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To address the issue of whether there exists determinism in a two-phase flow system, we first conduct a gas-liquid
two-phase flow experiment to collect the flow pattern fluctuation signals. Then we investigate the determinism in the
dynamics of different gas-liquid flow patterns by calculating the number of missing ordinal patterns associated with
the partitioning of the phase space. In addition, we use the recently proposed stretched exponential model to reveal the
flow pattern transition behavior. With the joint distribution of two fitted parameters, which are the decay rate of the
missing ordinal patterns and the stretching exponent, we systematically analyze the flow pattern evolutional dynamics
associated with the flow deterministic characteristics. This research provides a new understanding of the two-phase
flow pattern evolutional dynamics and broader applications in more complex fluid system is suggested.

The two-phase flow, such gas and liquid, is a frequently

encountered dynamical system in many fields, such as nu-

clear, petrochemical, biochemical, hydraulic, and others.

A fundamental problem of the two-phase flow system is

the presence of both determinism and stochasticity in its

dynamics. Understanding the two-phase flow characteris-

tics and its deterministic evolutionary dynamics is of im-

portance and of continuing interest for the flow control

system optimization. For that, we need to characterize

the system determinism, what we accomplish by partition-

ing the phase space, assigning symbols to each partition,

and then counting the number of missing ordinal patterns

(NMP) during the system’s evolution. This is a sensitive

and a reliable index to characterize the system’s deter-

minism. We design an experimental gas-flow facility and

carry out the experiments by exploring parameter space

of possible flow conditions. The collected fluctuation data

are then employed to assess determinism using our NMP

method. We further investigate the NMP scaling behav-

ior of the flow fluctuations to demonstrate the diverse gas-

liquid two-phase flow evolutionary dynamics. The results

of this work show that the gas-liquid two-phase flow deter-

ministic dynamics is associated with a phase morphology

distribution, called the flow patterns. The methods used

in this work are expected to apply in more complex fluid

systems such as multi-phase flow and microfluidics.

I. INTRODUCTION

Gas-liquid two-phase flow widely exists in industrial pro-
cesses such as crude oil production, nuclear-power generation,
fluidization, and so on. How to clearly characterize the com-
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plex flow pattern structure and to reveal its evolutional dy-
namics are fundamental problems that are frequently encoun-
tered in two-phase flow industry applications such as pipeline
pressure drop prediction, flow rate measurement and process
parameter optimization.

Experimental observation is the most frequently used
method to reveal the gas-liquid two-phase flow pattern dy-
namics. Various observation tools, such as high-speed
camera,1 tomograph,2 particle image velocimetry,3,4 contact-
less sensor,5 and infrared transceiver,6 are used to discover
the flow pattern structure and dynamics. The experimental
observations can provide intuitive flow pattern information
and it is rather straightforward to establish the flow pattern
transition criteria based on the observed phenomena. How-
ever, the experimentally observed flow pattern information is
typically not enough to clearly demonstrate the underlying
flow pattern mechanism. It means that we still need more ef-
fective methods to characterize the phenomena of phase in-
teraction and flow pattern transition. To reveal the under-
lying flow pattern evolutional dynamics, some researchers
make use of the computational fluid dynamics (CFD) method
to study the gas-liquid two-phase flow dynamics. Various
CFD models have been developed to characterize the gas-
liquid two-phase flow in vertical pipes,7 horizontal pipes,8 in-
clined pipes,9 porous media,10 and micro-channels.11 Note-
worthy comparisons between the CFD simulated dynamics
and the experimental results are reported to give a better
understanding of the gas-liquid two-phase flow system.12,13

Another tool that can effectively characterize the flow pat-
tern evolutional dynamics is the experimental collected fluid
fluctuations.14 Generally, the two-phase flow fluctuations re-
flect the measured sequential pressure differentials15,16 or the
mixture conductivity.17 Various time series analysis meth-
ods, including spectrum analysis,18,19 joint time-frequency
distribution,20 wavelet analysis,21 Hilbert-Huang transform,22

nonlinear analysis,23,24 recurrence plot analysis,25 complex
network analysis,26,27 and machine learning,28–31 have been
applied to reveal different aspects of flow pattern dynam-
ics. Several reflective quantitative indexes such as energy,32

entropy,33 and time irreversibility34 have been applied to char-
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acterize the flow patterns.
A fundamental problem of the two-phase flow system is

when there exists either determinism or the flow pattern evo-
lution is an entirely stochastic process. From the collected
fluctuation signals point of view, some flow pattern fluctua-
tions, such as that of bubble flow, show random features and
the deterministic dynamics may be masked by the noisy-like
signals. Hence, it is necessary to develop a reliable method
to detect the flow pattern determinism from collected noisy
fluctuation signals. Recently, using permutation parameters
to detect the system nonlinearity and determinism via ordinal
patterns has attracted much attention.35–37 For example, Kulp
and Zunino,38 propose a permutation spectrum test method
which uses the standard deviation of the permutation spec-
tra to characterize the system chaotic and stochastic dynam-
ics. After the phase space is symbolized with the ordinal pat-
terns, the influence of noise can be reduced and useful de-
terministic information is effectively extracted. The ordinal
pattern related methods have now been proved to be powerful
tools in the field of financial,39 biomedical,40,41 interdepen-
dencies detection,42,43 hydrology,44 and so forth. Moreover,
some researchers combine the ordinal pattern analysis with
other dynamic detection techniques, such as recurrence quan-
tification analysis,45 complex network analysis,46 and multi-
scale analysis,47 to reveal more sophisticated system dynam-
ics. In this regard, establishing the bridge of flow patterns and
the experimental fluctuation ordinal patterns is an appealing
and a rewarding approach to reveal the complex flow pattern
evolutional dynamics. In addition, the ordinal pattern related
methods also provide reliable and applicable ways to evaluate
the flow pattern determinism.

The remainder of this paper is organized as follows. In the
next Section, we introduce the concept of missing ordinal pat-
terns. A recently proposed stretched exponential model48 is
also introduced. This model is further used to characterize the
flow pattern determinism evolutional dynamics. In Section
III, we describe our gas-liquid two-phase flow experiment in
a vertical upward pipe. The procedure to collect the flow pat-
tern conductance fluctuation signals is also described. Section
IV shows the results by using the methods described in the
previous Section. The conclusions are in Section V.

II. METHOD

The concept of ordinal patterns of a trajectory49 has been
shown to be a powerful tool for detecting the dynamics of
complex systems.50,51 In this method, one divides the phase
space into partitions. One then assigns a unique symbol to
each partition. In this way, the system is symbolized and the
trajectory is given by a sequence of symbols,52 having diverse
ordinal patterns. The dynamics, even masked by environmen-
tal and observation noise can be revealed in this symbolic
space.

Consider a time series x(t), which is collected by observing
the system dynamics. We first reconstruct the phase space
vector

−→
X (t) with the standard delay coordinate embedding

method.53

−→
X (t) = [x(t),x(t + τ), · · · · x(t +(m− 1)τ)] (1)

where m denotes the embedded dimension and τ refers to the
embedding delay time. Each element of

−→
X (t) is assigned a

number from 1 to m, which is related to the value of the parti-
tion. Then, we can obtain a permutation of the symbols, which
can be expressed by a sequence as follows:

πi = [k1,k2 . . .km] (2)

where k1,k2 · · ·km denotes the given permutation and πi refers
to the symbol sequence related to the i-th vector to be recon-
structed. Given an m-dimensional system, there exists m! pos-
sible permutations or ordinal patterns. Take m=3, for example,
there exits a total of six ordinal patterns, which are shown in
Fig. 1.

FIG. 1. Six ordinal patterns when the reconstruction dimension is
m=3.

For a sufficiently long time series generated from a com-
pletely stochastic system, all the ordinal patterns are ob-
served. However, some ordinal patterns are absent in the
reconstructed symbolic sequence from some nonlinear deter-
ministic systems. Although some deterministic systems, like
Anosor diffeomorphisms,54 all the symbols are present. The
absent patterns are defined as forbidden patterns. The Number
of Forbidden Patterns (NFP) has been shown to be a power-
ful indicator to reveal the determinism of the generated time
series.55 To get a reliable estimation of the NFP, the length of
time series x(t) needs to satisfy N ≫ m! and the embedded di-
mension m is to be chosen in the range of 3 to 7. One difficulty
when using the NFP is that the time series needs to be long
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enough to obtain all the possible ordinal patterns. However, it
is not certain that, when involving shorter time series, whether
the presence of missing ordinal patterns is caused by the sys-
tem determinism or caused by the small sample effect. Fortu-
nately, recent research has shown that the incomplete number
of missing ordinal patterns (NMP) in short time series can still
be used as an effective indicator to identify the system nonlin-
earity and determinism.56

The deterministic component of a complex system can be
obtained by the scaling behavior of NMP with length of the
time series. The NMP decreases when increasing the ob-
served data length.57 The exponential function is frequently
used to fit the relationship between the NMP and the time
series length. Recently, a stretched exponential model48 has
been shown to be more suitable for modeling the correlated
stochastic data. This descriptive model can be expressed as,

NMP = A · exp(−Bωγ ), (3)

where A is a constant and ω refers to the length of the time
series. B and γ are the two stretched exponential parameters,
reflecting the determinism of the system. The decay rate B

indicates how fast the NMP decreases. A faster decay rate of
the NMP means that the system tends to be more stochastic,
leading to a smaller value of B. The stretching exponent γ

increases when the system evolves from a relatively determin-
istic state to a more stochastic one. Note that when γ=1, (3)
reduces to the exponential decay rate, meaning that the sys-
tem is completely uncorrelated. In Section IV, the use of the
number of missing ordinal patterns to characterize flow pat-
tern nonlinearity and determinism is demonstrated. With the
joint analysis of the decay rate B and the stretching exponent
γ , the evolutional dynamics of gas-liquid flow pattern in a ver-
tical pipe is investigated.

III. EXPERIMENTS AND DATA ACQUISITION

A. Experimental setup and procedure

We conduct a gas-liquid two-phase flow experiment in a
flow loop to collect fluctuation data. These fluctuations reflect
the flow pattern dynamics under different flow conditions. As
shown in Fig. 2, the flow loop consists of a water tank, an
air pump, a peristaltic metering pump, and a section of 50mm
inner diameter acrylic plastic testing pipe.

In the experiment, we first introduce the water phase into
the vertical testing pipe, and then the gas phase is added to
generate the desired gas-liquid flow patterns. When the flow
pattern is fully developed, conductance fluctuation signals of
the mixed fluid are measured with a four-ring conductance
sensor58 which is fixed on the vertical testing pipe. As shown
in Fig. 2, the conductance sensor consists of four stainless
steel conductance rings, which are axially separated and fixed
on the inside wall of the testing pipe. E1 and E2 are the ex-
citation electrodes that are connected to a 100 kHz sinusoidal
signal. M1 and M2 are the measuring electrodes that the con-
ductance fluctuating signals measured from M1 and M2 are

FIG. 2. Schematic of gas-water flow loop facility

mainly correlated with the fluid fluctuations and dynamics.
The axial height of the excitation and measuring electrodes are
6mm and 4mm, respectively. The distance between M1 and
M2 is 82mm, and the distance between E1 and E2 is 240mm.
Since the excitation voltage on the electrodes E1 and E2 is
constant sinusoidal signal, the measured differential voltage
on M1 and M2 reflects the two-phase flow volume fraction
fluctuations. The conductance fluctuation signals of the mixed
gas-liquid flow are collected by a data acquisition system with
the sampling rate set at 2000Hz. In addition, we collect a se-
ries of flow snapshots with a high-speed camera to observe the
flow patterns. The water flow rate is controlled with the me-
tering pump, and the gas flow rate is measured with a gas flow
meter and controlled with a valve. The water flow velocity is
set in the range from 0.0019m/s to 0.1953m/s and the gas flow
velocity is set between 0.0018m/s and 0.0207m/s. A total of
284 flow conditions are tested in this experiment.

B. Observed flow patterns and the fluctuation signals

With the aid of high-speed camera, we observe three typ-
ical gas-liquid flow patterns in the vertical pipe: slug flow,
non-uniform bubble flow, and uniform bubble flow.59 Typical
flow pattern snapshot series are shown in Fig. 3. Gas-liquid
slug flow is a kind of flow pattern that show some pseudo-
periodic behavior. When the water velocity is very low, as
shown in Fig. 3(a), large gas slugs (Taylor bubbles) with the
diameter almost equal to the pipe diameter intermittently pass
through the vertical testing pipe. We also find that each Tay-
lor bubble is followed by a wake, which captures a cluster of
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small gas bubbles. When increasing the water velocity, the
flow pattern evolves from slug to non-uniform bubble flow.
The snapshot series of non-uniform bubble flow are shown in
Fig. 3(b). Under this situation, the gas phase is coalesced into
large bubbles, which are non-uniformly distributed. Bubble
clusters and large spherically capped bubbles frequently ap-
pear in the vertical pipe. With even higher water velocity, the
turbulence energy of the mixed fluid is high enough to break
up the gas phase into smaller and uniformly distributed bub-
bles. Then, the flow pattern changes to uniform bubble flow.
As shown in Fig. 3(c), the global structure of this flow pat-
tern is stable while the dynamics of the dispersed gas bubbles
show stochastic characteristics.

FIG. 3. Snapshot series of different flow patterns. (a) Slug flow, (b)
Non-uniform bubble flow, and (c) Uniform bubble flow.

The typical flow pattern fluctuation signals are shown in
Fig. 4. As we can see in Figs. 4(a)-(c), the fluctuations of the
slug flow exhibit apparent pseudo-periodic features, reflect-
ing the intermittent motion of the gas slugs. The amplitude of
the fluctuation peaks reflects the size of the gas slugs. Figs.
4(d)-(f) show the conductance signals of non-uniform bubble
flow. The amplitude of the flow pattern fluctuations is smaller
than that of the slug flow, indicating that the gas phase evolves
to smaller structures. We also notice that there exist obvious
intermittent peaks in the fluctuation signals of non-uniform
bubble flow, reflecting the frequent appearance of spherically
capped bubbles or bubble clusters. The conductance fluctu-
ation signals of uniform bubble flow is shown in Figs. 4(g)-
(i). As we can see, these signals are noise like which reflect
the stochastic features of the discrete gas bubbles. Also, the
amplitude of the uniform bubble flow fluctuations are smaller
than that of the other two flow patterns, which means that the

structure of the uniform bubble flow becomes more stable due
to smaller gas bubble size at higher water velocity.

FIG. 4. The typical conductance fluctuation signals from different
flow patterns. (a)-(c)Slug flow, (d)-(f)Non-uniform bubble flow, and
(g)-(i)Uniform bubble flow

IV. RESULTS AND DISCUSSION

A. Missing ordinal patterns of gas-liquid two-phase flow
signals

The number of missing patterns (NMP) reflects the pres-
ence of determinism in the dynamics of a complex system.
We in this work, use the NMP as an index to reveal the deter-
minism of different gas-liquid two-phase flow patterns. When
calculating the NMP of flow pattern fluctuations, the duration
of the time series is set at 100 seconds, that is, 200000 points
for each fluctuation signal. It is suggested that the value of
m is chosen in the range of 3 to 7.56 However, the PNMP is
becoming insensitive to the flow pattern fluctuations when the
value of m is too small. Take m = 3 for example, there only
exists 6 ordinal patterns that is hard to distinguish the flow
pattern determinism dynamics with so few ordinal patterns.
In this regard, we in this paper calculated the NMP when the
embeded dimension is set as 5, 6, and 7. We choose a com-
monly used value τ = 1, according to previous study.56 Here
we use the probabilistic expression of NMP to characterize
the gas-liquid flow pattern determinism, which expresses as
PNMP = NMP/m!. PNMP refers to the probability of NMP and
m is the embedded dimension.

Figure 5 shows the PNMP under different water velocity
when embedded dimensions m are set at 5, 6, and 7 respec-
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tively. We find that the PNMP is related to the value of m, but
the evolutional characters of PNMP are similar. When grad-
ually increasing the water velocity, the gas-liquid two-phase
flow patterns evolve from slug flow to non-uniform bubble
flow and then to the uniform bubble flow. Under very low
water velocity, the gas phase coalesces into slugs that are in-
termittently passing by the sensor in the vertical pipe, leading
to regular periodic fluctuations. Hence, the slug flow shows a
regular feature. As we can see in Fig. 5, the PNMP of the slug
flow keeps a relatively high value, which indicates the deter-
ministic character of slug flow. With increasing water veloc-
ity, the gas slugs are broken up into large spherically capped
bubbles and the flow pattern evolves into the non-uniform
bubble flow. In this situation, the presence of large spherically
capped bubbles still shows some intermittent character, which
is reflected by the pseudo-periodic fluctuation signals shown
in Figs. 4(d)-(f). In this regard, the non-uniform bubble flow
also shows a deterministic character that is reflected by a high
value of PNMP. Uniform bubble flow occurs at high water ve-
locity when large spherically capped bubbles are broken into
uniformly distributed small gas bubbles. The fluctuations of
the uniform bubble flow are more stochastic-like and the mo-
tion of the gas bubbles tends to be more random. From Fig.
5, we find that the PNMP of the uniform bubble flow gradu-
ally decreases with increasing water velocity. This indicates
that the higher water velocity (higher turbulence energy) re-
sults in a more uniform and dispersed distribution of the gas
bubbles. This also indicates that the determinism of uniform
bubble flow is strongly correlated with the flow condition.

FIG. 5. The PNMP of different flow patterns when increasing the
water velocity.

The box-whisker plot of Fig. 6 shows the determinism
based on the statistical analysis of the experimental fluctua-

tion signals when the embeded dimension m is 6. The av-
erage value of PNMP gradually decreases from slug flow to
non-uniform bubble flow and then to uniform bubble flow, in-
dicating the gradual reduction of the determinism degree with
the flow pattern evolution. The variations of PNMP also reveal
the flow pattern determinism dynamics. As shown in Fig. 6,
the PNMP variation of the slug flow is smaller than that of other
two flow patterns. It means that the determinism of the slug
flow is not sensitive to the flow condition, i.e, the fluid veloc-
ity. Probably the determinism of the slug flow only depends
on the intermittent motion of gas slugs. However, the bubble
size and distribution of the uniform bubble flow is strongly
depending on the water velocity. Much higher water velocity
leads to more dispersed bubble distribution. Hence, the deter-
minism of the uniform bubble flow varies with flow conditions
and the range of PNMP is much larger than that of the slug flow.
The variation of non-uniform bubble flow seems somewhere
in between that of the slug flow and of the uniform bubble
flow.

FIG. 6. The box-whisker plot of PNMP under different flow patterns.

B. Scaling behaviors of NMP with the flow pattern evolution

Scaling behaviors are strongly related to the complex sys-
tem dynamics. A stochastic system generates quite different
scaling dynamics from a deterministic system. Hence, the
scaling behaviors of fluid fluctuation signals can be used to
characterize the gas-liquid two-phase flow pattern determin-
ism evolutional dynamics. Figure 7 shows the scaling behav-
iors with respect to different gas-liquid two-phase flow pat-
terns when m is set as 6. We find that the PNMP decreases
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with the length of the analyzed time series. Furthermore, the
decay rate of the PNMP is associated with flow pattern evolu-
tion. For fixed gas velocity, the increased water flow velocity
means higher turbulence energy and the gas phase tends to be
more dispersed and have a stochastic distribution. This is also
shown in Fig. 7, the PNMP decreases faster at higher water ve-
locity, which indicates less determinism. The fluid determin-
ism is gradually decreased when the flow pattern evolves from
slug to non-uniform bubble flow and then to uniform bubble
flow.

FIG. 7. The scaling behavior of PNMP with flow pattern evolution.

The stretched exponential model,48 given in (3), is an ef-
fective indicator of the NMP scaling behavior. We use two fit-
ting parameters for this model which are the decay rate B and
the stretching exponent γ to characterize the gas-liquid two-
phase flow pattern deterministic evolutional dynamics. Fig-
ure 8 shows the NMP decay rate and the stretching exponent
under different flow conditions. When increasing the water
velocity, the value of the decay rate B and the stretching expo-
nent γ exhibit opposite trends. We also find that when the flow
pattern evolves from non-uniform bubble flow to uniform bub-
ble flow, the stretching exponent γ starts to increase while the
decay rate B starts to decrease. This indicates that the mixed
gas-liquid system is changing from deterministic to stochas-
tic, when the flow pattern transition occurs from non-uniform
bubble flow to uniform bubble flow.

To obtain a more detailed understanding of the gas-liquid
two-phase flow pattern evolutional dynamics, we construct the
joint-distribution of the decay rate B and the stretching expo-
nent γ . As shown in Fig. 9, most points of the slug flow are lo-
cated in region 1, where the value of the decay rate B is much
higher (the value is around 0.8) and the stretching exponent

FIG. 8. The evolution characteristics of the decay rate and the
stretching exponent when increasing the water velocity.

γ is low (below 0.01), indicating that the slug flow exhibits a
deterministic dynamics. When the flow pattern evolves from
the slug flow to the non-uniform bubble flow, the mixed fluid
still exhibits a regular character due to the intermittent pres-
ence of large spherically capped bubbles. However, the deter-
minism of the non-uniform bubble flow begins to slightly de-
crease, which can be shown by the data distribution of the non-
uniform bubble flow. As we can see in region 2, where most
data points of the non-uniform bubble flow are located, both
the decay rate of NMP and the stretching exponent are slightly
decreased as compared to that of the slug flow. As for the re-
gion 3 where most data points of the uniform bubble flow are
located, both the decay rate of NMP and the stretching expo-
nent reach relatively low value, indicating that the determin-
ism is further decreased when the flow pattern evolves to the
uniform bubble flow. Also, we notice that the range of region
3 is wider than that of region 1 and region 2. This means that
the determinism of the uniform bubble flow is quite sensitive
to the flow condition, i.e, the fluid velocity. The joint distri-
bution of the decay rate B and the stretching exponent γ gives
a clear demonstration of the gas-liquid two-phase flow pattern
determinism evolutional dynamics. It could potentially be a
useful tool to reveal the evolutional dynamics of more com-
plex fluid.

V. CONCLUSION

In this work, we study the gas-liquid two-phase flow system
determinism with indicators that are related to missing ordinal
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7

FIG. 9. The joint distribution of the decay rate of NMP and the
stretching exponent under different flow patterns.

patterns. First, a gas-liquid two-phase flow experiment is con-
ducted in a vertical 50mm inner diameter pipe. With the aid of
high speed camera, we observe three typical gas-liquid two-
phase flow patterns which are the slug flow, the non-uniform
bubble flow and the uniform bubble flow. In addition, the fluid
conductance fluctuation signals are collected for our analyses
of the flow pattern determinism and the evolutional character.

We characterize the determinism of different gas-liquid
flow ordinal patterns with the probability of the number of
missing patterns (PNMP). The results show that PNMP of the
slug flow and the non-uniform bubble flow keeps a relatively
high value, indicating deterministic flow characteristics of
these two flow patterns. PNMP of the uniform bubble flow is
smaller than that of the slug flow and the non-uniform bubble
flow, showing that the determinism of the uniform bubble flow
is reduced. We also find that the determinism of the uniform
bubble flow is very sensitive to the flow conditions.

In addition, we investigate the flow pattern evolutional dy-
namics with the stretched exponential model. The joint distri-
bution of the decay rate B and the stretching exponent γ is con-
structed to characterize the gas-liquid two-phase flow pattern
determinism. The results show that the gas-liquid two-phase
system determinism is slightly reduced when the flow pattern
evolves from the slug flow to the non-uniform bubble flow.
However, when the flow pattern changes to the uniform bub-
ble flow, there exists determinism reduction, which probably
is attribute to a more dispersed gas bubble distribution. Our re-
search provides a new application of missing ordinal patterns
in the field of two-phase flow pattern analysis. Broader ap-
plications in more complex fluid system, such as multi-phase

flow, are expected based on our work.
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