
3

Evaluating the impact of Transport Mechanisms on Web Performance

for Effective Web Access

A. I. C. Mohideena , M. Rajiullahb , R. Secchia , G. Fairhursta , A. Brunstromb, F.

Weinrankc

aUniversity of Aberdeen, UK

bKarlstad University, Karlstad, Sweden
cFHM, Muenster, Germany

Abstract

This paper explores the design trade-offs required for an Internet transport

protocol to effectively support web access. It identifies a set of distinct transport

mechanisms and explores their use with a focus on multistreaming. The mechanisms are

studied using a practical methodology that utilise the range of transport features

provided by TCP and SCTP. The results demonstrate the relative benefit of key

transport mechanisms and analyse how these impact web access performance. Our

conclusions help identify the root causes of performance impairments and suggest

appropriate choices guiding the design of a web transport protocol. Performing this

analysis at the level of component transport mechanisms enables the results to be

utilised in the design of new transport protocols, such as IETF QUIC.

1. Introduction

This paper explores the transport protocol mechanisms required to realise a

modern high-efficient web client. The original specification of HTTP/1.0 serialised the

web requests onto a single transport connection, that was assumed to be offered by TCP

and originally supported simple web pages with text and a few images. However, web

pages have evolved into large highly complex structures [1] comprising a collection of

inter-dependent resources. Recent studies [2, 3, 4] have found that the dependency graph

for web page resources (and corresponding scheduling order) play a significant role in

determining the overall web performance. The order of delivery and processing can

therefore be expected to impact the time to display a page, and it is important to

understand how transport mechanisms contribute to overall performance. A problem

known as Head of Line Blocking (HoLB) occurs when the chain of processing is

delayed while waiting for a critical resource to be received over a transport connection

[5]. HoLB plagued the performance of early web clients.

To address these problems, various techniques have been employed to accelerate

page download [5]. One approach increases the parallelism of resource download, i.e.,

requesting an HTTP resource while other resources are being downloaded. Therefore,

since early specifications of HTTP/1.1, browsers have used a number of TCP

connections per server (e.g., the current default is six in Mozilla Firefox and Google

4

Chrome) and have often adopted a proactive policy for connection management,

including closing/reopening slow TCP connections and sometimes requesting the same

resource over multiple connections. In addition, servers often choose to distribute

webpages across multiple domains (even for the same origin content), a practice known

as sharding. A client opens multiple connections for shared content [6]. This further

increases the required number of simultaneous transport connections.

Although parallelism has benefits, introducing a large number of transport

connections is not without drawbacks. First, the client-server session may experience a

large number of connections that do not utilize the full capacity of a path (e.g., a

connection may transfer only a small resource), which reduces efficiency due to the

overhead required to open and maintain each connection. Second, breaking the

transmission flow into many independent connections reduces the ability to provide

congestion control, making web traffic more aggressive towards other competing traffic

[7, 8, 9]. Even so, it is still common for HTTP/1.1 clients to use multiple parallel

connections to the same web server [10]. One reason for the continued use of parallel

connections stems from the stream-oriented design of the TCP transport protocol, which

does not provide mechanisms to support sending multiple objects over a single flow.

A number of TCP optimisations have also emerged to improve web performance

(larger Initial congestion Window (IW10) [11], TCP Fast Open (TFO) [12], Recent

ACKnowledgment (RACK) [13], etc.). However, these optimisations focus principally

on the initial congestion control behaviour of TCP, rather than on managing the

concurrent transmission of web resources. For example, IW10 propose an increase to the

initial TCP congestion window (cwnd) that can reduce the time to start a web

transaction, while TFO proposes eliminates one round-trip from the initial TCP protocol

handshake. In its simplest form, each transport connection is closed when the requested

resource is received. HTTP/1.1 [15] also allowed a client to keep the transport

connection open for subsequent requests (known as HTTP persistence), but not finally

widely realised until SPDY [16] and HTTP/2 [17] emerged.

The Stream Control Transport Protocol, SCTP [14] provides an alternative to

TCP’s linear stream by enabling multistreaming. This provides an alternate way to

realise parallelism in the transport layer. SCTP was designed to transport signaling

information and has not been widely supported for web use. A multistreaming approach

can identify sub-streams and relate these to the objects being transported [18].

Persistence is also a feature of an SCTP Association. This enables SCTP to model the

transport behaviour with HTTP/1.1.

HTTP/2 introduced a framing layer that helps bidirectional multiplexing of

interleaved requests and responses carried over a persistent TCP connection [17]. This

layer is key to address HoLB issues associated to various types of interactive web

applications (e.g. webRTC). Immediate Data (I-Data) [19], a recent addition to SCTP,

refines this approach to allow interleaving also of the transmission units of application

messages. This could provide finer control of multistreaming and improve the

parallelism.

While this paper analyses interleaving only at a request/response level, it also

explores the impact of parallel scheduling within network nodes. Our objective is to

evaluate how web resource transmission parallelism is affected by the interaction

5

between the transport and multi-queue scheduling mechanisms, such as the recently

proposed Flow Queuing (e.g. FQ-CoDel [20]).

The contribution of this paper is three-fold: (a) it uses a web traffic workload

based on both a dependency graph and the processing time for HTTP objects at a web

client to explore the benefits of multistreaming; (b) it provides new data examining the

impact of RTT and bottleneck capacity on web performance; and (c) it seeks to

understand the contribution of buffering within the network and the impact of Active

Queue Management (AQM) on transport parallelism and multistreaming.

While it examines how recent mechanisms available in TCP and SCTP can

enhance the performance of web traffic, a single paper cannot cover all recent transport

innovations. For a broader picture, we refer the reader to companion papers [21, 22, 23]

that discuss other approaches, including the multipath made available in Multipath TCP

(MPTCP) and the Concurrent Multipath Transmission (CMT) of SCTP.

The remainder of this paper is organised as follows: Section 2 describes our web

model and test methodology. The experimental tool and the experiment are described in

section 3, followed by performance analysis in section 4, the impact of AQM on the

transport is discussed in section 4. The paper concludes in section 7.

2. Web Model and Dataset

The analysis explores the performance using a range of transport mechanisms.

This requires a representative workload. We utilised a publicly available web

performance dataset [24], which provides the number and size of HTTP resources

(objects) from 170 recorded web pages. This includes graphs representing the

dependency between HTTP resources and their processing time at the client, enabling

others to repeat our tests if required.

To characterise the web traffic workload, we categorised the web pages

according to the total size of all resources within a page. This total was used to divide

each page into one of six bins (size-ranks), labeled A to F, organised so that each size-

rank held an equal number of web pages, forming statistically significant groups. Table

1 reports the interval of sizes for each size-rank in the second column, and the 5%, 50%

and 95% percentile for the resource size distribution in the 3rd, 4th and 5th column. For

each size-rank, the percentile of the distribution of the number of resources at 5%, 50%

and 95% is also reported in parenthesis. This data shows a correlation between the size

of a page and the number of resources. Also, it shows a wide spread distribution in the

number of resources

6

Figure 1 Distribution of number of resources within a web page by MIME type across the six

size-ranks.

Figure 2 Distribution of time to complete a transfer by MIME type across the six size-ranks.

For example, the number of resources/pages in the smallest size-rank (A) varied

between 1 and 39, whereas the largest size-rank (F) ranged between 49 and 228

resources/page. Pages of similar size may have a quite dissimilar composition. Therefore, it

may not be sufficient to characterise web pages only by their overall size.

The size of the retrieved resources was also correlated to the total web page size, i.e.

larger webpages tend to transport bigger (and often more complex) resources, such as video

or interactive banners, and tend to cluster multiple items in a single resource, e.g., using a

single javascript file to send multiple scripts. However, the distribution of average resource

 1

 10

 100

 1000

Group A Group B Group C Group D Group E Group F

N
o
.

o
f
re

s
o

u
rc

e
s

css
javascript

html
image

 1

 10

 100

 1000

 10000

 100000

Group A Group B Group C Group D Group E Group F

T
im

e
 t
o

 c
o
m

p
le

te
 t
ra

n
s
fe

r
(m

s
)

css
javascript

html

7

size has less spread than the distribution of the number of resources, values given within

square brackets in Table 1 show the average object size at 95% percentile.

To reduce the number of experimental tests our experiments consider only the

webpage with median size for each size-rank. Each size-rank contain all the web pages whose

size is between a minimum and maximum. The range of sizes considered are in non-

overlapping intervals.

Figure 1 categorises resources by their MIME type, showing the four most common

types: text files (HTML), scripts (javascript), style-sheets (CSS) and images (the most

common across all size ranks). We observed very few image URLs, suggesting the

dependency graph grows mainly horizontally (i.e. increasing number of branches originating

from a single resource). Other types contributed less than 2%, including Flash resources,

octet-stream and fonts.

Figure 2 shows the distribution of the time spent by the client to complete the transfer

of a resource (including computation time). This figure excludes images, because these are

terminal nodes in the dependency graph. We observe that for a network path Round Trip

Time (RTT) of a few tens of milliseconds, the computation time was often not negligible

compared to the time to transmit the object time across the network. In these datasets, the

transfer time for web pages represented by largest size-ranks (E, F) was around or above one

second. This non-negligible latency impacts transport performance and is therefore discussed

later in this paper.

3. Tools and Experiment Setup

3.1. Experimental Testbed

Our performance analysis considered two scenarios; 1) a simple path with no

competing traffic and predefined patterns of loss, and 2) a path with competing traffic through

a network bottleneck. The former reveals the impact of transmission rate and propagation

delay, while the latter also considers the impact of a bottleneck and the resulting interaction

between transport congestion control and network buffering.

Group

Name

Size-Rank

(KB)

Size (KB) and

res. At 5%

Size (KB) and

res. At 50%

Size (KB) and

res. At 95%

A 0.05-118 0.05 (1) 23 (6) 109 (39) [3]

B 119-565 129 (3) 325 (21) 532 (67) [8]

C 566-873 567 (6) 690 (25) 846 (69) [12]

D 874-1242 878 (6) 964 (45) 1183 (82) [14]

E 1243-1945 1286 (24) 1546 (55) 1901(119) [16]

F 1946-3315 2070 (49) 2454 (127) 3309 (228) [15]

Table 1: Webpage size and 5, 50 and 95 percentile of number of resources per size-rank. The page rank of the

size is shown in parenthesis. The number of webpage resources of the median case is shown within square

brackets.

Our testbed comprised a set of three computers emulating a web client, the network,

and a web server. All computers had a common hardware configuration of 4 GB RAM and

Intel Core 2 Duo processor (2.6 GHz). The network was emulated by the netem traffic shaper

[25] configured with a bottleneck capacity, delay, buffer size, and packet loss ratio (in

scenario 1).

8

Scenario 2 considered a bottleneck with the default First-In First-Out (FIFO) queuing

provided by Linux and the use of Active Queue Management (AQM), controlled via Traffic

Control (tc) commands. The AQM testbed used CoDel [26] and FQ-CoDel [20] queue

management algorithms and followed the best practices from the bufferbloat community [27].

We followed a methodology described for parameterising the AQM algorithms [28] and

choose the buffer size at the bottleneck as 152ms (corresponding to 127 full-sized packets for

a 10 Mbps capacity link).

Scenario 2 experiments using Flent [29] to understand the real-time response under

load. We created two competing bulk TCP flows that saturate the buffer at the bottleneck for

the entirety of each web experiment. The competing flows used Cubic congestion control.

This setup was used to measure (at steady state) and study the impact of a congested

bottleneck on the web Page Load Time (PLT), as well as to understand the contribution of

AQM.

Our analysis included experiments using a range of symmetric paths at 2 Mbps, 10 Mbps and

100 Mbps. Results for 100 Mbps indicated similar relative performance for different transport

mechanisms. This was also observed in an empirical study at Google [30]. Results for lower

rate paths, at or below 2 Mbps, are known to have a strong dependency on the speed of the

bottleneck, the effect of competing traffic on performance, and link scheduling methods, and

are not the focus of the present paper. The remainder of the paper therefore focusses on a 10

Mbps bottleneck. Similarly, we modelled a range of path RTTs representative of both desktop

and mobile users, drawn from a distribution derived from an empirical study at Mozilla for

both mobile and desktop clients (see Table 3).

The client and server supported TCP (Linux 4.2.0-42 and BSD) and SCTP (BSD). The

same IW was used for TCP and SCTP. Each client used an IW of three packets,

recommended by the IETF and common for windows users. The server used an IW of 10,

common for Linux servers, and an experimental IETF specification. The maximum segment

size was 1460 B.

The multistreaming web server is described in section 3.3. A custom client emulated a

HTTP/1.1 browser (section 3.2), enabling requests with either a number of parallel TCP

connections (1, 6 and 181) or a single SCTP association. The number of streams is not a

significant factor when using a multistreaming protocol, and we allowed up to 100 parallel

SCTP streams. The cost of opening a stream is further discussed in Section 4.4. The key

experiment parameters are summarised in Table 2.

Experiment parameters

Category Factor Range/value

Network RTT

Bottleneck Capacity

Packet loss ratio

20, 50, 100, 200, 800 ms

10 Mbps

No loss, 1.5%, 3%

TCP/SCTP IW

CWND validation

No. parallel TCP flows

No. SCTP streams

client (IW 3), server (IW 10)

no

1, 6, 18

100

1 Common browsers open up to six connection to a single domain, but sharding content across multiple web

servers is also common.

9

Table 2: Parameters used in our experiments.

Percentile Desktop RTT (ms) Mobile RTT (ms)

5 1 11

25 20 44

50 79 94

75 194 184

95 800 913

Table 3: Path RTT from data used in our experiments

3.2. pReplay Web client

Web requests were generated using the pReplay tool [31], developed in C and based

on Epload [24]. Epload generates a resource dependency graph of the web page being

analysed from a packet capture. The dependency graph can be used to mimic the behaviour of

the web browser by generating a request for a web resource only when trigger events of that

have completed. pReplay uses libcurl [32] to replay HTTP traces using HTTP/1.1 over TCP

or a modified version of phttpget [33] extended to support SCTP [34].

The tool uses a dependency graph in JSON format that represents the resource

requests and computation times required to process javascripts, CSS etc. pReplay walks the

dependency graph, starting from the first activity to load the root HTML. When a network

activity is found, pReplay issues a http request for the relevant URL. The tool optionally

simulates the computational activity by waiting for a time determined by the graph. Once an

activity completes, pReplay checks whether all the dependent activities have also completed

and only then commences the next activity. It finishes when all activities in a dependency

graph have been visited.

3.3. Lightweight Web Server

We used a server modified from the lightweight web server thttpd (tiny HTTP

deamon) [35] supporting HTTP/1.1. The server is based on a patch that allowed thttpd to run

over SCTP [36], but only enabled web traffic to use a single stream for each SCTP

Association. This implementation is based on the FreeBDS library libsctp which provides a

Reno-like congestion control and includes support for selective acknowledgments. The server

was extended to enable parallel multistreaming [36], to enable algorithms to allow sharing

transmission opportunities between parallel streams (i.e., sender scheduling using a round-

robin or another algorithm), and support for interleaving large objects (i.e., SCTP I-DATA

[19]).

Page Res. Count Page Size (KB) Av. Res. Size (KB)

Google 8 74 9

Dmm 21 330 15

Siteadvisor 40 701 17

Amazon 53 977 18

Pinterest 6 1548 258

Mediafire 75 2474 33

 Table 4: Statistics for the web pages forming the workloads used in the experiments.

10

4. Web performance using an Unloaded Bottleneck

This section contains a systematic study of web PLT when using HTTP/1.1 over both

TCP and SCTP. Our goal is to understand the conditions that benefit the use of multiple

connections compared to using multistreaming. pReplay was used to measure PLT, the time

between making the first web request and the time either the last response is received or the

last computation is completed. The results present data for an average of 30 runs, plotted with

95% confidence intervals.

Results are presented for websites at the 50th percentile from our web model (Section.

2) as described in Table 4. The dataset processing time [24], was used as an upper bound for

analysing the impact of processing time. Since client platforms continue to evolve in the way

that resources are parsed, we expect this result to represent an upper bound on processing

time. We therefore also plot the PLT with no additional processing time, to present a

minimum bound.

4.1. Impact of Parallelism at the Transport

Figure 3 shows the impact on PLT for the selected number of parallel TCP

connections compared to a single SCTP connection. The picture presents the case of 1 TCP

flow per web connection (i.e. when parallelism is not allowed), the case of 6 TCP flows per

connection as a number represented by most of web browsers, and a large number of TCP

flows (18) where that web connection performance is not affected by the number of parallel

flows. SCTP has no limitation in the number of parallel streams it can open (100 was chosen

to avoid interfering with the ability of SCTP to create new streams). The results in the figure

show the simplest with no processing time dependency and no emulated link loss (tail drop

loss from FIFO router buffers was observed in some experiments).

(a) google

 (b) dmm

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 5

 10

 15

 20

 25

 30

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

11

 (c) siteadvisor

 (d) amazon

 (e) pinterest

 (f) mediafire

Figure 3: PLT for 10 Mbps capacity, no loss, without processing time.

Each transport pipe independently performed start-up, congestion control and loss

recovery. Each TCP transport connection transferred just one single web resource. Our

experiments considered two ways in which this parallelism could be introduced: First, using

parallel TCP connections (each independently managing congestion control) or second using

multiple SCTP streams (where all streams shared a single congestion controller).

Figure 3 shows that when enabled, parallelism used one transport pipe to carry each

resource. This reduced the number of consecutive RTTs required to complete transfer of a

web page, reducing the PLT. An exception may be seen in Figure 3e, where, one, six and

eighteen TCP connections and a multistream SCTP association both have an almost similar

PLT (up to the 100ms RTT case). Pages of large size with fewer resources (large average

object size); the pinterest workload with 6 objects of 258 KB average object size (see Table

4), has a similar PLT with parallelism. We discuss this special scenario later in the AQM

section.

The benefits of parallelism may come at a cost because:

• For a transport protocol with an independently managed congestion control (e.g.

TCP), a higher sending rate can induce congestion at the bottleneck link leading to

collateral damage to other flows that share the bottleneck.

• For a multistreaming transport protocol that uses a shared congestion control (e.g.

SCTP), each stream contributes to the capacity used by the association. This increases

growth of the cwnd, reducing the PLT (Figure 3). When congestion is experienced, a

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 10

 20

 30

 40

 50

 60

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

12

multistreaming protocol will reduce its rate, reducing collateral damage to other flows.

However, this has a negative impact on the protocol’s throughput.

In most cases, (except for the google sites in Figure 3a), a multistreaming approach

provided a smaller PLT than when N parallel TCP pipes were used. The latter consume more

overhead to set-up parallel connections, and create self-induced congestion from concurrency.

For small pages, (e.g. google in Figure 3a), the combined IW provided by N TCP

connections have benefit compared to the single shared IW with multistreaming. However,

again at the risk of more collateral damage.

The PLT for all the web workloads shown in Figure 3 is higher for a larger path RTT.

However, multistreaming has benefit for a higher RTT, where the connection overhead

becomes important (e.g., in Figure 3f, the PLT increases over 282% using 18 TCP parallel

connections, compared to 229% using multistreaming for an RTT of 200 ms to 800 ms).

Web page structure also impacts the PLT. When there is no parallelism, the number of

resources influences the PLT more than the overall page size. This may be seen in Figure 3d,

for 1 TCP, where the Amazon workload (with a larger number of smaller resources) complete

much later than the Pinterest workload in Figure 3e (with fewer larger resources, Table 4).

Therefore, the number of resources and the average size of the objects have more impact on

the overall performance than the total size. Parallelism alleviates this by reducing the delay

from HoLB for pages with many resources (e.g. the PLT for Amazon is lower than that for

Pinterest when either multistreaming or N parallel TCP connections are used).

4.2. Impact of processing time at the client

This section examines the influence of processing time on the PLT, Figure 4. The

additional processing time does not significantly increase the PLT when using a single

connection (1 TCP), where the request overhead for each resource dominates. Parallelism

eliminates this overhead, therefore the processing delay has greater temporal dependency

between resources from the web model [24] and can be observed to have a direct impact on

the PLT (Figure 4). This demonstrates the importance of reducing processing delay when

designing web clients, although the authors did not have any way to evaluate how the model

for processing delay would have changed if a modern web client had been used.

4.3. Impact of loss

Our results also consider the impact of a simple loss model on the PLT (e.g., from link

effects such as wireless interference), see Figure 5. Loss for a single TCP flow (1 TCP) results

in a HoLB delay and reduces the cwnd (reducing throughput). Parallelism reduces the PLT

when using TCP, because a loss only impacts the transport connection and the throughput of

other parallel flows is unchanged.

When using multistreaming, loss only results in HoLB for the (sub)stream that

experiences a loss. However, any loss also impacts the cwnd shared by all streams in an SCTP

Association. The shared congestion control reacts more conservatively, and results in a higher

PLT. If the loss was a result of congestion, this result could have been different, since then

reducing the overall capacity consumed by a client could also help reduce future loss and

ultimately reduce the PLT.

4.4. Discussion of Multistreaming Analysis

A key benefit of multistreaming is the lightweight cost for adding a new stream, which

allows a client to open as many streams as they need. Our use of SCTP therefore considered a

larger maximum number of streams (100) compared to the maximum number of TCP

connections (18). The memory allocated by each TCP/SCTP connection consists of a

13

Transmission Control Block (TCB) of about 700 B, which is much more than needed for a

SCTP stream (32 B) [37]. Although the TCB for an SCTP association can be twice as large as

for TCP, this cost is amortized when multiple streams are used.

Our performance analysis only considered a scenario with added link loss, although

we did observe loss due to from self-induced congestion. We also did not consider alternative

ways to serve the original content, such as domain sharding (to scatter the content across

multiple servers), or image spriting2. These can change the opportunities for parallelism, but

reduce opportunities for multistreaming. Using a single origin server has been recognised as

best practice for HTTP/2 [17], to exploit the benefits of multistreaming.

Our analysis in Section 4 has shown:

• The number of web resources and the average size of a web resource impact the

transport much more significantly than the total page size. The performance of short-

lived flows (small objects) is limited by the growth of the cwnd and is a direct

function of path delay.

• Paths with a shorter RTT may be expected to experience more rapid loss recovery,

e.g., TCP Cubic provides one recovery per pipe (no multistreaming). This is

particularly important for small resources. However, there is also a pathology that can

result in loss recovery based on the Retransmission Time Out (RTO) [38], which can

significantly increase PLT.

• The inter-dependency (and processing time) between web resources reduces web

performance when using multistreaming. This behaviour is not limited to TCP, for

instance, Control block sharing [39] with shared bottleneck detection [40] could also

result in a similar behaviour.

 (a) google

 (b) dmm

2 Image spriting is a technique increasingly used in web design to send a group of separate images as a single

cluster. Using a single transmission unit for all images reduces the number of HTTP requests and accelerates the

web transaction.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 5

 10

 15

 20

 25

 30

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

14

 (c) siteadvisor

 (d) amazon

 (e) pinterest

 (f) mediafire

Figure 4: PLT for a link with 10 Mbps capacity, no loss, including client processing time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 10

 20

 30

 40

 50

 60

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

15

 (a) google

 (b) dmm

 (c) siteadvisor

 (d) amazon

 (e) pinterest

 (f) mediafire

Figure 5: PLT for a 10 Mbps capacity link, 1.5% packet loss, without client processing time.

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 20

 40

 60

 80

 100

 120

 140

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 20

 40

 60

 80

 100

 120

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

 0

 50

 100

 150

 200

 250

 10 100 1000

P
L

T
 [

s
]

RTT [ms]

1 TCP
6 TCPs

18 TCPs
100s SCTP

16

5. Exploring Shared Congestion Bottlenecks

This section evaluates the impact of bottleneck congestion on PLT. We evaluate three

instances of bottleneck buffer management: A drop-tail FIFO queue, a Controlled Delay

(CoDel) queue [26], and a queue managed by flow-queuing CoDel (FQ-CoDel) [20]. We

report results for the Pinterest and Mediafire workloads, which are two large pages in our

dataset with very different composition pattern: there are few large objects in the Pinterest

workload and many small objects in the Mediafire workload. Both CoDel and FQ-CoDel are

forms of AQM. The bottleneck was loaded by including two long-running bulk TCP flows

with the web page download.

5.1. Drop-Tail FIFO Bottleneck

Figure 6a shows the PLT for the Pinterest workload. This consisted of 6 resources

using a congested shared FIFO buffer. Since the Pinterest workload consists of few relatively

large objects (around 250 kB), the data sufficient to allow the congestion controller to reach a

steady-state. Thus, the PLT is largely dominated by the available capacity and small

performance differences are observed in the case of 1, 6 and 18 TCP flows. The small

performance loss of SCTP with respect to the multiple TCP case should be attributed to the

lack of optimisations in our SCTP implementation, rather than to the inability to use parallel

flows. The different interaction between transport and network layers is a small performance

gap.

17

(a) FIFO

 (b) CoDel

 (c) FQ-CoDel

Figure 6: PLT for 10 Mbps capacity, Pinterest workload, with a congested bottleneck.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100 1000
P
L
T

[
s
]

RTT [ms]

1 TCP
6 TCP

18 TCP
SCTP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100 1000

P
L
T

[
s
]

RTT [ms]

1 TCP
6 TCP

18 TCP
SCTP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100 1000

P
L
T

[
s
]

RTT [ms]

1 TCP
6 TCP

18 TCP
SCTP

18

(a) FIFO

 (b) CoDel

 (c) FQ-CoDel

Figure 7: PLT for 10 Mbps capacity, Mediafire workload, with a congested bottleneck.

 0

 20

 40

 60

 80

 100

 120

 140

 10 100 1000

P
L
T

[
s
]

RTT [ms]

1 TCP
6 TCP

18 TCP
SCTP

 0

 20

 40

 60

 80

 100

 120

 140

 10 100 1000

P
L
T

[
s
]

RTT [ms]

1 TCP
6 TCP

18 TCP
SCTP

 0

 20

 40

 60

 80

 100

 120

 140

 10 100 1000

P
L
T

[
s
]

RTT [ms]

1 TCP
6 TCP

18 TCP
SCTP

19

Pinterest PLT (s)

 1 TCP 6 TCP

RTT (ms) IW3 IW10 IW3 IW10

0 8.9 7.7 8.8 8.0

20 10.5 9.1 11.3 9.1

50 10.6 9.6 11.9 9.8

100 15.2 10.0 15.6 10.5

200 16.7 12.7 20.5 12.3

800 50.9 26.9 60.6 27.4

Mediafire PLT (ms)

RTT (ms) IW3 IW10 IW3 IW10

0 19.5 20.2 16.7 14.1

20 26.7 24.2 21.2 16.0

50 29.1 34.1 22.6 16.7

100 40.1 34.2 29.7 21.9

200 47.1 42.0 39.2 27.9

800 134.7 127.4 113.0 66.1

Table 5: Comparison of average PLT with IW3 and IW10 for the Pinterest and Mediafire workloads

5.1.1. Effect of the page fragmentation

The PLT for the Mediafire workload in Figure 7a illustrates the effects of page

fragmentation on parallelism and multistreaming. This workload has many more objects than

the Pinterest workload and smaller on average. As already observed in the unloaded

bottleneck scenario shown in Figure 4, the PLT for the Mediafire workload reduces for a

larger RTT. However, a large RTT reduces the multistreaming performance (SCTP) more

than for parallel TCP connections, leading to a situation reversed with respect to the one

observed without competing traffic (Figure 3f). This effect, which is also visible in Figure 5f,

can be attributed to packet drops that occurs shortly after a flow starts. This results in a

significant reduction of cwnd. The reduced cwnd continues to have impact for the remainder

of the flow duration, increasing the time to download the object and any subsequent object

using the same stream. Thus, if the transport consists only of a single congestion controlled

stream, the entire transmission is slowed down. Conversely, a server that can choose among

several parallel flows, can schedule to deliver resources to best use flows that were not

penalised by early packet loss.

This effect is observed in SCTP where the congestion control is not only shared

between all concurrent flows, but also persistent across all objects of the same page. A similar

effect would be seen if the TCP flows were to be used persistently to sequentially request

multiple objects (e.g., as permitted with HTTP/1.1 or HTTP/2).

5.1.2. Effect of the initial congestion window

The size of the IW can have an important effect on performance. Table 5 compares the

average PLT (over ten runs) as a function of the RTT for the Pinterest and Mediafire

workloads when a client has an IW of 3 segments (IW3) and an IW of 10 segments (IW10).

An IW10 allows up to 15 KB of data to be sent in the first RTT of transfer, reducing the PLT.

The results in Table 5 show a gain with IW10 larger than two RTTs. This due to the long

20

transient period in congested conditions. Since many loss cycles are required to converge to

steady-state, starting from a smaller cwnd may have an important impact on PLT.

Important gains were therefore were observed using IW10 with both the Pinterest and

Mediafire workloads. A transport using multistreaming shares one IW among all the

(sub)streams and may miss the opportunity of faster startup [8], but releasing more than 10

segments into the network is not recommended to avoid collateral damage [41], unless server-

side pacing can be used.

5.2. Web performance using CoDel

The CoDel [26] AQM algorithm limits the queuing delay at the bottleneck link by

measuring the queuing time of packets in the network buffer and maintaining a target for the

queuing delay that evolves over a pre-set interval. If the queuing delay exceeds the target over

the pre-set interval, packets are dropped from the head of the queue until the queuing delay

drops below the target. The default values for the target and interval are respectively 5 ms and

100 ms.

The PLT for the Pinterest and Mediafire workloads is significantly improved for both

TCP and SCTP when the bottleneck uses CoDel compared to FIFO (Figure 6b and 7b). The

smaller path RTT under load allows faster delivery of data and helps each flow to more

quickly grow its cwnd. In the case of the Mediafire workload, the old/new flow feature of the

Codel scheduler helped performance. The consistent PLT observed for an RTT less than 200

ms in Figure 6b and 7b is a result of this faster control-loop.

CoDel reduces the impact of other flows on the progress of a specific flow. In this

way, it can reduce the time to complete a retransmission when multiple TCP flows are being

used as demonstrated in Figure 6b and 7b. When a single stream is used, two RTTs are

required for the cwnd to grow to send an object on average (33 KB) from the Mediafire

workload. However, CoDel reduces the queuing delay and hence the RTT, allowing faster

growth of cwnd and faster retransmissions compensating for the more aggressive drop policy

in CoDel. The advantage of a web transport using a path with AQM is clearly visible in both

webpages analysed.

While CoDel effectively improves performance with respect to FIFO, the PLT for the

Mediafire workload with a single TCP connection remains still high (about 20 s when the

RTT is 200 ms). As explained in Section 4, parallelism or multistreaming is needed to

improve the performance of webpages with multiple objects.

Transport Mechanisms

System Mechanism TCP SCTP QUIC

Transmission

a. TCP Fast-Open TFO
(RFC7413)

b. Multistreaming

(RFC4960)

c. Interleaved

Multistreaming (draft)

d. Per stream flow

control (RFC4960)

e. Multi-Path (RFC6824)

X

-

-

-

X

-

X

X

-

X

X

X

X

X

X

Loss Detection and

Recovery

a. SACK

(RFC2018) (RFC5681)

X X X

CC Algorithm
a. TCP Cubic

b. TCP Reno (RFC5681)

X

X

-

X

X

X

Congestion Control

a. IW10 (RFC6928)

b. New Reno

Fast Recovery

(RFC3782, RFC6582)

c. ECN (RFC3819)

X

X

X

X

X

-

X

X

-

21

. Table 6: Set of Transport Mechanisms used in the Experiments.

5.3. Web performance using FQ-CoDel

FQ-CoDel [20] is a hybrid algorithm that implements CoDel the algorithm on the sub queues

of a FQ scheduler. The scheduler uses a five-tuple hashing algorithm to enqueue packets onto

sub-queues, and a deficit round robin scheduler to dequeue the packets from sub-queues. The

FQ-CoDel mechanism, therefore, promotes flow byte-based fairness of parallel flows sharing

a common bottleneck. In this respect, the method mirrors at the network layer the parallelism

discussed previously at the transport layer.

The PLT for the Mediafire and Pinterest workloads are similar when the RTT is below

200 ms using both TCP and multi streaming when there is some form of parallelism. Many of

the differences evident when using FIFO or simple CoDel are reduced or eliminated when the

bottleneck is controlled by FQ-CoDel. The qualitative behaviour of web flows when using

FQ-CoDel is similar to the one with CoDel. (Figure 6c and 7c).

A single TCP flows perform worse using FQ-CoDel than CoDel. A single SCTP

Association does not derive benefit from using FQ-CoDel. This could in some cases be due to

the lower RTT under load but is likely to be more significantly impacted by the lack of

collateral damage from the traffic with which it shares the bottleneck. Our results show that

CoDel performs similarly to FQ-CoDel for web. This indicates that the presence of flow

queuing may not be essential to boost the PLT performance, a conclusion also found in

previous research [28].

6. From Transport Mechanisms to a New Web Transport Protocol

This paper used established open data to produce workload models that have been used to

help understand the desirable transport protocol features to support for web traffic. While

there is a growing diversity of web content, this approach necessarily restricted the range of

web pages that we studied. However, the insight gained helps explain how specific transport

mechanisms impact web transfer performance. It also explores the way transport mechanisms

interact with router buffers within the network to influence application performance.

This paper has evaluated mechanisms implemented in the TCP and SCTP protocols.

The results illustrate the key benefits and drawbacks of multi- streaming. Decisions about

how content is structured and retrieved can have significant impact on the performance of

specific transport mechanisms (e.g., small objects can improve performance for TCP

parallelism, but other content benefits from multistreaming). as transport mechanisms are

introduced, we expect that web content will continue to be optimised to match the capabilities

of the transport that is used.

The application performance is impacted by the use of transport mechanisms. Using a

persistent transport an application can achieve a significantly lower PLT for a succession of

HTTP requests. One visible benefit is when a path with appreciable RTT is used to request

many resources to complete a page. TCP Fast Open (TFO) also provides benefit by reducing

the cost of sub- sequent connection setup to the same server, eliminating one RTT of delay

per connection. This can result in similar connection setup cost for persistent and non-

persistent use, but has a marginal effect when using persistent use, because there is only a

single connection setup.

Our analysis of transport mechanics is applicable to other transports that also need to

work across an Internet path. In particular, the results are presented at a time when the IETF is

designing mechanisms for a new web transport, IETF QUIC [42]. Although this transport has

its origins in work at Google and an experimental deployment of Google’s own QUIC

22

protocol [42], the present standards activity takes a fresh approach to the design of the

transport mechanisms. Table 6 compares key transport mechanisms available in QUIC. While

this specification has yet to be standardised, it is clear that IETF QUIC will include

mechanism to address lessons learned by the community since HTTP/1.1 using TCP. This

includes favouring a single multistreamed approach (which shares congestion state, as in

SCTP), rather than a single TCP stream or multiple parallel transport sessions (currently the

norm). This also matches the persistent reuse of open connections (standardised for TCP in

HTTP/2 [17]). Loss detection is expected to be different to either SCTP or TCP, but it is

recognised needs to be designed to eliminate head of line blocking, with opportunities to

closely integrate with a new web framework based on HTTP/2.

Future work can build upon the baseline analysis presented. When QUIC techniques

have been standardised, this work could extend the methodology to compare performance

with the results presented here. This analysis could be expanded to consider a wider range of

web content. To explore the benefits of new techniques the methodology could also be

extended to consider the time to first paint or fold time, to provide metrics that can evaluate

new latency reduction strategies. This analysis needs to be performed with care, because the

overall benefit will depend on multiple factors. Some techniques have been shown to offer

significant benefit, but only when used with particular network scenarios and/or web page

constructions. The merits and demerits of combining specific mechanisms also need to be

considered when defining a protocol together with how the transport protocol will be used and

managed by the networks and managed by the networks over which it needs to operate.

7. Conclusion and Future Work

This paper has provided insight into key transport mechanisms to evaluate their impact on

web performance. The mechanisms were explored across a range of network and application

scenarios using a tool developed to replay a set of pre-established web page models. This was

used to evaluate the benefit of each mechanism and the impact of different styles of web page.

Our results show the effects of multistreaming, parallelism, shared and individual

congestion control. We show an appropriate choice of mechanism can significantly improve

overall web performance by enabling rapid utilisation of available link capacity and reduced

web load time for web pages with a large size objects or larger web pages, benefiting from

shared congestion control. However, transport mechanisms can also have drawbacks (e.g., a

single multistreamed connection can reduce performance when used over a path that

experience high rates of loss).

Since our analysis seeks to understand component transport mechanisms, our deeper

understanding of the performance implications for HTTP/1.1, it also can provide a good

technical basis for examining how transport design impacts the performance of new transport

protocols, such as IETF QUIC.

23

8. References

[1] Y. Elkahatib, G. Tyson, M. Welzl, Can SPDY really make the web faster?, IFIP

Networking Conference, Trondehim (Norway), 2014, pp. 1–9.

[2] M. Butkiewicz, H. V. Madhyastha, V. Sekar, Characterizing web page complexity and its

impact, IEEE/ACM Transactions on Networking 22(3), 2014 pp. 943–956.

doi:10.1109/TNET.2013.2269999.

[3] C. A. Avram, K. Salem, B. Wong, Latency amplification: Characterizing the impact of

web page content on load times, IEEE 33rd International Symposium on Reliable Distributed

Systems Workshops, 2014, pp. 20–25. doi:10.1109/SRDSW.2014.16.

[4] X. S. Wang, et al., Demystify page load performance with wprof, Proc. of 10th USENIX

conference on Networked Systems Design and Implementation, 2013.

[5] B. Briscoe, et al., Reducing internet latency: A survey of techniques and their merits,

IEEE Communications Surveys Tutorials, 18(3), 2016, pp. 2149– 2196.

doi:10.1109/COMST.2014.2375213.

[6] R. Secchi, A. Mohideen, G. Fairhurst, Evaluating the Performance of Next Generation

Web Access via Satellite, Springer International Publishing, Cham, 2015, pp. 163–176.

[7] N. Khademi, D. Ros, M. Welzl, The new aqm kids on the block: An experimental

evaluation of codel and pie, IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), 2014, pp. 85–90. doi:10.1109/INFCOMW.2014.6849173.

[8] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, N. Sutin, An

argument for increasing tcp’s initial congestion window, SIGCOMM Comput. Commun. Rev.

40(3),2010, pp. 26–33. doi: 10.1145/1823844.1823848.

 [9] R. Secchi, A. Mohideen, G. Fairhurst, Performance analysis of next generation access via

satellite, Int. J. Satell. Comm. N. (IJSCN) 34(6), 2016, pp. 29-43.

[10] I. Grigorik, Making the web faster with HTTP 2.0, Commun. ACM 56(12), 2013, pp.

42–49.

[11] J. Chu, N. Dukkipati, Y. Cheng, M. Mathis, Increasing TCP’s Initial Window, RFC

6928 (Experimental), Apr. 2013, URL http://www.ietf.org/rfc/rfc6928.txt

[12] Y. Cheng, J. Chu, S. Radhakrishnan, A. Jain, TCP Fast Open, RFC 7413

(Experimental), Dec. 2014,URL http://www.ietf.org/rfc/rfc7413.txt

[13] Y. Cheng, N. Cardwell, RACK: A Time-based Fast Loss Detection Algorithm for TCP,

Internet Draft, draft-cheng-tcpm-rack-00, Work in Progress, July. 2018,

URL https://tools.ietf.org/html/draft-cheng-tcpm-rack

24

[14] R. Stewart, Stream Control Transmission Protocol, RFC 4960 (Proposed Standard), Sep.

2007, URL http://www.ietf.org/rfc/rfc64960.txt

[15] R. Fielding, et al., Hypertext Transfer Protocol – HTTP/1.1, RFC 2616 (Draft Standard),

Jun. 1999, URL http://www.ietf.org/rfc/rfc2616.txt

[16] Google, SPDY: An Experimental Protocol For a Faster Web. URL

http://www.chromium.org/spdy/spdy-whitepaper

[17] M. Belshe, R. Peon, M. Thomson, Hypertext Transfer Protocol Version 2 (HTTP/2),

RFC 7540 (Proposed Standard), May 2015, URL http://www.ietf.org/rfc/rfc7540.txt

[18] P. Natarajan, P. D. Amer, R. Stewart, Multistreamed web transport for developing

regions, in: ACM SIGCOMM Workshop on Networked Systems for Developing Regions

(NSDR), Seattle, 2008.

[19] R. Stewart, et al., Stream Schedulers and User Message Interleaving for the Stream

Control Transmission Protocol, RFC 8260, Nov. 2017, URL

http://www.ietf.org/rfc/rfc8260.txt .

[20] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, E. Dumazet, The flowqueue-

codel packet scheduler and active queue management algorithm (Experimental), RFC8290,,

Jan 2018, URL http://www.ietf.org/rfc/rfc8290.txt

[21] A. Rabitsch, P. Hurtig, A. Brunstrom, A stream-aware multipath QUIC scheduler for

heterogeneous paths, Proc. of ACM CoNEXT, 2018.

[22] J. Eklund, K.-J. Grinnemo, A. Brustrom, Using multiple paths in SCTP to reduce latency

for signalling traffic, Commun. Commun. 129, 2018, pp. 184– 196.

[23] K.-J. Grinnemo, A. Brustr ̈om, One the use of MPTCP to reduce latency for cloud

applications, Proc. of SNCNW, 2014.

[24] X. S. Wang, et al., How Speedy is SPDY?, 11th USENIX Symposium on Networked

Systems Design and Implementation, Seattle, 2014, pp. 387–399.

[25] Hemminger.S, Network emulation with netem Linux Conf, Au, 2005.

[26] K. Nichols, V. Jacobson, Controlling queue delay, ACM Queue 10(5), May 2012, URL

http://doi.acm.org/10.1145/2208917.2209336

[27] Best practices for benchmarking codel and fq-codel, URL http://goo.gl/FpSW5z

[28] T. Høiland-Jørgensen, P. Hurtig, A. Brunstrom, The good, the bad and the wifi, Comput.

Netw. 89, 2015, 90–106. doi:10.1016/j.comnet. 2015.07.014.

URL https://doi.org/10.1016/j.comnet.2015.07.014

[29] Toke.hj, flent.

URL https://flent.org

25

[30] M Belshe, More bandwidth doesn’t matter (much), URL URL

http://www.belshe.com/2010/05/24/more-bandwidth-doesnt-matter-much/

 [31] preplay.

URL https://github.com/mrajiullah/pReplay-a-browser-emulator

[32] libcurl — Client-side URL Transfers.

URL https://curl.haxx.se/libcurl/c/libcurl.html

[33] phttpget - pipelined http get utility.

URL http://www.daemonology.net/phttpget/

[34] phttpget - pipelined http get utility with sctp support, URL https://github.com/NEAT-

project/HTTPOverSCTP/tree/ multistream

[35] thttpd — Tiny/Turbo/Throttling HTTP Server. URL http://acme.com/software/thttpd/

[36] thttpd with sctp support.

URL https://github.com/nplab/thttpd/tree/multistream

[37] P. Natarajan, et al., SCTP: An innovative transport layer protocol for the web, in:

Proceedings of the 15th international conference on World Wide Web, ACM, 2006, pp. 615–

624.

[38] D. N. Cheng. Y, Cardwell. N, Rack: a time-based fast loss detection algorithm for tcp,

Internet Draft draft-ietf-tcpm-rack, Work in Progress, July 2017,

URL https://tools.ietf.org/html/draft-ietf-tcpm-rack

[39] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert R. Scheffenegger, CUBIC for Fast

Long-Distance Networks RFC 8312, Feb 2018, URL http://www.ietf.org/rfc/rfc8312.txt

[40] S. Ferlin, Alay, T. Dreibholz, D. A. Hayes, M. Welzl, Revisiting congestion control for

multipath tcp with shared bottleneck detection, IEEE INFOCOM - The 35th Annual IEEE

International Conference on Computer Communications, 2016, pp. 1–9.

doi:10.1109/INFOCOM.2016.7524599.

[41] N. Dukkipati, et al., An argument for increasing TCP’s initial congestion window, ACM

SIGCOMM Comput. Commun. Rev. 40(3), 2010, pp. 27–33.

[42] J. Roskind, QUIC: Multiplexed stream transport over UDP, Google working design

document, 2013, URL https://docs.google.com/document/d/1jdKEQMlM7ThDMDalFYFR_

9-Yw91PhoBmkAPQcCicX3s/pub

Author Biographies

Dr. A. C. Mohideen is a researcher at the University of Aberdeen and formerly a faculty

member of the University of Westminster. He graduated and received his Master’s degree

from London Metropolitan University in 2007, and his PhD in 2011, from Nagaoka

University of Technology, Japan.

26

Dr. Mohammad Rajiullah is a post-doctoral research fellow the Karlstad University. He

received his Licentiate in Computer Science in 2012 from Karlstad University and Ph.D. in

November 2014. His research focuses on transport layer issues for latency sensitive

applications.

Dr. Raffaello Secchi is a Lecturer at the School of Engineering. He holds a PhD in Traffic

Modelling and Control in High Speed Networks from the University of Pisa. His research

interests include the analysis and modelling of the TCP transport protocol and resource

management of the DVB-RCS Satellite Broadband system. He contributed to national and

European Projects, working on simulation, performance evaluation and transport protocol

implementation.

Prof. Gorry Fairhurst is a Professor in Internet Engineering at the University of Aberdeen,

UK. His research interests include transport protocol design, low-latency Internet

communication, and Internet performance measurement. He is an active participant in

engineering Internet standards at the IETF and has developed standards in the Internet and

Transport areas. He currently chairs the IETF Transport and Services Working Group. He has

coauthored over 150 journal and conference papers.

Prof. Anna Brunstrom received a Ph.D. in computer science from the College of William &

Mary, Virginia, in 1996. She is a full professor of computer science at Karlstad University,

Sweden. Her research interests include transport protocol design, low-latency Internet

communication, and performance evaluation of mobile broadband systems. She is currently

KaU PI within two H2020 projects and a co- chair of the rmcat IETF working group. She has

coauthored over 150 journal and conference papers.

Felix Weinrank received his B.Sc. and M.Sc. in computer science from the Münster

University of Applied Sciences in 2012 and 2014, respectively. He is currently a Ph.D.

student in the Department of Electrical Engineering and Computer Science of the Münster

University of Applied Sciences. His research interests include the SCTP transport protocol,

low-latency Internet communication, and network emulation.

27

