuating part of the dipole-dipole coupling. For xDD ¼ 0, Eqs. (13a-
d,14a,b) converge to the well-known expressions for a system of
two equivalent spin-1/2 nuclei [10-15].

4. Experimental examples and discussion

Experimental observation of the DRE effects is much more chal-
lenging than of QRE; there are three main reasons for that. The first
one is the existence of a residual dipole-dipole interaction. The
existence of a quadrupole interaction is guaranteed by the spin
quantum number of the nucleus (being larger than 1/2), provided
there is an electric field gradient at the nucleus site (that is almost
always the case). A residual dipolar coupling is present only in
specific cases, likely associated with anisotropic dynamics. The sec-
ond reason is the low frequency at which the effect appear. Relax-
ation experiments at low frequencies are more difficult, with
inherently low signal-to-noise ratios and, hence, the experimental
error is larger. Eventually, the potential DRE peak can be masked
by other relaxation contributions that lead to large relaxation rates
at low frequencies. However, the relaxation features presented
below can be explained by the DRE effect.

Fig. 2 shows 1H spin-lattice relaxation data for L-asparagine –
15N in powder collected in the frequency range from 4 kHz to
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Fig. 2. 1H spin-lattice relaxation data for L-asparagine-15N in powder at 295 K. Red
points – data selected for Fig. 3. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)



Fig. 4. 1H spin-lattice relaxation data for 4-pentyl-phenyl 40-cyanobenzoyloxy-
benzoate at 423 K in the nematic phase [48].
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40 MHz. The use of 15N instead of 14N ensures that there are no
QRE effects that potentially could affect the picture. The compound
was purchased from Sigma Aldrich in the form of lyophilized pow-
der. The 1H spin-lattice relaxation rates were measured using a
commercial relaxometer (Stelar srl., Italy, Spinmaster 2000). The
magnetization values were measured for 16 logarithmically spaced
time sets, the span of which was readjusted at every relaxation
field to optimize the sampling of the decay/recovery curves. Free
induction decays were recorded at 16.3 MHz after single p/2 pulse
(tp=2 ¼ 9ls). 32 scans were accumulated, a recycle delay of 0.75 s
was applied between the successive scans. For magnetic fields
below 11 MHz pre-polarization at 25 MHz was applied for 0.75 s.
Temperature was stabilized with an air flux system with the accu-
racy of 0.5 K.

The relaxation rates have been obtained as a result of single-
exponential fits of the 1H magnetization versus time. A closer
inspection of the magnetization curves indicates, however, that
at low frequencies the magnetization evolution is bi-exponential,
while at higher frequencies the magnetization curves tend to
become single-exponential. This effect is shown in Fig. 3. The
curves a)-f) correspond to low frequencies and the relaxation pro-
cess is bi-exponential, while the magnetization data shown in g)
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Fig. 3. 1H magnetization versus time at selected frequencies. Red lines: single –
exponential fits, blue lines: bi-exponential fits. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
and h) have been collected at higher frequencies and they can be
well reproduced in terms of a single-exponential model. One can
consider different explanations of the bi-exponentiality. The aspar-
agine molecule includes chemically non-equivalent hydrogen
atoms – this could give rise to a bi-exponential relaxation. How-
ever, if so, one would rather expect this effect to be more pro-
nounced at high frequencies due to a larger chemical shifts
between the different pools of 1H nuclei. Another explanation
might be related to the presence of 15N nuclei. According to the
Solomon – Bloembergen- Morgan model [10-15] relaxation pro-
cesses in systems containing different kinds of NMR active species
are bi-exponential as a result of cross-relaxation effects. However,
if so, the bi-exponentiality should be seen in the whole frequency
range. Thus, we are rather of the opinion that the bi-exponentiality
at low frequencies is caused by the presence of a residual dipole-
dipole interaction.

Fig. 4 shows 1H spin-lattice relaxation data for 4-pentyl-phenyl
40-cyanobenzoyloxy-benzoate [47] in the nematic phase, already
shown in Ref. [48,49].

The relaxation data have been successfully described by a sum of
three main relaxation mechanisms: local rotations/reorientations,
R, translational self-diffusion, SD, and collective motions described
in terms of fluctuations of the alignment direction defined by an
average over the molecular long axes of molecules (order director
fluctuations), ODF [48,49]. The sum of these contributions is shown
in Fig. 4. The well pronounced relaxationmaximum at low frequen-
cies has originally been attributed to QRE associatedwith 14N nuclei
present in the system [48]. However, in such a case one should be
able to observe three quadrupole peaks at the frequencies of
m� ¼ x�

2p ¼ 3
4 aQ 1� g

3

� �
, mþ ¼ xþ

2p ¼ 3
4 aQ 1þ g

3

� �
and m0 ¼ mþ � m� ¼

x0
2p ¼ 1

2g aQ [27-34], where aQ and g denote the amplitude and the
asymmetry parameter of the quadrupole coupling, respectively.
Such sets of quadrupole peaks have been observed for many sys-
tems [28-34], but always the higher frequency lines weremore pro-
nounced than the low frequency one. As in this case only a single
relaxation maximum at low frequencies have been observed, one
can suppose that it is rather caused by the DRE effect. The relaxation
contribution attributed in [48] to the QRE is explicitly shown in
Fig. 4. Its shape indeed closely resembles the simulated DRE pre-
sented in Fig. 2 indicating xDD being of the order of about 2*104

rad/s.

5. Conclusions

A model of spin-lattice relaxation for spin-1/2 nuclei in the
presence of residual dipole-dipole interactions has been developed.
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The model has led to two important conclusions. The first one is
that for slow dynamics the spin-lattice relaxation becomes bi-
exponential at low frequencies as a result of the residual dipole-
dipole coupling. The second conclusion is that one of the relaxation
components shows (for slow dynamics) a frequency-specific relax-
ation enhancement (dipolar relaxation peak) which we have
described as Dipolar Relaxation Enhancement (DRE) in analogy to
QRE. The bi-exponentiality of the relaxation process combined
with the position of the dipolar relaxation peak (determined by
the amplitude of the residual dipolar coupling) and its shape have
the potential to provide unique information about molecular
arrangement and dynamics, likely to be of importance for applica-
tions in materials science and medical diagnostics.
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