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Antibiotic resistance often evolves by mutations at conserved sites in essential

genes, resulting in parallel molecular evolution between divergent bacterial

strains and species. Whether these resistance mutations are having parallel

effects on fitness across bacterial taxa, however, is unclear. This is an important

point to address, because the fitness effects of resistance mutations play a key

role in the spread and maintenance of resistance in pathogen populations.

We address this idea by measuring the fitness effect of a collection of rifampi-

cin resistance mutations in the b subunit of RNA polymerase (rpoB) across

eight strains that span the diversity of the genus Pseudomonas. We find that

almost 50% of rpoB mutations have background-dependent fitness costs,

demonstrating that epistatic interactions between rpoB and the rest of the

genome are common. Moreover, epistasis is typically strong, and it is the domi-

nant genetic determinant of the cost of resistance mutations. To investigate

the functional basis of epistasis, and because rpoB plays a central role in

transcription, we measured the effects of common rpoB mutations on tran-

scriptional efficiency across three strains of Pseudomonas. Transcriptional

efficiency correlates strongly to fitness across strains, and epistasis arises

because individual rpoB mutations have differential effects on transcriptional

efficiency in different genetic backgrounds.
1. Background
Antibiotic resistance is associated with pleiotropic costs that are expressed in terms

of reduced competitive fitness in the absence of antibiotics [1–3]. Fitness costs play a

key role in the dynamics of resistance as they generate selection against resistance in

antibiotic-free conditions, such as when antibiotic use is discontinued, or during

transmission between hosts. Understanding the factors that govern the cost of resist-

ance is therefore crucial for predicting when resistance will persist in pathogen

populations. Put simply, the larger the cost associated with resistance, the less

likely the persistence of resistance in bacterial populations over the long term.

Most antibiotics target highly conserved domains in proteins that play

pivotal roles in cell biology, such as DNA replication, cell-wall assembly and

protein synthesis [4]. The most direct mechanism for bacteria to evolve resist-

ance to antibiotics is by altering the structure of these targets [5]. Because the

target sites of antibiotics are highly conserved, target site mutations show a

strong tendency to evolve in parallel across species of bacteria [6–8]. This

parallel molecular evolution implies that these mutations have some similar

phenotypic effects in these differing bacterial species, in that these mutations

increase resistance to antibiotics. However, the extent to which the fitness

costs of resistance mutations are conserved across genetic backgrounds remains

unclear (but see [6]). There is growing evidence that mutations often have
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epistatic effects on fitness in bacteria [9–12], suggesting that

genetic background could play a key role in shaping the

cost of resistance across species.

In this paper, we investigate the influence of genetic back-

ground on the fitness cost of antibiotic resistance, using a

collection of rifampicin-resistant mutants from the genus

Pseudomonas as a model system [7]. One advantage of work-

ing with Pseudomonas is that the genus is highly diverse, and

yet it is still possible to culture most strains under a common

set of laboratory conditions [13,14], making it possible to

obtain equivalent measures of fitness in different species or

strains of bacteria. Rifampicin is an antibiotic which binds

to a highly conserved domain of RNA polymerase, prevent-

ing RNA-transcript elongation. Resistance to rifampicin

evolves by mutations in rpoB that alter the structure of the

rifampicin binding pocket. The fitness cost of rifampicin

resistance has been measured across a wide range of bacteria,

including Escherichia coli [15], Salmonella typhymurium [6],

Pseudomonas aeruginosa [16], Mycobacterium tuberculosis [17]

and Staphylococcus aureus [18]. However, previous studies

have measured fitness using a range of techniques and under

different environmental conditions [3,19]. As these variables

can affect the estimate of the cost of resistance, it is questiona-

ble to solely rely on comparing fitness cost estimates from

different studies.

To measure the overall contribution of genetic background

to the cost of resistance, we estimated the competitive fitness of

a collection of mutations across eight strains that span the

diversity of Pseudomonas. We then did two further analyses to

try to explain why certain mutations vary in their fitness effects

between genetic backgrounds. First, we use comparative

methods to test whether the effects of a mutation are more con-

served between closely related strains. If genetic background is

a significant but relatively minor determinant of the cost of a

mutation, we would predict a greater probability of differing

fitness effects with increasing genetic distance. Second, rifam-

picin resistance mutations are known to have a range of

effects on transcription [15], and previous work has shown

that the fitness effects of rifampicin resistance correlate with

reductions in transcriptional efficiency [15,20]. Genetic back-

ground could influence the fitness effects of rifampicin

resistance mutations by modulating the effect of altered RNA

polymerase on transcriptional efficiency or by altering the

strength of the correlation between transcriptional efficiency

and fitness. In other words, genetic background can influence

the fitness effects of mutations by altering the relationship

between genotype and phenotype, or the relationship between

phenotype and fitness. To address this issue, we used an

inducible reporter construct to measure the transcriptional effi-

ciency of a subset of rifampicin resistance mutations across

three strains of Pseudomonas.
2. Material and methods
(a) Strains and culture conditions
Eight strains of bacteria from the genus Pseudomonas were

used: Pseudomonas aeruginosa PAO1, P. stutzeri ATCC17588,
P. mendocina CCUG7181, P fulva CCUG12573, P. putida KT2440,
P. protegens PF5, P. fluorescens PF01 and P. fluorescens SBW25.
Prior to experimentation, all strains were stored at 2808C in 25%

glycerol. All culturing was performed at 308C with constant

shaking at 200 r.p.m., in King’s B (KB) medium.
(b) Isolation of rifampicin-resistant mutants
Rifampicin-resistant mutants were obtained from Vogwill et al. [7]

where they were isolated by fluctuation tests on rifampicin agar.

Briefly, for each strain, an overnight culture was diluted 1 million-

fold and used to found 480 parallel cultures. These were grown

for 48 h before being plated on agar containing either 30 or

60 mg ml21 of rifampicin. After 48 h, mutants were isolated from

93 independent cultures and frozen in 25% glycerol at 2808C. We

then sequenced the two regions of rpoB that can result in high-

level rifampicin resistance. A single example of each mutation by

strain combination was selected for further analysis.
(c) Measuring the cost of resistance
To facilitate the competition experiments, we transformed the

ancestral genotype of each strain with a chromosomally integrated

green fluorescent protein (GFP). These strains were generated

by integrating a constitutively expressed GFP marker at the

chromosomal tn7 insertion site using the methods of Choi &

Schweizer [21]. Fitness costs were measured by competing rifam-

picin-resistant mutants against the appropriate GFP-tagged

rifampicin-sensitive ancestral strain. Competitions took place in

200 ml of KB medium in a 96-well plate, incubated at 308C with

constant shaking at 250 r.p.m. Competitions lasted 24 h. Each com-

petition was replicated six times, with the replicates of each

competition spread across at least two separate occasions. For

each competition, cells were grown overnight in KB medium.

Each mutant was then mixed 50 : 50 by volume with the GFP-

tagged ancestor, and this mixture was then diluted 10 000-fold.

Initial and final ratios of GFP-tagged to untagged cells were deter-

mined using BD C6 flow cytometer. 10 000 cells per culture were

counted and scored as either fluorescently tagged or not. Fitness

was calculated at the ratio of the number of doublings of the rifam-

picin-resistant mutant compared with the GFP-tagged ancestral

strain. To control for the cost of GFP-expression, fitness was stan-

dardized relative to the fitness of the unmarked ancestor in

competition with the GFP-tagged ancestor.
(d) Correcting for phylogenetic distance
Using a selection of strains from across a genus results in potentially

confounding any results with the effects of phylogeny. Specifically,

the hierarchical nature of most phylogenies results in not all tips of a

phylogeny being equally independent from each other. For

example, in a phylogeny of three species, unless the phylogeny is

a star configuration, two strains must be more closely related to

each other than to the third strain. If a trait has any phylogenetic

correlation or bias, then it would be pseudo-replication to consider

all three strains equally independent. The method of Felsenstein

[22] overcomes this issue by first comparing the phenotypes of

the two closely related species, and then comparing the phenotype

of the third species with the average of the first two species.

The analysis across phylogenies can be further conflated as not

all evolutionary distances within a phylogeny are likely to be

equal. This latter point could have important consequences for

the influence of genetic background on the effects of a mutation,

as it would seem intuitive that differing fitness effects are less

likely between closely related strains. To control for this, we correct

for the topological effects of phylogeny using the method of

Felsenstein [22]. However, as we wished to test the effects of

evolutionary distance on the effects of a mutation, we do not stan-

dardize our contrasts by evolutionary distance as in the

conventional Felsenstein approach. We would therefore expect a

positive correlation between evolutionary distance and the size

of a contrast, assuming the probability of a mutation having

conserved effects is greater between closely related strains.

The phylogeny of this study system has been previously

determined (see [7] for full methods), based on 55 housekeeping
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genes taken from 28 fully sequenced Pseudomonas genomes. It is a

maximum-likelihood phylogenetic tree assuming a GTR þ G þ I

model in PHYML [23]. From this phylogeny, we trimmed it to

just the eight strains used here, from which we extracted the rel-

evant evolutionary distances for each pair of strains, or a strain

and a node, or two nodes, as appropriate.

(e) Measuring gene expression per mutant
To estimate the effect of the rpoB mutations on transcriptional effi-

ciency, we use the luciferase report gene system to measure gene

expression [20]. In bacteria, transcription and translation are

strongly coupled; therefore, gene expression should provide a

good proxy for transcriptional efficiency. To measure the effects

of rpoB mutations on transcriptional efficiency, strains were

transformed with an IPTG-inducible luciferase reported gene

(henceforth lux-transformed). The luciferase gene, which reacts

with ATP to produce light, is commonly used to measure trans-

criptional activity by measuring the amount of light produced

per cell. This was performed for the three most genetic tractable

strains, specifically the ancestral strain for P. aeruginosa PAO1,
P. putida KT2440 and P. fulva CCUG12573, as well as seven

mutations common to these three strains. For each strain, overnight

cultures of the lux-transformed ancestor and each of the lux-

transformed mutants were grown in KB medium. Cultures

were then diluted 10 000-fold into 200 ml of KB medium in black

96-well Costar microplates with clear bottom (Corning, USA).

The medium was supplemented with 1 mM IPTG to induce lucifer-

ase production. The plate was then incubated in a Synergy 2

microplate reader (BioTek, USA) at 308C, during which lumines-

cence emission (RLU) per OD600 was measured every 20 min

with shaking prior to each read. Each assay was replicated on

four separate occasions.

To estimate transcriptional efficiency, the mean light produced

per bacterial cell was calculated at each time point by dividing the

luminescence of each well (in RLU) by its absorbance (OD600). The

maximum gradient of each RLU/OD600 curve was then calculated

using nine consecutive data points during the early exponential

phase. Within each assay, the relative lux expression rate in each

rpoB mutant strain was obtained by normalizing each gradient to

that of the ancestral strain control in the same plate. This provides

a measure of the maximum rate of transcription per mutant.
3. Results
(a) Fitness costs of rifampicin resistance across species

of Pseudomonas
To estimate the relative importance of genetic background in

determining the fitness cost of rifampicin resistance, we per-

formed competitive fitness assays on a previously generated

collection of rifampicin-resistant mutations from eight strains of

Pseudomonas. Each of the competition experiments for the 161

unique strain-by-mutation combinations were replicated six

times, giving 966 independent fitness measurements (figure 1).

As shown, there is considerable variation in the cost of resistance.

Owing to the low number of mutations common to all strains, as

well as the high number of mutations found in only one strain,

we analysed these data using a model consisting of just the

main effects of strain and mutation. We find that although

both factors significantly affect the cost of resistance (strain:

F7,876¼ 8.79, p , 0.001; mutation: F51,876¼ 8.34, p , 0.001),

mutation explains a greater proportion of the variation in fitness

(mutation¼ 27.1% of variance; strain¼ 4.0% of variance). How-

ever, even if there is greater variance between mutations than

strains, genetic background could still be affecting the cost
of resistance. To test how commonly the cost of a mutation

depended on its genetic background, we performed Bonferroni-

corrected one-way ANOVAs on every mutation which arose in

at least two backgrounds. Of these 33 comparisons, 14 (42.2%)

are significant at the Bonferroni-corrected p-value of 0.0015,

demonstrating that genetic background impacts fitness for

almost half of these mutations under aconservative statistical test.

An alternative approach to estimate the effects of epistasis

is to limit the analysis to just the four mutations common to

all eight strains (figure 2). Although this limits the scope of

the analysis, this approach makes it possible to estimate the

contribution of the interaction between mutation and genetic

background to the cost of a mutation. This analysis reveals

significant effects of mutation (F3,158 ¼ 7.53, p , 0.001) and

genetic backgrounds (F7,158 ¼ 7.13, p , 0.001) on fitness,

and an interaction between mutation and genetic background

(F21,158 ¼ 7.37, p , 0.001). However, the proportion of var-

iance explained by mutation is small (5.83%), whereas the

explanatory power of genetic background is not much greater

(12.88%). In contrast, the interaction term explains 39.92% of

the variance. The implication of this result is that the inter-

action between a rifampicin resistance mutation and the

genetic background plays a dominant role in determining

the cost of resistance. Intriguingly, this epistatic interaction

is driven by a complex interplay between mutations and gen-

etic backgrounds, and not because all mutations are more

costly in some strains than others.
(b) Phylogeny and the costs of a mutation
One important assumption of the above analyses is that they

do not take phylogeny into account, and this may be an

important bias. For example, intuition suggests that a

mutation is more likely to have more similar effects on fitness

in two closely related strains than in two distantly related

strains. To test the hypothesis that phylogenetic distance

drives epistasis, we tested for a positive correlation between

genetic distance and epistasis using methods based on phylo-

genetically independent contrasts (PICs). As in PICs, we

calculated the difference between neighbouring tips or

nodes, thereby controlling for unequal relatedness between

differing species (figure 3a). However, rather than standar-

dize these contrasts by dividing by the underlying genetic

distance, we looked for a relationship between genetic distance

and the size of a contrast. If a mutation was found in all eight

strains, it is possible to make seven contrasts. Because not all

mutations were found in all strains, from the 33 mutations

which were found in more than one strain it is possible to

make 109 contrasts (figure 3b). We found no significant

relationship between evolutionary distance and epistasis

(Pearson’s correlation: r ¼ 20.480, d.f.¼ 107, p ¼ 0.878). To

see if evolutionary distance increases the probability of epista-

sis for any individual mutations, we re-analysed the data for

the four mutations common to all strains, as these would

have the most statistical power. None of the four show a

significant correlation between evolutionary distance and

epistasis (A1553G: r ¼ 20.480, d.f. ¼ 5, p ¼ 0.275; A1562G:

r ¼ 20.379, d.f.¼ 5, p ¼ 0.402; C1591T: r ¼ 20.449, d.f. ¼ 5,

p ¼ 0.312; A1592G: r ¼ 20.619, d.f. ¼ 5, p ¼ 0.138). In short,

mutations do not appear to have similar effects on fitness

between more closely related strains. Therefore, at this scale,

it appears that phylogenetic relatedness is not an important

determinant of the probability of epistasis.
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(c) Molecular mechanisms underpinning cross-strain
epistasis

Previous work has shown that compromised transcriptional

efficiency explains much of the variation in the fitness cost

of rifampicin resistance in P. aeruginosa [20], providing a
potential molecular mechanism to explore the cost of resist-

ance across strains. To link transcriptional efficiency with

fitness, we transformed clones of P. aeruginosa PAO1,

P. putida KT2440 and P. fulva CCUG12573 with a chromoso-

mally integrated reporter that measures transcriptional

efficiency. These strains were selected owing to their ease of
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genetic transformation, and the same seven rpoB mutations

were transformed in each strain.

Given that transcriptional efficiency is likely to be an impor-

tant determinant of fitness across strains, two mechanisms
could explain why resistance mutations have background-

dependent effects on fitness. First, it is possible that the same

mutation has different effects on transcriptional efficiency in

different strains. Consistent with this mechanism, we find
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transcriptional efficiency is significantly affected by mutation

(figure 4a; F6,63¼ 49.61, p , 0.001, variance explained¼

37.5%), strain (figure 4a; F2,63¼ 105.54, p , 0.001, variance

explained ¼ 26.6%) and, crucially, an interaction between

strain and mutation (figure 4a; F12,63 ¼ 18.48, p , 0.001,

variance explained ¼ 28.0%). In other words, the same

rifampicin resistance mutation has different effects on tran-

scriptional efficiency in different strains of Pseudomonas,
resulting in epistatic interactions for fitness between resistance

mutations and genetic background. Second, it is possible that

even when resistance mutations have consistent effects on

transcriptional efficiency across strains, compromised tran-

scriptional efficiency carries a greater cost in some strains

than others. To test if the relationship between transcription

and fitness is strain-dependent, we analysed the fitness

of these 21 transformed mutants using a general linear

model with transcription rate fitted as a covariate and strain

fitted as a fixed factor. As expected (figure 4b), we find that

transcriptional efficiency significantly correlates with fitness

(transcription: F1,15¼ 12.3, p , 0.005, variance explained

¼ 45.1%). This correlation is not significantly affected by
strain (F2,15 ¼ 0.45, p ¼ 0.645, variance explained ¼ 5.7%), nor

by an interaction between strain and transcription rate

(F2,15 ¼ 0.37, p ¼ 0.697, variance explained ¼ 4.7%), demon-

strating that the relationship between transcriptional

efficiency and fitness is constant across strains.
4. Discussion
Although genetic background is increasingly being seen as

an important influence on adaptation (reviewed in [24,25]),

experimental estimates of its role remain rare. Here we demon-

strate that epistatic interactions between antibiotic resistance

mutations and the genetic backgrounds in which they evolve

are key in determining the fitness costs of rifampicin resistance.

Given that fitness costs have a central role in the long-term

dynamics of resistance, genetic background is likely to play a

key role in the evolution of resistance. Specifically, we find

that the fitness effects of over 40% of rifampicin resistance

mutations differ significantly between species of Pseudomonas.
In agreement with previous works [15,20], we find that
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compromised transcriptional efficiency plays a key role in

determining the cost of rifampicin resistance. Moreover, the

relationship between transcriptional efficiency and fitness is

constant across strains, and the epistatic effects of rifampicin

resistance on mutations arise from the fact that mutations

have background-specific effects on transcriptional efficiency.

In other words, in this system the relationship between pheno-

type (transcriptional efficiency) and fitness is constant over the

range of tested values, but the phenotypic effect of mutations is

complex and strain-specific.

One feature of the design of our study is that we tested

for background effects at quite a broad phylogenetic scale.

Pseudomonas is a genus that is well known for its remarkable

phenotypic and genetic diversity [14]. The strains used in this

study were selected to sample a broad range of this diversity

without sacrificing the experimental tractability that is

required to accurately measure the fitness costs of resistance.

From our data, it is clear that genetic background has a per-

vasive impact on the cost of resistance at this phylogenetic

scale. However, our study does not provide any insights

into whether this is likely to be the case at a finer phylogenetic

scale, such as different clones from the same species. Although

there is almost certainly less diversity within any one species

than observed between our isolates from many different

species, this is not to say there is considerable genomic diver-

sity within species of bacteria [26–28]. Equally, the cost of

resistance has been shown to be epistatic even when strains

only vary by as little as a single mutation [11,12]. Taken

together, there is no reason why genetic background effects

cannot also be as pronounced as observed here at considerably

smaller evolutionary scales.

The cost of antibiotic resistance is predicted to be crucial

to the clinical evolutionary dynamics of resistance [1,2].

As genetic background strongly affects the cost of resistance,

this may explain why certain lineages of pathogen species are

more likely to be epidemic than others [29]. The explanation

for these so-called dominant or epidemic strains is often the

possession of specific traits, such as particular antibiotic

resistance determinants or virulence factors. But this leads

to the question of why these strains have successfully

acquired these traits, but other clones have not. Although

there are several potential reasons, one interpretation is that

these genetic backgrounds are the ones where these traits

possess the lowest cost. This raises the important point that

the function and cost of clinically important traits measured

on a particular (often laboratory-adapted) strain should be

assumed to be identical for all strains and clones.

In our experiment, we investigated only the relationship

between fitness and transcription in a single environment.

However, not only do clinical populations of bacteria encoun-

ter many different environments, but the cost of antibiotic

resistance has been shown to be environment-dependent

[30]. It is unlikely that transcription will be equally correlated

with fitness across all possible environments. Indeed, it has

been previously shown that the costs of rpoB mutations are

reduced when the need for transcription is artificially lowered

[31]. Therefore, in some environments (or rather in some com-

binations of environments and genetic backgrounds) the

relationship between transcription and fitness will disappear.

However, the relationship between transcription and fitness

in chronic Mycobacterium tuberculosis infections is likely to

be strong. Using rifampicin to treat M. tuberculosis is

rifampicin’s most common clinical use, and consequently
many M. tuberculosis populations evolve resistance to rifampi-

cin via mutations in rpoB [6,32]. These populations will often

subsequently adapt to the costs of rpoB mutations by fixing

compensatory mutations [32], which in other systems have

been shown to restore fitness by directly restoring transcrip-

tional efficiency [15,33]. Therefore, it would appear that

transcriptional efficiency is also likely to be tightly correlated

with fitness in clinical M. tuberculosis infections.

Additionally, as genetic background can significantly affect

the cost of resistance, this could have important consequences

for adaptation to the cost of resistance. Compensatory adap-

tation to the cost of antibiotic resistance is predicted to be

critical to its evolutionary dynamics [2], as it can slow or

even prevent the extinction of resistant strains in the absence

of selection for resistance. As the probability of compensatory

adaptation should depend on the cost of a mutation, genetic

background therefore has a central role in compensatory adap-

tation to the cost of resistance. Additional support for this

comes from rifampicin-resistant M. tuberculosis, which is one

of the best-characterized examples of compensatory adaptation

[32]. It has been demonstrated that some strains can compen-

sate very rapidly over the course of a few weeks. However,

other strains, possessing the exact same mutation, took more

than 2 years to compensate for this mutation, whereas yet

other strains did not show compensatory dynamics at all

[32]. Admittedly, there are other explanations for this besides

genetic background, such as adaptation to the infection

environment rather than to compensation per se. However,

it could also be that compensation is more rapid on genetic

backgrounds in which the mutation possesses the greatest cost.

Given that rpoB is highly conserved, it is surprising that the

same mutation has different effects on transcriptional effi-

ciency in different strains of Pseudomonas. However, this

is overlooking the many different and often less conserved cel-

lular systems involved in transcriptional efficiency. In support

of this argument, previous work has shown that rpoB
mutations can have highly pleiotropic effects [34–36], includ-

ing altered expression of rpoC [20], another subunit of RNA

polymerase. Therefore, alterations to the expression of other

genes involved in transcription may explain the variable

impacts of these mutations on transcriptional efficiency,

assuming the regulation of these genes is less conserved

between species than the structure of rpoB. However, we

stress that this is quite a speculative point, and further molecu-

lar work beyond the scope of this study would be required to

test this hypothesis rigorously.

In summary, we present evidence that genetic background

is a key determinant of the fitness costs of antibiotic resistance.

As such, the effect of genetic background should not be

ignored when studying the evolution and epidemiology of

bacterial pathogens.
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