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Abstract Silicon crystal puller (SCP) is a key equipment in silicon wafer manu-
facture, which is, in turn, the base material for the most currently used integrated
circuit (IC) chips. With the development of the techniques, the demand for longer
mono-silicon crystal rod with larger diameter is continuously increasing in order
to reduce the manufacture time and the price of the wafer. This demand calls
for larger SCP with an increasing height, however, it causes serious swing phe-
nomenon of the crystal seed. The strong swing of the seed increases the possibility
of defects in the mono-silicon rod and the risk of mono-silicon growth failure.
The main aim of this paper is to analyze the nonlinear dynamics in flexible shaft
rotating-lifting (FSRL) system of the SCP. A mathematical model for the swing
motion of the FSRL system is derived. The influence of relevant parameters, such
as system damping, excitation amplitude and rotation speed, on the stability and
the responses of the system are analyzed. The stability of the equilibrium, bifurca-
tion and chaotic motion are demonstrated, which have been observed in practical
situations. Melnikov method is used to derive the possible parameter region which
leads to chaotic motion. Three routes to chaos are identified in the FSRL system,
including period doubling, symmetry-breaking bifurcation and crisis. The work
in this paper explains the complex dynamics in FSRL system of the SCP, which
will be helpful for the designers in designing process in order to avoid the swing
phenomenon in the SCP.
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1 Introduction

As the main material base for IC chip production, mono-silicon wafer production
plays an important role in modern industrial field. The mono-silicon wafer is made
from the mono-silicon rod produced by silicon crystal puller using the Czochralski
(Cz) method [1]. In the Cz method, the polycrystalline silicon blocks are put into
a crucible and melted by a heater surrounding the crucible at about 1420°C. A
mono-silicon seed hanged at the end of the flexible shaft rotating-lifting system is
dropped into the melting silicon, provided the proper conditions are obeyed. As
the flexible shaft rotating counterclockwise and the crucible rotating clockwise,
the mono-silicon seed is slowly lifted upward to allow the new crystal growth. By
precisely controlling the temperature gradients and the rate of lifting, a mono-
silicon crystal ingot is extracted from the melt. During the whole procedure of the
mono-silicon rod production, the FSRL system rotates and lifts the crystal rod at
a certain rate determined by the technique parameters. The rotation of the mono-
silicon crystal seed mixes the silicon melt in order to make the atoms uniform
distribution along radius direction of the crystal/melt surface, which is benefit for
the quality of the mono-silicon crystal [2-4]. Larger SCPs with increasing height
being put into usage lead to stronger swing phenomenon of the crystal seed, and
the swing phenomenon is harm for the crystal/melt surface stability. Specifically,
in the seeding stage of crystal growth process, the swing phenomenon increases
the risk of mono-silicon growth failure or causes defects in the growth of the silicon
crystal. The engineering observation is that the swing amplitude and frequency
suddenly become irregular under some circumstances. The SCP operator usually
adjusts the rotation speed to avoid such unexpected irregular swing. But with the
larger SCP size, this unexpected phenomenon becomes more frequent with even
larger amplitude. How to characterize this phenomenon from a dynamical system
viewpoint is of practical significance in the engineering field.

Up to now, few works have considered the dynamics of the swing phenomenon
in the SCP. Yuan assumed the FSRL system to be like a double pendulum, and
studied the relationship of the swing amplitude and the rotation speed (frequen-
cy) [5]. However, there are two weak points in that work: first, it is unreasonable
to treat the FSRL system as a double pendulum, especially, at the initial stage
of the mono-silicon rod growth from the melt; second, only simple oscillation is
observed from the model without the systematical analysis of the whole dynamics.
In a subsequent work [6], Yuan established a four-degree of freedom nonlinear dy-
namic equations by considering the in-plane and out-plane vibrations of the FSRL
system. Then it deduced a linear approximation model of the system. Numerical
simulations are given to show that the oscillation could be diminished by reducing
the error of centration and by increasing the damping. However, it is also unrea-
sonable to analyze the FSRL system by using linear models, especially to address
the oscillation. Moreover, the damping between the solid mono-silicon crystal seed
and the liquid polycrystal melt is very small, and it cannot be increased or de-
creased. The irregular swing phenomenon and the underlying dynamics are still
unclear, which need to be further and deeper investigated.

The contribution of this paper lies in as follows: first, a nonlinear dynamical
model of the FSRL system is proposed for the first time, which is different from
the previous linear approximation model. Second, based on this model, nonlinear
dynamics of the FSRL system is analyzed systematically to demonstrate the result-
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Fig. 1 (a) Structure diagram of flexible shaft rotating-lifting system of the Czochralski silicon
crystal puller, and (b) its simplified model.

s, including the parameter range of the possible chaotic behavior identified using
Melnikov method, Lyapunov exponent, bifurcation diagram, three routes to chaos,
namely, the period doubling bifurcation, symmetry-breaking bifurcation, and the
crisis. Third, the complex dynamic behaviors of the system are consistent with
the irregular swing phenomenon observed in the practical plants, and it provides
a theoretical basis for suppress or control it. To the authors best knowledge, the
swing phenomenon of the FSRL system in the SCP is explained from a dynamical
system viewpoint for the first time.

The organization of this paper is as follows. Section 2 describes the struc-
ture and working principle of the system. Section 3 introduces the mathematical
modeling of the system. Section 4 uses Melnikov method to obtain the parame-
ter region where chaos might exist. Section 5 studies the stability and bifurcation
of the unperturbed system. Section 5 presents the numerical simulation to show
the dynamic response of the system with perturbation, bifurcation diagrams, the
Lyapunov exponents, phase trajectories, Poincaré sections, and power spectrum.
Three routes to chaos are analyzed in section 6. Finally, section 7 summarizes the
main results and the contributions of this article.

2 The system configuration and working principle

The simplified structure diagram of SCP is given in Fig. 1a. From Fig. 1a, the puller
consists of four parts, including the base pedestal usually placed underground to
support the whole puller upside and the crucible up-down mechanism, the main
body of the crucible and heater inside, the puller neck to hold the long crystal ingot
rod, and the head with the rotating-lifting mechanism. The flexible shaft rope is
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curled around the reel mounted on the spline shaft driven by the lifting motor
through the reducer. The lifting motor regulates the lifting rate of the crystal
ingot rod. A screw pair on the spline shaft is used to make the rotation shaft rope
to be located at the center. All the lifting elements are installed on the rotating
disk, which is driven by the rotating motor through the reducer. The rotation of
the rotating disk drives the flexible shaft rotation around the center.

From the above description, we learn that the FSRL system can be treated
as a pendulum with moving pivot, as shown in Fig. 1b. Many studies have been
devoted to the nonlinear dynamic properties of the pendulum model [7-9]. Paper
[10] studies the parametrically excited pendulum comprises a simple pendulum
linked by a linear spring under base excitation. Paper [11] show different rotational
response of the pendulum under vertical excitation and tilted rectilinear excitation.
Dynamic behavior of a pendulum with periodically varying length is studied in
paper [12]. The models in those papers are usually abstracted from various actual
mechanical devices, such as the mechanical components [13, 14], rotary cranes [15,
16], and energy converters [17]. Researches have shown that, a mathematical model
like a rotating pendulum exhibit chaotic phenomena [18, 19]. The pendulum model
in this paper, however, is different from the traditional parametric pendulum. Due
to the imperfection of the manufacture, the rotating disk might have eccentricity,
which makes the suspension point periodically varying. The way the suspension
point O moves can be illustrated by the upper part in Fig. 1b. The period is
decided by the rotating disk rotation frequency. In our model process, there is no
linearization is considered, which reveal the nature of the nonlinear dynamics.

In order to explain the swing phenomenon and to understand the dynamics of
the FSRL system, we establish the mathematical model of this system and analyze
the dynamical characteristics of the FSRL system. The main purpose of this work
is to demonstrate that the FSRL system can generate different kinds of motion,
from periodic oscillations to chaos, when the rotational frequency of the crystal is
close to the natural frequency of the flexible shaft. We show that period doubling
bifurcation, symmetry-breaking bifurcation and interior crisis can be present in
the FSRL system. A better understanding of the FSRL system dynamics will help
engineers to control the swing in an effective and efficient way in order to ensure
a proper stable crystal growth environment.

3 Mathematical model of the FSRL system in SCP

In this paper, we focus on the model of the FSRL system in the crystal seeding
stage, in which the crystal seed (about 10 mm in diameter) can be treated as a
mass point. Different from the previous double pendulum or 4 freedom oscillation
equation, a pendulum with a moving suspension point is the feature of our model,
where the moving of the suspension point is caused by the eccentricity of the
rotating disk with respect to the center of the whole system.

The model is derived under the following three assumptions:

1. As the lifting speed is extremely slow with respect to the rotation, the length
of the suspended flexible shaft can be treated as a constant.

2. The mass of the flexible shaft is neglected; the mass of the crystal chucks
and (seed) crystal is assumed as a mass point.
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3. Within the SCP, it is near vacuum state. The air damping of the system is too
small to affect the system. The damping of the system is mainly caused by the inter
action between the solid mono-silicon crystal rod(seed) and the polycrystalline
silicon melt.

The simplified diagram of the FSRL system of SCP is shown in Fig. 1b. The
rotation motors drives the rotating disk with angular velocity w. The flexible shaft
length is [, and the seed crystal together with ingot crystal has a mass m.

The system is considered to be a rotating pendulum, and the general nonlinear
differential equations can be derived by using the second kind Lagrange’s equation.

Define the angle between the rotational axis and the flexible shaft as the gener-
alized coordinate, 8, as shown in Fig. 1b. The level of the rotating disk is assumed
to be the zero potential energy surface. The gravitational acceleration is g. Then,
the kinetic energy T and the potential energy V of the system are written as
follows:

T= %m(lQé2 + 1?w?sin’ 0),

V = —mglcosf.
The Lagrangian of the system is, then,

L=T-V= %m(lzéz + 1?w? sin® 0) + mgl cos 6.
The periodic perturbed force caused by the eccentricity is given as:
Qr = mrw? cos(wt). (1)
The generalized force of the system damping is defined as:
Q =—¢b. (2)
In the practical system, r is the eccentric distance and £ is the damping coef-
ficient. The Lagrange equation with dissipation function can be written as:

d 0L oL

&(%)—EZQF-I-Q- (3)

Using the Lagrange equation (3), the dynamic equation of the FSRL system
can be given as:

ml*0 — mi®w? sin 0 cos @ + mgl sin @ = mrw? cos(wt) — €6, (4)

Introducing dimensionless time 7 = wot, where wg = /g/l is the natural frequency
of the pendulum, and then the dimensionless coordinates § = 6, we have the
dimensionless form of the dynamics as follows:

6 = A0 cos(27) + 027 sinf cos § — sin O — cb), (5)

where 2= < A=7" andc= —5—.
wp? I ml?wq

0
Equation (5) can be rewritten as state space equations:
T1 = T2

@2 = AN cos(927) 4+ 27 sinx1 cosz1 — sinx1 — cxa, (6)



6 Hai-Peng Ren et al.

where z1 = 6 and z2 = §. The dynamics of the flexible shaft rotating-lifting system
is a two-dimensional non-autonomous system.

The phenomenon obtained by our model method is more reasonable to explain
the practical observation, the on-going practice to control the swing also testifies
the effectiveness of the model.

4 Analysis of the unperturbed system

The system without damping and perturbation is given by
X1 = T2
#y = 2°sinxy cosxy — sinzy. (7)

System (7) is a Hamiltonian system and the Hamiltonian function is given by:

1 1
H(x1,22) = 53&% + ZQZ cos 2x1 — cos 1. (8)

Equilibria
=]

0 02 04 06 08 1 12 14 16 18 2

Fig. 2 Equilibria bifurcation diagram of system (7), where a pitchfork bifurcation is found,
with stable equilibria given by solid line and unstable equilibria given by dotted line.

By analyzing the fixed points of system (7) and their stabilities, we obtain the
following results:

(i) For £ < 1, there is only one equilibrium O(0,0), being the center.

(ii) For £2 > 1, there are three equilibria including O(0,0), being the saddle,
C1(z0,0) and Cz(—x0,0) being the centers, where zo is the positive root of z
satisfying 22 sinx; cosz1 — sinzy = 0.

System (7) undergoes pitchfork bifurcation at 2 = 1. The equilibria bifurca-
tion diagram is given in Fig. 2. In addtion, with the help of the Hamilton func-
tion (8), the trajectories can be classified by the different values of the Hamil-
tonian H(x1,z2) = F, which are marked in the corresponding phase portrait-
s shown in Fig. 3. It can be seen that the phase structure of system (7) will
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Fig. 3 (a) The phase portraits of system (7) for 2 = 0.5, (b) the phase portraits of system
(2) for 2 =2.

change according to parameter §2. In the case of {2 < 1, the orbits for £ < Ejy
(Eo =2+ 192 cos 21 —cos 1) are represented by a family of ellipses, it means the

system moves periodically around the minimum of potential energy, as shown in
Fig. 3a. When {2 > 1, the phase portraits suddenly change into another structure,
a pair of homoclinic orbits q3_ (t) and ¢° (t) connecting the origin to itself appear,
plotted using red and blue solid lines, as shown in Fig. 3b, in the interior region
of ¢%.(t) and ¢° (t), there exists a family of periodic orbits.

Analytical expressions for the unperturbed homoclinic orbits can be derived by
using Hamilton function (8). Notice that the solution of homoclinic orbits should
satisfy the initial condition (z1(0),z2(0) = (0,0)), and then H(z1,2)|q o) =

1
1(22 — 1, we obtain:

1 1
x%:5927275920052x1+2c05x1, (9)

Equation (9) can be rewritten as follows:

% =22 -2 22cos?x; + 2cos 1,

Letting o = 22 — 1 , it is rewritten as:

dri

dt =

vVaZ —1—a2cos2x1 — cos?z1 + 2cos 1

Integrating both side of the above equation, we have:
t= :I:l cosh™ (a cot E)
T a 27
The above function can be transformed into:

1,1
z1(t) = £2cot 1(a)coshonf.
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_dxi()
dt

, we obtain the z2(t) in the follow form:

2a2 sinh ot

r2(t) =F——mF5—.
2(t) a2 + cosh? at

We obtain the two homoclinic orbits:

202 sinh at

0 —1,1
t) = (2cot —)coshat, ——————),
a+(8) = (a) a2 + cosh? at

(10)
and
20 sinh at

1,1

0 1

—(t) =(—2cot™ (=) coshat, ——5—). 11

g-(t) = ( (04) a2—|—cosh2at) (11)
The analytical expression of the homoclinic orbits of the unperturbed system

obtained above enables us to investigate theoretically the chaotic motion in the

original system.

5 Parameter region of chaos existence using Melnikov method

In this section, we will investigated the necessary condition for existing the chaotic
motion in system (6) by using the Melnikov method. The Melnikov method is an
analytical method to detect possible chaotic motion in Hamiltonian system. For
a two-dimentional Hamiltonian system with the homoclinic or heteroclinic orbits,
considering the perturbation of the system damping and periodic excitation, the
distance between the stable and unstable manifolds of the system fixed point can
be calculated by Melnikovs integration. If the distance is equal to zero, the stable
and unstable manifolds cross each other transversally, and from that crossing, the
system will become chaotic [20].
We introduce the following notation for system (6):

& = f(2) + g(a,1). (12)

Here f(x) is the Hamiltonian system and g(x,t) is the perturbation,

T
f(x) = (sinat1(92 C2()S.’L‘1 - 1)) ’

(2) = ° — (=
g\®) = A2 cos 2t — cxa =\ )

Considering a Melnikov function defined as follows:

i) = [ [ 0) n ol @4 )] i (13)

oo

where operation ”"A” is defined as:

(al,GQ)T N (bh bQ)T = a1b2 — a2bi,
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Then, the Melnikov function M (7) for the homoclinic orbits ¢J (t) of system
(6) is given by:

M(r) = /+oo x2(t) [A(f cos 2(t + 1) — cx2 (t)] dt

—o0
too 202 sinh ot 9
- _ 2SR 02 s Ot +
/_oo a2 + cosh? ot [ cos 2t +7)
—_ 2 ]
2cx smhat]dt. (14)

_ o ca Pimat
a2 + cosh? at

The computation for ¢% (t) can be conducted similarly. Since z2(t) is an odd
function, equation (14) can be rewritten as:

+oo 2 3
M(r) = AQZ/ w sin {2t dt sin 27
_oo @2 4 cosh®at
. /+°° —2a?sinh ot 5

—oo @2+ cosh? at

dt. (15)
The integrals in equation (15) can be calculated by:

+oo 202 sinh
I1:/ a”sinhat sin (2t dt

oo 02+ cosh® ot
L2 0

=2 — sinh h(—
7rsm[a sinh™ " ()] X sec (2a ),

+oo 942 sinh
12:/ . « 51n2at )th
oo 24 cosh® at
In(va?+1-—a)
a?+1

= 4] + o,

By calculating the above integrals, Melnikov function is given by:

M(7) = A x 2x Sin[g sinh ™! (a)] x sech(%) X sin 21
In(vVa?z+1-—a)

- 4C[W +al.

(16)

Melnikov’s function (16) measures the distance between the stable and unstable
manifolds in the Poincare section. If for all 7 the following inequality (17) holds,
the system might demonstrate chaotic behavior in the sense of Smale horseshoes.

2[ln(\/oz2 +1- a)]
A Vat+1+a
; 2 5 .Q . 1 Qﬂ' (17)
o2 sm[g sinh™" (a)] x sech(z)

The boundaries of A and (2 satisfying (17) are given in Fig. 4a, for different
¢, ¢ = 0.1 is indicated by blue solid line, ¢ = 0.15 is indicated by black dashed
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c=0.1
= = ¢=0.15
====c=0.2

~a o

Fig. 4 The chaotic threshold of system (6) for parameters ¢ = 0.1, ¢ = 0.15 and ¢ = 0.2,
respectively. (b) Parameter space plot in the range of 2 € (0.9,1.4) and A € (0,0.5), blue
marks the period one motion, red marks the period two motion, green marks the period four
motion, cyan marks the period three motion, magenta marks the higher period motion, and
black marks the chaos.

line, ¢ = 0.2 is indicated by red dash-dotted line, respectively. The chaotic motions
might occur when parameters fall into regions above the corresponding lines.

Figure 4b shows the different pattern of system responses when two parameters
of the system are varied. The MATLAB based quasicode for plotting Fig.4b is
given in Algorithm 1. In fig. 4b, c is fixed at 0.1, it can be seen that the condition
given in (17) is consistent with the parameter space plot. From Fig. 4b, we know
that, if the exciting amplitude is less than A < 0.06, the irregular swing can be
avoided. This means that the irregular swing is disappeared if the eccentricity
is small enough. And we also know that the irregular swing can be avoided by
selecting the rotation speed less than {2 < 1.07, which give the helpful guide for
the operator of the SCP to set the process parameter.

6 Dynamical behaviors of the FSRL system

In order to investigate the dynamical behaviors of the full system (6), including the
bifurcation diagrams, the Lyapunov exponents, and phase trajectories, Poincaré
sections are used to show the complicated dynamics of system (6). Here, the fourth-
order Runge-Kutta algorithm is used for the integration and the solution of the
differential equations.

6.1 Bifurcation diagrams

There are three parameters in system (6): the damping coefficient, the frequency
and the amplitude of periodic excitation force caused by the eccentricity. The
three-dimensional bifurcation diagrams of the system in space (¢, 4, 6) and (¢, £2,0)
are given in Figs. ba and 5b, respectively. In Fig. 5a, A is fixed at 0.2, and in Fig. 5b,
(2 is fixed at 1.1. It can be seen from Fig. 5a that: first, near the natural frequency,

period>8
and chaos

period-5~8

period-4

period-3

period-2

period-1
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Algorithm 1: MATLAB based quasicode for parameter space plot of FSRL
system

1 Initialize
markers = {'b./,/ sr’/ ¢!/ dg’,/ zm', ok}
global Amp Fre
for Ampl < 0:0.01:0.5 do

2 for Freq < 0.9:0.005: 1.4 do

3 Amp +— Ampl
Fre < Freq
T + 2 X ™+ frequency
step < 27 <+ (Freq x 100)
[t,y] + ode45(' FSRL func,[t0 : step : tf],y0)
m=0;n=0
for k <+ 1001 : 100 : size(y(:,1)) do
4 m=m-+1
X(m) < [y(k, 1);y(k, 2)]
5 end
6 Ply=X(1);n=n+1
for i + 2 to m do
7 for j < 1 ton do
8 | d(j) = distance(P(5), X (i))
9 end
10 if ~ any(d < limit) then
11 n=n+1
P(n) = X(1)
12 end
13 if n > 8 then
14 | break
15 end
16 end
17 if n > 5&&n <= 8 then
18 | ne5
19 end
20 else if n > 8 then
21 | n«6
22 end
23 plot(i, §, strcat(markers{n}))
hold on
24 end
25 end
26

Subroutine FSRLfunc

global Amp Fre

FSRLfunc=

[y(2); 0.5Fre? x sin(2 x y(1)) — sin(y(1) + Amp x Fre? x cos(Fre x t)) — ¢ x y(2)]
End subroutine

ie., 2 = 1.1, system (6) exhibits chaos, the smaller the damping is, the larger is
the region of the parameter 2 having chaos; second, with the rotation frequency
moving away from the natural frequency, the chaotic motion becomes a periodic
oscillation; third, in the small damping coefficient range, there are periodic motion
windows; the smaller the damping coefficient is, the smaller is the periodic window
width; fourth, in a practical situation, period one is desirable if the oscillation is
unavoidable, which means that the rotation speed should be set away from the
natural frequency of the system. In addition, the small rotation speed corresponds
to small oscillation amplitude.
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Fig. 5 The bifurcation diagrams of the system in three-dimensional space: (a) in (¢, §2,6)
space for A = 0.2, (b) in (¢, A, 0) space for 2 = 1.1.

09 095 1 105 14 115 12 125 13 1356 14

Lyapunov exponents

09 095 1 1.05 11 115 12 125 13 135 14

Fig. 6 (a) The bifurcation diagrams of the system for varying parameter {2, and (b) the LLE
corresponding to the parameter range in(a).

From Fig. 5b, for fixed {2 = 1.1, we learn that: first, with the damping coef-
ficient decreasing, the parameter range of the excitation amplitude, where chaos
can be observed, becomes larger; second, there exists a periodic window between
two chaotic parameter regions; third, with the damping coefficient decreasing, the
chaotic parameter region becomes large. If the damping coefficient is large enough,
chaos is eliminated.

The largest Lyapunov exponent (LLE) of a dynamical system is a quantity that
characterizes the average exponential separation between two phase trajectories
that are initially close by. In the chaotic region, the LLE must be positive. In
the following, we give the LLE variation versus the parameter variation in order
to clearly see the relationship of the LLE and the dynamics of the system, the
bifurcation diagram with the same parameter variation is also given.
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Lyapunov exponents

0 005 01 015 02 025 03 035 04 045 05
A

Fig. 7 (a) The bifurcation diagrams of the system for varying parameter A, and (b) the LLE
corresponding to the parameter range in (a).

In the first case, A is fixed at 0.2 and the damping coefficient c¢ is fixed at
0.3, then the LLE variation and the corresponding bifurcation diagram versus {2
variation are given in Figs. 6a and 6b, respectively. In the second case, {2 is fixed
at 1.1 and the damping coefficient c is fixed at 0.1, then the LLE variation and the
corresponding bifurcation diagram versus A variation are given in Figs. 7a and 7b,
respectively. From Figs. 6 and 7, we know that in the chaotic parameter region
the LLE is positive.

6.2 Routes to Chaos

A. Period doubling bifurcation

Period doubling bifurcation is one of the most common routes from periodic motion
to chaos. From Figs. 4 to 7, we can observe many examples of this route. To
clearly see this point, we show the blow up bifurcation diagram within the range
2 € (1.06,1.16) in Fig. 6a, shown in Fig. 8a. From Fig. 8a, we know that when
2 € (1.06,1.087), period one is observed; when {2 € (1.087,1.129), period two
is observed; when (2 € (1.129,1.137), period four is observed; afterwards, period
eight and then chaos are observed. To see the different dynamical behaviors, we
give the phase trajectories, the Poincaré sections, the time sequence and their
corresponding power spectrum for 2 = 1.068, 2 = 1.115, 2 = 1.133 and 2 =
1.165 in Figs. 8b ~ 8e, respectively. We surmise that the periodic oscillations are
consistent with the corresponding power spectrum. In addition, chaos has a wide
spectrum.

B. Symmetry-breaking bifurcation
Symmetry exists in many nonlinear systems, such as Duffing oscillator, Van der
Pol oscillator and parametric excited pendulum. It has different forms in different
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Fig. 8 (a) Local blow up bifurcation diagram shown in fig. 6(a) at £2 € (1.06,1.16). (b) The
phase trajectories, the Poincaré sections, the time sequence and their corresponding power
spectrum of period-1 oscillation at {2 = 1.068. (c) The phase trajectories, the Poincaré sections,
the time sequence and their corresponding power spectrum of period-2 oscillation at 2 = 1.115.
(d) The phase trajectories, the Poincaré sections, the time sequence and their corresponding
power spectrum of period-4 oscillation at {2 = 1.133 are shown in the upper panel and in the
lower panel, respectively. (e) The phase trajectories, the Poincaré sections, the time sequence
and their corresponding power spectrum of chaos oscillation at {2 = 1.165.
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Fig. 9 Blow up part of Fig. 7(a) exhibiting symmetry-breaking bifurcation.
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Fig. 10 The phase portraits and Poincaré sections for three different A values in the
symmetry-breaking bifurcation in Fig. 9. Subplot (a) is the phase trajectory and Poincaré
section for A = 0.145. Subplots (b) and (c) are the phase trajectories and Poincaré sections
for A = 0.17 from different initial values; Subplots (d) and (e) are the phase trajectories and
Poincaré sections for A = 0.185 from different initial conditions.
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situations. The symmetry-breaking of periodic (or quasi-periodic) phase trajecto-
ry, or a sudden change in the chaotic attractors are the general case in the above
systems. By numerical simulation, the symmetric phase portraits are found in the
FRSL system. In Fig. 7a, a periodic window occurs in A € (0.125,0.193). We
notice that this periodic window is of period-3 and the symmetry-breaking bifur-
cation takes place at A = 0.1535. To exhibit how the system enters chaos through
symmetry-breaking route, a detailed bifurcation diagram is given in Fig. 9, while
the associated phase portraits are plotted in Fig. 10. In fact, Fig. 9 shows a blow
up of a local region in the bifurcation diagram of Fig. 7a. The black points in Fig.
9 represent the symmetric period-3 oscillations, while the blue and red points in
Fig. 9 correspond to the two asymmetric period-3 solutions. We can see from Fig.
10a, the phase portrait is symmetric when A = 0.145, and the symmetry of the
system is preserved with the increasing of A, until A > 0.1535. The asymmetric
phase portraits are shown in Fig. 10b and 10c for different initial conditions, when
A = 0.17, the blue and red phase portraits in Fig. 10b and Fig.10c correspond
to the blue and red points in the bifurcation diagram in Fig. 9, which show how
symmetry has been broken at A = 0.17. In a symmetric nonlinear dynamical sys-
tem, the symmetry-breaking bifurcation can be seen as the precursor of the period
doubling bifurcation [21]. For A > 0.182, the asymmetric solutions simultaneously
undergo period doubling. Following these bifurcation cascades, finally, chaos oc-
curs. Which phase portrait is demonstrated in simulation depending on the initial
condition of the system, i.e., attracting basin of the different phase portraits.

Fig. 11 (a) The Poincaré section of a small chaotic attractor at 2 = 1.17 in the bifurcation
diagram of Fig. 6(a). (b) The Poincaré section of a large chaotic attractor at 2 = 1.18. in the
bifurcation diagram of Fig. 6(a).

C. Crisis

In this subsection, we show that there is another route to chaos, namely, Crisis.
In Fig. 6a, it can be observed that, at 2 ~ 1.18, a small chaotic region suddenly
enlarges into a larger one, which is a kind of crisis [22]. Figure 11 shows this change
in the Poincaré section. Crisis is a type of global bifurcation, and also, is another
route to chaos when the parameter of the FSLR system varies.
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Fig. 12 (a) The Poincaré section of two isolated weak chaotic attractors located at A = 0.3
in Fig. 7(a). (b) The Poincare section of a single strong chaotic attractor located at A = 0.301
in Fig. 7(a).

The crisis can also be observed in Fig. 7a, where we can see that, for A = 0.3,
there exist two isolated small chaotic region whose Pioncaré section is shown in
Fig. 12a, while, for A = 0.301, there is one single large chaos region whose Pioncaré
section is shown in Fig. 12b. As parameter A passes the critical value, the size of the
attractor is suddenly enlarged. The new blue Poincaré section points include the
old red ones and new incremental blue points. This is a typical crisis phenomenon.

7 Conclusions

In this paper, the dynamical model of the FSRL system of SCP is established
based on the working principle of the FSRL system. The Melnikov method, the
bifurcation diagram, the Lyapunov exponents, phase trajectories, Poincaré sections
and power spectra have been used to investigate the dynamical behaviors of the
system. We learn from the analysis of this paper that: first, the rotation speed,
i.e., the excitation frequency, the amplitude of excitation depending on the degree
of eccentricity, and the damping coefficient affect the dynamical behaviors of the
system; second, depending on different parameters, the system demonstrates a
tremendous variety of different dynamical behaviors, including period-1, period-2,
..., and chaos; third, when the excitation frequency is close to the natural frequency
of the system, complex behaviors, including high period and chaos occurs, which
is consistent with the practical observations from industrial plants.We have shown
three routes to chaos of the FSRL system, namely, the period doubling bifurcation,
symmetry-breaking bifurcation, and the crisis.

The complex dynamic characteristics of the system investigated in this paper
explain the irregular swing phenomenon observed in the practical plants, and it
provides a theoretical basis for eliminating the unexpected swing phenomenon of
the FSRL system in the SCP using Cz method. Designing the eccentricity to be
zero for the mechanical engineer is too challenge task to accomplish, therefore,
designing an active controller to control the swing is a more feasible and adaptive
method to deal with the swing problem, which will be given in the future paper.
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