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ABSTRACT

Chimera states are spatiotemporal patterns in which coherence and incoherence coexist.We observe the coexistence of synchronous (coherent)
and desynchronous (incoherent) domains in a neuronal network. The network is composed of coupled adaptive exponential integrate-
and-�re neurons that are connected by means of chemical synapses. In our neuronal network, the chimera states exhibit spatial structures
both with spike and burst activities. Furthermore, those desynchronized domains not only have either spike or burst activity, but we
show that the structures switch between spikes and bursts as the time evolves. Moreover, we verify the existence of multicluster chimera
states.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5087129

Many coupled dynamical systems exhibit complex spatiotem-
poral patterns characterized by coexistence of coherence and
incoherence regions. These patterns were observed in chemical

systems, mechanical oscillator networks, and electronic circuits.

Neuronal systems can exhibit coexisting domains of coher-

ence and incoherence behavior. We build a network composed

of adaptive exponential integrate-and-�re neurons. This neu-

ron model mimics the dynamics of the membrane potential.

Our neuronal network has neurons that can display spiking

or bursting activities. We identify chimera states with spa-

tiotemporal domains separated into synchronous and desyn-
chronous behaviors. In addition, we show the presence of chimera
states whose neurons switch in the time between spikes and
bursts.

I. INTRODUCTION

In dynamical systems, the word chimera has been used to
describe the coexistence of coherent and incoherent patterns.1,2

Chimera states were �rst observed by Umberger et al. in 1989.3

Kuramoto and Battogtokh4 reported spatiotemporal patterns of
coexisting coherence and incoherence in nonlocally coupled phase
oscillators.5

There are experimental evidences of chimera states in cou-
pled chaotic optoelectronic oscillators,6 mechanical systems,7,8 net-
work of electrochemical reactions,9 and populations of coupled
chemical oscillators.10,11 Totz et al.12 reported the existence of spi-
ral wave chimera states in coupled chemical oscillators. They car-
ried out experiments with coupled Belousov–Zhabotinsky chemical
oscillators.
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Numerical analysis of coupled systems has showed the coex-
istence of coherent and incoherent domains13,14 and basin rid-
dling in chimera dynamics.15 Chimera states were found in
simulations of di�erent neuronal networks, e.g., coupled Hind-
marsh–Rose neurons,16,17 coupled FitzHugh–Nagumo neurons,18,19

coupled Hodgkin–Huxley neurons,20,21 network of integrate-and-�re
neurons,22,23 and network composed of heterogeneous neurons.24

Rothkegel and Lehnertz25 found chimera states in small-world net-
works of excitatory integrate-and-�re-likemodels.26Hizanidis et al.27

observed synchronous, metastable chimera states in a modular orga-
nization of the C. elegans neuronal network. Ren et al.28 showed
the coexistence of di�erent periodic states in the Hindmarsh–Rose
neuron network with both chemical and electrical connections.
Santos et al.29 reported the presence of chimeras in the neuronal net-
works. They considered a network model based on the cat cerebral
cortex and identi�ed two di�erent chimera patterns characterized
by desynchronized spikes and bursts. In the human brain, there are
analogies between chimera state collapses and epileptic seizures.30

In this paper, we study a network of adaptive exponential
integrate-and-�re neurons.31 Brette and Gerstner32 introduced the
adaptive exponential integrate-and-�re (AEIF) as a simple model
that mimics the membrane potential of the neuron in vivo. Our
neuronal network is a ring of coupled AEIF, in which the neurons
are connected by chemical synapses. We observe the existence of
chimera states with desynchronized spikes or bursts. The main nov-
elty of our work is to show chimera states whose neurons change
between spike and burst activities as the system evolves. In addition,
we observe multicluster chimera states that were found by Yao et al.33

in Kuramoto networks of phase coupled oscillators. In our neuronal
network, the multicluster chimera states are composed not only of
temporal changes between spikes and bursts but also of domains with
spike and burst patterns.

This paper is organized as follows: Sec. II introduces the neu-
ronal network model. In Sec. III, we show and analyze the time
evolution of chimera states in our neuronal network. In Sec. IV, we
draw our conclusions.

II. ADAPTIVE EXPONENTIAL INTEGRATE-AND-FIRE

NEURONAL NETWORK

We build a network composed of N coupled AEIF neurons.
The neuron i is symmetrically connected with R nearest neigh-
bors on either side. The neuronal network is composed of adaptive
exponential integrate-and-�re neurons, and it is given by

Cm

dVi

dt
= −gL(Vi − EL) + gL1T exp

(

Vi − VT

1T

)

− wi + Ii + (VREV − Vi)

i+R
∑

j=i−R,j6=i

gj,

τw
dwi

dt
= a(Vi − EL) − wi, (1)

τs
dgi

dt
= −gi,

where Vi is the membrane potential, wi is the adaptation current,
and gi is the synaptic conductance. We consider membrane capac-
itance Cm = 200 pF, resting potential EL = −70mV, leak conduc-
tance gL = 12 nS, slope factor 1T = 2mV, spike threshold potential
VT = −50mV, adaptation time constant τw = 300ms, level of sub-
threshold adaptation a = 2 nS, synaptic time constant τs = 2.728ms,
injection of current Ii = 500 pA, and synaptic reversal potential
VREV = 0mV (excitatory synapses). When Vi is larger than a thresh-
old, Vi > Vthres,34 Vi, wi, and gi are updated following the rules

Vi → Vr,

wi → wi + b, (2)

gi → gi + gex,

where Vr = −58mV, b = 70 pA, and gexc is the intensity of the
excitatory synaptic conductance.

Depending on the control parameters, the AEIF neurons can
generate spike or burst �rings, and the network can also exhibit
synchronous and desynchronous behavior. In all simulations, we
consider that the individual uncoupled neurons perform spike activ-
ities for the chosen parameters. With regard to the initial conditions,
Vi and wi are randomly distributed in the intervals [−58,−43]mV
and [0, 70] pA, respectively. We analyze the solution of the neuronal
network model during 2 s and discard a transient time equal to 4 s.

To identify spike or burst activities, we calculate the coe�cient
of variation (CVi),

CVi =
σISIi

ISIi
, (3)

where ISIi is the mean value of the time di�erence between two
consecutive �rings (interspike interval) of the neuron i and σISIi is
the standard deviation of ISIi. In Fig. 1, we see the action potential
of the neuron i for (a) spikes (CVi = 0.008), (b) spikes and bursts
(CVi = 0.529), and (c) bursts (CVi = 0.833).

The mean value of CV (CV) is given by

CV =
1

N

N
∑

i=1

CVi. (4)

FIG. 1. Action potential of the neuron i in our neuronal network for (a) spikes
(CVi = 0.008), (b) spikes and bursts (CVi = 0.529), and (c) bursts (CVi =

0.833).
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FIG. 2. Parameter space R × gex for CV, where we consider N = 1000 coupled

AEIF neurons and 50 different initial conditions. The regions have spiking (CV <

0.5), bursting (CV ≥ 0.5) neurons, and the coexistence of bursting and spiking
can be seen according to the color.

For CV < 0.5 and CV ≥ 0.5, the neuronal network exhibits spikes
and bursts, respectively.35 Figure 2 shows the parameter space
R × gex for CV in color scale. The regions for CV < 0.5 and
CV ≥ 0.5 correspond to spike and burst activities, respectively.
In the transition region, we identify the coexistence of spike and
burst behaviors for di�erent neurons in the network. Synchronous
and desynchronous behaviors also occur for di�erent values as R
and gex.

III. CHIMERA STATES

In the chimera states, there are spatiotemporal patterns charac-
terized by the coexistence of coherent and incoherent domains. The
spatial coherence and incoherence can be identi�ed by the local order
parameter36

Zj(t) =

∣

∣

∣

∣

∣

∣

1

2δ + 1

∑

|j−k|≤δ

eiφk(t)

∣

∣

∣

∣

∣

∣

, k = 1, . . . ,N. (5)

The phase is de�ned as

φk(t) = 2πm + 2π
t − tk,m

tk,m+1 − tk,m
, (6)

where tk,m is the time of the mth spike of the neuron k, tk,m < t
< tk,m+1, and the spike happens for Vk > Vthres. In our simulations,

FIG. 3. Time evolution of Vi and Zi of each neuron i for incoherent pattern for
R = 20 and gex = 0.01 nS [(a) and (b)], synchronized behavior for R = 48 and
gex = 0.21 nS [(c) and (d)], and chimera state for R = 20 and gex = 0.44 nS
[(e) and (f)].

we use δ = 5 and consider a pattern to be synchronizedwhenZj(t) >

0.9. The coherent (synchronized) and incoherent (desynchronized)
domains are identi�ed with a minimum size equal to 2δ + 1 neigh-
bors.

In Fig. 3, we present di�erent types of dynamic behavior by
varying the parameters R and gex. Figures 3(a) and 3(b) display
the neuronal network having an incoherent pattern. Depending on
the parameters, the network can exhibit synchronization [Figs. 3(c)
and 3(d)]. We �nd chimera states with coexisting synchronous and
desynchronous domains, as shown in Figs. 3(e) and 3(f).

Our AEIF neuronal network can exhibit di�erent �ring pat-
terns, such as spikes, bursts, or both spikes and bursts. Figure 4
exhibits the values of Vi, Zi, and CVi for chimera with spiking
neurons [Figs. 4(a)–4(c)] and chimera with bursting neurons [Figs.
4(d)–4(f)].

A phenomenon not seen before is that the chimera states keep
switching, in the desynchronous domains, between spikes and bursts
as the system evolves in time, which we call spike-burst chimera
(SBC). The SBC is found through Zj(t) and CVi. We identify SBC
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FIG. 4. Vi and Zi in color scale for t × i and CVi × i. Chimera with spiking neu-
rons for R = 40 and gex = 0.22 nS [(a)–(c)], and chimera with bursting neurons
for R = 24 and gex = 0.46372 nS [(d)–(f)].

when the CVi values are in the interval [0.2, 0.65]. In Fig. 5, we cal-
culateVi,Zi, and CVi for parameters when the SBC states are present.
Figures 5(a)–5(c) display a SBC with synchronized spikes for R = 40
and gex = 0.233 nS. The SBC can have synchronized bursts, as shown
in Figs. 5(d)–5(f) for R = 20 and gex = 0.48 nS.

FIG. 5. Vi and Zi in color scale for t × i and CVi × i. The SBC with synchro-
nized spikes for R = 40 and gex = 0.233 nS [(a)–(c)], and synchronized bursts
for R = 20 and gex = 0.48 nS [(d)–(f)].

FIG. 6. (a) Vi , (b) Zi in color scale for t × i, and (c) CVi × i. The figure exhibits
multicluster chimera states, where we consider R = 21 and gex = 0.45 nS.

In Fig. 6, we show the presence of not only SBC, but also
multicluster chimera states.33 The network has groups of neurons
with di�erent patterns, such as spikes (CVi ≤ 0.20), bursts CVi ≥

0.65), and a mixture of spikes and bursts (0.20 < CVi < 0.65). Beur-
rier et al.37 reported that the transition from spike to mixed burst
activities in subthalamic nucleus neurons of rat and primates is
one of the features of Parkinson’s disease. There are two groups
with spiking neurons, where one group has 217 neurons and the
other has 134 neurons, as well as one group with 511 bursting neu-
rons. The SBC is identi�ed by means of three groups with 22, 105,
and 11 neurons that change between spike and burst patterns over
time.

Figure 7(a) shows in the parameter space R × gex the regions
for chimera state (CS) and spike-burst chimera (SBC) states, as well
as the regions where there are no chimera states (NC). We perform
an average of 50 di�erent random initial conditions to compute each
point in the parameter space. The regions in blue and white col-
ors represent CS and NC, respectively. The small region in red color
denotes the values of R and gex in which SBC is observed. Figure 7(b)
displays the values of CV as a function of gex for R = 25. We observe
that CV increases in the transitions from NC to CS and from CS
to SBC, showing a scenario from spike to burst activities. When we
�x gex and vary R, we �nd a similar behavior. There are two disjoint
regions with chimera states (CSs) in Fig. 7(a), where region II has a
standard deviation of ISI greater than that of region I, consequently,
CV in region II is greater than that in region I, as shown in Fig. 7(b).
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FIG. 7. (a) Parameter space R × gex showing regions with chimera (CS) and
spike-burst chimera (SBC), as well as without chimera (NC), where we consider
N = 1000 coupled AEIF neurons and 50 different random initial conditions. (b)

CV as a function of gex for R = 25 [green dashed line in Fig. 7(a)].

IV. CONCLUSIONS

We study an adaptive exponential integrate-and-�re neuronal
network. In the network, each neuron is symmetrically coupled to
the nearest neighbors. The connectivity between the neurons is given
by excitatory synapses. Depending on the control parameters, the
neurons can exhibit spike or burst activities.

Research studies have reported the coexistence of spatiotem-
poral patterns, known as chimera states. There are evidences of
chimera states in the brain, e.g., unihemispheric slow-wave sleep in
somemammals. The coexistence of synchronous and desynchronous
domains has been observed in neuronal network models.

In our network, chimera states are found by varying the num-
ber of nearest neighbors and the excitatory synaptic conductance.
Depending on the coupling strength, multichimera state can arise for
small R values.38 We verify the existence of di�erent types of chimera
states according to the spike and burst patterns. In this work, we show
the existence of chimera states with neurons that change between
spike and burst activities as the system evolves in time. Moreover,
we also identify multicluster chimera states composed of di�erent
groups of neurons with spike and burst patterns, as well as spikes and
bursts changing over time.
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