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Abstract

In this paper, the Ricker family (a population model) with quasiperiodic excitation is
considered. The existence of strange nonchaotic attractors (SNAs) is analyzed in a co-
dimension-2 parameter space by both theory and numerical methods. We prove that
SNASs exist in a positive measure parameter set. The SNAs are nowhere differentiable
(i.e. strange). We use numerical methods to identify the existence of SNAs in a larger
parameter set. The nonchaotic property of SNAs is verified by evaluating the Lyapunov
exponents, while the strange property is characterized by phase sensitivity and rational
approximations. We also find that there is a transition region in parameter plane in which
SNAs alternate with chaotic attractors.

Keywords: Strange nonchaotic attractors; Lyapunov exponent; Phase sensitivity;
Rational approximations

1. Introduction

In dynamical systems, the types of attractors include periodic attractors, quasiperiodic
attractors and chaotic attractors. Strange nonchaotic attractor is considered as the fourth
type of attractor. It has been uncovered by Grebogi et al. [1] in 1984. An SNA has fractal
structure, but is nonchaotic in the dynamical sense. Pikovsky and Feudel [2] introduced
the methods of phase sensitivity, phase sensitivity exponent and rational approximations
to characterize the strange property of SNAs. In recent years there has been increasing
interest in studying SNAs for different classes of dynamical systems.

Numerical simulations have usually been the methods to characterize SNAs in dy-
namical systems. In that regard, Jalnine et al. [3] verified the existence of SNAs in an
autonomous systems by numerical methods, and found that SNAs have singular contin-
uous power spectrum and fractal dimension. Zhang [4] verified the existence of Wada
basins of SNAs in Duffing oscillator with quasiperiodic excitation and showed that the
domain of SNAs is a complete Wada basin in a parameter set of positive measure. Jorba
et al. [5] found that SNAs appear during a pitchfork bifurcation of invariant curves in a
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one-dimensional map with quasiperiodic excitation. Zhou et al. [6] studied a nonlinear
oscillator with a multistable potential by numerical method and simulator. The Lyapunov
exponents are studied by precise numerical methods, and the phenomena of chaotic at-
tractors transforming into SNAs are analyzed. Sivaganesh et al. [7] presented a numerical
investigation on the robust synchronization phenomenon, observed in a unidirectionally-
coupled quasiperiodically-forced simple nonlinear electronic circuit system, exhibiting S-
NAs in its dynamics. SNAs in two-dimensional maps have zero Lyapunov exponent in
one direction and negative Lyapunov exponent in the other direction [1, 8]. Ding et al
9] also studied quasiperiodically forced systems, showing that the set in parameter space
for which the system exhibits SNAs has Cantor-like structure and is enclosed by two crit-
ical curves. One of those curves marks the transition from three-frequency quasiperiodic
attractors to SNAs; the other marks the transition from SNAs to chaotic attractors.

Many researchers have designed experiments to investigate the occurrence of SNAs in
real systems. Ditto et al. [10] carried out the first ever experiment to validate the presence
of SNAs in a man-made system. They found SNAs dynamics in the magnetic elastic band
bending experiment with two-frequency quasiperiodic excitation, and the scaling behavior
of Fourier amplitude spectrum is consistent with the predicted scaling behavior of SNAs.
Sathish et al. [11] found that if one uses two square waves in an aperiodic manner as
input signal to an oscillator system, the response of the oscillator can produce logical
SNAs output controlled by the quasiperiodic forcing.

The theoretical studies of SNAs mainly focused on skew product maps. Keller [12]
studied a class of monotone incremental quasiperiodically forced map, and proved the ex-
istence of SNAs. Alseda et al. [13] generalized the results of [12] to unimodal quasiperiod-
ically forced maps; the strictly concave function is very important in the proof. Glendin-
ning et al. [14] studied quasiperiodically forced maps, proved that those systems are
sensitive to the initial phase, both on the whole phase space and restricted to the at-
tractor. Jaeger [15] proved the existence of non-continuous invariant graphs (SNAs) in
quasiperiodically forced systems, and the topological closure of such graphs is typically a
filled-in set, i.e., it consists of a single interval on every fibre.

It has been meaningful to study the mechanism of SNAs generation [16]. Thamilmaran
et al. [17] argued that three paths can lead to SNAs, namely Heagy-Hammel path, fractal
path and intermittent path, and observed the phenomenon of SNAs in a diode both
numerically and experimentally. Heagy et al. [18] studied the Duffing system with two-
frequency excitation. They found that a quasiperiodic attractor would wrinkle before
it changed to an SNA, which is the conversion to SNAs by the fractal path. Fractal
path means that before SNAs are generated, attractors produce a wrinkling shape [19,
20, 21, 22]. Heagy-Hammel paths can generate SNAs by the collision of two stable tori
with a unstable torus [23]. Intermittent paths include type-I intermittency and type-I11
intermittency. Type-I intermittency route is created by the saddle-node bifurcation, and
type-III intermittency route is caused by torus-doubling. Before SNAs are generated,
there are neither the collision of tori nor wrinkling, though the Lyapunov exponent is
less than zero [24, 25, 26]. In addition to these three paths, there is the torus-doubling
path [27, 28], bubbling path [29] and merging of bubbles route [30]. In 2015, strange
nonchaotic star dynamics has been demonstrated in the RR Lyra Constellation, which
further validates the presence of strange nonchaotic phenomena in nature [31]. Zelinka et
al. [32] investigated the influence of SNA on the evolutionary synthesis of astroinformatic
big data classification. The results show that SNA can provide results qualitatively similar



to classic pseudo-random number generators. Strange nonchaotic dynamical phenomena
are also found in periodically forced systems. For example, SNAs are found near the
bifurcation points of codimension-2 [33] and codimension-3 [34] in periodically forced
vibro-impact systems. Wang et al. [35] studied a random dynamical system with periodic
excitation, found that small noise can enhance the robustness of SNAs. SNAs can also be
induced by noise in nonquasiperiodic discrete-time maps or in periodically driven flows
[36]. Numerical results show that small random noise is incapable of causing characteristic
changes in the Lyapunov spectrum, but it can make the attractor geometrically strange
by dynamically connecting the original periodic attractor with the chaotic saddle.

In this paper, the Ricker family population model with quasiperiodic excitation is
considered. The parameter space, in which SNAs occurs, is obtained by combining the-
oretical and numerical methods. We prove the existence of SNAs in a positive measure
parameter space. Numerically we showed that SNAs exist in a larger parameter region.
The chaotic properties of attractors are verified by the evaluation of Lyapunov exponents
and power spectra while the strange property of attractors are verified by phase sensitivity
and rational approximations. In addition, we show that there exists a transition region
in which SNAs alternate with chaotic attractors.

2. The model

We investigate a skew product system F : S! x RT — S! x R defined by

(0, 2) = (0 +w, f(x)g(0)), (1)

where w is a irrational number, S' = R/Z denotes the unit circle, and g(f) = sin(76).
The function

f(x) = fap(x) =aze™™, a>1,>0 (2)
is the Ricker family, which is a model in population dynamics.
Let (z,,0,) = F"(x,0). Because the map (1) is a circle translation in the 6 direction,
the Lyapunov exponent in the 6 direction is always zero. The Lyapunov exponent in the
x direction is

i ‘8}7 x;, 0;) 3)

if the limit exists. Since the map 6 — 6 + w preserves the Lebesgue measure on S! and is
ergodic, the Lyapunov exponent A, at (0,6) is

Ae(0,0) = /S log(Df(x)g(6))d6 = loga — log?2 (4)

for a.e. § € S'.

From A, we can determine that the attractor is either chaotic (A, > 0) or nonchaotic
(Az < 0). The derivatives with respect to the phase are infinite everywhere. This implies
that the attractors are nonsmooth [1].

3. Existence of SNAs

In this section we prove the existence of an SNA for the map F for a positive mea-
sure parameter set. First, we give some preliminary results. Our main Theorem, to be

3



enunciated and followed by its proof, is based on the following Lemmas [12, 13].
The critical point of f = f,5(x) is 1/8. Let I = [0, f(1/5)]. Given points z,y € I
with x # y (note that f(x) # f(y)), set

|z -yl
max{z,y}

()

K(z,y) =

and

w(f(@), F(y))
s(r,y)

Note that |Df(z)| < %ﬂ for x € (0,2/6). We assume f(1/5) < 2/, that is a < 2e.

(6)

T(xvy) =

Lemma 3.1. Assume that o < 2e. For every v € (0, f(1/5)] there exists a constant
w < 1 such that 7(z,y) < p whenever x,y € [v, f(1/8)] and x # y. In particular, if
2,y € (0, £(1/8)] then 7(z,) < 1.

Proof. When «a < 2e, for z € (0, f(1/3)] we have

s < 12

Assume for definiteness that v <z <y < f(1/8). If f(z) < f(y) then

f@-f=) v _f-f0) v
y—z  fly)—  y—v  fly)

T(x,y) = (8)
By the strict concavity of f : I — I and f(0) = 0, the last expression is smaller than 1.
Thus, there exists a constant p; < 1 such that 7(x,y) < .

It f(x) > f(y) then 1/8 <y < f(1/5) and

f@)—fly) v fle)-fly) y
T@y) = y—o f@ y-=z f@) )

which is an increasing function of x by the concavity of f. Thus,

fl@)—fly) v @) -fly) vy Yy f(1/8)
y—r F0 ATy 1w Wy = TPV pag <(115>
The last inequality follows from (7). Set
= {, ~ DA 0) L, (1)
then we have 7(z,y) < u. O

Lemma 3.2. Let v and p be as in the above Lemma. Fixn € Z+, 6y € S, 2,y € 1,
and denote (O, xr) = F*(0y,20) and (O, yx) = F*(0o,v0) fork=1,2,--- ,n—1. Assume
that 2, s € (0, f(1)8)] for every k € (0,1, .~ 1}. Then, |z, — yal < F(1/B)um,
where m(n) is the number of indices k € {0,1,--- ,n — 1} such that xg,yx € |7, f(1/5)].



Proof. If x,, = y, then there is nothing to prove. Assume that z, # y,. Then also ) # yx
for k=0,1,...,n— 1. We have

o) = T el 1)o@ = F ) g ()
) e o] w09 @) g OF gy
max {f (i), f ()} o
Therefore
! (Y e ) TT A 1)
o =0l < 1 (5) o) = 1 (5) oo TT =002
1 n—1 (13)
=f<5>/f($o,yo)kl:[ 7 ( Tk, Yi) <f< )HT Tk, Yi)
Thus, by Lemma 3.1, we get |z, —y,| < f (%) ), O

Lemma 3.3. [12, Lemma 2/. Let (X,F,pn) be a probability space, T : X — X a mea-
surable transformation leaving the measure p invariant, and f : X — R a measurable
function. If the function f oT — f has a minorant g € L}L, then foT — f € L}L and

[(reT = fdu=o.
Now we can prove the main result in this section.
Theorem 3.1. When 2 < a < 2e, there exists a function  : S' — I such that
(1) ¢ is a measurable function and has an invariant graph;
(2) ¢ is positive a.e.;
(8) C is discontinuous a.e.;
(4) the Lyapunov exponent in the x direction \,(((9),0) <0 for a.e. 6 € St.

Proof. By Lemma 3.2, there exists a function ¢ : S' — I which has an invariant graph.
Taking a continuous function ¢ : St — (0, f(1/8)], then F*(¢) converges to ¢ as k — oc.
Therefore, ¢ is a measurable function.

Since f(0) = 0, the set {# € S' : ((§) = 0} is invariant under rotation by w. This
implies that {6 € S' : ((f) > 0} is also invariant under the same rotation. Moreover,
Ae(0,0) > 0 for a.e. 6 € St, 0 — 0 + w preserves the Lebesgue measure on S! and is
ergodic, so {# € S' : ((0) > 0} has Lebesgue measure 1.

For every 6 € S' with ((6) > 0, take a sequence {6} such that ((6;) = 0 for all k
and limy_,o 0 = 0, then limy_,., ((0;) = 0. This implies that ¢ is almost everywhere
discontinuous. For example, we take w = @, a = 2.2 and f = 2, the attractor is
everywhere discontinuous, as shown in Fig. 1.

By Birkhoft’s ergodic theorem,

7(C(60),0) = [ g DF(C(O)|d0 + [ logg(6)at (14)
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Figure 1: For @ = 2.2 and 8 = 2, the phase diagram in the plane (6, ).

for a.e. 6 € S, Since £(0) = 0, £(C(9))g(0) = ¢(0 +w) and Df(z) < L2 for 0 < 2 <
f/B),

[Df(C(0))] < = (15)

) C(0)g(0)

for a.e. 6§ € S'. Thus, loggf(%;"l has the integrable minorant log |Df({())| + log g(#).

f(C(0) _<0+w)
¢

Using Lemma 3.3, it follows that log C(g(jg;") is integrable and [s: log C(gzg;" Ldf = 0. Hence
(04 w)
log |D / 1 / log > g = 0. 1
i logIDS(cONId0 + [ logg(@)db < [ log=rds =0 (16)
This proves A,(¢(#),0) < 0 for a.e. § € S™. O

4. Numerical results

Forw = ‘/5_1, we will analyse the dynamical properties on the parameter set {(«, 5)|a €
(1,25], 8 € [1,5]}. Since the Lyapunov exponent in the z direction at (0, #) is log o —log 2,
the attractive property of the z-axis is independent of the value 3, see Fig. 2. For
a € (1,2) (the white area), the attractors are quasiperiodic, the orbits shift irrationally
on {(x,0)|r = 0,6 € [0,1]}. The criterion is Lyapunov exponent A\, < 0 in the z direc-
tion. For a € [2,16.5] (light grey area), the attractor is SNA. The criterion is Lyapunov
exponent A\, < 0, and that the phase sensitivity exponent does not tend to zero. For
a € [16.5,19], the light grey and grey appear alternately, and the interval is the transition
from SNA to chaotic attractor. For a € [19,25] (grey area), the attractor is a chaotic
attractor, and the criterion is Lyapunov exponent A\, > 0. For f =2 and « € [1,25], the
Lyapunov exponent A, in the z direction varies with the parameter «, as shown in Fig.
3. Its chaotic property corresponds to Fig. 2.

For 8 = 2, o is taken as the control parameter. The number of iterations is 50,000,
discarding the first 20,000 iterations and then plotting the next 30,000 ones. For 1 <
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Figure 2: The phase diagram in the plane («, §).
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Figure 3: For 8 =2 and « € [1,25], the Lyapunov exponent in the z direction.

a < 2, the attractor is quasiperiodic, and the trajectory is attracted to the x-axis. For
2 < a < 2e, we proved that the attractor is SNA. When 2e < a < 16.5, SNAs still exist,
see Fig. 2. Taking o = 15 as an example, the attractor is nonsmooth and fractal, as
shown in Fig. 4(a). The Lyapunov exponent in the z direction is A, = —0.0935, see
Fig. 5(a), so the attractor is a SNA. When « is in the interval [16.5,19], SNAs alternate
with chaotic attractors, there is a transition interval of parameter o in which SNAs are
transformed into chaotic attractors. For a = 20, the attractor becomes a chaotic attractor
with Lyapunov exponent A\, = 0.0792, as shown in Fig. 4(b) and Fig. 5(b).

4.1. Phase sensitivity property
The strange property can be effectively characterized by the phase sensitivity property

2].



Figure 4: For 8 = 2, the phase diagram in the plane (6,,x,). (a) SNA, (b) chaotic attractor.
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Figure 5: The Lyapunov exponent in the = direction. (a) a = 15,5 =2, (b) a =20, = 2.

From the map F' we get the recurrence relation

Ot By (0, 00) + P (0, 00) S
00 00 (17)
= maz,e 7 cos(nl,) + a(l — B, )e P sin(w@n)%.
Thus, starting from the initial derivative ag—é’, we get derivatives at all points of the
trajectory:
Ox N oz,
— =" Fy (241, 05-1) Rv—i. (1, 1) + Ry (o, 60)
0 = 00
N . (18)
=" mazy_1e” 71 cos (m_1) Ryv_ (zk, b) + R (20, 00) 0—8”,

B
Il
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where

M-1 M-1
Ry (xma gm) = H F, (xm—i-ia em—i-i) = H a (1 - Blfm—i-z) e Prmisin (ng—i-i) ) (19)
=0 =0

Ry = 1 and N is the number of iterations. According to Ref. [2], Ry &~ £exp (A\.N).
If the attractor is not chaotic as N — +oo then A, < 0, and RN(xO,QO)%l is a small
quantity. Then the equation (4) can be expressed as

N
35% ~ SN =" Fy(z-1, Op—1) Rv—i(2, Ok). (20)
k=1

If SV tends to infinite as N — 400 then the attractor is nonsmooth, which characterizes
the attractor to be strange.

The maximum value of SV after N iterations is denoted by

™ = max {S9}. (21)
1<i<N

According to Ref. [2], we know y = min, g7y (z,0) and vy ~ N*, where p is called
the phase sensitivity exponent. If the number of iterations increases, the value of 7V
increases accordingly. If S tends to infinite with N — 400 then the attractor has
infinite derivative with respect to the phase 6. In such a case, the attractor is strange.

Taking SNA (5 = 2 and o = 15) in Fig. 4(a) as an example. According to Egs.
(20) and (21), 7V is the maximum derivative of z with respect to the phase 6, and p is
the phase sensitivity exponent. For a = 15, the attractor is a SNA. If the attractor is
smooth, 7V is bounded and the phase sensitivity exponent x tends to zero. If the attractor
is nonsmooth, 7V tends to infinite and the phase sensitivity exponent u is not equal to
zero. We choose the parameter 5 = 2, and a = 1.5 (quasiperiodic attractor) and o = 15
(SNA, as shown in Fig. 4(a)). In the numerical calculation, 10,000 iterations and 100,000
iterations are selected to obtain the change image of 7" with the number of iterations,
see Figs. 6(a) and 6(b). In Figs. 6 (o = 1.5), it is shown that when the attractor is
quasiperiodic, the value of 7V approximates a horizontal line and tends to a bounded
value, and the phase sensitivity exponent u tends to zero. When the attractor is a SNA
(o = 15), as the number of iterations increases, the value of 7V increases continuously.
For 10, 000 iterations and 100, 000 iterations, the phase sensitivity exponent is y = 1.3319
and p = 1.4132, respectively. When N tends to infinite, 7 also tends to infinite, which
means that the attractor is everywhere nonsmooth (i.e. strange).

4.2. Rational approximations

Rational approximations is also an effective method to characterize the strange prop-
erties of SNAs [2]. When w is equal to the golden mean value, the ratios of Fibonacci
numbers (wy = Fyy1/Fk, Fyy1 = Fy + F_1, F1 = 1, F5, = 1) are approximations. We also
take the SNA in Fig. 4(a) (8 = 2 and a = 15) as an example, and choose the approxima-
tions wyg = 34/55, w1 = 610/987, w9 = 4181/6765 and wy; = 10946/17711. For k = 10
or 16, the approximation order is low, and there are only some periodic points in the phase
diagram of the plane (6, x,). The fractal structure of SNA can not be observed, see Figs.
7. When the approximation order is high (k = 19 or 21), the phase diagram in the plane
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Figure 6: Phase sensitivity functions: (a) 10,000 iterations, (b)100,000 iterations.

(0., z,,) approximates the geometric fractal structure of Fig. 4(a), as shown in Figs. 7(c)
and 7(d). In Figs. 7, it is shown that as the order of approximation increases, the number
of periodic points also increases. For k — 400, the number of periodic points in the phase
diagram tends to be infinite and the structure of the attractor is nonsmooth, which can
approximate the strange nonchaotic property of the original quasiperiodic system.

5. Conclusion

In this paper, we investigate SNAs in the Ricker family with quasiperiodic excitation,
and determine the parameter region in which SNAs exist by combining mathematical
proofs with numerical calculations. Our discussions are divided into two parts. First,
we use theoretic methods to prove the existence of SNAs in some parameter region. Our
results show that the SNAs are discontinuous almost everywhere in such parameter region.
Besides, we also use precise numerical methods to explain the existence of SNAs in a larger
parameter region. We also find that there is a transition region in which SNAs alternate
with chaotic attractors. The main numerical methods include the evaluation of Lyapunov
exponents, phase sensitivity and rational approximations.
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