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Abstract

DNA barcoding has proven an effective tool for species identification in varied groups of

marine invertebrates including crustaceans, molluscs, polychaetes and echinoderms. In this

study, we further validate its utility by analyzing almost half of the 300 species of Echinoder-

mata known from Canadian waters. COI sequences from 999 specimens were assigned to

145 BINs. In most cases, species discrimination was straightforward due to the large differ-

ence (25-fold) between mean intra- (0.48%) and inter- (12.0%) specific divergence. Six spe-

cies were flagged for further taxonomic investigation because specimens assigned to them

fell into two or three discrete sequence clusters. The potential influence of larval dispersal

capacity and glacial events on patterns of genetic diversity is discussed for 19 trans-oceanic

species. Although additional research is needed to clarify biogeographic patterns and

resolve taxonomic questions, this study represents an important step in the assembly of a

DNA barcode library for all Canadian echinoderms, a valuable resource for future biosurveil-

lance programs.

Introduction

DNA barcoding employs sequence variation in a 648 bp region of the mitochondrial cyto-

chrome c oxidase subunit 1 (COI) gene as a tool for specimen identification and species dis-

covery [1]. Its effectiveness has been shown in birds [2,3], bats [4], fishes [5–7], insects [8,9]

and several marine invertebrate groups, including stomatopods [10], molluscs [11,12], crusta-

ceans [13], and echinoderms [14]. The routine occurrence of a barcode gap, where interspe-

cific divergence is much greater than intraspecific divergence, underpins its strong

performance in taxonomic assignments versus the complexities which often complicate mor-

phological approaches. For example, a survey of 15 marine phyla reported that one third of

specimens could not be assigned to a species through morphological analysis [15] because of

factors such as damage to diagnostic characters during collection. Immature stages are often

particularly challenging to identify beyond a family via morphology, making it difficult to esti-

mate the timing and duration of larval dispersal [16]. The use of DNA barcoding for species
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identification solves many of the problems associated with the application of morphology-

based approaches. It has, for example, proven highly effective in identifying immature stages

of fishes [17] and varied lineages of marine invertebrates [10,16,18]. It is particularly useful

when a comprehensive barcode reference library is available. Moreover, divergence thresholds

are a powerful tool for revealing newly encountered species, albeit they can overlook recently

diverged species [10,19].

Although their phylogenetic relationships, developmental patterns, and reproductive biol-

ogy have been well investigated, Canadian echinoderms have seen little genetic analysis. Three

studies have examined introgression along secondary contact zones [20–22], while another

investigated a cryptic species complex [23]. A further investigation documented patterns of

mtDNA divergence in four trans-Arctic sea urchin species [24] while another used COI

sequences to assess phylogeographic patterns in Arctic marine invertebrates, including several

echinoderms from this region of North America [25]. While little information is available on

patterns of COI sequence divergence in Canadian echinoderms, studies on this phylum in

other regions have reported high interspecific divergences (2.5–24.2%) and low intraspecific

distances (<1%) at COI [14,26,27]. Although these values are similar to those in other marine

invertebrates [11,13,28] and fishes [6], low divergences were detected between some sibling

species of echinoderms. For example, divergences of 1.1–1.2% for COI were observed between

sister taxa of sea stars [29], while interspecific divergences of 2–3% were noted in closely-

related echinoid species [30].

The variable climatic and hydrographic conditions of Canada’s oceans during the late

Cenozoic [31] means that its marine species have complex histories of range expansion and

fragmentation. For example, the opening of the Bering Strait during the mid-Pliocene (3.5

Mya), coupled with ice-free Arctic waters [32], allowed extensive migration between the north

Pacific and Arctic-Atlantic oceans [33,34]. Subsequent Pleistocene glaciations eradicated

much of the fauna in the Arctic and northwest Atlantic where conditions were more severe

than in the Pacific. Differing histories of re-colonization from Pacific and Atlantic refugia fol-

lowing deglaciation approximately 14,000 years ago [32] is reflected in varied levels of popula-

tion structure, ranging from closely-related species complexes (Macoma, [35]; Mallotus, [36])

to widespread species with little genetic divergence (Strongylocentrotus, [24,37]).

This study begins the construction of a DNA barcode reference library for Canadian echi-

noderms, but since several of these taxa also occur in polar and temperate regions across the

northern hemisphere, the library has broader utility. Approximately 300 species of echino-

derms are known from Canada’s oceans with two-thirds (217) restricted to the NE Pacific [38–

40]. The present study tests the efficacy of DNA barcoding and examines phylogeographic pat-

terns resulting from Canada’s complex glacial history. By focusing on Canadian echinoderms,

the size of the fauna (300 species) makes it feasible to develop a comprehensive reference

library. Moreover, the circumboreal distributions of several species provide an opportunity to

investigate patterns of intraspecific divergence at a large geographic scale.

Methods

Ethics Statement

Fieldwork in Churchill, Manitoba was conducted under permits issued by Manitoba Conser-

vation Wildlife and Ecosystem Protection to the Churchill Northern Studies Centre (CNSC)

for research in the Churchill Wildlife Management Area. Collections in British Columbia, Lab-

rador, and New Brunswick were conducted under licenses from Fisheries and Oceans Canada.

No specific permits were required for other collection activities as they were not conducted on

privately owned or protected land. No field studies involved the collection of endangered or
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protected species. A list of BOLD sample IDs, process IDs, GenBank accession numbers, and

the institution storing each specimen in this study is available in S1 Table.

Specimen collection and taxonomy

Tissue samples were obtained from 1285 specimens in the collections of the Centre for Biodi-

versity Genomics (CBG) and the Royal British Columbia Museum (RBCM). These samples

included 316 specimens representing 78 species from trawl collections made by the RBCM

between 2000 and 2006 at depths> 200m at various localities along the coast of British Colum-

bia (Fig 1). Another 252 specimens were obtained by SCUBA and dredging between 1995 and

2002 from Queen Charlotte Sound and Nunavut (Fig 1) while 589 specimens were collected by

SCUBA, by dredging and by hand from sites near Baffin Island, British Columbia, Labrador,

Manitoba, and New Brunswick between 2007 and 2014 (Fig 1). A final 128 specimens were

gathered by trawls at depths < 700m from the Beaufort Sea, Baffin Bay and the Labrador Sea

in 2010 as part of the Canadian Healthy Oceans Network (Fig 1). Scientific names follow the

World Register of Marine Species (WoRMS, http://www.marinespecies.org). All RBCM speci-

mens were identified by Philip Lambert, an echinoderm specialist. All CBG specimens were

identified using regional taxonomic keys (British Columbia: [38–41]; Atlantic and Arctic Can-

ada: [42]). When a species-level identification could not be made, an interim name was

Fig 1. Sampling map. Collection localities and sample sizes for 999 specimens that generated a COI sequence in this

study.

doi:10.1371/journal.pone.0166118.g001
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assigned that coupled a genus-level identification with a Barcode Index Number (BIN) desig-

nation [43]. All specimens are stored as vouchers in 95% ethanol or frozen at -20˚C in collec-

tions at the RBCM or the CBG (S1 Table). Specimen and sequence data are available in the

dataset DS-COIECH dx.doi.org/10.5883/DS-COIECH on BOLD, the Barcode of Life Data Sys-

tems [44]. All sequences have also been deposited in GenBank under the following accession

numbers: GU670162-65; GU670167-81; GU670187-94; HM400305-69; HM400539; HM405

487; HM405870-914; HM473811-74; HM473876-89; HM473902-57; HM542062-420; HM54

2908-3073; JF891304-16; JN295388; JN314244; KU495734-918.

DNA extraction, COI amplification, and sequencing

A DNA extract was prepared from the tube feet or gonadal tissue of each specimen. Tissue was

placed into 96-well plates containing modified CTAB lysis buffer [45] and proteinase K

(20mg/mL). Samples were incubated at 56˚C for 18–24 hours before extraction using a 3um

filter plate following a standard manual protocol [45]. Extracts were re-suspended in 40 μL of

molecular grade water. COI was amplified using several primer combinations with products

being 652bp, 658bp or 841bp in length depending on the primer set (Table 1). Polymerase

chain reactions (PCRs) were carried out in 12.5 μL reaction volumes containing: 6.25 μL 10%

trehalose, 2 μL molecular grade water, 1.25 μL 10X PCR Platinum Taq buffer, 0.625 μL MgCl2

(50 mM), 0.125 μL of each primer (10 mM), 0.0625 μL dNTPs (10 mM), 0.06 μL of Platinum

Taq polymerase and 2 μL of DNA template (20–60 ng) using a thermocycling profile of one

cycle at 94˚C for 1 min, five cycles at 94˚C for 40 s, 45˚C for 40 s, and 72˚C for 1 min, 35 cycles

of 94˚C for 40 s, 51˚C for 40 s and 72˚C for 1 min, and a further extension period of 72˚C for 5

min. PCR products were visualized on pre-cast 2% agarose gels (E-gel 96, Invitrogen) and PCR

products with single, bright bands were selected for bidirectional sequencing using BigDye

version 3.1 on a 3730XL DNA Analyser (Applied Biosystems). Cycle-sequencing reactions

incorporated the same primers as those used to generate the selected PCR product. Sequences

from specimens lacking a species designation were analyzed with both the BOLD identifica-

tion engine and BLAST in GenBank [46] to determine if sequence matches existed. Congru-

ence between identifications based on sequence data and morphological characters was

confirmed prior to assigning names to unidentified specimens.

Four primer sets used in this study with their amplicon length and references for both for-

ward and reverse primers, respectively.

Data analysis

All sequences were edited manually using Sequencher 4.8 and aligned by eye in MEGA 6.0

[48]. As most sequences were barcode compliant (N = 987), they received a Barcode Index

Table 1. Primers used in this study.

Primer name Primer sequence (5’-3’) Length of amplicon (bp) References

EchinoF1 TTTCAACTAATCATAAGGACATTGG 841 [14]

COIeR1 GCTCGTGTRTCTACRTCCAT [26]

EchinoF1 TTTCAACTAATCATAAGGACATTGG 658 [14]

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA [47]

LCOech1aF1 TTTTTTCTACTAAACACAAGGATATTGG 658 This study

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA [47]

COIeF1 ATAATGATAGGAGGRTTTGG 652 [26]

COIeR1 GCTCGTGTRTCTACRTCCAT [26]

doi:10.1371/journal.pone.0166118.t001

DNA Barcoding Canadian Echinoderms

PLOS ONE | DOI:10.1371/journal.pone.0166118 November 21, 2016 4 / 16

http://dx.doi.org/10.5883/DS-COIECH


Number (BIN), aiding in species delimitation [43]. Maximum-likelihood trees were con-

structed with 1000 bootstrap replicates and either an HKY+I model in MEGA 6.0 [48] or with

a GTR+G+I model in RAxML v8 [49]. Models with the highest AIC values generated by jMo-

delTest v2 [50,51] were selected as most appropriate. Pairwise estimates of intra- and interspe-

cific sequence divergence were calculated using the K2P distance model [52] and the Distance

Summary tools on BOLD [44]. The presence of a barcode gap was analysed by plotting maxi-

mum intraspecific divergence against Nearest-Neighbor distance. All species with an intraspe-

cific divergence >2% were flagged for further investigation. Maximum and mean intraspecific

divergences were plotted against the number of individuals sampled within a species and

regression analysis was carried out in RStudio using the Picante and VEGAN packages to

determine the significance of this relationship [53,54].

Results

Sequence recovery

COI sequences were recovered from 999 specimens representing 141 species, 77 genera and 43

families for a success rate of 78% (999/1285). Sequences ranged in length from 347bp to 658bp

but 95% were over 600bp. COI sequences could not be recovered from 18 species of deep-sea

echinoderms from the RBCM collection despite their young age (2–10 years). Nuclear pseudo-

genes of mitochondrial origin (NUMTs, [55]) were occasionally encountered along with

authentic COI, but most were <180bp so full sequences could be recovered following deletion

of the NUMT region in the initial segment of each forward and reverse read.

Taxonomic issues

The 141 presumptive species included 118 taxa with species-level identifications based on

morphological study. The other 23 species could only be placed to a genus, but were assigned

interim species identifications based on their BIN membership (e.g. Ceramaster sp. AAI7443).

Many of these 23 taxa may represent undescribed species or taxa previously undocumented

from Canada. For instance, two specimens of sea urchin (Strongylocentrotus sp. AAA9523) col-

lected in arctic Canada did not match any species known from this region. Several characters

commonly used to identify urchins, such as number of pore pairs and spine wedges, overlap in

the other two Canadian members of this genus (S. droebachiensis, S. pallidus) and were simi-

larly undiagnostic in this new taxon. However, it was distinguished morphologically by the

deep purple colouration of its test, tube feet and spines. In addition, the density and size of

spines on its test were reduced in comparison with other Strongylocentrotus specimens from

Canada. Certain cases where there was initial discordance between barcode results and taxo-

nomic assignments were resolved when taxonomic reanalysis led to their placement in the spe-

cies corresponding with the barcode data. Many of these cases involved juveniles or genera

where two species have subtle morphological differences.

COI variation

An average of seven individuals were sequenced per species (range of 1 to 33) with 113 taxa

represented by multiple specimens and 28 taxa by singletons. Mean intraspecific distance was

0.48% (range 0.0–7.6%) while mean interspecific divergence was 25-fold greater at 12.0%

(range 2.0–26.2%). S2 Table presents mean and maximum intraspecific distances for each of

the 113 morphospecies represented by two or more specimens. A barcode gap was present for

all taxa (Fig 2) although 12 species had maximum intraspecific divergences greater than 2%.

Values of maximum intraspecific divergence showed a significant increase with the number of

DNA Barcoding Canadian Echinoderms
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individuals sampled, but the coefficient of determination was low (Fig 3). Four morphospecies

were not assigned a BIN because their sequence length was less than 500bp, but the other 137

were assigned to 145 BINs reflecting the fact that six species (Gorgonocephalus arcticus, Lep-
tasterias hexactis, Leptosynapta clarki, Lophaster furcilliger, Ophiura sarsii, Pteraster militaris)

Fig 2. Barcode gap. Nearest-Neighbor distances (% K2P) plotted against maximum intraspecific divergences (%

K2P) for 113 taxa with two or more individuals. All taxa show a barcode gap.

doi:10.1371/journal.pone.0166118.g002

Fig 3. Relationship between COI distance and sample size. Maximum and mean intraspecific divergences (%

K2P) plotted against the number of individuals sampled for 113 species. The regression between maximum

intraspecific divergence and the number of individuals sampled is significant (R2 = 0.089, p<0.01).

doi:10.1371/journal.pone.0166118.g003
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included two or three clusters, each assigned to a different BIN. S3 Table reports the number

of sequences and locality information for each BIN. A ML tree for one of these species, L.

furcilliger, showed genetic partitioning associated with water depth with specimens in clus-

ter A collected from 1200–2000m while those in cluster B were found at < 200m and cluster

C at 500m (Fig 4). When these six taxa with multiple BINs (which may represent cryptic

species) were removed from the analysis, the mean intraspecific divergence dropped to

0.32%. Mean Nearest-Neighbor distances were lowest between S. droebachiensis and S. sp.

AAA9523 (2.0%).

Some specimens of Henricia could not be assigned to a species because morphological dif-

ferences among species in this genus are so conserved. However, the 87 sequences for this

genus formed 16 clusters with relatively high interspecific distances (mean 13.7%; range 2.6–

18.3%) and low intra-group divergences (mean 0.33%; range 0–1.6%) (Fig 5). Among the 12

clusters represented by multiple specimens, seven were only found in the Pacific, two in the

Atlantic, one in both the Pacific and Atlantic, one in both the Arctic and Atlantic, and another

in all three oceans.

Divergence across oceans

Twelve of 19 species collected from two or more oceans (Table 2) had low intraspecific diver-

gence with little to no geographic structure. Two others showed clear geographic structure

although their maximum divergences were below 2%, while two species had maximum diver-

gences above 2%, but without obvious geographic partitioning. Finally, three species showed

clear genetic structure and maximum divergences above 2%. NJ trees are presented for the

three species with the most conspicuous geographic structure; one with a maximum diver-

gence below 2% (Crossaster papposus), and two with maximum divergences above 2% (P

Fig 4. Depth partitioning in Lophaster furcilliger. Maximum-likelihood tree (HKY+I) for specimens of Lophaster furcilliger from British

Columbia. Groups A, B and C are partitioned by depth and sequence number is presented in brackets for each clade. Scale bar represents

percent sequence divergence.

doi:10.1371/journal.pone.0166118.g004
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militaris, Solaster endeca) (Fig 6). Sequences of P. militaris and S. endeca from the White Sea

were included in the phylogenetic analysis and clustered with populations from the Atlantic

Ocean. Divergences between lineages were relatively shallow (<3%) in the five species with

geographic partitioning. Different lineages were normally allopatric, but G. arcticus was excep-

tional as two specimens from Nunavut clustered with Atlantic conspecifics rather than with

other samples from Nunavut.

Four patterns of regional divergence in COI sequences were observed among the 19 echino-

derm species analysed from two or more of Canada’s oceans. Group A: species with maximum

intraspecific divergences > 2% and geographic partitioning; Group B: species with maximum

intraspecific divergences > 2% and no obvious geographic partitioning; Group C: species with

maximum intraspecific divergences < 2% and geographic partitioning and Group D: species

with maximum intraspecific divergences < 2% and no obvious geographic partitioning. Sam-

ple sizes are provided for each locality (Pac = Pacific, Arc = Arctic, Atl = Atlantic).

Discussion

Barcode Recovery

The present study recovered barcode sequences from 78% of the specimens that were analyzed.

The failure to recover barcodes from all specimens is likely a consequence of the fact that cur-

rent primer sets are not effective for all echinoderm lineages. Although the present study

expanded the primer sets [14] available, more work is needed to develop a set that recovers

barcodes from all echinoderms.

Fig 5. Deep divergences at COI within Henricia. Maximum-likelihood tree (GTR+G+I) for 16 putative species of Henricia. Locality

information is provided for each lineage (Atl = Atlantic, Arc = Arctic, Pac = Pacific) and sequence number is presented in brackets for each

clade. Scale bar represents percent sequence divergence.

doi:10.1371/journal.pone.0166118.g005
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Species delineation

This study further validates the effectiveness of DNA barcoding as a tool for species discrimi-

nation in echinoderms. All 141 species examined in this study possessed diagnostic sequence

variation at COI, and discrimination of species was generally straightforward because of the

large difference (25-fold) between mean intra- (0.48%) and inter- (12%) specific divergence.

This pattern is consistent with other studies which employed COI to examine relationships

within and between echinoderm species [14,26,56–58]. Barcode data separated all currently

recognized species examined in this study, and also revealed that specimens of six species were

assigned to two or three BINs, suggesting possible overlooked taxa. Moreover, COI revealed

evidence of phylogeographic patterns in five of the 19 species analyzed from more than one

ocean. Because sample sizes for the 12 species with sequence divergences above 2% were small,

further investigations are needed to clarify the taxonomic status of their component lineages.

However, the present data do suggest that the current taxonomic system has not overlooked

many species.

Patterns of intraspecific divergence between allopatric populations

All nine species (Ctenodiscus crispatus, Cucumaria frondosa, Florometra serratissima, O. sarsii,
Psolus fabricii, Psolus phantapus, S. droebachiensis, S. pallidus) which lack population structure

across two or three of Canada’s oceans possess planktonic larval stages capable of long-range

dispersal. However, three other species (G. arcticus, P. militaris, S. endeca) with planktonic lar-

vae showed high intraspecific variation (max. 2–3%) at COI and clear geographic population

structure. G. arcticus produces planktotrophic larvae while those of S. endeca are lecithotrophic

[39]. P. militaris has a more complex reproductive strategy because females brood some

Table 2. Divergences at COI for echinoderm species from multiple oceans.

Group Species # BINs Sample size Maximum intraspecific divergence (%K2P)

Pac/Arc/Atl

A Gorgonocephalus arcticus 2 0/11/5 2.53

Pteraster militaris 3 3/0/5 2.98

Solaster endeca 1 2/1/4 2.02

B Ophiopholis aculeata 1 0/8/19 2.18

Ophiura sarsii 2 3/13/0 7.58

C Crossaster papposus 1 13/4/4 1.24

Leptasterias littoralis 1 0/16/11 1.29

D Chirodota laevis 1 0/1/5 0

Ctenodiscus crispatus 1 10/15/0 0.62

Cucumaria frondosa 1 0/9/8 0.98

Florometra serratissima 1 8/13/0 0.80

Henricia oculata 1 3/0/4 1.26

Henricia sp. AAD3482 1 0/1/6 0.77

Henricia sp. AAB9183 1 2/1/13 1.55

Ophiura robusta 1 0/24/1 0.31

Psolus fabricii 1 0/11/5 0.43

Psolus phantapus 1 0/5/2 0.51

Strongylocentrotus droebachiensis 1 11/0/8 0.53

Strongylocentrotus pallidus 1 1/24/0 0.31

doi:10.1371/journal.pone.0166118.t002
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young, but broadcast spawn others [59]. Because these three species produce planktonic larvae,

little regional differentiation would be expected among their populations, suggesting that the

deep divergences might indicate overlooked taxa. Since barcode records were obtained from

both species of Gorgonocephalus (G. arcticus, G. eucnemis) known from Canada [60], the over-

sight of a known species cannot explain the deep divergence detected in G. arcticus. The situa-

tion for the other two genera (Pteraster, Solaster) is less certain because both genera include

other Canadian species that lack barcode records [61]. As a consequence, the high intraspecific

divergences for P. militaris and S. endeca might reflect misidentifications. When these diver-

gent lineages are considered as different species, mean intraspecific divergences for these two

taxa drop to 0.56% and the resulting interspecific distances (2–3%), although low, are similar

to those observed for COI in other closely related echinoderm species (Echinometra: 2–3%

[30]; Leptasterias: 0.4–2.2%, [23]; Patiriella 1.1–4.3%, [29]).

The genetic divergences in S. endeca and P. militaris involve differences between Pacific

and Arctic-Atlantic populations, but they are too low to reflect isolation since the 3.5mya

trans-Arctic interchange based on standard rates of mtDNA evolution [24]. Instead the 2–3%

divergence in these species suggests that gene flow has occurred as recently as 1–1.5 million

years ago. The divergence (2.0%) between Pacific and Arctic-Atlantic populations of S. endeca
is considerably higher than that (1.2%) in C. papposus, a related species with a similar mode of

dispersal [39]. Moreover, because high levels of population structure have been observed over

just a few tens of kilometres in marine species with low dispersal [62], the divergence in Pacific

populations of P. militaris (Fig 6B) may represent cryptic speciation. Additional sampling is

required to better understand divergences between populations in different ocean basins. In

any case, Atlantic and Arctic populations of C. papposus, P. militaris, and S. endeca are more

similar to each other than to their Pacific counterparts, a pattern noted in several other North

American echinoderms [25]. Three species with maximum intraspecific divergence above 2%

have population structure associated with distance, but need further investigation to clarify

their taxonomic status. It is also possible that further geographic sampling particularly across

the Arctic will reveal situations in which lineages occur sympatrically, allowing a test of their

reproductive isolation.

Intraspecific divergence in sympatry

Seven of the 12 species with maximum intraspecific divergences >2% have relatively narrow

geographic sampling, while two (Ophiopholis aculeata, O. sarsii) were collected from two

oceans. L. clarki, a small brooding sea cucumber collected in the NE Pacific, had a maximum

intraspecific divergence of 3.07%. The single divergent sequence of L. clarki might represent L.

transgressor, the other species of this genus known from this region. These closely related spe-

cies are difficult to distinguish morphologically, and have occasionally been treated as syno-

nyms [38,63]. Alternatively, this sequence could represent a new cryptic species. Although

further study is required, the sequence clusters in L. furcilliger may represent cryptic species

with differing depth preferences. In contrast, O. aculeata was relatively well sampled across the

Arctic and Atlantic (n = 28), but no population structure was observed. Larger sample sizes

with broader geographic sampling and examination of additional characters are needed to

explain the higher levels of intraspecific variation observed in these species. Lastly, L. hexactis

Fig 6. Divergences at COI for three echinoderm species. Maximum-likelihood (HKY+I) trees illustrating

population structure at COI in three species of Canadian echinoderms: A) Crossaster papposus, B) Pteraster

militaris and C) Solaster endeca. Sequence number is presented in brackets for each clade. Scale bars

represent percent sequence divergence.

doi:10.1371/journal.pone.0166118.g006
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was represented by two BINs in British Columbia, a result that supports prior work which has

highlighted cryptic complexes in several Leptasterias species using both allozyme analysis [64]

and other molecular techniques [65,66].

Patterns of divergence in a species-rich genus

Preliminary results suggest that there are over 100 species in the genus Henricia with particu-

larly high levels of diversity in the NE Pacific (M. Strathmann and D. Eernisse pers. comm.).

Closely related species in this genus often show subtle morphological differences and a ten-

dency to hybridize, making identifications exceedingly difficult [40,67,68]. Although Henricia
exhibits variable reproductive strategies ranging from brood-protection to pelagic lecithotro-

phy [39,69,70], challenges in species identification have made it difficult to ascertain if this var-

iation occurs between or within species. The amphi-boreal distributions of H. cf. oculata and

H. sp. AAB9183 suggest that these species possess pelagic larvae, but do not rule out brooding

because rafting by adults may also facilitate gene flow [71]. Although the present results sug-

gest that DNA barcoding can advance understanding of species boundaries in this genus,

future work should also incorporate nuclear markers to probe for evidence of hybridization.

Conclusions

This study represents an important first step in the development of a DNA barcode library for

the Canadian echinoderm fauna. However, additional sampling is needed, particularly in the

deep-sea, as almost half of the fauna occur at depths greater than 200m with approximately

30% inhabiting depths greater than 1500m [37]. Continued expansion of the barcode reference

library for echinoderms will greatly enhance the utility of DNA barcoding as an identification

tool in support of a range of ecological, systematic and biodiversity studies.
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