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Abstract

A diversity of bacteria, protozoans and viruses (“endozoites”) were recently uncov-

ered within healthy tissues including the human brain. By contrast, it was already rec-

ognized a century ago that healthy plants tissues contain abundant endogenous

microbes (“endophytes”). Taking endophytes as an informative precedent, we over-

view the nature, prevalence, and role of endozoites in mammalian tissues, centrally

focusing on the brain, concluding that endozoites are ubiquitous in diverse tissues.

These passengers often remain subclinical, but they are not silent. We address their

routes of entry, mechanisms of persistence, tissue specificity, and potential to cause

long-term behavioral changes and/or immunosuppression in mammals, where rabies

virus is the exemplar. We extend the discussion to Herpesviridae, Coronaviridae, and

Toxoplasma, as well as to diverse bacteria and yeasts, and debate the advantages and

disadvantages that endozoite infection might afford to the host and to the ecosys-

tem. We provide a clinical perspective in which endozoites are implicated in neurode-

generative disease, anxiety/depression, and schizophrenia. We conclude that

endozoites are instrumental in the delicate balance between health and disease,

including age-related brain disease, and that endozoites have played an important

role in the evolution of brain function and human behavior.
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1 | MICROBES ARE UBIQUITOUS

Botanists a century ago were puzzled to discover fungal cells within

healthy tissues of the Canadian spruce tree, Picea glauca (formerly

Picea canadensis), and also in Larix laricina, the tamarack or American

larch.1 Although it was known that plant roots have a symbiotic rela-

tionship with external soil microorganisms, particularly nitrogen-fixing

bacteria and mycorrhizal fungi, the surprise was to find live microbes

(“endophytes”; Box 1) within normal healthy tissues of a live tree.

Emerging evidence, 100 years later, now argues that, exactly as in

plants, healthy (and diseased) mammalian tissues, including the brain,

harbor a multiplicity of endogenous passenger organisms (“endozoites”;

Box 1) that may have both detrimental and beneficial effects on their

hosts. Building on findings in plants, this overview summarizes current

evidence and raises questions about the broader roles that endozoites

play in human health, disease, and evolution, as well as in behavior, the

central focus of this review.

2 | THE MICROBIOME: ENDOPHYTES AND
ENDOZOITES

Multicellular organisms across the tree of life—from plants to

animals—are outnumbered by the constellation of microorganisms to
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which they give sanctuary. The microbiome—defined as the ensemble

of organisms that are intimately associated with a host species—

encompasses the multitude of bacteria, protozoans, and viruses that

cohabit/live in close association with the host.

In plants, where the microbiota constitutes a “hidden world” (ref-

erence2 for an excellent review), the root has been a central target for

studies on microbe–host symbiosis. Plant growth is crucially depen-

dent on endogenous nutrient-assimilating and nitrogen-fixing bacte-

ria.3,4 Moreover, endophytes have been reported to provide

additional benefits. For example, root-colonizing Pseudomonas spp.

produce antifungal molecules that protect the root against fungal

pathogens.5 Some plants favor colonization by insect-killing microbes

BOX 1 Endophytes and endozoites

Endophytes

Named from endo (“inside”) and -phyte (“plant”), these organisms are generally described as endosymbionts/commensals that live

within plant tissues without normally causing overt tissue damage (Figure I(A)). The formal discovery of live microbes within healthy

plant tissue is generally attributed to Galippe,200 but the evidence was firmly challenged by Fernbach201 who argued that contamination

with surface material was very likely. Lewis1 was among the first to unambiguously demonstrate the presence of fungal cells within

healthy plant tissue.

Endophytes include bacteria, protozoans, Archaea, and other microbes. Although the term traditionally focuses on cellular species,

the endophytic compartment includes viruses that infect cellular endophytes, as well as resident viruses that persist in host tissue with-

out causing overt damage, and this broader sense is followed here. Endophytes are acquired both vertically and horizontally from the

environment. The evolutionary persistence of endophytes reflects several advantages that they confer to the host (and to the ecosys-

tem); however, the biology of endophytes is far from clear, and there is no firm distinction between endogenous (endophytes—within

tissues) and exogenous (on the surface of tissues) microbes because the same species can be present in both niches.

Endozoites

The term (from endo and -zoon, “animal”) was first used the medical literature (according to PubMed) in 1975 to refer to the

apicomplexan Sarcocystis tenella,202 and is used here to encompass the spectrum of microbes (including protozoans and viruses) that

persist within healthy tissues of higher organisms including invertebrates (e.g., insects) and vertebrates, but generally without causing

overt disease. The term therefore does not normally include endogenous retroviruses (see Box 3) or acute pathogens such as Yersinia

pestis, HIV, or smallpox virus, but the frontier is blurred because known pathogen sequences have been reported (albeit at low titer) in

healthy human tissue (e.g., variola virus-related sequences in human brain140), as well as pathogenic bacteria in Alzheimer brain

(Figure I).

FIGURE I. Endophytes and endozoites. (A) Intracellular infections of the fungus Rhabdocline parkeri in needles of Douglas fir,

Pseudotsuga menziesii, a member of the pine family. (Above) Hyphae (trypan blue staining). (Below) Epifluorescence micrograph

(calcofluor staining). Scale bars, 25 μM. Figure adapted, with permission, from Carroll.203 (B) Immunostaining of Alzheimer brain (entorhi-

nal cortex/hippocampus) with antibody against the bacterium Chlamydophila pneumoniae (green; the exact species stained was not

established); nuclei (DAPI staining) are in blue. Figure adapted, with permission, from Pisa et al.204
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(entomopathogens), including fungi and bacteria, because their pres-

ence can confer resistance to insect attack.6 Other endophytes alter

the metabolism of the host to generate defense molecules that in turn

can fend off herbivore attack or reduce infection by other plant

pathogens.7

Paralleling the role of root microorganisms in plants, the micro-

biome in the gut of vertebrates promotes the metabolism and uptake

of external nutrients from the diet,8 can have beneficial effects on

the immune system,9 and can exert direct modulatory effects on

brain and behavior (see below). Commonalities between root and

gut, including a large surface area and a key role in nutrient assimila-

tion, have been highlighted previously.10,11 However, as in plants,

other healthy tissues in vertebrates also contain diverse types of

microbes.

2.1 | Endozoites are widely distributed in healthy
tissues

In plants, endophytes are found in association with all tissues ana-

lyzed to date, and this could lead us to suspect that endozoites

might also be present in multiple body tissues of vertebrates. In

human, outside the intestine, attention has been paid to coloniza-

tion of gastric mucosa by Helicobacter pylori that has also been

associated with the initiation of gastric ulceration,12 but most

recent work has been carried out on epithelial surfaces that are a

rich repository of bacterial species (e.g., the Human Microbiome

Project13). Bacterial species are widely reported in blood of

healthy individuals (reviewed in Ref. 14). In another study an overt

pathogen, Streptococcus pneumoniae, was found in the nas-

opharyngea of 4% of adults but in 53% of children,15 blurring the

distinction between endozoite and pathogen.

Diverse viruses are also present on external surfaces, includ-

ing the naso-olfactory system and mouth,16 and multiple viruses

are found in cervical secretions.17 Lymphoid and neuronal cells

are additional repositories for lymphotropic/neurotropic viruses.

Indeed, the majority of the population is seropositive for multiple

herpes viruses, including herpes simplex virus (HSV; Table 1).

HSV-1 and HSV-2 seropositivity increases with age in the United

States, where >60% of the elderly population is HSV-1-positive,

and >20% are positive for both HSV-1 and HSV-2.18 Similar find-

ings have been reported in Europe, with seropositivity rising with

age to >80% in some countries,19 pointing to progressive acqui-

sition over a lifetime. Similar high seroprevalences have been

reported for multiple herpes viruses (Table 1). The widespread

presence of these and other passengers, particularly of varicella

zoster virus (VZV; also known as human herpes virus 3, HHV-3),

Epstein–Barr virus (EBV/HHV-4), cytomegalovirus (CMV/HHV-5),

HHV-6A/B, HHV-7, and anelloviruses (Torque Teno viruses), has

been substantiated by deep sequencing of blood DNA from

8000 humans.20

By contrast, the distribution of endozoites in peripheral tissues

has not been systematically addressed. However, in addition to the

gut, blood, and epithelial surfaces including the lung,21 there is evi-

dence that endozoites are present within other organs. PCR and

deep sequencing of DNA from normal hamster liver revealed multi-

ple bacterial species, confirmed by direct microbial culture from

liver tissue.22 There is evidence that the kidney also houses its

own microbiota,23 and the human urinary microbiome (a proxy for

the kidney) contained multiple species of Firmicutes, Actinobacteria,

Bacteriodetes, and Proteobacteria.24 Studies on other key tissues

are so far lacking, for example breast, heart, ovary, pancreas, pros-

tate, skeletal muscle, testis, thymus, and thyroid; future work will

be necessary to address this issue.

TABLE 1 Human seroprevalence
of herpes viruses

Virus Alternative name Prevalencea Population Ref.b

Herpes simplex virus 1 (HSV-1) HHV-1 67.60%c USA 18

52–84% Europe 19

Herpes simplex virus 2 (HSV-2) HHV-2 21.90%c USA 18

4–24% Europe 19

Varicella zoster virus (VZV) HHV-3 90% USAd 301

>90% Europed 302

Epstein-Barr virus (EBV) HHV-4 82.90% USA 303

Cytomegalovirus (CMV) HHV-5 50.40% USA 304

Human herpes virus 6A/6B HHV-6A/6B 70–100% Worldwide 305

Human herpes virus 7 HHV-7 >65% UK 306

Human herpes virus 8 HHV-8 3–4% USA 307

35.7–49.3% SubSaharan Africa 308

aSeroprevalence increases with age, data are predominantly for adults.
bComprehensive survey is not intended, only indicative references are given.
cSequencing data suggest that �100% of the population harbors both HSV-1 and HSV-2.140

dBefore the introduction of anti-VSV vaccination campaigns.
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2.2 | Microbial diversity

It is important to recognize that our knowledge of the spectrum of

endozoites is limited. Kowarsky et al. performed deep sequencing of

blood cell-free DNA from 188 individuals and reported that, of new

bacterial and viral (including bacteriophage) sequences, the majority

were absent from current databases.25 Notably, this study almost

doubled the number of human anelloviruses sequenced to date. We

are only seeing the tip of the iceberg.

In addition, although we tend to refer to viruses as unique enti-

ties, this is seldom if ever the case. For example, HSV-1 and HSV-2

each comprise multiple substrains; moreover, recombinants between

HSV-1 and HSV-2 have been detected worldwide.26

3 | GUT–BRAIN AXIS

Multiple studies report that the composition of the gut microbiota can

influence brain function,27,28 partly by release of metabolites including

neurotransmitters that can enter the circulation, but also via direct

neuronal communication between gut and brain (notably via the vagus

nerve). For an excellent review see Ref. 29. However, our focus here

is on microbes that directly enter the CNS. That endozoites are proba-

bly present in all human tissues is borne out by recent studies on the

brain, discussed below.

4 | ENDOZOITES IN THE BRAIN

We saw above that the plant root contains a high diversity of endoge-

nous microbes, thus resembling the vertebrate gut. However, ever

since Darwin's time there have been suggestions that the plant root—

through demonstrable adaptive behavior—in some ways resembles

the vertebrate brain (the “root–brain hypothesis”30) where endo-

phytes play a pivotal role. The presence of microbes in the brain, and

whether they modulate behavior, is the central focus of this review.

Box 2 overviews current knowledge of the presence of diverse

endozoites in brain, not only including bacteria, protozoans, Archaea,

and viruses, but also bacteriophages, higher eukaryotes, and plant-

derived agents (endogenous retroviruses/retroelements are not

considered to be true endozoites; Box 3). One central conclusion

emerging from this analysis is that there are parallels between the

taxa found in plant tissues and those found in both gut and brain

(Table 2, discussed in Box 2), suggesting that some species may be

particularly adapted to a close association with multicellular organisms

including both plants and animals.

Although these combined reports confirm the widespread pres-

ence of endozoites in the brain, a complexity of all these studies is

that it is not always possible to distinguish between endozoites that

endogenously inhabit brain tissue versus contamination with agents

borne by the circulation (including migrating lymphoid cells). Never-

theless, HSV sequences within the brain parenchyma have been con-

firmed by in situ hybridization,31,32 and in situ studies have directly

demonstrated bacteria and protozoans within the brain (see below).

However, this remains a general point of debate, and future studies

on the broader brain microbiome will need to confirm the presence of

endozoites by microscopy, immunohistochemistry, hybridization,

and/or transcriptomics at the single-cell level

5 | HOW DO ENDOZOITES ENTER THE
BRAIN? ROLE OF THE BLOOD–BRAIN
BARRIER

In plants, endophytes are both horizontally and vertically transmitted.

In addition to sites of damage by insects and herbivores, stomata are

likely to serve as a widespread transmission route, and dissemination

via the xylem is thought to facilitate propagation throughout the plant

(reviewed in Ref. 33). In mammals, microbes are inhaled, ingested with

the diet, or inoculated via biting insects/wounds, and can disseminate

via the bloodstream. However, entry to the brain demands special

mechanisms because the blood–brain barrier (BBB) prevents simple

diffusion into brain tissue.

The BBB, generated by tight junctions between endothelial cells

lining the cerebrovasculature, effectively prevents small molecules

from entering the brain parenchyma. However, the BBB does not

appear to constitute a barrier to many microbes. Porphyromonas

gingivalis could be detected within the brain parenchyma following

chronic oral administration to mice,34,35 and replication-defective

HSV is found in the brain within 3 days (see below). Intranasal or

intratracheal administration of the fungus Cryptococcus neoformans in

mice led to rapid dissemination into the brain as quickly as 3 h post-

infection, although the titers were low (≤1% of the inoculum).36 Simi-

larly, intranasal administration of a filamentous bacteriophage to mice

was followed by rapid appearance in the brain.37

Microbes are thought to sidestep the BBB by exploiting at least

four routes. First, many biologically active molecules such as polypep-

tide hormones are actively transported across the BBB into the brain,

and many pathogens exploit host receptor-mediated transcytosis. Fol-

lowing receptor–ligand interactions at the endothelial cell surface,

several microbes (bacteria and yeast) are internalized as vacuoles and

thence pass into the brain without disrupting the integrity of the BBB

(reviewed in Refs. 38-40). For example, following intravenous inocula-

tion in mice, the yeast Candida albicans is found within brain tissue as

quickly as 4 days postinfection41 by exploiting a specific receptor on

endothelial cells.42

Second, the BBB is not effective against migrating host cells, as

exemplified by the common appearance of tumor cell metastases in

brain tissue. Immune cells such as macrophages can efficiently enter

the brain, and latent lymphotrophic viruses (e.g., HHV-6 and 7) borne

by macrophages can thereby be delivered into the CNS. Viruses asso-

ciated with mobile cells can therefore gain brain access (the “Trojan

horse mechanism”), and similar pathways may apply to intracellular

bacterial pathogens.38,39 Passage parallels that in the gut, where intes-

tinal dendritic, goblet, and M cells have been implicated in

transporting bacteria from the gut lumen into the circulation.14
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BOX 2 Endozoites in the brain

Bacteria

For many years there have been reports of bacteria in brain, notably in Alzheimer's disease (AD), such as Borrelia134,205 and Chla-

mydia/Chlamyophila spp.101,139 (Figure I), but also in healthy tissue. Systematic surveys in both health and disease using PCR and deep

sequencing have revealed that the major phyla are α-Proteobacteria and Actinobacteria, with further Firmicutes and

Bacteriodetes136,138; similar findings were seen in macaque monkeys136 (Table 2). Proteobacteria constitute a phylum of Gram-negative

bacteria that include not only gut commensals (e.g., Escherichia) but also several human pathogens (e.g., Yersinia). The Actinobacteria also

include human pathogens (e.g., Mycobacterium).

These are the same taxa that are seen in plants (Table 2), including the actinobacterium Frankia that can fix nitrogen, and several agricul-

turally important nitrogen-fixing α-Proteobacteria species that enter symbiotic relationships with leguminous plants (e.g., Rhizobium spp.).

These specific taxa may be predisposed to live in association with higher eukaryotes (noting that endosymbiosis with α-Proteobacteria is held

to have been the primary driver for the emergence of Eukaryotes206). In support, some human commensal bacteria of these phyla

(e.g., Enterobacteriaceae)—gut organisms in humans—can colonize root tissues of plants such as maize, lettuce, tomato, and barley where they

may persist as a reservoir for recolonization of humans,207,208 and can even promote the growth of the new plant host.207

Protozoans

Fungi are widespread in plant tissues, but there have been few studies on human, although Pisa et al.101 report intermittent detec-

tion of several fungal species, principally Candida spp., in brain tissue of Alzheimer patients. Candida spp. are also prevalent plant endo-

phytes, and species such as Candida metapsilosis are found both in plants and in human infections.

TABLE 2 Predominant bacterial taxonomic groups in the microbiomes of plants and animalsa

Plantsb Gutc Brainc

Proteobacteriad Proteobacteriad Proteobacteriad

Actinobacteria Actinobacteria Actinobacteria

Bacteriodetes Bacteriodetes Bacteriodetes

Firmicutes Firmicutes Firmicutes

aTree of Life, adapted from graphic https://phys.org/news/2010-12-scientists-decipher-billion-year-old-genomic-fossils.html; courtesy of Lawrence David

(Duke University).309

bRhizosphere, phyllosphere, and endosphere.
cHuman and macaque; the same taxonomic groups are seen in blood, lung, and kidney (see text).
dProteobacteria are inferred to be the precursors of the endosymbiotic organelles of eukaryotes.
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The apicomplexan T. gondii, an obligate intracellular eukaryote, is widely present in healthy humans and animals, and 20–50% of the

population is seropositive for T. gondii.209,210 T. gondii can persist in a subclinical state in multiple tissues including the brain.211 Toxo-

plasma sequences were detected in 16.5% of human brain samples.104 A different apicomplexan, Neospora, is an endozoite of bovine

species. Oomycetes such as Phytophthora spp. that are phylogenetically rooted alongside apicomplexans are important plant pathogens.

Archaea

These simple unicellular organisms are inferred to be the evolutionary precursor to all life on Earth, and are well represented in the

plant root microbiome212 (reviewed in Ref. 213). They are also present in human colonic, lung, nasal, pulmonary, and oral microbial

flora,214 However, no studies to date have systematically addressed whether they enter healthy tissues such as the brain, and so far no

archaeal species has been demonstrated to cause disease in human.215,216 However, methanogenic Archaea have been directly impli-

cated in refractory sinusitis,217 and one report described finding archaeal species in multiple brain abscesses, although only 1/27 control

samples were positive218—possibly suggesting that archaea are not typically present in the normal CNS, perhaps because they are pre-

dominantly anaerobic. Archaeal viruses have been intermittently reported in blood.20 Further studies on Archaea in healthy and dis-

eased brain are certainly warranted.

Viruses

HSV in normal neuronal tissue (sensory ganglia) was reported in 1972, when virus was isolated by culture of brain tissue from 1 of

22 patients with no evidence of active HSV disease.219 HSV in 18 of 39 normal trigeminal ganglia was demonstrated by passage and

immunohistochemistry.220 The presence of HSV sequences in normal brain samples has been confirmed by DNA-based analysis221 and

by PCR.222

Multiple other virus sequences have also been detected. Infection with polyomaviruses is widespread in the human population, and

Southern blot and PCR analysis confirmed the presence of BK and JC genomes in up to 20% of healthy brain samples.223 Other viruses

including HHV-6A/6B, EBV, CMV, VZV, and coronavirus have been reported in human brain,136,221,224 and HHV-6A and -6B proteins

were detected using specific antibodies in 22–32% of control brain samples.145 EBV was detected by PCR in 24% of control brain sam-

ples.225 Deep sequencing has now revealed an extraordinary diversity of viruses in normal human brain, ranging from several types of

HHV and HSV to adenovirus, Duvenhage virus, hepatitis C virus, coronavirus, torque teno virus, and BK polymavirus, among others.140

There was evidence of over-representation of HHV and HSV in AD brain.140

Bacteriophages

There have reports of bacteriophages (or bacteriophage-like sequences) in multiple human tissues and that phages readily enter the

brain (reviewed in Refs. 226-228). For example, a sequence (dubbed Sphinx) with 70% homology to an Acinetobacter bacteriophage was

reported in transmissible spongiform encephalopathy brain.229 These may well be markers of bacterial coinfection rather than patho-

gens or endozoites in their own right because they are likely to lack the machinery for replication in higher eukaryotes. However, infec-

tion (e.g., of plastids of prokaryotic origin) may not be formally excluded. Arabidopsis chloroplasts contain a replication machinery similar

to that of bacteriophage T7230 and so-called mitochondrial viruses (“mitoviruses”) have been reported in several plant species,231 but

not yet to the best of our knowledge in vertebrates.

Higher eukaryotes

Endozoites more rarely include multicellular species such as the tapeworm, Taenia solium. Neurocysticercosis caused by T. solium is

the most common parasitic disease of the human CNS, and, although the parasite infects multiple body tissues, the larvae display a

strong affinity for the CNS.232 Common symptoms include headache, seizures, and meningitis, and in children include depression, social

problems, and rule-breaking behavior.233

Algae- and plant-derived agents

For completeness we include agents derived from photosynthetic species. Apicomplexans such as Toxoplasma have a secondary

plastid—the apicoplast—whose distant ancestor was probably a photosynthetic plastid that originated from a red algal cell234 (reviewed

in Ref. 235), whereas plants emerged separately from green algae. Indeed, apicomplexans are not phylogenetically related to plants nor

to any other members of the Streptophyta.236 Nonetheless, the presence of plastid remnants may render particular apicomplexan spe-

cies sensitive to some herbicides.237

Regarding plant-derived agents, there has long been speculation that some plant viruses may also interact with, or reside in, humans

(reviewed in Ref. 238). An excellent illustration is provided by the work of Zhang and colleagues239 who reported that the most abun-

dant viral sequence in human feces is a plant virus (pepper mild mottle virus, PMMoV). Although this could be purely dietary (titers up

to 107 particles/ml have been reported in a commercial chili product240), it was reported that PMMoV may predispose to gastrointesti-

nal dysregulation in human,240 possibly indicative of host cell infection. In another example, Liu et al.241 reported significant levels of

antibodies against tobacco mosaic virus (TMV) in healthy volunteers (including nonusers of tobacco products), potentially suggestive of

persistence of TMV (or a related virus) in the population.
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Third, by direct neuronal pathways. Rabies virus, for example,

is typically delivered to peripheral neurons following the bite of an

infected animal, and then travels via axonal and trans-synaptic

transport to the brain,43,44 thus bypassing the BBB. The vagus

nerve has been specifically implicated as a gut–brain delivery

highway for microbes in the gastrointestinal tract,45 and

alphaherpesviruses such as HSV-1 employ a similar neuronal strat-

egy46 (reviewed in Ref. 47), principally via the olfactory system. In

support, following intranasal delivery of HSV-1 to young mice,

virus particles could be detected by immunohistochemistry in

olfactory bulb and trigeminal nuclei in under a week, subsequently

spreading to multiple brain regions including hippocampus and

cortex.48 Virus replication does not appear to be essential for dis-

semination. After delivery of a replication-defective marked

HSV-1 either intranasally or intravenously, viral gene expression

was detected in multiple brain regions as quickly as 3 days after

inoculation.49

Fourth, via the circumventricular organs. The circumventricular

organs and choroid plexus lack a classical BBB, and trypanosomes

(Trypanosoma spp.) appear to use this route for early invasion,

whereas infiltration of the brain parenchyma occurs only later.50,51

Thus, although the BBB may afford an obstacle to opportunistic

pathogens, species-adapted endozoites appear to have evolved effec-

tive mechanisms to evade the BBB and gain brain entry. However,

this remains to be clarified more extensively. For example, do geneti-

cally tagged endozoites introduced into the oronasal cavities, lung, or

gut generally enter the brain (as demonstrated for P. gingivalis and

HSV) or other organs?

6 | MECHANISMS OF PERSISTENCE

At first sight, the presence of endozoites in normal healthy tissue is

enigmatic. Vertebrates deploy an arsenal of defenses against patho-

gens, including pathogen-recognition mechanisms, antibody- and

complement-mediated pathogen elimination, and cell-mediated

defenses (both antigen-specific and nonspecific). How then do end-

ozoites persist?

Entry into host cells and extrachromosomal replication (e.g., HSV)

and/or genomic integration (e.g., HHV) and subsequent persistence as

intracellular latent forms is the most obvious means to evade the

immune system. Some normally extracellular bacteria and parasites such

as Salmonella spp. and Toxoplasma gondii can enter host cells where they

clad themselves with host proteins inside the cell. Multiple other routes

include antigenic variation (bacteria, protozoans, viruses), antigen shed-

ding (e.g., Leishmania), and metabolic dormancy (e.g., Mycobacterium

tuberculosis) (for an excellent and forward-looking review see Ref. 52).

To this list one must add biofilms, secreted layers of inert (non-

immunogenic) polymers that coat the local environment of the cellular

endozoites,53 as well as coronas of host proteins that can surround the

endozoite,54 and that may prevent recognition by innate immune recep-

tors, antibodies, and cell-mediated immune mechanisms.

BOX 3 Retroviruses and retroelements

The genomes of humans and mice are (as in plants) also vastly punctuated by integrated elements such as endogenous retroviruses

(e.g., HERVs) and retroelements (e.g., long and short interspersed nuclear elements: LINES and SINES) that are inferred to have had an

earlier exogenous origin. Although these may have played a major evolutionary role, they are not generally regarded as endozoites, and

the focus here is on agents acquired from the environment. However, in mouse, there is evidence for active retrotransposition of LINES

in brain, with suggestions that these might be of benefit (so far uncharacterized) to the host (reviewed in Ref. 245). In human, LINE ele-

ment mobilization in brain has been reported in schizophrenia,246 and upregulation of HERV-W expression and increased copy number

have been reported in multiple sclerosis and neurological disease (reviewed in Refs. 247,248). The potential benefits and adverse effects

of endogenous retroviruses/elements warrant further study.

Other plant agents may potentially reside in mammals. Following antibiotic administration to mice, fecal DNA PCR amplicons were

highly enriched in Streptophyta (a taxon comprising land plants and six main lineages of green algae) and Zea luxurians (a species of

grass), perhaps reflecting residual plant-origin DNA introduced via feed.242 Streptophyta have been widely detected in human mucosal

microbiomes243 and could derive from plant pollens. However, Streptophyta have been detected in mouse seminal fluid,244 raising the

possibility that green algae might potentially be true endozoites. Caution is urged, however, because the PCR apparatus might itself be

contaminated with pollens.

Conversely, some human endozoites can infect plants (see earlier). Nonetheless, with the exception of apicomplexans, there have

been no reports of algae- or plant-related agents in brain tissue, but future studies on the human microbiome (including the brain)

should not limit themselves to known vertebrate endozoites.
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As we will see later, several endozoites also cause local or systemic

immunosuppression that further contributes to their persistence.

7 | LATENT/DORMANT ENDOZOITES ARE
NOT SILENT

A longstanding view is that endozoites, after entering tissues such

as the brain, remain in a hidden “silent” form that can persist for

years. However, this view has been challenged by findings that

latent HSV-1 infection is accompanied by persistent cytokine

upregulation. Following low-dose infection of mice with HSV-1,

brain cytokines including IFN-γ, IL-4, IL-6, and TNF-α were chroni-

cally upregulated for up to 120 days postinfection, despite evident

viral clearance.55,56

In an important study, Halford et al.57 reported that ongoing

treatment of latently infected mice with a potent inhibitor of HSV-1

DNA replication, aciclovir, led to an extensive decline in brain (tri-

geminal ganglia) expression of IFN-γ and TNF-α by 120 days post-

infection (aciclovir was started at 15 days postinfection). This

demonstrates that, instead of being inert, low-level HSV-1 gene

expression and DNA replication continues to take place despite viral

clearance, driving chronic cytokine production.57 Low-level neuronal

expression of multiple VZV proteins was also detected during

latency.58 In support, viral sequences are detected in blood, and

saliva can be a source of HSV and VZV virions in otherwise healthy

individuals.59,60

The reported behavioral effects of T. gondii infection (discussed in

more detail later) also argue that the parasite is not silent, and causes

changes in the host despite persisting in a subclinical state.

In sum, far from being silent, the albeit limited evidence suggests

that endozoites in subclinical infection (paralleling endophytes in

plants) display low-level gene expression and turnover that may have

an ongoing influence on their host. As we will see in the following sec-

tions, endozoites can both provide benefits to the host as well as

manipulating local or systemic immunity and behavior to maximize

their own persistence and/or onward transmission.

8 | THE ENEMY WITHIN: BEHAVIORAL
CHANGES AND IMMUNOSUPPRESSION

Plant endophytes alter host physiology andmetabolism, in some instances

to promote host defense (see earlier), and in others to ensure their own

propagation—for example by associating with seeds or pollen,33,61 and

also by suppressing host immunity.62 Indeed, local immunosuppression is

essential for maintenance of Rhizobium–legume symbiosis.63

Similarly, specific endozoites cause behavioral and physiological

changes that may facilitate their own proliferation. Although extensive

work has been done in insects (not reviewed), the focus here is on

vertebrates and the brain. Because most work has been done with

acute replication, this is covered first before discussing more subtle

changes taking place in subclinical infection.

Pathogens including viruses not only influence host behavior (per-

haps to promote host–host transmission) but also can dampen the

immune system (to prevent their elimination).

8.1 | Local immunosuppression

Multiple viruses escape immunosurveillance by downregulation of major

histocompatibility complex (MHC)-mediated antigen presentation of

infected cells, blockade of complement-mediated cytotoxicity, or inter-

fering with cytokine signaling, examples being adenoviruses, poxviruses,

and herpes viruses.64 Measles virus and endozootic HHV-6A/6B inter-

fere with key immunoregulatory circuits,65,66 and CMV is reported to

disrupt signaling pathways leading to the release of immunosuppressor

molecules such as arachidonic acid, prostaglandins, and cytokines.67

8.2 | Systemic immunosuppression

Two routes are central. The first strategy is to directly infect immune

cells including macrophages (reviewed in Ref. 68). For lymphotropic

viruses such as HIV, direct infection and inactivation of key immune

cells can precipitate systemic immunosuppression.

A second route but less well studied route exploits the fact that

limbic brain areas control both behavior and the immune system.

Damage to temporal brain including hippocampus, amygdala, and

overlying cortex can cause Klüver–Bucy syndrome that is associated

in monkeys and humans with hyperorality, hypersexuality, and

decreased or increased aggression.69 Infection of limbic areas may

thus modulate onward pathogen transmission.

Furthermore, the limbic brain is directly connected to the

hypothalamus—and controls the hypothalamus–pituitary–adrenal (HPA)

axis70,71 and the release of glucocorticoids that have direct immunosup-

pressive effects (reviewed in Ref. 72). Although the literature is mixed,

hippocampal lesions are associated with upregulation of basal levels of

adrenal corticosteroids, and chronic excess of cortisol is firmly linked to

immunosuppression. Pivotally, a wide literature documents chronically

upregulated cortisol levels in Alzheimer patients,73 in which early hip-

pocampus involvement is seen, that accompany clinical progression.74

A case may therefore be made that hippocampus targeting by end-

ozoites can contribute to immunosuppression.

As we will see, several classes of endozoites directly enter the

brain and, through effects on key brain regions such as the hippocam-

pus, may both dampen the immune system and cause behavioral

changes to promote their own proliferation. Rabies virus affords the

exemplar of how a virus can influence both behavior and immunity,

and we consider this case first.

8.3 | Rabies virus: the exemplar

Rabies virus (RV) is a pathogen, and infection is predominantly lethal

(unless rescued by vaccination75), and it is therefore not a true
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endozoite (related endozootic lyssaviruses of humans and animals are

reviewed in Box 4), but this neurotropic negative-stranded RNA virus

is the paradigm for behavioral changes.

The name of the virus is reputed to derive from the old Indian

word rabh, meaning “to make violent.”76 Following peripheral infec-

tion, the virus travels in a retrograde direction via the nervous

BOX 4 Viral endozoites in the brain: effects on behavior and immunity

Lyssaviruses: Duvenhage and Borna disease virus (BDV)

In addition to rabies virus (main text), sequences for the closely related virus, Duvenhage, have been reported in normal human

brain.140 Further studies will be necessary to address whether endogenous Duvenhage-related viruses, like rabies, modulate the

immune system and alter behavior. A third lyssavirus, BDV, is an endozoite in many vertebrate species. Infection with BDV in several

non-human species is followed by long-term persistent infection, and the majority of the target animal population harbors this virus.249

The virus exhibits tropism for the hippocampus.250 In experimental animals BDV can cause anxiety and aggression without overt

fever,251 and disintegration of the hippocampal dentate gyrus was observed in late infection197 (Figure 1(B)). Immunosuppression in

BDV infection has also been reported.252 A role for BDV as an endozoite of humans (vs animals) remains uncertain,253 but the presence

of integrated BDV-related sequences in primates including human183,184 suggests a close association.

Herpes viruses

The majority of the human population harbors several types of herpes viruses (see earlier). The peculiar proclivity of herpes viruses

for the brain (specifically HSV-1 and HSV-2—the HHV group of viruses tend to be lymphotropic) has been known for almost a century

(Ref. 254, reprinted from 1929). As noted earlier, the virus can persist lifelong in sensory ganglia, but the hippocampus displays the

highest abundance of HSV-1 receptors198 (Figure 1(D)) and latent virus is often found in hippocampus, amygdala, and olfactory sys-

tem.255 Regional apoptosis in hippocampus has been reported following HSV-1 infection.256 Indeed, following reactivation or primary

infection, the hippocampus is a central site for virus replication in HSV encephalitis.257 Multiple cases of Klüver–Bucy syndrome or

autism have been reported following HSV encephalitis, consistent with virus-mediated damage to the limbic brain; behavioral changes

in severe infection have been discussed258,259 that could plausibly facilitate onward transmission.

In addition to behavioral changes in acute infection, multiple other herpes viruses are known to cause immunosuppression by

infecting and/or interfering with immune cell function (e.g., CMV, EBV, and Marek disease virus of birds; reviewed in Ref. 260). In

mouse, the homolog of human HHV-6/7, murine roseolovirus (MRV; also known as mouse thymic virus, MTV; that is present in �80%

of house mice), causes necrosis of the thymus and acute immunosuppression in juveniles.261

Neurotropic herpesviruses are also reported to cause systemic immunosuppression. Following infection of mice with HSV-2, the

in vivo response to a potent proinflammatory molecule (phytohemagglutinin) dropped dramatically shortly after inoculation, and lym-

phocytes remained unresponsive for several weeks,262 although the mechanisms are not understood.263

For HSV-1 a subtle mechanism has been proposed. HSV-1 latency in the CNS is accompanied by persistent upregulation of cyto-

kines (see earlier) and, as noted by Baker,259 chronic production of specific cytokines may have detrimental effects on endocrine func-

tion and immunity, perhaps by targeting receptors that are expressed in the brain as well as by immune cells.

There is a further potential avenue for immunomodulation. Following ocular administration of HSV-1 in rats, a selective and intense

focus of viral replication was seen in the hypothalamus,264 the master regulator of body physiology including immunity. Thus, HSV-1

(and potentially other viruses) could directly target the apex of the HPA axis to cause immunosuppression.

Picornaviruses

The major cause of the common cold, rhinovirus, is among the most common viral infections in humans. However, rhinovirus infec-

tions of the brain appear to be uncommon. In mouse, a different picornavirus, Theiler's murine encephalomyelitis virus (TMEV), or murine

poliovirus, is primarily an enteric endozoite that rarely causes overt disease, and reports of TMEV seropositivity in laboratory mice range

from 0.1 to 48%.265 However, acute TMEV infection of sensitive animals leads to neurological deficits and neuronal destruction in the hip-

pocampus (Figure 1).199 As with other agents, infection can also lead to immunosuppression, including inhibition of innate immunity and

lymphopenia,266 suggesting that persistent rhinovirus infection in humans and animals might adversely affect the immune system.

Flaviviruses

These comprise a family of principally insect-borne viruses that are endemic in tropical and subtropical regions. We focus on two

flaviviruses: Dengue and its recently emerged relative, Zika. Most individuals infected with Dengue recover, but, in a study on Brazilian

Dengue-infected individuals, 6% had symptoms that persisted for more than 6 months, including memory loss, headache, and emotional

lability,267 consistent with hippocampal involvement.268 Zika virus (that in neonates is associated with human microcephaly), also targets

the hippocampal dentate gyrus even in the absence of microcephaly,269 a finding replicated in adult mice.270
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system until it reaches the brain. Target brain regions in human and

animals centrally include the limbic system and hippocampus,77,78 a

site that displays the highest density of RV receptors CHRNA1 (nico-

tinic acetylcholine receptor79) and GRM2 (metabotropic glutamate

receptor subtype 280; Figure 1(A)). In animals, RV infection is then

accompanied by extensive virus shedding (of presumed neuronal

origin) in saliva and aggressive behavior (“furious rabies”) that can

facilitate infection of new hosts.

RV infection is also associated with profound immunosuppres-

sion.81,82 Kasempimolporn et al. reported atrophy of the spleen and

thymus in RV-infected mice, but with no evidence of infection of

these tissues, and the authors argued that neuronal infection by RV

F IGURE 1 Pathogen localization and neurotoxic effects
in mammalian brain. (A) Region-specific expression of rabies
virus receptors Chrna1 and Grm2 in dentate gyrus (DG) of

mouse hippocampus (HPC); reduced-size insets are
brightfield images of the same sections (data: Allen Brain
Atlas; https://mouse.brain-map.org/). (B) Selective
destruction of the hippocampal DG in rats infected on
postnatal day 1 with Borna disease virus (BDV); left,
uninfected (age 60 days); right, infected (75 days).
Figure adapted, with permission, from Ref. 197).
(C) Distribution of Toxoplasma gondii cysts in brain of mouse
with latent T. gondii infection, showing enrichment in cortex
(CX) and limbic brain including the HPC.108 (D) Distribution
of herpes simplex virus type 1 receptors in the human
telencephalon, showing enrichment in the HPC (adapted,
with permission, from Ref. 198). (E) Picornavirus (Theiler
murine encephalomyelitis virus) infection in mouse leads to
selective DNA fragmentation within hippocampal CA1
neurons (white/green on blue background; 7 days
postinfection) via pathways that may not involve direct virus
infection (adapted, with permission, from Ref. 199)
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causes lymphoid cell apoptosis and immunosuppression by an indi-

rect route.83

8.4 | Other lyssaviruses, herpes viruses,
picornaviruses, flaviviruses

Box 4 overviews different types of viruses and their effects on the

brain and immunity. One commonality emerging from this analysis is

that many agents selectively target the hippocampus (Figure 1), where

they can cause behavioral changes. They also induce immunosuppres-

sion, although in many cases the underlying mechanisms remain

unknown. In addition, there is some evidence that HSV-1 may target

the hypothalamus (Box 4), potentially affording a further mechanism

for subverting host immunity.

As in rabies, saliva may be a major route of transmission, notably

for herpesviruses. Indeed, some viruses (e.g., mumps rubulavirus) tar-

get the salivary gland.

8.5 | Coronaviruses: bats as an unusual source of
human infection

Human coronaviruses such as the agents of severe acute respiratory

syndrome (SARS), Middle East respiratory syndrome (MERS), and

more recently COVID-19, have been in the headlines as a result of

recent human epidemics, but their biology is not fully understood.

These pathogenic viruses principally cause respiratory tract disease;

brain infection, although strongly suspected,84 has not yet been

studied in detail. By contrast, murine coronaviruses (rat JHM virus

and a derivative of murine hepatitis virus, HMV) have been reported

to cause selective cell destruction in the hippocampus.85,86 Suppres-

sion of the innate immune system by the SARS agent has been

reported.87

Although these specific human viruses are principally pathogens,

four different types of subclinical coronavirus (229E, NL63, OC43,

and HKU1) are widespread in the general population where they

cause a condition that is difficult to distinguish from the common cold

caused by rhinoviruses. Coronaviruses have been associated with

CNS diseases such as encephalitis.88 Over 70% of adults worldwide

are seropositive for all four virus types,89 demonstrating that these

are true endozoites.

By contrast, the new pathogenic strains appear to derive from

endozoites of bats, and the COVID-19 virus is 96% identical to a

known bat virus.90 This raises the intriguing question of why bats in

particular are a rich source of human pathogens.

8.5.1 | Viruses in bats

There are over 1200 species of bats that comprise a quarter of mamma-

lian species. Bats harbor more viruses per species than any other mam-

mal.91-93 How do bats coexist with so many viruses? Bats are the only

mammalian species adapted to flight, and it appears that this changed

their immune systems. The energy demands of flight are so great that

cells in the body break down and release copious quantities of DNA and

RNA into the circulation. Mammals, including bats, have sensors that

respond to DNA/RNA and induce an innate immune response. To avoid

damaging inflammation during flight, a key mediator of the innate

immune response, STING (stimulator of interferon genes) is altered. Xie

et al. (Wuhan) have found that the serine residue at position 358 of

STING is replaced in every known bat species examined, whereas it is

absolutely conserved in all other mammals.94 They then demonstrated

the S358 replacement in bat STING dampened but did not fully diminish

the functionality of STING. They speculate that adaptation to flight via

weakened (but not entirely lost) functionality of the STING-mediated

innate immune response may have a profound impact on the ability of

bats to maintain an unusually high burden of endogenous viruses.94

8.6 | Bacteria and Archaea

Far less is known about the proclivity of bacteria for specific brain

regions, but cognitive decline is commonplace in survivors of bacterial

sepsis (Ref. 95 for review), and bacterial toxins including lipopolysaccha-

ride (LPS) are known to exert negative effects on the hippocampus,96,97

where they inhibit neurogenesis and neuronal replacement.98 Hippocam-

pal damage, particularly of the dentate gyrus, is a common feature of

bacterial meningitis in human.99 In addition, LPS administration to mice

(a model for sepsis) can lead to immunosuppression.100 Further studies

on the relationship between enzootic bacteria, brain physiology, and

immunosuppression are warranted.

To date there have been no systematic studies on Archaea, and

their potential role as brain endozoites remains unknown.

8.7 | Yeast

Candida albicans is detected in the brain of AD patients,101 includ-

ing cortex and hippocampus, and Candida infection has been

suggested to promote functional changes in the immune system

and enhance immunosuppression.102 However, this was not con-

firmed in another study,103 and it remains an open question

whether yeasts such as Candida spp. modulate local/systemic

immunity and/or behavior.

8.8 | Toxoplasma and fatal attraction

Infection with the protozoan T. gondii is prevalent in the human

population,104 and some very high rates have been reported,105 con-

firming that T. gondii is a true endozoite. In experimental rats, persis-

tent infection remarkably blocks their innate aversion to the odor of

cats (“fatal attraction”), the definitive host for T. gondii, thereby

increasing the chance of transmission to that species.106,107

Berenreiterova et al.108 reported a significant association of T. gondii
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cysts with the limbic brain and cortex (Figure 1(C)), and more detailed

studies highlight the amygdala, adjacent to the hippocampus, as the

region responsible for the altered odor response.109 There is also evi-

dence for subtle behavioral changes in humans, including changes in

the perception of animal pheromones110 and in impulsivity and

aggressiveness111 (schizophrenia [SZ] is discussed later). Toxoplasma

infection can also cause immunosuppression in mice and potentially in

human.112-114

8.9 | Trypanosomes and sleeping sickness

African sleeping sickness, also known as human African trypanosomia-

sis, is caused by infection by one of two related protozoan parasites,

Trypanosoma brucei (Tb) rhodesiensis that is found in East Africa, and

Tb gambiensis in West Africa. The parasite is transmitted to humans

by bites from the tsetse fly (genus Glossina). These are painful—the

fly's mouth has tiny serrations that saw into the skin and allow it suck

from pooled extravasated blood. Primary infection leads to long-term

persistence of the parasite. Although it has been known for over a

century that trypanosomes are found in cerebrospinal fluid (CSF) of

infected individuals, the skin itself is also a significant reservoir of try-

panosomes115 and the fly likely ingests the parasite from both skin

and blood.

Infection appears to be a three-stage process. The first stage is a

bite from the tsetse fly, leading to blood infection. In the second

stage, the parasite enters the CSF and meninges. In the third stage,

the protective barriers of the brain break down and a “mass invasion”

of trypanosomes crosses the BBB, attacks the brain, and is often fatal.

Our appreciation of the importance of events in second stage has

been highlighted by recent work of Duszenko et al. It seems that the

parasite keeps itself in the second stage as long as possible and

actively slows disease progression, and the third stage often only

occurs months, years or even decades after infection.116

Why do trypanosomes enter the CNS and why was this phenom-

enon advantageous enough to be stably passed on during evolution?

Mogk et al. discuss this in detail and make several interesting

points.116 Escaping from the hostile blood system into a relatively

immune-privileged organ may offer advantages. By occupying the pial

cell layer trypanosomes are not challenged by the full immune system,

but from this refuge trypanosomes can easily interfere with sleep/

wake cycles117 and at the same time easily re-enter blood vessels to

ensure a permanent blood infection for onward transmission.

Sleeping sickness is an excellent example of where an endozoite

deliberately manipulates host behavior. Two compounds are produced

by the parasite: (i) prostaglandins including PGD2, and (ii) a tryptophan

metabolite, tryptophol. PGD2 is selectively elevated in the CSF of

advanced sleeping sickness patients and has somniferous properties as

well as inducing immunosuppression.118 Tryptophol is reported to

induce sleep in mice119 and also causes immune system down-

regulation.120 The lethargy and somnolence that name the disease may

well maximize the likelihood that an infected individual is bitten by a

further tsetse fly, thus completing the insect–human–insect life cycle.

In sum, several different classes of endozoite have been shown to

invade (or indirectly target) limbic regions if the brain where they can

modulate both behavior and immunity. Although this suggests that

brain infection and local/systemic immunosuppression are central to

their life cycle, the generality of this phenomenon warrants further

investigation.

We stress that behavioral changes are by no means restricted to

vertebrates, and infections of mosquitoes by La Crosse virus (the

agent of the most common mosquito-borne disease of US children)

are reported to modify mosquito bloodfeeding behavior to enhance

transmission by biting.121,122

9 | ENDOZOITES IN THE BRAIN:
NEUROPSYCHIATRIC DISORDERS
INCLUDING SZ

Acute infections of the CNS with bacteria and viruses are associated

with multiple clinical conditions including meningitis, encephalitis, and

retinal necrosis (herpesvirus infections of the CNS are reviewed in

Ref. 123). Acute and postacute infections with different types of her-

pes viruses have also been associated with epilepsy, including but not

restricted to HSV-2, CMV, and HHV-6A/6B.124-126 However, our

focus here is on long-term infections by endozoites.

9.1 | Neurodegeneration, bacteria, and
herpesviruses

Host immunodeficiency inexorably leads to microbial proliferation and

tissue damage in multiple organs. Thus, the persistence of endoge-

nous microbes in healthy tissues such as the brain appears to reflect a

delicate balance between microbial proliferation and elimination by

the immune system. Therefore, aging, that is characterized by decline

of the immune system,127,128 is likely to be accompanied by re-

emergence of erstwhile clinically silent endozoites, as reported for

HSV129,130 and VZV.131 Indeed, there is growing interest in the possi-

bility that age-related reactivation of subclinical endozoites in brain

might be causally linked to disorders such as AD.132

This idea has a long history. At about the same that Lewis was

studying endophytes in trees, Fischer and Alzheimer discovered

deposits (“Drusen”) in the brain of patients with AD that they

suspected (“I emphasized the peculiar similarity of the Drusen with

bacterial colonies”) to be associated with microbes.133 Several reports

have recently appeared that address the potential relationship

between AD and different types of infection including viruses, yeasts,

and bacteria,101,134-140 and these are not reviewed here.

Causal links are notoriously difficult to prove, but emerging popu-

lation evidence argues that antiherpetic medication may reduce the

incidence of AD,141 and several studies are underway to reproduce or

refute this finding. Antiviral treatment is also reported to reduce the

incidence of Parkinson's disease (PD).142 If confirmed, it would raise

the prospect of eventual treatments not only in AD and PD143,144 but

12 of 23 LATHE AND ST. CLAIR



also of conditions such as atherosclerosis and diabetes, among others,

where an infectious trigger has long been suspected.

We raise a potential caveat regarding the brain microbiome in

neurodegeneration (and other disorders) because most studies have

been performed on postmortem samples from elderly patients, and it

is difficult to distinguish between microbes that might play a role in

brain disease such as AD versus those that invade the brain during

terminal illness (e.g., the cause of death in AD is typically severe respi-

ratory infection).

9.2 | Depression/anxiety and infection

There have long been suggestions that chronic infections may be

associated with both depression and the associated condition, anxiety.

HHV infection has been associated with major depressive

disorder,145,146 and we saw earlier that subclinical infection with for

example HSV leads to persistently elevated levels of circulating cyto-

kines. These predominantly target limbic brain regions, centrally

including the hippocampus,147 and clinical administration of interleu-

kins and interferons such as IL-1α, IL-2, IFN-α, IFN-β and TNF-α has

been widely reported to cause malaise and sickness behavior that

resemble anxiety/depression.148-153 Indeed, subclinical infection of

several types, perhaps not only in the brain, that lead to systemic

inflammation may underlie depressive and anxiety disorders.154

9.3 | Schizophrenia and Toxoplasma

Intense research is presently focused on endozoite involvement in AD

and PD, as well as in depression, and we therefore draw attention to a

neglected condition, SZ, where infection has long been implicated.

The cause of SZ, an enigmatic condition that is typically diag-

nosed in late teenage years, is unknown. A possible infective contribu-

tion to the etiology and pathogenesis of SZ has been investigated

intermittently for over a century. In part this is because of the text-

book example of the once common form of psychosis called general

paralysis of the insane (GPI). Infection of the CNS by a single agent,

Treponema pallidum, is responsible, and the disorder can be effectively

treated with penicillin.

In support of a role of an infectious agent, genome-wide associa-

tion studies of SZ have consistently reported by far the largest signal

from the MHC region on chromosome six,155 and part of the risk for

SZ comes from allelic variations of the complement component

4 (C4) located in the MHC region.156 This is of particular note because

the complement receptor CR2 is a receptor for EBV157 and comple-

ment C4 directly targets viruses for inactivation.158

We overview in Box 5 some of the best-studied potential infec-

tious organisms that have been associated with SZ, including influenza

virus, HSV-2, Porphyromonas gingivalis, and Toxoplasma spp. All are

associated with CNS invasion.

Of these, the case for an involvement of Toxoplasma spp. in SZ is

supported by genetic and pharmacological findings. First, the DISC1

gene, that has long been recognized to be a key determinant of famil-

ial SZ,159,160 is now reported to be a pivotal modulator of immune

responses to T. gondii,161 directly implicating Toxoplasma spp.

Second, SZ is widely treated with neuroleptics, but their mecha-

nism of action is unknown. Intriguingly, these psychotropic drugs may

inhibit the growth of T. gondii. Jones-Brando et al. examined the effect

of a range of neuroleptic and mood stabilizing drugs on T. gondii cells.

Valproic acid together with haloperidol showed the strongest inhibi-

tory effect on cell proliferation, but risperidone and trimethoprim also

showed some effect.162 In rats haloperidol or valproic acid can reverse

behavioral changes induced by T. gondii infection, such as reduced

fear of cats and attraction by cat odor. However, those drugs did not

prevent acute infection nor decrease the number of tissue cysts in the

animal brain,163 and more recent studies have yielded less clearcut

results. However, a recent study164 confirms that antipsychotics, in

particular, have antimicrobial effects. The available data suggest that

some neuroleptic drugs may reduce psychosis not only through anti-

dopaminergic action but also by direct inhibition of T. gondii163,165 or

other endozoites.

10 | HOST ADVANTAGES: AN
EVOLUTIONARY ROLE FOR ENDOZOITES

Healthy tissues contain a multiplicity of endozoites, from bacteria to

protozoans and viruses. These are not silent. In plants, select endo-

phytes confer protection against pathogens and herbivores. End-

ozoites in vertebrates can also provide advantages to the host.

10.1 | Protection against superinfection

There are many examples. Ever since the time of Jenner it was

observed that infection with one pathogen (e.g., poxvirus) could con-

fer protection against a second unrelated pathogen (e.g., herpes),166

and the 1927 Nobel Prize in Physiology or Medicine was awarded to

Julius Wagner-Jauregg for the discovery that malaria infection is pro-

tective against GPI (i.e., neurosyphilis): inoculation of infectious

malaria into patients remitted GPI in 83% of cases.167 Bohnhoff et al.

in 1954 found that that, unlike control mice, mice treated with strep-

tomycin were easily infected by Salmonella enterica,168 demonstrating

the protective role of the normal microbiota. In a further example,

experimental animals inoculated with the human symbiont Bacteroides

fragilis were protected against colitis induced by Helicobacter

hepaticus.169

Similar effects have been reported for viruses. Infection with

human CMV in vitro was reported to inhibit superinfection with

HIV,170 and mice latently infected with either murine gam-

maherpesvirus 68 or murine CMV are more resistant to infection with

the bacterial pathogens Listeria monocytogenes and Yersinia pestis,

respectively.171 Early measles virus infection in human may be associ-

ated with a twofold reduced risk of PD.172 Host advantages have

been well reviewed by Roossinck173 (further discussion below).
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BOX 5 Endozoites and schizophrenia (SZ)

Influenza

Influenza is one of the best-studied potential prenatal contributors to SZ. Mednick et al. reported an increased risk for SZ in people

exposed prenatally to the 1957 influenza epidemic.271 This was followed in rapid succession by papers from Scotland and Denmark

essentially confirming the Mednick findings. National registry records were used and allowed examination of prenatal exposure to both

the 1918–1919 and 1957 influenza epidemics. Unfortunately since then around 20 additional ecological studies have addressed the

issue, with around half supporting the hypothesis and the other half failing to confirm. However, there are confounders that make inter-

pretation of these studies difficult. For example, almost all studies of prenatal exposure to influenza are based solely on whether an indi-

vidual was in utero at the time of an influenza epidemic. In these circumstances around 70% of individuals who were in utero during the

1957 type A2 influenza epidemic would have been misclassified as having been exposed. This increases the risk of false negative (type

2 error) associations.272,273

In a nested case–control study,274 Brown et al. demonstrated a threefold elevation in risk of SZ following influenza prenatal expo-

sure during the first half of gestation. For first trimester exposure, the risk of SZ was increased sevenfold but there was no elevated risk

following exposure during the second half of gestation. These results have been difficult to interpret especially because Seltzen et al.275

pointed out that serological studies may have limited validity.

HSV-2

Neonatal exposure to HSV-2 is associated with congenital anomalies and neuropsychiatric disorders.274 Three studies have exam-

ined the relationship between prenatal exposure to HSV-2 and risk of SZ in offspring. Two were derived from selected sites of the Col-

laborative Perinatal Project (CPP), a multisite study of population-based birth cohorts born from 1959 to 1967. In the first study276

raised maternal IgG antibody levels to HSV-2 were associated with a significantly elevated risk of SZ and other psychoses in offspring

with odds ratios of 3.4 to 4.4. In a much larger follow-up study,277 which included 200 case subjects with psychotic disorders from three

cohorts of the CPP, a 1.8-fold increased risk of SZ psychoses was observed among offspring of mothers who were seropositive for

HSV-2, but only among seropositive mothers who has regular unprotected sexual intercourse. A third study based on the Child Health

and Development Study cohort failed to replicate these positive associations.278 Potential explanations for these discrepant findings are

discussed by Brown,279 as are the limited and equivocal findings investigating measles, rubella, varicella zoster, rabies, and poliomyelitis.

There have been few and mostly negative subsequent studies of HSV-2 and SZ,280 and the data so far argue that HSV-2 is not a major

contributor to SZ.

Porphyromonas gingivalis

Multiple studies have demonstrated increased rates of periodontal disease in patients with SZ.281-287 Indeed Fawzi et al.287 demon-

strated increased levels of P. gingivalis (the key pathogen in periodontal disease) in saliva from SZ patients compared to controls, and the

severity of psychopathology was related to P. gingivalis levels. Although the most obvious explanation for these findings is that the peri-

odontal changes are secondary to lifestyle, poor oral hygiene, and medications associated with SZ, a bidirectional link between the two

conditions cannot be ruled out, especially given observations of the presence of P. gingivalis in postmortem AD and its presence in brain

parenchyma following chronic oral administration in mice (see earlier).

Toxoplasma

This is the topic of excellent reviews,288,289 much of which is paraphrased in the following outline. Toxoplasmosis is an infectious

disease caused by the parasitic protozoan, T. gondii, that affects approximately one third of entire human population. T. gondii can be

found in almost all warm-blooded animals, but cats are the only known natural hosts. T. gondii is highly neurotropic and, soon after the

infestation, migrates within the brain tissue to localize in astrocytes, microglia, and neurons.290,291 The dormant form or bradyzoite can

persist in the host brain for many years.292,293 The brain tissue cysts undergo continuous remodeling, but until recently were not

thought to cause clinical symptoms in immunocompetent individuals.294 However, given the high level of neurotropism and the fact that

T. gondii is endemic in almost all cultures worldwide, it has long been postulated that there may be a link with SZ.295,296

Increased rates of T. gondii infection are reported in SZ. Three meta-analyses of association between T. gondii exposure and SZ have

been published.295,297,298 All were conducted with necessary scientific rigor and all have demonstrated, even accounting for publication

bias, an association between exposure to T. gondii (as measured by IgG antibodies) and SZ. The most recent analysis by Sutterland

et al.298 included 50 studies. Significant odds ratios (ORs) with IgG antibodies were found in SZ (OR 1.81), and to a lesser extent in bipo-

lar disorder and obsessive compulsive disorder, but not in major depression. Increased risk of SZ was also found in the offspring of

mothers with serologic signs of infection detected during pregnancy. Cohort studies of blood samples taken from mothers in the perina-

tal period also show a twofold increase (OR 2.61) of IgG antibodies to T. gondii in those whose children went on to develop SZ. None of

the studies demonstrated acute infection, as detected by specific IgM antibodies: this suggests the effects are due to latent
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10.2 | Competition

There are likely to be other benefits, both indirect and direct, that oper-

ate at an evolutionary/ecosystem level. For example, Johnson in 1926

reported that overtly healthy potato plants harbored a latent virus that

produced severe pathology in a different plant, tobacco.174 Harboring a

latent pathogen could thus favor the host in competition with other

plants. The same phenomenon is evident in human: the history of

human migration has reported decimation of native populations, not by

conflict, but through exposure to pathogens carried by the invaders.

Such effects have undoubtedly had a major impact since the dawn of

the vertebrate lineage, and no doubt well before.

10.3 | Ecosystem advantages

At the ecosystem level, plant ecologists argue that many endophytes

within plant tissues remain latent until natural senescence, when they

proliferate to promote recycling of biomaterial, to the benefit of seed-

lings and saplings, and thus to the ecosystem (see earlier). This is a

perhaps a strange idea in the context of vertebrates, but this cannot

be formally excluded over an evolutionary timescale, particularly for

fungi and bacteria.

10.4 | Coevolution and horizontal gene transfer

There may be more direct routes. Herpes viruses and vertebrates

have coevolved for at least 200 Ma.175 In human, where the majority

of the population harbors persistent infections with herpes viruses

(Table 1), the divergence of HSV-1 and HSV-2 (and recombinants)

accompanied human evolution from primates, and perhaps also migra-

tion out of Africa,176,177 suggestive of functional effects.

In plants, integration of (non-retrovirus) viral sequences is

commonplace,178,179 raising speculation that “integrated viral

sequences might reflect some functional advantage to the possession

of the sequence.”178 Indeed, key genes determining the evolution of

land plants from precursors appear to have arisen by horizontal gene

transfer from soil bacteria.180

Intriguingly, around 1% of the human population now contains inte-

grated HHV-6 sequences.181,182 The fact that these insertions have

expanded from a small number of ancestors is very suggestive of a host

advantage, so far unknown. Of the other endozoites discussed here, BDV-

related sequences are also present in both human and primate

genomes,183,184 again suggesting that viral sequences might provide a

selective advantage. Indeed, there is good evidence for horizontal gene

transfer from endozoites, particularly parasites, to the human genome.185

10.5 | Cognitive benefits

Given that the majority of the population harbors HSV-1 and/or

HSV-2, as well as multiple other diverse endozoites, one must query

whether any beneficial behavioral changes are associated with sub-

clinical infection—or are the changes (if any) normally so subtle that

we do not recognize them?

Recent meta-analysis concluded, unexpectedly, that possession

of the APOE e4 allele (an established genetic predisposition to several

types of infection, including HSV, as well as to AD), was associated

with marked cognitive benefits in the 0–30 year age group,186 the

inferred lifespan of ancestral Homo.

In a striking example of cognitive benefits, Trumble et al. studied

Amazonian forager-horticulturists who harbor chronic burdens of

(untyped) microbial species. Performance on a battery of cognitive tests

addressing verbal memory, working memory, semantic memory, and

visual scanning was significantly elevated in APOE e4 individuals with

the highest endozooite burden (assessed by level of eosinophilia).187 This

finding mirrors reports of cognitive deficits in germfree mice.188 Never-

theless, how endozoites might enhance cognition remains unknown, and

brain infection was not demonstrated (although this appears likely). Even

so, the far-sighted study of Trumble et al. needs to be extended by

research on other populations and microbes to determine the extent to

which endozoites might promote cognitive function in the host carrier,

perhaps by competing with disadvantageous microbes, thus providing an

evolutionary selective pressure for their persistence.

How do we explain the cognitive benefits in Trumble's villagers?

Increased “alertness” by stimulating adrenergic/cholinergic pathways is a

possibility, but how might endozoites achieve this? We are reminded of

the speculative Orowan–Haldane theory that elevated levels of the

caffeine-like stimulatory molecule, uric acid, in the blood of human versus

other mammals may have given the lineage leading to Homo an edge,189

of particular note because uric acid is associatedwith inflammation.190

11 | HYGIENE AND MICROBIAL ECOLOGY

The findings of Trumble et al. contrast sharply with other reports. For

example, Benros et al. reported that infections of diverse types are

associated with compromised cognition in young Danish males.191

However, we underline a major complicating factor—hygiene.

infection.278,297 Similar results have been found assaying IgG and IgM anti-T. gondii antibody levels in neonatal blood spots from the

Danish State Serum Institute, where increased IgG levels were present in neonates who later developed SZ (OR 1.79).299 Because

babies only start producing IgG antibodies around 3 months after birth, IgG antibodies assayed in the neonatal blood spots must be

maternal in origin and suggest that earlier maternal exposure to T. gondii increases the risk of SZ in offspring.299,300
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Improved sanitation in developed countries has substantially cut

infant mortality, but may have inadvertently increased other disorders.

Indeed, the “hygiene hypothesis” has been invoked to explain differ-

ential rates of autoimmune disease across the world,192,193 including

AD,194 although recent data now argue against the hygiene hypothe-

sis of AD.310

One remarks that the situation of indigenous Amazonian villagers,

who are chronically exposed over their entire lifetime to a myriad of

endozoites, is a far cry from Western populations who are insulated

from the vast majority of environmental microbes, and are only

exposed to a restricted range of endozoites in later years. It is very

possible that, despite benefits in terms of infant mortality, the lack of

exposure to an “evolutionary” spectrum of microbes may predispose

the human population to “modern” diseases including AD, PD and SZ.

12 | ENDOZOITES AND THE MISSING
HERITABILITY

As a final note, we wonder if endozoites might explain a

longstanding conundrum. Many CNS disorders, exemplified by SZ

and autism, show high concordance between identical twins

(a measure of “heritability”), as well as raised concordance between

siblings. However, other than for specific single-gene defects

(e.g., CFTR mutations in cystic fibrosis), multiple genomic analyses

have failed to uncover gene variants (or groups of variants) that

could explain this concordance, a phenomenon dubbed “missing her-

itability.”195 Indeed, for most disorders, genes explain no more than

a small fraction of the heritability.

The widespread distribution of endozoites in the human popula-

tion leads us to wonder whether endozoites, clusters of endozoites,

and/or specific variants thereof could explain why twins and siblings

display phenotypes that are closer to each other than to the general

population. We undoubtedly inherit more from our parents (and from

our prenatal and postnatal environments) that merely genes. Others

have suggested that the gut microbiota might play a role,196 but the

broader spectrum of endozoites, specifically those reaching the brain,

might have greater impact on diseases such as SZ that principally

affect the nervous system. Comparative studies on twin/sibling

microbiomes will be necessary to address this possibility.

13 | CONCLUSIONS

Given the precedent of plants, it comes as no surprise to discover that

endozoites are widely present not only on superficial surfaces and in

the gastrointestinal tract but also within healthy human tissues such

as the brain. Indeed, for many host-adapted microbes it seems that

there is no fundamental barrier to entering host tissues. The benefits

of the close association are well documented in plants, but there is so

far only limited evidence (except for the gut microbiome) that verte-

brate endozoites benefit the host, and this is an area that demands

further research. Instead, there is extensive evidence that endozoites

manipulate host immunology and behavior to promote their own per-

sistence and transmission.

Building on clear parallels between plants and animals, the key

conclusions of this analysis are as follows.

1. Endozoites (like endophytes) are widely present not only in the cir-

culation but in multiple body tissues including the brain.

2. Endozoites have accompanied the evolution of the lineage leading

to Homo at least since the divergence of insects and verte-

brates (0.5 Ga).

3. These passengers are not silent, and can influence both immunity

and behavior.

4. As in plants, some of these passengers can be beneficial, and

others harmful—a delicate balance. Endozoites are directly impli-

cated in CNS disorders including AD, PD, and SZ, but in other

cases endozoites may give their host a cognitive advantage.

In our view, endozoite modulation of behavior is the most intrigu-

ing of all the issues we have raised here. Is this mostly an incidental

correlate of immunomodulation, given that the limbic brain governs

both behavior/cognition and the immune system, or do endozoites

deliberately manipulate our behavior?

We also wonder if there is an optimal (beneficial) brain micro-

biome that—paralleling GI tract microbiome transplantation in diabe-

tes and colitis—we could perhaps resurrect (e.g., by simple measures

such as intranasal inoculation) to prevent the adverse effects of key

endozoites?

In sum, both plants and animals harbor a multiplicity of endoge-

nous microbes that inhabit multiple tissues including solid tissues such

as the brain. These are not silent, and harboring particular passengers

may have both advantages and disadvantages. Understanding the

mechanisms, roles, and ecology of endogenous microbes in different

mammalian tissues including the brain will undoubtedly be a fertile

field of investigation for the future.
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