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Recent experiments exhibit a rate dependence for granular shear such that the stress grows linearly in

the logarithm of the shear rate, _�. Assuming a generalized activated process mechanism, we show that

these observations are consistent with a recent proposal for a stress-based statistical ensemble. By

contrast, predictions for rate dependence using conventional energy-based statistical mechanics to

describe activated processes, predicts a rate dependence of ð lnð _�ÞÞ1=2.
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Understanding disordered solids, such as foams, glasses,
polymers, colloids, and granular materials is a great chal-
lenge for statistical physics. Several of these systems, in-
cluding granular materials, fall outside the rubric of con-
ventional statistical mechanics because they are dissipa-
tive. But, these materials exhibit well defined statistical
distributions. Several novel approaches have been recently
proposed [1–8] to characterize the statistics of these dis-
sipative materials. We focus on testing one of the proposed
statistical frameworks, the force or stress-based ensembles
[5–8], and specifically the stressed-based ensemble hy-
pothesized by SH and BC [7,8] to account for the coupling
between forces and geometry. Here, we test this hypothesis
by showing that it can account for experimentally observed
logarithmic strengthening with increasing shear rate in
slowly sheared granular systems. Many models of slow,
dense granular flows assume that the internal stresses are
independent of shear rate. Linear rate dependence for shear
stresses occurs for Newtonian fluids. Nonlinear depen-
dence on rate is common in non-Newtonian fluids, as well
as in the ‘‘glassy’’ systems noted above [9,10]. The stress-
based ensemble offers an explicit framework for analyzing
the rheology of such nonthermal, glassy systems.

Recent 2D [11] and 3D [12] experiments on sheared
dense granular materials, showed mean stresses that grow
linearly with lnð _�Þ, where _� is the shear rate. Indeed, rate
dependence spans many decades in _�, as seen in Fig. 1,
which show time-averaged stresses acquired in a 2D
Couette shear experiment that is sketched in Fig. 1.
Figure 2 shows typical traces of stress vs time for several
different shear rates, _�. These data have also been acquired
for various packing fractions, �, relatively near the critical
packing fraction,�c, below which the system is unjammed
[13,14] and shearing stops.

We construct a model for the behavior of the force
fluctuations seen in the Couette shear experiments. The
first model premise is that the shearing process causes
buildup of inhomogeneous stress structures, such as force
chains, which fail when they reach a critical yield stress. A
blowup of a typical time series for the stress in Fig. 3 gives
a good flavor of this process.

The actual failure process is complex except very near
jamming (� ’ �c), where there are typically only one or
two visible force chains in an observation region. More
generally, for � much larger than �c, there is a (strong)
force network, and when a stress drop occurs, it is typically
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FIG. 1. Top, sketch of Couette shear apparatus, not to scale.
R0 ¼ 19:2 cm. Data are for small or medium shearing wheels,
where Ri ¼ 6:7 cm=5:3 cm. Particles are either circular or pen-
tagonal in cross section, and have dimensions between 0.7 cm
and 0.9 cm. Bottom: Data for the mean stress in a segment of a
2D granular Couette experiment containing roughly 200 parti-
cles vs shear _�. Data (normalized by �dc ’ 4:11 Nm�1) are for
different packing fractions � relative to the critical packing
fraction, �c, where stresses fall to zero. Symbols are: circles:
���c ¼ 0:0012, squares: ���c ¼ 0:0091, diamonds: ��
�c ¼ 0:0152, upward pointing triangles: ���c ¼ 0:0189,
left-pointing triangles: circles: ���c ¼ 0:0226. We also con-
sider other data (below) from experiments by Hartley and
Behringer [11].
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concentrated on a subset of grains on a more or less linear
region of the force network, often extending for many
grains. The stress drop is very fast relative to the buildup,
indicating a failure of part of the network, while much of
the remaining network is only weakly affected. We use the
common term ‘‘force chains’’ to refer to segments of the
strong force network that exhibit the force buildup and
failure process that is the fundamental origin of granular
force fluctuations, but we do not consider the specific
origins of the failures (e.g., shear-transformation-zone
events [15], force chain buckling [16], etc.). Rather, we
explore the role played by the background of force fluctu-
ations generated during the buildup and failure process. We
ask whether the effect of these fluctuations can be de-
scribed in terms of a stress-based ensemble. We exploit
the fact that force changes following failure are localized to
force chains, with a much weaker effect on the rest of the
system.

We expect that a chain will fail if the force or stress on it,
�, exceeds a characteristic value�m. This is reminiscent of
Coulomb failure, but refers to failures of localized struc-
tures, with no strict frictional analogy. We begin by con-
sidering a single event consisting of the birth-to-death

cycle of a single force chain, relevant to systems with � ’
�c, and then return to an accounting for multiple events
occurring in a given observation region for packings with
� � �c.
A key premise of the model is that the failure is an

activated process aided by stress fluctuations, similar to a
thermally activated escape from a potential well. The
potential well is replaced by a stress trap that models the
mesoscale strong force network, and chain failures corre-
spond to escape from a trap. The fluctuations of thermal
equilibrium are replaced by fluctuations of stress in the
network, characterized by a temperaturelike quantity [8].
These fluctuations occur as the granular assembly moves
through a series of states at mechanical equilibrium. For
thermally activated processes, the rate of escape is propor-
tional to e��Ebarrier , where � ¼ ðkBTÞ�1 is the inverse tem-
perature and Ebarrier is the barrier height. To construct a
framework for activated dynamics in systems where the
fluctuations are athermal stress fluctuations, we appeal to a
recently developed statistical framework for granular as-
semblies [7,8]. In this framework, the ensemble of me-
chanically stable states is defined by a Boltzman-like
probability distribution:

P� ¼ ð1=ZÞe���� ; (1)

where �� ¼ S��� is an extensive quantity related to the
stress of the configuration �, and S� is the area occupied by
the grains [7,8]. In Eq. (1), � is the analog of the inverse
temperature, �, and characterizes the fluctuations. In anal-
ogy with thermally activated processes, the probability per
unit time of chain failure is then given by

Pf ¼ A exp½���barrier�: (2)

Assuming that the area fluctuations are small compared to
the stress fluctuations (the area is fixed in the experiments
discussed above), the effective barrier to be surmounted by
a force chain with a stress � on it becomes �barrier ¼
Sð�m � �Þ, and the failure rate (per unit time) is

Pf ¼ A exp½�ð�m � �Þ=�oÞ�: (3)

We have used �0 to denote 1=ð�SÞ.
Both A, the attempt frequency, and�o may depend on _�,

but to lowest order, we will treat these as constants. We
expect that the stress on a force chain increases linearly in
time until a chain fails (e.g. Fig. 3). Thus,

� ¼ �0t ¼ � _�t; (4)

where � is a measure of rate of stress increase per unit
shear deformation, which we also assume is a constant.
With this picture, the force chain loads up steadily in time,
but the probability of failure depends on the closeness of �
to �m. If � � �m, the probability of failure/unit-time
should be low, but as � approaches �m, the probability
of failure should become large. A range of parameters
where the process is strongly activated is A � _�, and
�m � �o, the analog of the low-temperature limit of a

FIG. 3. Blow up of time series data for the stress at _� ¼
0:0533 mHz showing stress fluctuations over 0.2 rotations of
the inner shearing wheel. The data indicate the approximately
linear loading up of force structures and their more rapid failure.

FIG. 2. Stress time series for several _� (mHz) for the smaller
Ri.
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thermally activated process. This limit likely applies to the
experiments since the time-dependence of the stress is
dominated by slow buildup and rapid release. This is the
regime we focus on in this work. The assumption of
strongly activated behavior is also consistent with the
fact that the experiments suggest logarithmic rate depen-
dence over many decades of _�, without a crossover to
different behavior at low _�.

We treat the loading up of the networks in a probabilistic
manner. If the probability for the chain to survive until time
t without failing is PsðtÞ, then

Psðtþ dtÞ ¼ PsðtÞð1� PfðtÞdtÞ; (5)

or

P�1
s dPs=dt ¼ �Pf: (6)

We first consider the idealized situation of isolated chains,
so that we need only consider one such chain at any given
instant, and focus on the evolution of stresses from the
formation of the chain to its failure. The time average
moments of � are

�� n ¼ ð1=TÞ
Z T

0
dtð�ðtÞÞn

¼
Z

d�Psð�ÞPfð�Þ
Z �

0
dtð�ðtÞÞn=

Z
d�Psð�ÞPfð�Þ�;

(7)

where we have used, T ¼ R
d�Psð�ÞPfð�Þ�. Defining

h�ni ¼ R
d�Psð�ÞPfð�Þð�ðtÞÞn, we can write ��n ¼

h�nþ1i=ððnþ 1Þh�iÞ The above equation reflects an en-
semble average over chains surviving up to time � and
failing within � to �þ d�, with probability Psð�ÞPfð�Þ. We

can use Eq. (6) to write:

h�ni ¼ �
Z

ð�ðtÞÞnðdPs=d�Þd�: (8)

Introducing the dimensionless time, � ¼ _��, we can write

d lnðPsÞ=d� ¼ �B expð��=�oÞ; (9)

where we have absorbed some of the constants into a single
expression B ¼ ðA= _�Þ expð��m=�oÞ. Integrating Eq. (9),
using Psð0Þ ¼ 1, and integrating Eq. (8) by parts, we can
write h�ni as
h�ni ¼ n�n

Z
�n�1 exp½ðB=pÞð1� expðp�ÞÞ�d�: (10)

Here we define p ¼ �=�o. In the special case n ¼ 1, it is
possible to relate this integral to known functions [17], but
this does not appear to be true for the general case, and it is
now convenient to introduce a dimensionless rate, s ¼
p=B:

s ¼ ð _��Þ expð�m=�oÞ=ðA�oÞ: (11)

Differentiating h�ni with respect to s yields, after a bit of
algebra:

sdh�ni=ds ¼ �h�ni=sþ n�oh�n�1i: (12)

To calculate the time-averaged stress ��, we need to calcu-

late h�i and h�2i. The average h�i,
dh�i=ds ¼ �h�i=s2 þ �o=s: (13)

We are concerned with the strongly activated regime of
A � _� and �m � �0, s � 1, which justifies an expansion
involving s and its logs. In lowest order when s � 1:

h�i ’ �o lnðsÞ þ C; (14)

or

h�i ¼ �m þ �o lnð�=�oÞ þ �o lnð _�=AÞ þ C1; (15)

where C1 is a constant of integration. Similarly, keeping
the leading terms in s, the expression for h�2i is
dh�2i=ds ’ 2�0h�i=s; h�2i ¼ �2

0ðlnsÞ2 þ C2; (16)

where C2 is another integration constant. Assuming the
integration constants are much smaller than lnðsÞ,

�� ¼ h�2i
h�i ’ �0 lns: (17)

In fact, we can now see if omitting the term �h�i=s2 at
lowest order is self consistent. We estimate h�i ’ �m,
and then obtain a ratio of the two terms on the right
side of Eq. (13): ½h�i=s2�=½�=ðspÞ� ’ ð�m=�ÞðA= _�Þ�
expð��m=�oÞ. Indeed, this ratio should be small, so the
dominant rate effect on the mean stress should be a loga-
rithmic stengthening.
We now turn to how the mean, i.e., long-time averaged

stresses would be manifested in a shear experiment. In the
2D Couette experiments [11], force time series are ob-
tained in a region comprising roughly 10% of the whole
system. In 3D experiments [12], pressure measurements
are made over an area which contacts several tens of
particles. In both cases, the mean stress is computed as a
time average. Here, we focus on the 2D experiment, since
it has yielded data over a range of densities. If� were such
that on average only one force chain existed at a time, then
our analysis so far would yield the mean stress. But in a
typical case, it is necessary to account for the mean number
of chains (or failure events), Nð�Þ, generated per time
interval or angular displacement in the region of interest.
To lowest order, this is simply a function of�. In principle,
we can determine this quantity and hence �o in order to
compare to predictions from the stress ensemble [7,8]. For
instance, from recent experiments by Sperl et al. on the
same 2D Couette system [18], we estimate (at fixed _�)
Nð�Þ / ð���cÞa and � / ðð���cÞb, where a ’ 2 and
b ’ 1. Data from Hartley et al. [11], (e.g., Fig. 1) yield
Nð�Þ�o from the slope of �=�DC vs lnð _�Þ. Unfortunately,
the current data is not sufficiently precise to give a good
determination of �o by this process.
Nevetheless, Eq. (18), with the above �-dependent cor-

rections, makes a prediction, the key result of this work:
�� / lnð _�Þ, with a proportionality constant of �o, multi-
plied by Nð�Þ. Qualitatively, the strengthening of the
material with shear rate occurs because the failure proba-
bility per unit time for a given ð�m � �Þ=�o is indepen-
dent of _� but the stress buildup grows linearly with _�.
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Thus, there is a competition between stress buildup and
failure. If the failure rate were independent of � (large �0

limit), then, from Eq. (4) the average stress would grow
linearly with the shear rate, as in Newtonian fluids. In the
opposite limit of failure occurring only if the force chains
are loaded up to �m (�0 ! 0 limit), there would be a fixed
time / 1= _� between failures and the average stress would
become independent of the shear rate. The exponential
increase of the failure rate with � leads to the logarithmic
strengthening. Interestingly, Eq. (12) indicates a much
weaker rate dependence for the variance, V ¼ h�2i �
ðh�iÞ2: dV=ds ¼ ð�V þ ðh�iÞ2Þ=s2.

The distribution of stress drops, ��, for each ‘‘ava-
lanche’’ in a time series is sensitive to the distribution of
�m, which can be calculated exactly [10,19] for an experi-
mentally realistic [20] exponential distribution of �m:

e��m=�
0
m . For � _�=�0 � Aðe��=�0 � 1Þ, the distribution is

Pð��Þ ¼ e��=�0

�
1

e��=�0 � 1

�ð1þ�0=�
0
mÞ
; (18)

which we have fitted to the experimental data for stress
drops, ensuring that the chosen data meet the criterion for
which Eq. (18) is applicable. Figure 4 shows representative
data at ���c ¼ 0:01373. The ratio �0=�

0
m, follows by

fitting the exponent of the power law regime, and �0
m can

be estimated from a fit to the exponential tail. We use these
values to constrain the fitting to the full form of Eq. (18).

The present analysis is reminiscent of the soft glassy
rheology (SGR) models [9,10] with the key distinction that
the energy and noise temperature x of the SGR are replaced
by stress and 1=� in the stress ensemble. The SGR model
incorporates disorder through a distribution of activation
barriers, which in the current work translate to a distribu-
tion of �m. The average stress is not sensitive to the dis-
tribution of �m in the large s limit, and scales as ( ln _�). The

difference with the SGR result, ðx ln _�Þ1=2 is due to the
replacement of an energy barrier by a stress barrier [19].
This analysis is a first step towards understanding linear

logarithmic strengthening in granular materials which dis-
tinguishes granular rheology, with dissipative interactions,
from that of other materials. A key point is that a stress
ensemble rather than a energy ensemble yields the correct
rate scaling. Characterization of mesoscale structures such
as force networks, which are clear in experiments, and their
connection to macroscopic variables such as stress remains
a great challenge for the field. Adopting the framework of
the SGR model with its mean-field approach to correla-
tions but with the noise temperature and energy replaced
by their counterparts from the stress-based ensemble
should provide a fruitful avenue for building these
connections.
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FIG. 4. Fits (solid lines) to Eq. (18) of experimental data for
�� at ���c ¼ 0:01373, and _�’s of 0.066 mHz (circle),
0.6645 mHz (square) and 13.307 mHz (triangle). The fits yield
�0 ’ 2:0, independent of _� and �0

m=�0 ’ 1:58, 1.82, 2.0 (lowest
to the highest value of _�).
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