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Abstract. A multi-scale reliability-based design optimisation (RBDO) framework is developed for 

unidirectional fibre reinforced polymer (FRP) composite laminates. Uncertainties occur in the multi-scale build-

up of composites, presenting a challenge to reliability analysis. Thus, FRPs full benefits are often not realised, as 

conservative safety factors are used due to a lack of understanding of how uncertainties affect performance. A 

sequential optimisation strategy is developed, employing multi-scale surrogate models that replace expensive 

finite element analysis (FEA) to estimate homogenised properties and assess performance. This RBDO 

framework optimises a composite component, whilst accounting for several multi-scale uncertainties using a 

large representative volume element (LRVE). 
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1. Introduction  

Composite materials are widely used in many industries, due to their high specific stiffness, strength, and 

the ability to tailor their structural properties. For example, these benefits are being exploited in the aerospace 

industry by replacing conventional metallic alloys with composites to reduce weight in many areas, including 

the heavily loaded primary structure of the wing, fuselage, and smaller, more lightly loaded components, such as 

ailerons and fairings [1]. The Airbus A350 XWB uses carbon fibre reinforced polymer (CFRP) composite 

material for 52% of its structure by weight [2]. However, despite their use in high-profile applications, the full 

potential of composite materials is often limited by conservative assumptions, such as a quasi-isotropic or 

“black metal” design process [3, 4]. 

Designing and optimising fibre reinforced composite materials is a more complicated process compared 

with alloys, due to their multi-material build-up nature, which introduces more design variables. For instance, 

designing an optimum vessel using an alloy will typically have shell thickness as the main design variable. 

Whereas, if a fibre reinforced laminate composite material is used, then the main design variables will at least 

include the number, thickness and orientations of plies, as can be seen in Figure 1. Consequently, a wider range 

of uncertainties is expected to feed into the structural system, undermining deterministic optimisation solutions 

that assume design variables are always at their mean value. These uncertain parameters are a result of complex 

engineering processes involved in the fabrication of composites [5], and their inherent and irreducible nature 

classifies them as aleatory uncertainties that can be defined in the form of a probabilistic distribution [6]. If 

uncertainties are not accounted for, then the performance of the optimised composite component will be non-

optimal, potentially leading to poor reliability and failure [7]. The traditional approach to account for 

uncertainties is to use safety factors. However, these are often derived from experience, or intuition and maybe 

too conservative, leading to inefficient design, or too optimistic, leading to poor reliability. 
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Figure 1. The main design variables of alloys and composites. 

Therefore, research over the last 30 years into reliability-based design optimisation (RBDO) of structures 

made from composite materials has been motivated by addressing both the conservative design approach and 

potentially poor reliability of optimised designs. Early approaches often aimed to minimise component weight, 

subject to reliability constraints on failure [8, 9] and/or buckling [10]. Early approaches typically used analytical 

models to assess the limit state function, approximate analytical reliability analysis methods, e.g. the first-order 

reliability method (FORM), with composite material uncertainties introduced at the ply level, e.g. ply stiffness, 

strength, thickness and angle. Analytical models are efficient, but limited, and cannot easily model more 

complex structural components. Thus, more recent approaches often use numerical methods, such as the finite 

element analysis (FEA), that can analyse general, complex structures, e.g. [11, 12]. The use of FORM (or 

similar approximate analytical methods) is also very efficient, but can be inaccurate, especially if the limit state 

function is highly nonlinear, or multi-modal. This has led some researchers to use Monte Carlo Simulation 

(MCS) for reliability computation, e.g. [8, 13, 14]. Time varying and non-probabilistic uncertainty models have 

also been applied to fibre-reinforced laminate structures, e.g. [15]. 

Also, material property uncertainties at the ply level are related to uncertainties at smaller scales. For 

example, ply stiffness properties in a fibre-reinforced composite are influenced by uncertainties in the fibre and 

matrix material properties, fibre volume ratio and fibre stacking [7, 16-20]. However, combining multi-scale 

modelling with RBDO for fibre-reinforced composite components has received little attention to date. Rouhi 

and Rais-Rohani [14] developed a multi-scale RBDO method to design a cylinder made from a nanofiber-

enhanced fibre-reinforced composite material. The aim was to minimise weight, subject to a buckling reliability 

constraint, evaluated using MCS and surrogate models. The multi-scale framework used analytical models at 

each scale (including the component scale), so it may not be easily applied to more general structures and limit 

state functions, or include some types of uncertainty, such as fibre stacking. Further examples of multi-scale 

RBDO for fibre-reinforced composite materials could not be found, although such approaches have been 

developed for other types of composite material, such as a carbon nanotube/polymer composite structure [21], 

hybrid composite shells [22] and multi-scale topology optimisation [23]. Thus, there is currently a lack of a 

general method for multi-scale RBDO of fibre-reinforced composite laminate components, which is the main 

contribution of this paper. 

Numerical models, MCS and multi-scale uncertainty propagation all add significant computational cost. 

Thus, techniques have been used to improve the efficiency of RBDO method for composite materials when 

using these approaches. A popular approach is to create efficient surrogate models that replace expensive finite 

element analyses. This could be done globally, where a single surrogate model is created that uses all the design 

and random variables as inputs and can output the reliability, and/or objective function [14, 24]. This may be 

feasible for a small number of total variables, but creating surrogate models for a large number of input 

parameters can be computationally expensive, as a large number of training points are often needed for accuracy 
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[25]. In multi-scale RBDO Ghasemi et al. [21] created surrogate models for just the multi-scale uncertainty 

propagation model. Another approach is to use multiple surrogate models. For example, Rais-Rohani et al. [11] 

compared global surrogate modelling with an approach using a series of local models, each focusing on a region 

around the current design point. It was concluded that the local approach is more computationally efficient than 

the global approach. 

RBDO problems for composite materials can be solved using a double-loop approach, where the reliability 

analysis is performed as an inner-loop each time the design variables are updated to assess the reliability 

constraints [12]. However, this can result in a large number of function evaluations, leading to high 

computational cost [24, 26, 27]. Thus, the double loop approach is usually only computationally feasible when 

solving the problem using a gradient-based optimisation method, with analytical models (or small numerical 

models) and an approximate analytical reliability method (e.g. FORM). However, gradient-based methods can 

only find local optima and cannot directly include discrete design variables (such as a discrete set of ply 

thicknesses, or angles). Thus, some approaches have used non-gradient-based optimisation methods, such as 

Particle Swarm Optimisation (PSO) [28, 29] and Genetic Algorithms (GAs) [13, 24, 30] to address these issues, 

which also adds significant computational cost. Surrogate models can again help to reduce computational cost 

(especially if MCS, multi-scale analysis and large numerical models are also used).  

Another strategy for RBDO is to first perform a deterministic optimisation, then analyse its probabilistic 

response and reliability to define a new deterministic problem with modified constraints. This reduces the 

number of function evaluations required to find the optimum point. This method is sometimes known as the 

Sequential Optimisation Reliability Analysis (SORA) strategy [31, 32], or decoupled approach [25]. In addition, 

surrogate modelling can be used to further reduce the computational cost of this strategy [24, 25]. The 

implementation of both SORA and surrogate modelling to conduct RBDO has been investigated in the 

literature. For example, Sohouli et al. [33] used surrogate modelling to approximate the limit state function 

within a decoupled RBDO framework to optimise composite structures with uncertainty in the material 

properties and applied loads. Another study used sequential optimisation in the form of decoupled deterministic 

optimisation and reliability analysis to performing RBDO of composite panels in post-buckling regime, 

considering the uncertainty of the elastic properties of the composite [30]. Both studies used uncertain laminate 

level properties without considering the multi-scale propagation of uncertainties. 

The aim of this research is to create an efficient multi-scale RBDO method for fibre-reinforced composite 

materials, that accounts for a wide range of uncertainties (including geometric uncertainties at the fibre-matrix 

scale), uses MCS, to avoid issues with nonlinear and multi-modal limit state functions, a non-deterministic 

optimisation method, to avoid local minima and potentially include discrete design variables, and a finite 

element model at the component scale. This is achieved by extending and combining our previous surrogate-

based framework for an off-line multi-scale uncertainty propagation [17] with an on-line sequential optimisation 

and reliability analysis approach and adaptive local surrogate modelling strategy. A novel feature of our multi-

scale framework is an inclusive FEA-based material representation unit, known as a large representative volume 

element (LRVE) that interpolates the effect of spatially correlated micro and meso-scale material and 

geometrical uncertainties, yet is computationally efficient for integration within a developed sequential RBDO 

framework. 

Although some aspects of our proposed approach have been investigated for fibre-reinforced composite 

optimisation before, they have not previously been combined. In particular, there is currently no general method 

for multi-scale RBDO of fibre-reinforced composite laminate components. The main contribution of this 

research is to show that the combination of the above methods results in an approach that is general whilst also 

being computationally efficient. 

2. Methodology 

Performing RBDO for components that can be analysed analytically is simple compared with complex 

components that require numerical analysis with significant computational time. To demonstrate the feasibility 

of conducting a RBDO for numerically analysed components, an efficient FEA-based multi-scale reliability 

analysis developed by the authors [17, 18] is used within a sequential deterministic and probabilistic 

optimisation strategy to reduce the mass of a composite component, whilst meeting a certain level of stiffness 

reliability, considering a wide range of uncertainties. An overview of this RBDO framework can be seen in 

Figure 2, and the required steps are explained in the following sections. 
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Figure 2. Proposed framework flowchart of RBDO for composite components. 

2.1. Deterministic optimisation 

In this phase, an optimisation technique is employed to find the minimum mass of a component, while 

meeting a certain deterministic design constraint, as shown in Eq. (1) below: 

 

min: M 

find:    = Design variable (i) 

subject to:            

  {       
         

   } 

        
 

(1) 

Where M is the component mass,   is the design constraint upper limit,    is a design variable and    

represents other (non-design variables) inputs, such as material properties and loads, assumed constant at their 

mean value (   
) in the deterministic optimisation problem. 

As uncertainties are ignored, the optimiser can often solve the deterministic problem within an acceptable 

number of function evaluations and time, depending on the computational cost of each evaluation. When the 

optimum solution is reached, the optimum design variables will be situated close to the failure region. This is 

expected because all uncertain values are assumed to be at their mean during optimisation. Thus, there is a high 

probability of failure when uncertainties are taken into account. 
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2.2. Uncertainty propagation framework 

In order to assess the reliability of the composite component at a design point, there is a need to propagate 

the effect of uncertainties across the component micro and meso-scales. This is achieved by generating an off-

line library of probabilistic material properties (see Figure 4) using an efficient FEA-based multi-scale 

probabilistic framework developed by the authors [17]. This probabilistic framework is composed of FEA-

based, computationally efficient surrogate models, capable of capturing the effect of various multi-scale 

uncertainties on the homogenised elastic properties of continuous fibre-reinforced composites. It takes the 

statistical information of uncertainties as an input and uses a large representative volume element (LRVE) that 

can model spatial variation of uncertainties, compared with a single RVE containing only one or two fibres, as 

shown in Figure 3. The LRVE is formed by correlating smaller RVEs in terms of material properties and 

geometric uncertainties, and employing a series of efficient surrogate models trained using a limited number of 

FE data points analysed using the periodic RVE homogenisation method [17], making it feasible to generate the 

large amount of probabilistic homogenised properties required to assess reliability accurately using Monte Carlo 

Simulation (MCS). 

 

Figure 3. The homogenisation approaches employed in this study. 

2.3. Reliability assessment 

The reliability of the deterministic optimisation solution is assessed at this stage by replacing the 

deterministic values of the optimum design variables (  ) with the information on distribution type and 

statistical properties. Furthermore, other inputs such as material properties and load are also assigned with their 

statistical properties, as shown in Eq. (2) below: 

              
     

     

               
     

   (2) 

                   

 

Where    is the probability of failure of the limit state function         , which is related to the structural 

response of the component.    is a probabilistic random variable of the optimum design variable (   ) 

established in the 1
st
 deterministic optimisation, and    represents the other uncertain inputs such as material 

properties and loads. Reliability is assessed using MCS where each evaluation of the limit-state function is 

performed by computationally cheap surrogate models, as explained next. 

2.4. Surrogate modelling 

Due to the number of probabilistic inputs        , there is a need to create surrogate models around the 

current design point to reduce the processing time required to evaluate the serviceability limit state function 

(SLSF). Within the proposed framework, two categories of these surrogate models are created: 1) surrogate(s) 
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used to assess the reliability, and 2) a final surrogate used to assess the reliability while performing probabilistic 

optimisation. On top of both, are the surrogates that assess the effect of uncertainties on the homogenised elastic 

properties, as explained in section 2.2. An overview of these surrogates is shown in Figure 4. 

 

Figure 4. The categories of the surrogate models used in the proposed sequential RBDO.  

The above two categories of surrogate models are trained using data points generated from analysing 

several randomly generated models. These FEA models are generated by assigning probability properties to all 

inputs. In addition to the training data points, another set of experimental data points are generated to assess the 

accuracy of the surrogate model. This is achieved by comparing the numerically calculated SLSF value of the 

experimental data point, against the value estimated from the surrogate model of the same design inputs. Then, 

several experimental points are used to calculate the mean value of the error, as shown in Figure 5. 

 

Figure 5. A representation of the training and experimental points used to create the SLSF response surrogate 

model. 

2.5. Probabilistic optimisation 

Once the surrogate is created and verified, the reliability at the 1
st
 deterministic optimum design can be 

assessed. If it falls below the desired limit, the design shifts towards the safe region by altering the deterministic 

constraint value in (1). The updated constraint value (  ) is estimated by evaluating the inverse cumulative 
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distribution function at the desired probability of failure (      ). The data are fitted with a normal distribution to 

find the mean (       ) and standard deviation (       ), which are used to return the inverse value as shown in 

Eq. (3). 

    
 

           

 
  

                
 

        
 

 (3) 

The loop of finding deterministic optimum points and assessing their reliability is repeated until the desired 

reliability is met, as shown in Figure 2. However, meeting the desired reliability limit is not necessarily the 

optimum design, as it was obtained from a deterministic optimisation. Thus, once the deterministic optimisation 

process finds a feasible solution, the current design variables are used as the starting point for a probabilistic 

optimisation (or double-loop approach). This is achieved by employing a surrogate model around the last design 

that met the desired reliability limit as illustrated in Eq. (4). 

 

min: M 

find: Di = Mean design variable (i) 

subject to:                           

  {             
            

} 

                
     

    

(4) 

This surrogate uses data points generated around the deterministic optimum point (that met the desired 

reliability) by analysing random models generated within the boundaries of C times the standard deviation (    ± 

C   
) of the design variables, as it is expected that the solution will be close to the final deterministic optimum. 

On the other hand, the design constraint is replaced with the maximum desired probability of failure, which is 

the probability of exceeding the original constraint, as defined in the original deterministic problem (1). 

3. Numerical example 

A skewed propeller blade made from a symmetric 4-ply fibre-reinforced composite material is used to 

demonstrate the capability of the proposed multi-scale RBDO framework. The effect of using different LRVE 

sizes on the optimum design is also investigated. The geometry of the propeller is attached as supplementary 

data. 

3.1. Design variables 

Fibre-reinforced composites are often designed and used with limited ply orientations, mostly 0 º, 90 º, 

45º. However, allowing ply orientations to vary continuously may lead to more efficient designs, due to greater 

elastic tailoring capabilities [4]. Hence, in this example, both ply orientation and ply thickness are used as 

bounded continuous design variables, as seen in Table 1. However, because the framework can use non-

gradient-based methods, optimising with discrete ply angles and/or thicknesses is also possible. 

3.2. Uncertainties 

An E-glass fibre-epoxy composite is selected to investigate the developed framework. Uncertainties for this 

composite material are presented within two categories: the first category is the micro and meso scales, this 

includes fibre and matrix material properties, fibre stacking and fibre volume ratio (Vf) as explained below: 

Material uncertainties: Represented by varying the properties of each phase based on their statistical 

properties shown in Table 1. For a single RVE, this includes one matrix and five fibre sections (central fibre 

and four quarters) as shown in Figure 6(a).  

Fibre stacking and volume ratio uncertainties: The reliability framework divides fibres into two 

categories: fixed fibres represented by the RVEs’ four fibre corner quarters; geometrically speaking, these 

quarters remain in place and have the same diameter to preserve continuity with its neighbours. The second 

category is the central non-fixed fibres, which can move within the RVE to model stacking (  and  ) and Vf 

ratio uncertainties, without violating continuity, as can be seen in Figure 6(a). The statistical properties of   

and   are shown in Table 1. 
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Assigning material property uncertainties in the single RVE is relatively straight-forward as each sample in 

the MCS employs a separate RVE. However, in the LRVE, achieving an accurate and continuous representative 

element is required. Thus, RVEs that construct the LRVE are correlated by two means: 

Fibre phase properties: The LRVE framework correlates neighbouring RVEs by assigning the same fibre 

material property values to all adjacent corner fibre sections, creating a type of relationship between 

individual RVEs and their surroundings. This can be seen in the colour mapping in Figure 6(b). 

Matrix phase property uncertainties: It is unrealistic to have sharp changes in the property values of 

matrix material surrounding fibre filaments, as it is a continuous media. Hence, the LRVE framework 

smooths out matrix material stiffness property randomness using an image processing concept. 

The algorithm used to implement fibre stacking uncertainty, fibre volume ratio (Vf) and matrix properties 

blurring are attached in Appendices A and B. Additionally, comprehensive details on the implementation of 

these uncertainties can be found in our previous work [17]. 

The second category is within the laminate scale; it includes ply thickness, ply orientation and loading 

uncertainties. The properties and uncertainties used in this example are shown in Table 1, where the 

distributions are similar to those used in previous studies [34-37]. 

 

Figure 6. Illustration of: a) Single RVE uncertainties. b) LRVE uncertainties and fibre properties correlation. 

Table 1. Material properties and uncertainties. 

Property/ uncertainty Mean/ lower limit Distribution CoV/ limits Categories 

Fibre (E-glass) 

   (GPa) 72.45 Normal 5% M
ic

ro
 a

n
d

 M
e
so

 sca
le

s 

   (ratio) 0.25 Normal 5% 

Fibre-volume ratio Vf 0.52 Normal 5% 

Fibre stacking 

(  and  ) 
RVE centre, 0o Uniform 

 : 0-0.08* 

 : 0o-360o 

Matrix (Epoxy) 
   (GPa) 4.0 Normal 5% 

   (ratio) 0.3 Normal 5% 

Lamina 

Ply thickness  
     

 

Closed range design 
variable 

[0.3mm – 0.5mm] 

Normal 2.5% 

L
a
m

in
a

te
 sc

a
le 

Ply orientation  
     

 

Closed range design 
variable 

[0o – 90o] 

Normal 2.5 o 

Pressure load (GPa) 0.05 Normal 5% 

*Fraction of the RVE edge length. 
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3.3. Failure criterion 

As this study focuses on the stiffness response of a composite component, the SLSF is defined by the 

maximum allowable deformation in the Z-direction (     that the blades’ trailing edge will experience by the 

pressure load. Hence, the propeller is considered to fail if the deformation exceeds the maximum allowable 

value. This can be expressed as:                    . The position of the selected trailing edge node 

      is shown in Figure 7. 

 

Figure 7. Blade formed from symmetric laminate selected as the RBDO application example. 

3.4. Reliability-based design optimisation process  

The objective of the RBDO problem is to reduce the mass of the propeller blade whilst ensuring that the 

probability of failure (PoF) remains below 0.05. Several optimisers could be used to solve the deterministic and 

probabilistic optimisation problems and the proposed RBDO framework is not limited to a specific optimiser. 

For this example, the Python Particle Swarm Optimisation pyswarm (PSO) toolbox [38] is integrated within the 

proposed multi-scale RBDO approach for its robustness and simplicity [29, 39, 40]. The steps required to solve 

this RBDO problem using the proposed sequential approach, along with the effect of using different LRVE 

sizes, is detailed below. 

3.5. 1st
 Deterministic optimisation stage 

The 1
st
 deterministic optimisation is conducted without considering any uncertainties, as shown in Eq. (5): 

  

min:           

 
    

find:    = {      
       

       
       

  

subject to:                           

  {                       } 

  {                  } 

        
 

(5) 

Where   is an indicative mass index calculated by summing lamina’s thickness values;       
 and       

 

are the mean values of the lamina thickness and orientation design variables, respectively. Other inputs, such as 

loads and material properties, are assumed to be at their mean values. 

In order to evaluate the deformation,       and compare it with optimisation constraint in each solution, the 

optimiser is coupled with the FEA software Abaqus [41], with the settings presented in Table 2. As a result, the 

optimum design of the 1
st
 deterministic point converged in the 6

th
 optimisation iteration as shown in Figure 8. 
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Table 2. PSO settings used in this study. 

Settings 
Values 

Deterministic 

optimisations 

Probabilistic 

optimisation 

Number of swarm particles 200 50 

Max. number of iterations 10 10 

Scaling factor to search away from the particle’s best-known position 0.5 0.5 

Scaling factor to search away from the swarm’s best-known position 0.5 0.5 

Min. step size of swarm’s best position before the search terminates 10
-8

 10
-8

 

Min. change of swarm’s best objective value before the search 

terminates 

10
-8

 10
-8

 

 

To assess the stiffness reliability of this design, a statistical distribution is assigned around the design 

variables, also replacing the deterministic values of all other inputs, namely the homogenised stiffness properties 

and loading, using the probabilistic data from Table 1. The homogenised stiffness properties are estimated using 

the framework presented in Section 2.2, initially using a single, 1×1 RVE. 

The SLSF response is solved numerically, so it is not feasible to assess the PoF without extensive 

computational power and time. Thus, the PoF is assessed by creating a surrogate model fitted using FEA data 

points for models created with randomly generated probabilistic inputs around the current optimum design 

point. In this example, a multivariate nearest-neighbour Python interpolation module scipy.interpolate [42] is 

used with 1,000 FEA data points to create the surrogate model that estimates the probabilistic stiffness response 

of the blade, by calculating       values for each sample. The mean error associated with the use of this 

surrogate model in estimating       is approximately 5.4%. This value is estimated by generating an additional 

500 experimental FEA data points and comparing their numerical       values with the values estimated using 

the surrogate model. 

The PoF estimated with the aid of the surrogate model for the 1
st
 design is approximately 0.65 using 40,000 

MCS samples. This high PoF value is caused by the fact that the optimisation assumed deterministic inputs at 

their mean values. In order to shift the design to a safer zone, a second deterministic optimisation is conducted, 

as discussed in section 3.6, with a reduced allowable design deformation constraint (3.5mm, 75% of the global 

limit state value), as can be seen Figure 8. This value is estimated using Eq. (3) to reach a theoretical PoF of 

approximately 0.05 in the 2
nd

 deterministic optimum point. 

3.6. 2nd
 Deterministic optimisation stage 

Based on the assessed reliability, the design is shifted to a more conservative region by reducing the 

allowable deformation from 4mm to 3.5mm. Although a design point can be selected directly from the previous 

deterministic optimisation population (data points in red shown in Figure 8), in this instance, a 2
nd

 deterministic 

optimisation is conducted. However, the design variable ranges are reduced to focus around the region of the 

updated deflection constraint, as shown by the blue optimisation population in Figure 8, and Eq. (6) where   
indicates the second set of design variables. As a result of using the focused range, the optimiser solution point 

converged at the 2
nd

 iteration compared with the 6
th

 in the 1
st
 deterministic optimisation. 

 

min:       
 
    

 
    

find:     = {  
 
    

   
 
    

   
 
    

   
 
    

  

subject to:                              

  {                     } 

  {                     } 

  {                 } 

  {                 } 

        
 

(6) 
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Figure 8. Propeller’s 1
st
 and 2

nd
 deterministic optimisation data, showing the design points and the reliability 

assessment of the 1
st
 design. 

3.7. Probabilistic optimisation stage 

Although the 2
nd

 deterministic optimised solution meets the desired reliability level with a 2.043 mass 

index, this design can be improved by conducting a probabilistic optimisation that replaces deterministic 

deformation constraints with a reliability performance level, as presented in Eq. (7): 

 

min:       
  

    

 
    

find:    = {  
  

    
   

  
    

   
  

    
   

  
    

  

subject to:                                    

  {                    
                   

} 

  {                    
                   

} 

                
     

    

(7) 

Where    indicates the final mean value of each design variable, and the design variables    feed 

probabilistically into each reliability MCS iteration, based on their statistical distribution, as shown in Table 1. 

On the other hand, it is assumed that the design space is within the boundaries of two standard deviations of the 

current design (    ± 2σ), as explained in Section 2.5. This range is also used to create an additional 1,000 FEA 

data points to create the multivariate nearest-neighbour surrogate model, and its accuracy is verified against a set 

of 500 FEA experimental data points, as explained earlier in Section 2.4. The mean error associated with the 

surrogate model is 4.8%, with the optimisation settings shown in Table 2. The final design achieved in this stage 

converged at the 7
th

 iteration, and showed further mass reduction compared with the 2
nd

 deterministic 

optimisation with 2.024 mass index, as be seen in Figure 11. 

3.8. Impact of using LRVEs 

The above results are achieved using a single RVE when assessing the stiffness reliability of the 

component. The single RVE represents various material and geometrical uncertainties, including Vf  ratio, as 

shown in Table 1. However, it cannot capture spatial variability in material properties and Vf  ratio, which can be 

modelled using LRVEs. The effect of the LRVE size on the reliability assessment of the optimal design from 

Section 3.7 is now investigated using three LRVE sizes (2×2, 4×4 and 8×8), where a surrogate model for each 

LRVE size is created to link probabilistic inputs         with the stiffness response around the optimum design 

of the single RVE. The use of the LRVEs instead of a single RVE demonstrates a reduced PoF by up to 36% 
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when using an 8×8 RVE, as can be seen in Figure 9. It indicates that larger RVEs result in a less conservative 

PoF, due to their proportionally smaller standard deviation, as demonstrated in our previous work [17]. 

 

Figure 9. Probability of failure assessment for the final propeller design when using various sizes of LRVEs. 

Selecting the suitable RVE size and the boundary conditions depend on many factors such as the fibre size, 

volume fraction ratio, the thickness of the laminate, loading condition, etc. In this study, it is assumed that the 

8×8 LRVE size is still small enough that periodic boundary conditions can be used. Also, Figure 10 shows that 

the probability of failure converges as the LRVE size grows.  

 

Figure 10. Convergence curve of the probability of failure against the representative unit size. 

Improvement in the PoF indicates that designing composites using larger and more realistic representative 

elements can lead to less conservative designs. Therefore, in addition to assessing the effect of LRVEs on the 

optimum design obtained with a single RVE, the effect of using LRVEs instead of a single RVE in the 

probabilistic optimisation stage is investigated. This is achieved by re-running just the probabilistic optimisation 

stage for each LRVE size individually. The results show that mass reductions of 1.3%, 3.0% and 3.5% 

compared with the single RVE are observed using 2×2, 4×4 and 8×8 LRVEs, respectively, as shown in Figure 
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11. This is achieved by a small reduction in the inner ply thickness, along with a reduction in the outer ply 

angle.  

 

 

 

Figure 11. An overview of the propeller example RBDO steps, scope of uncertainties, and the effect of 

considering different sized LRVEs. 

3.9. Computational efficiency 

The computational efficiency of the proposed multi-scale RBDO framework can be divided into two 

categories: on-line (or problem-dependent) and off-line (or material dependent). The first category is dependent 

on the application example and the optimiser used; hence, it is an on-line process, see Figure 4. For this 

numerical example, a total of 2000 FEA data points were used to create the on-line surrogate models, which 

took approximately 6 hours’ on a standard computer without parallelization. However, the process of generating 

data points is easily executed in parallel or by analysing more than one blade in the same job and should have 

near-perfect scaling. 
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As for the second category, 40,000 uncertain single RVE and LRVEs are generated to create an off-line 

library of probabilistic homogenised properties, taking approximately 5 minutes (for each LRVE size), while the 

generation of the FEA homogenisation data points required to create the surrogate models took approximately 

20 hours (using a standard computer without parallelization). It is important to emphasise that the generation of 

the off-line FEA data points is only needed once (for a certain composite material, i.e. the E-glass fibre-epoxy 

composite in this case), and the resulting surrogate model can be used for various applications and reliability 

analyses. 

The combination of surrogate models reduces the crude MCS reliability analysis time to less than 2 minutes 

(for 40,000 samples, without parallelisation), which enables the implementation of the RBDO. In contrast, the 

time required to analyse a single deterministic 8×8 high fidelity FEA LRVE using the same machine took 

approximately 26 hours (at least 40,000 of which are needed). Thus, using high-fidelity FEA is not feasible for 

probabilistic analysis. 

Moreover, the sequential approach reduces the number of reliability analyses required to reach the 

optimum. In total, 357 MCS reliability analyses were required to obtain the final optimum design taking less 

than 30 mins. The total time for the whole on-line optimisation process for this example which includes the 1
st
 

and 2
nd

 deterministic optimisations, corresponding FEA data points, and the probabilistic optimisation is 

approximately 9 hours’ on a standard computer, without parallization. If the same problem was solved using a 

double-loop approach then a separate reliability analysis may be required for each particle, each iteration. Thus, 

significantly more MCS analyses would be required, compared with the sequential approach. 

 

4. Conclusions 

An efficient FEA-based multi-scale reliability framework, previously developed by the authors, is extended 

and combined with a proposed sequential optimisation strategy to produce an efficient, flexible and accurate 

RBDO framework for fibre-reinforced composite laminate components. The proposed RBDO strategy is 

demonstrated by finding the optimum design solution for a composite component under the effect of multi-scale 

uncertainties, whilst meeting a specific stiffness reliability requirement. Performing this using the double-loop 

approach is computationally expensive due to the number of uncertainties and function evaluations required to 

assess the reliability. Thus, a sequential optimisation concept is proposed, which starts by finding a deterministic 

optimum solution, then assesses the reliability and shifts the constraint limit to a safer region. This is repeated 

until the desired level of reliability is reached. This is followed by a final probabilistic optimisation to further 

reduce the mass and meet the desired level of stiffness reliability. In addition, the proposed framework uses 

several surrogate models to replace expensive FE function evaluations during optimisation and reliability 

analysis. The numerical example is also used to investigate the effect of using different sizes of LRVEs, 

compared with a single RVE. In future work, other problem-dependent surrogates such as Kriging will be used 

to allow predicting lower PoFs with high accuracy. 

The main findings are that the integration of the developed multi-scale reliability framework with the 

sequential RBDO optimisation strategy is proven computationally feasible and it is shown that the use of 

LRVEs leads to less conservative designs compared with the use of single RVE. This is because the LRVE 

provides a better representation of the spatial variability of uncertainties in a composite material. 
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Appendixes 

Appendix A 

A code extract showing the process used to generate random fibres staked within each RVE: 

 

## F_F_R = Fixed fibre radius 

## FRad = Uncertain (central) fibre radius  

Rad = random.uniform(0, upperRad)      ## Fibre Stacking Radius 

theta = random.uniform(0, uppertheta)  ## Fibre Stacking Direction 

RandVf = mean_Vf*(random.normalvariate(1, sigmaVf)) ## Random Vf 

FRad = math.sqrt((RandVf-(0.5*mean_Vf))/(math.pi))/10 

## Unc. Fibre Radius with Length scale 

if FRad > 0.041:   ## Fibre displacement limit 

FRad = 0.041 

print ('Large fibre occurred') 

if (Rad + FRad) > 0.041:                 

Rad  = 0.041 - FRad 

print ('large disp. occurred') 

yco = Rad * math.sin(radians(theta)) 

ycop.append(yco)                 ## Local Stacking Y-Axis Location 

xco = Rad * math.cos(radians(theta)) 

xcop.append(xco)                 ## Local Stacking X-Axis Location 

Vf = math.pi*F_F_R**2 + math.pi*FRad**2    ## Small RVE Vf Ratio 

 

 

 

 

 

https://pypi.org/project/pyswarm/
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Appendix B 

The code developed for smoothing the random matrix property values using the blur kernel: 

import numpy as np 

from pylab import * 

import statistics 

import random 

import math 

from math import cos,sin, radians 

import numpy as np 

import scipy.linalg 

from mpl_toolkits.mplot3d import Axes3D 

import matplotlib.pyplot as plt 

coltype = 'gray_r' 

z = [[]] ## constructing the LRVE 8x8 plus surroundings before blurring 

z = [[0,0,0,0,0,0,0,0,0,1], 

     [0,0,0,0,0,0,0,0,0,2], 

     [0,0,0,0,0,0,0,0,0,3], 

     [0,0,0,0,0,0,0,0,0,4], 

     [0,0,0,0,0,0,0,0,0,5], 

     [0,0,0,0,0,0,0,0,0,6], 

     [0,0,0,0,0,0,0,0,0,7], 

     [0,0,0,0,0,0,0,0,0,8], 

     [0,0,0,0,0,0,0,0,0,9], 

     [0,0,0,0,0,0,0,0,0,10]] 

for i in range(10): 

    for j in range(10): 

        z[i][j] = random.normalvariate(4, 0.2) 

c = pcolor(z) 

set_cmap(coltype) 

colorbar() 

c = pcolor(z, edgecolors='w', linewidths=1) 

x = 0.12 

y = 0.3 

for i in range(10): 

    if y > 9.4: 

        y = 0.3 

    for j in range(10): 

        if x > 9.2: 

            x = 0.12 

        col = 'w' 

        if z[i][j] < 3.8: 

            col = 'k' 

        text(x, y, round(z[i][j],1), size=14, color=col) 

        x = x + 1 

    y = y + 1 

axis([0,10,0,10]) 

savefig('org.png')          ## Saving the LRVE generated before blurring 

show() 
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## Constructing the LRVE 8x8 after blurring 

con = [[0,0,0,0,0,17,9,1], 

       [0,0,0,0,0,0,10,2], 

       [0,0,0,0,0,0,11,3], 

       [0,0,0,0,0,0,12,4], 

       [0,0,0,0,0,0,13,5], 

       [0,0,0,0,0,0,14,6], 

       [0,0,0,0,0,0,15,7], 

       [64,0,0,0,0,0,16,8]] 

for i in range(8): 

    for j in range(8): 

        con[i][j] = (z[i][j]+z[i][j+1]+z[i][j+2] + 

z[i+1][j]+z[i+1][j+1]+z[i+1][j+2] + z[i+2][j]+z[i+2][j+1]+z[i+2][j+2])/9 

## Converting to list 

E = []                               

for j in range(7,-1,-1): 

    for i in range(8): 

        E.append(con[i][j]) 

print ('Mean Converted E = ', statistics.mean(E)) 

Ez = []                               

for j in range(9,-1,-1): 

    for i in range(10): 

        Ez.append(z[i][j]) 

print ('Mean Non Converted = ', statistics.mean(Ez)) 

## Converting to list 

c = pcolor(z) 

set_cmap(coltype) 

colorbar() 

c = pcolor(con, edgecolors='w', linewidths=1) 

x = 0.12 

y = 0.3 

for i in range(8): 

    if y > 7.4: 

        y = 0.3 

    for j in range(8): 

        if x > 7.2: 

            x = 0.12 

        col = 'w' 

        if con[i][j] < 3.9: 

            col = 'k' 

        text(x, y, round(con[i][j],1), size=14, color=col) 

        x = x + 1 

    y = y + 1 

axis([0,8,0,8]) 

savefig('cor.png')           ## Saving the blurred LRVE 

show()                       ## Presenting the blurred LRVE 

 

 

 


