
Accepted Manuscript

Title: Impact of ZnO and CuO nanoparticles on the rheological
and filtration properties of water-based drilling fluid

Authors: Pitchayut Dejtaradon, Hossein Hamidi, Michael
Halim Chuks, David Wilkinson, Roozbeh Rafati

PII: S0927-7757(19)30244-4
DOI: https://doi.org/10.1016/j.colsurfa.2019.03.050
Reference: COLSUA 23297

To appear in: Colloids and Surfaces A: Physicochem. Eng. Aspects

Received date: 13 December 2018
Revised date: 12 March 2019
Accepted date: 16 March 2019

Please cite this article as: Dejtaradon P, Hamidi H, Halim Chuks M, Wilkinson D, Rafati
R, Impact of ZnO and CuO nanoparticles on the rheological and filtration properties of
water-based drilling fluid, Colloids and Surfaces A: Physicochemical and Engineering
Aspects (2019), https://doi.org/10.1016/j.colsurfa.2019.03.050

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.colsurfa.2019.03.050
https://doi.org/10.1016/j.colsurfa.2019.03.050


∗Corresponding author at: School of Engineering, King’s College, University of Aberdeen, Aberdeen 

AB24 3UE, UK. Tel.: +44 1224273960.E-mail address: hossein.hamidi@abdn.ac.uk (H. Hamidi). 

 

Impact of ZnO and CuO nanoparticles on the rheological and filtration properties of 

water-based drilling fluid 

Pitchayut Dejtaradon, Hossein Hamidi*, Michael Halim Chuks, David Wilkinson and 

Roozbeh Rafati 

School of Engineering, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK 

Graphical abstract 

 

 

 

 

Abstract 

During the past decade, many researchers have reported on various improvements to water-

based drilling fluid properties through the addition of different nanoparticles to improve the 
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rheological properties, the thermal and electrical conductivity, and fluid loss control. Although 

various types of nanoparticles have been tested for their ability to improve the rheological and 

filtration properties of water-based drilling fluids at low pressure and temperature, some of 

them have not yet been tested at elevated pressure and temperature. In this study, the impact of 

different concentrations of ZnO and CuO nanoparticle additives on the rheological properties 

of a water-based drilling fluid at 25oC, 50oC and 80oC, and on the filtration properties at 500 

psi and 100oC was studied. A range of ZnO and CuO nanoparticle concentrations, from 0.1 to 

1 wt%, were prepared as nanofluids and introduced as additives (1 vol%) into prepared water-

based base drilling fluids. The rheological properties for both nanoparticle-based drilling fluids 

showed a significant improvement over the base drilling fluid, with ZnO providing a better 

overall performance than CuO. Both nanoparticle-based drilling fluids were also observed to 

be more stable at elevated temperatures. For the filtration tests conducted under elevated 

pressure and temperature conditions (500 psi and 100oC), a greater reduction in filtration loss 

was obtained at 0.8 wt% CuO nanoparticles (30.2%), compared to 0.8 wt% ZnO nanoparticles 

(18.6%). Mud cake thickness was also reduced, compared to the base fluid, with the CuO 

(27.6%) and ZnO (24.6%) nanoparticle fluids. These results demonstrate the ability of ZnO 

and CuO nanoparticles to enhance the properties of water-based drilling fluids, and their 

potential to be used as a high-efficiency filtration loss additive. 

Keywords: Water-based drilling fluids; ZnO nanoparticles; CuO nanoparticles; Pressure; 

Temperature; Rheological properties; Filtration properties. 

 

1. Introduction 

Drilling fluids, which are viscous fluids that result from the mixture of liquid or gas with a 

suspended solid, were invented by, and have been used in, oil and gas exploration since the 
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early 19th century 1. Since that time, the primary advantages of drilling fluids have been to, for 

example, cool and lubricate the drill bit and drill pipe, lift the rock cuttings up to the surface, 

create hydrostatic pressure to overcome the rock formation pressure, and deposit mud cake 

around the walls of the hole to reduce fluid loss to the formation, etc.2. Developments in drilling 

fluids have been the focus of several recent studies, aimed at designing one that can satisfy 

industry’s needs, including decreasing fluid loss through the rock formations, providing it with 

excellent rheological properties and, more importantly, making it environmentally friendly 3-5.  

Currently, several types of drilling fluid are being used, such as oil-based, polymer-based and 

water-based. Oil-based drilling fluids are widely used in the oil and gas industry due to their 

outstanding stability (i.e., superior rheological properties and very low fluid loss) in high 

pressure and high temperature (HPHT) wellbore conditions over long periods of operation 6. 

As environmental issues come to the fore, however, the use of oil-based drilling fluid is 

becoming undesirable because the excess fluid left in the wellbore can disperse and cause 

freshwater aquifers to become contaminated 7. On the other hand, despite the fact that polymer-

based drilling fluids have a lot of useful properties, in terms of rheology and filtration loss, they 

tend to decompose over a period of time under extreme wellbore conditions 8, 9. Water-based 

drilling fluids are more environmentally friendly and should therefore be further developed to 

achieve similar performance to oil-based drilling fluids while, at the same time, maintaining 

their less-harmful environmental credentials. 

It has become established that 75% of wells drilled globally are in shale formations and about 

90% of wellbore instability problems are caused by shale formations 10. Although water-based 

drilling fluids have less of an impact on the environment, they do cause problems with shale 

hydration, which leads to issues such as wellbore caving, sticking drill pipes, changing pore 

pressures, loss of well control, etc. 11-13. In order to prevent these undesirable situations from 

arising, any modifications to such drilling fluids would require an additive to combine with the 

ACCEPTED M
ANUSCRIP

T



4 

 

water-based drilling fluid that would decrease the contact between the shale formation and the 

water and inhibit shale instability. The cost of natural gas has been highly variable in the last 

several decades and the recent downward trend in prices has been partly due to the rapid 

development of shale gas deposits in Pennsylvania, Texas and elsewhere, which have 

drastically redistributed availability of gas supplies in the U.S and the world 14. The lithological 

characteristics of the reservoir sections of shale gas, shale oil, and tight sandstone gas 

formations are very complex and conventional plugging materials are not effective because the 

size of the holes in the shale formation(probably in nanometer scale) is smaller than that in 

other formations, hence for better plugging performance during drilling in shale formations, 

smaller and more effective plugging materials for use in water-based drilling fluids are 

needed15, 16. 

During the past decade, many researchers have reported on various improvements to water-

based drilling fluid properties through the addition of different nanoparticles to improve the 

rheological properties and thermal and electrical conductivity, and reduce fluid loss 15-17. In 

2011, Kosynkin et al., reported that a thinner filter cake and less fluid loss from the base drilling 

fluid system was achieved through the addition of graphene oxide nanoparticles as a fluid loss 

additive  18. Next, in 2012, Cai et al., discovered the possibility of reducing shale hydration by 

using silica (SiO2) nanoparticles as an additive 19. Later, in 2013, Abdo and Haneef, optimized 

the rheological properties and reduced the filtration loss by more than 50% by using in-house-

produced ATR (Attenuated total reflection) nanoparticles 20. Moreover, by mixing 

nanographite powder with water-based drilling fluid, Nasser et al., in 2013 reported that the 

rheological stability is enhanced at higher temperatures and pressures 21. 

More recently, nanoparticle-based drilling fluid has become more widespread. Ponmani et al., 

in their study in 2014, reported that the thermal and electrical conductivity properties of 

nanoparticles-based drilling fluids have been improved by roughly 50% and 25% respectively, 
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by adding copper oxide (CuO) and zinc oxide (ZnO), respectively22.  The same nanoparticles 

were also examined to determine whether they could significantly reduce filtration loss at low 

pressures and temperatures (LPLT) conditions 23; the authors reported that these nanoparticles 

performed better than others, i.e., graphene powder18. nanoclay 20, nanographite and 

nanosilica21. Multi-walled carbon nanotubes, nanosilica and glass beads have also been tried, 

resulting in the improvement of either rheological properties or thermal conductivity over the  

water-based drilling fluid 8. In addition, a reduction in shale swelling rate, imbibition amount 

and Young’s modulus has been achieved by adding SiO2 nanoparticles to water-based drilling 

fluid 24. Those researchers also observed that the nanoparticles could block the fluid flow paths 

through the pores in the shale, leading to a reduction in shale instability. In 2016, Mahmoud et 

al., reported that ferric oxide improved the rheological properties of the drilling fluid, but that 

SiO2 nanoparticles obtained the opposite result and in addition, the drilling fluid still exhibited 

stable rheological properties under HPHT conditions  25. Since then, the focus has shifted to 

studying the effects of adding nanoparticles under more realistic environmental conditions. 

Again in 2016, Abdo and Hassan, demonstrated the superior ability of nano-sepiolite in 

maintaining the filtration loss of water-based drilling fluid at up to 2500 psi and 200oC; 

however, the aluminium oxide (Al2O3) nanoparticles caused an increasing trend of filtration 

loss at higher concentrations, due to the agglomeration of the nanoparticles 26. The rheological 

properties, nevertheless, were still significantly improved 27. Poly (sodium p-styrene 

sulfonate)-modified ferrous oxide (Fe3O4) nanoparticles were found to improve rheological 

properties at elevated temperatures, while a decrease in fluid loss under HPHT conditions was 

observed 28.      

Generally, at higher temperatures, the rheological properties of water-based drilling fluids are 

degraded. Subsequently, this results in a reduction in shear thinning behaviour and rock 

cuttings carrying ability 29. In addition, high filtration loss of drilling fluid is a critical problem 
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in drilling operations, leading to wellbore instability and environmental issues, i.e. chemical 

spillage to the marine environment 10. Although, various types of nanoparticles have been 

tested for their ability to reduce filtration loss 23, 30 at low pressure and temperature, some of 

them, e.g. ZnO and CuO nanoparticles, have not yet been tested at elevated temperature and 

pressure conditions. Moreover, the constraints on using nanoparticles in drilling fluids have 

not been determined in most studies. Ascertaining such limitations is necessary in order to 

ensure a positive outcome from nanoparticle-based drilling fluids.   

In response to these problems, the performance of ZnO and CuO nanoparticles was tested in 

water-based drilling fluids, in relation to their rheological properties at low and elevated 

temperatures, and analysed in order to understand the flow behaviours of the resultant fluids. 

The ability of the nanoparticles to prevent filtration loss was also investigated at elevated 

temperature and pressure. Finally, the optimum type and concentration of nanoparticles, in 

comparison with other nanoparticles, was demonstrated.  

 

 

2. Materials Used, Experimental Equipment and Experimental Procedures 

2.1 Materials Used in Formulating Nanoparticle-based Drilling Fluids 

In this study, ZnO and CuO nanopowders, containing particles with a spherical shape, were 

supplied by Sigma–Aldrich, UK. The drilling fluid samples were prepared in a similar way to 

typical drilling fluids, according to the industrial application 31. The components of the drilling 

fluid were deionised water as the main fluid, with bentonite clay and xanthan gum (supplied 

by Schlumberger, M-I SWACO UK) both added to increase the viscosity. To decrease fluid 

loss, PAC-L was added. KCl was also added to prepare the inhibitive mud that can slow the 

hydration, swelling and disintegration of shale. NaOH was used to control the pH of the drilling 
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fluid, keeping it in the range of 9 to 9.5. Formaldehyde was also added to lower degradation 

caused by bacterial action. A summary of all the properties (i.e. chemical formula, molecular 

weight, particle size, surface area and purpose of use) of the materials used is shown in Table 

1. In Table 2, is a summary of the product specification for the CuO and ZnO nanoparticles 

used in the experiment. 

Table 1: Summary of the materials used in formulating nanoparticle-based drilling fluids 

and their purposes 

Material 
Chemical 
formula 

Molecular 
weight 
(g/mol) 

Ave. 
Particle 

size 

Surface 
area 

Purpose 

Water H2O 18 N/A N/A Main fluid 

Wyoming 
bentonite 

Al2O3·4SiO2·H2O 422.286 1-100 µm 
370-487 

m2/g 
Viscosifier 

Xanthan gum C35H49O29 933 N/A N/A 
Viscosifier, 

dispersing agent 

Polyanionic 
cellulose (PAC) 

C23H28N4O2 392 1-100 µm 
130-161 

m2/g 
Filtration loss 

control 

Potassium 
chloride 

KCl 74.55 
63-100 

µm 
N/A Inhibitive agent 

Sodium 
hydroxide 

NaOH 39.997 N/A N/A pH adjustment 

Formaldehyde CH2O 30.026 N/A N/A 
Biodegradation 

retardant 

Zinc oxide 
nanoparticles 

ZnO 81.39 50 nm 
10.8 
m2/g 

Viscosifier, 
filtration loss 

control 

Copper oxide 
nanoparticles 

CuO 79.55 50 nm 29 m2/g 
Viscosifier, 

filtration loss 
control 

 

Table 2: Summary of product specification for the CuO and ZnO 

No Product Name Average particle size /method 
of analysis 

Appearance(form 
& Colour) 

1 Copper(II) Oxide 50nm size measured with 

Transmission Electron 

Microscope(TEM) 

Powder and black 
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2  Zinc oxide 50nm measured with Brunauer-

Emmett Teller(BET) 

White to yellow 

and faint green to 

green and yellow-

green 

 

2.2 Experimental Equipment 

A Hamilton beach mixer was used for mixing of additives in the drilling fluids. The rheological 

properties were tested using two OFITE viscometers model 900. For the filtration loss 

measurement, a HPHT filter press from OFITE, with a drilling fluid capacity of 175 ml, was 

used. According to the API (Recommended Practices 13B-1 and 13B-2), the filter papers used 

in the experiment must have a diameter of 2.5 inches (6.35 cm), with a particle-size retention 

range of 2 to 5 µm. 

 

 

2.3       Experimental Procedure 

2.3.1 Nanoparticle-based drilling fluid preparation procedure 

ZnO and CuO nanoparticles were incorporated into the nanofluid by using a two-step method, 

in which the nanopowders were first prepared and then mixed with the prepared fluid 32. This 

method is the most widely used for preparing nanofluids due to its cost effectiveness. The base 

drilling fluids were formulated separately from the nanofluid so as to ensure the uniform 

dispersion of the nanoparticles 22, 23, 31, 33 

Nanofluid preparation 

Firstly, Xanthan gum at a concentration of 0.4 wt% was mixed with deionised water. Then, 

0.1, 0.3, 0.5, 0.8 and 1 wt% ZnO or CuO nanopowder was added to the prepared mixture to 

formulate the nanofluid. In Table 3, the nomenclature N1-N10 represents the nanofluid, and 
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the compositions of those fluids are given. After preparation, the samples were sonicated in an 

ultrasonic bath at a frequency of 25 kHz and an input power of 450 W for one hour to increase 

nanofluid stability and the dispersion of the particles 34. All the nanofluid samples were 

prepared and used on the same day to ensure that the properties remained the same for every 

test.  

Table 3: Nanofluid formulations used in this study 

 Nomenclature 
Nanoparticle 

concentration (wt%) 

Xanthan gum 
concentration 

(wt%)  

N1 ZnO, 0.1 0.4 

N2 ZnO, 0.3 0.4 

N3 ZnO, 0.5 0.4 

N4 ZnO, 0.8 0.4 

N5 ZnO, 1.0 0.4 

N6 CuO, 0.1 0.4 

N7 CuO, 0.3 0.4 

N8 CuO, 0.5 0.4 

N9 CuO, 0.8 0.4 

N10 CuO, 1.0 0.4 

 

Base drilling fluid preparation 

The base drilling fluid formulation started with the preparation of a mixture of 0.0479g 

Wyoming Bentonite per milliliter (ML) of deionised water with a viscosity of 5 cp. The drilling 

fluid additives were then incorporated as detailed below: 

 PAC-L   (0.5 wt %) 

 KCl   (5 wt %) 

 NaOH   (0.01 wt %) 

 Formaldehyde   (0.1 wt %) 

Before each drilling fluid additive was included, the mixture was blended with a Hamilton 

Beach single spindle mixer for 15 to 30 minutes, to ensure full dispersion of the additives. After 
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finishing formulating the base fluid, ultrasonification was carried out for 1 hour, the same as 

for the nanofluids.  

Finally, a 1 vol% of nanofluid was added to the base drilling fluid and mixed using a Hamilton 

Beach single spindle mixer to formulate the nanoparticle-based drilling fluid.  

2.3.2 Rheological and filtration testing procedure 

The rheological properties of the nanoparticle-based drilling fluid were tested at temperatures 

of 25oC, 50oC, and 80oC using OFITE viscometer model 900. Each drilling fluid sample was 

placed in a testing cup and its shear stress measured at 600 rpm, 300 rpm, 200 rpm, 100 rpm, 

60 rpm, 30 rpm and 6 rpm rotation speeds. The measured values were used to calculate Plastic 

Viscosity (PV), Apparent Viscosity (AV) and Yield Point (YP). For measurement of gel 

strength, the speed selector knob was rotated to 3 rpm to measure the shear stress after the 

drilling fluid was rested for 10 seconds and 10 minutes to determine gel strength at 10 seconds 

(Gel 10s) and gel strength at 10 minutes (Gel 10min), respectively.  

The filtration properties were measured at 500 psi and 100oC using an OFITE HPHT filter 

press. The reported values were doubled from the measurement due to the filtration area of the 

API standard being 7.1 in2 (whereas the cell in the HPHT filter press is 3.55 in2). Measurements 

at each drilling fluid concentration were repeated three times and the average result reported. 

2.3.2 Procedure used for characterization of filter cake using Scanning Electron 

Microscope (SEM) 

The filter cakes generated after the filtration process were air dried under ambient temperature 

for 48 hours. Then the samples were morphologically characterized via SEM analysis. The 

SEM observation was carried out using varying magnifications (150X, 900X, 350X and 200X) 

so as to obtain the optimal field of view (FOV) where possible for the different layers 
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(youngest, middle and oldest) observed in the samples. The resolution used were 10microns, 

20microns and 100microns. 

2.3.2.1 Determination of the Permeability of the Filter Cake. 

The filtration behavior of a filter cake is measured by two parameters: the permeability of the 

filter cake (k) and the specific volume (b) (which is filter cake volume divided by filtrate 

volume and is therefore, dimensionless 35. The permeability of the filter cake was obtained 

using a method which depends on relationship between the cumulative filtrate volume and time 

35, 36 

k = (𝑄𝑡 ×  𝑙𝑡 × µ) ×  
1

2𝑃×𝐹 ×𝑡
              equation ………………… (1)35, 36 

𝑄𝑡= The quantity of filtrate volume in cm3 separated after time t 

𝑙𝑡= Thickness of filter cake in cm 

μ = viscosity of filtrate in centipoise 

P= The filtration pressure in Atmosphere 

t = time in seconds 

F = Effective filter surface in cm2      

 

3. Presentation of Results 

The results are presented in three sections: 

 Firstly, the rheological properties of the ZnO and CuO nanoparticle-based drilling fluids, 

including plots of shear stress versus shear rate, PV, AV, YP and gel strength (Gel 10s and 
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Gel 10min) at different nanoparticle concentrations and at three different temperatures 

(25oC, 50oC, and 80oC), are compared and discussed.  

 Secondly, the filtration loss properties of the samples at 500 psi and 100oC are compared 

and discussed.  

 Thirdly, the characterization of the filter cakes generated by 0.8% Cuo and 0.8% ZnO 

nanoparticles drilling fluids and the base drilling fluid without nanoparticles using 

Scanning Electron Microscope (SEM) are compared and discussed in addition to their 

permeability values. 

 

 

 

 

 

 

 

3.1 The Effect of Nanoparticle Concentration and Temperature on the Rheological 

Properties of the ZnO and CuO Nanoparticle-based Drilling Fluids 

3.1.1 Temperature of 25oC 

The shear stress of the various ZnO and CuO nanoparticle-based drilling fluid samples was 

measured using an OFITE viscometer model 900 at room temperature (25oC). The results are 

shown in Figure 1.  ACCEPTED M
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Figure 1: Shear stress versus shear rate of base drilling fluid (BF), in log-log scale ZnO 

(0.1% to 1%) and CuO (0.1% to 1%) nanoparticle-based drilling fluids at 25oC 

 

As can be seen, all the drilling fluid samples show shear thinning behaviour, as apparent 

viscosity decreases with increasing shear rate. By adding ZnO and CuO nanofluid to the base 

drilling fluid (BF), the shear stress was significantly reduced. In particular, the ZnO 

nanoparticle-based drilling fluids displayed lower shear stresses than the CuO nanoparticle-

based drilling fluids. It was also observed that an increase in nanoparticle concentration (ZnO 

0.1% to 1% and CuO 0.1% to 1%) produced an increasing shear stress trend.         

Figures 2 and 3 illustrate the following rheological parameters: PV, AV, YP and Gel 10s and 

Gel 10min at 25oC for ZnO and CuO nanoparticle-based drilling fluids, respectively.  
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Figure 2: Rheological properties of base drilling fluid (BF) and ZnO nanoparticle-based 

drilling fluid (ZnO 0.1% to 1%) at 25oC  

(PV [cp], AV [cp], YP [lbf/100ft2], Gel 10s [lbf/100ft2], Gel 10min [lbf/100ft2]) 

 

 

Figure 3: Rheological properties of base drilling fluid (BF) and CuO nanoparticle-based 

drilling fluid (CuO 0.1% to 1%) at 25oC  

(PV [cp], AV [cp], YP [lbf/100ft2], Gel 10s [lbf/100ft2], Gel 10min [lbf/100ft2]) 

Overall, the addition of nanoparticles reduced the magnitude of the rheological properties of 

the base fluid; however, at greater concentrations of both nanoparticles, all of the rheological 
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properties showed an increasing trend. In comparing the ZnO and CuO nanoparticle-based 

drilling fluids, the ZnO ones exhibited lower rheological properties throughout. It was observed 

that the 10-minute gel strength in the drilling fluid samples ZnO 1% and CuO 1% revealed a 

significantly reduced value from the ZnO 0.8% and CuO 0.8% fluids, respectively. 

3.1.2 Temperature of 50oC and 80oC  

Rheology tests were performed at higher temperatures to simulate the use of drilling fluids at 

higher temperature conditions. Plots of shear stress versus shear rate in log scale at 50oC and 

80oC, compared to those at 25oC, are shown in Figures 4 and 5 for ZnO and CuO nanoparticle-

based drilling fluids, respectively.  

 

 
Figure 4: Shear stress versus shear rate of ZnO nanoparticle-based drilling fluid in log-log 

scale (ZnO 0.1% to 1%) at 25oC, 50oC and 80oC 
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Figure 5: Shear stress versus shear rate of CuO nanoparticle-based drilling fluid in log-log 

scale (CuO 0.1% to 1%) at 25oC, 50oC and 80oC 

 

At elevated temperatures, both drilling fluids still exhibited shear thinning characteristics; 

however, it can clearly be seen that the shear stress at 80oC and 50oC is significantly lower than 

at 25oC. Another observation from the results is that the ZnO 0.8% and ZnO 1% drilling fluids 

showed a sharp increase in their shear stress values with concentration along all shear rates at 

80oC and 50oC, while the CuO nanoparticle-based drilling fluids displayed a steady increase in 

shear stress at higher concentrations.   

Figures 6 and 7 show the measured values of PV, AV, YP and Gel 10s and Gel 10min at 50oC 

for ZnO and CuO nanoparticle-based drilling fluids, respectively.  
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Figure 6: Rheological properties of base drilling fluid (BF) and ZnO nanoparticle-based 

drilling fluid (ZnO 0.1% to 1%) at 50oC  

(PV [cp], AV [cp], YP [lbf/100ft2], Gel 10s [lbf/100ft2], Gel 10min [lbf/100ft2]) 

 

Figure 7: Rheological properties of base drilling fluid (BF) and CuO nanoparticle-based 

drilling fluid (CuO 0.1% to 1%) at 50oC  

(PV [cp], AV [cp], YP [lbf/100ft2], Gel 10s [lbf/100ft2], Gel 10min [lbf/100ft2]) 

 

Figures 8 and 9 show the measured values of PV, AV, YP and Gel 10s and Gel 10min at 

80oC for ZnO and CuO nanoparticle-based drilling fluids, respectively 
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Figure 8: Rheological properties of base drilling fluid (BF) and ZnO nanoparticle-based 

drilling fluid (ZnO 0.1% to 1%) at 80oC  

(PV [cp], AV [cp], YP [lbf/100ft2], Gel 10s [lbf/100ft2], Gel 10min [lbf/100ft2]) 

 

 

Figure 9: Rheological properties of base drilling fluid (BF) and CuO nanoparticle-based 

drilling fluid (CuO 0.1% to 1%) at 80oC  

(PV [cp], AV [cp], YP [lbf/100ft2], Gel 10s [lbf/100ft2], Gel 10min [lbf/100ft2]) 
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Compared to both materials, the base drilling fluid had the highest values for all categories of 

data. For the ZnO nanoparticles, PV decreased from 0.1 wt% to 0.5 wt% concentrations, and 

then started to rise again as the concentration is increased to 0.8 wt% and 1 wt%. The other 

properties (AV, YP and gel strength) showed a gradual increase at higher ZnO nanoparticle 

concentrations. Overall, all of the parameters exhibited an increasing trend in the CuO 

nanoparticle-based drilling fluid samples; however, for the gel strength at 10 minutes in both 

nanoparticle fluids, the measured values suddenly dropped at 1 wt%. This shows the same 

characteristic as was measured at 25oC, which was predicted to be a result of particle 

agglomeration. 

 

3.2 The Effect of Nanoparticle Concentration on the Filtration Loss Properties of ZnO 

and CuO Nanoparticle-based Drilling Fluids  

In this study, the filtration loss experiments on ZnO and CuO nanoparticle-based drilling fluids 

were carried out at 500 psi and 100oC conditions using an OFITE HPHT filter press. Figure 10 

shows the cumulative fluid loss of each drilling fluid sample at 30 minutes after the experiment 

started.  
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Figure 10: Filtration volumes after 30 minutes for base drilling fluid (BF), ZnO (0.1% to 

1%) and CuO (0.1% to 1%) nanoparticle-based drilling fluids at 500 psi and 100oC 

 

According to the results, the highest filtration loss, at 17.2 ml, was obtained from the base 

drilling fluid. The lowest loss was recorded from the CuO 0.8% nanoparticle-based drilling 

fluid, at 12 ml. Both ZnO and CuO nanoparticles exhibited similar trends, with the filtration 

loss starting to decrease and then increasing when more nanoparticles were added. The CuO 

nanoparticles, however, showed a better performance in reducing fluid loss. The decrease in 

filtration loss, compared to the base drilling fluid, obtained from the ZnO 0.8% and CuO 0.8% 

nanoparticle-based drilling fluids was 18.6% and 30.2%, respectively.     

The reduction in filtration volume obtained from the experiment demonstrates the ability of the 

drilling fluid to form a thin, low-permeability mud cake layer to block the liquid from flowing 

through the filter paper. In general, any drilling fluid formulation is required to have as low as 

possible fluid loss to decrease problems of wellbore instability. In particular, in water-sensitive 

rocks such as shale formations, it is very important to carefully design the drilling fluid system 
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so as to prevent formation instability problems resulting from fluid loss 37. In this experiment, 

the CuO nanoparticle-based drilling fluid exhibited a lower filtration loss than ZnO. This shows 

the stronger ability of CuO nanoparticles to create bonds between the particles to hold more 

fluid. The higher filtration loss occurred with 1 wt% ZnO and CuO nanoparticles. Again, this 

might result from agglomeration, which causes the nanoparticles to behave like larger particles, 

resulting in higher filtration loss 27.  

Figure 11 shows the mud cake thicknesses recorded after the filtration loss experiment was 

completed.  

 

Figure 11: Mud cake thicknesses of base drilling fluid (BF), ZnO (0.1% to 1%) and CuO 

(0.1% to 1%) nanoparticle-based drilling fluids at 500 psi and 100oC 

 

The results exhibit the same trend as the filtration loss. The thickest mud cake resulted from 

the base drilling fluid. Gradually decreasing thicknesses were obtained from the ZnO 0.1% to 

ZnO 0.8% drilling fluids; however, the mud became thicker at 1 wt% ZnO concentration. The 

CuO nanoparticles showed fluctuating results, but an increase in mud cake thickness after 

0

0.5

1

1.5

2

2.5

M
u

d
 c

a
k

e 
th

ic
k

n
es

s 
(m

m
) 

Nano-based drilling fluid

ACCEPTED M
ANUSCRIP

T



22 

 

adding more nanoparticles was still apparent. The thinnest mud cakes acquired from each 

nanoparticle were 1.53 mm and 1.47 mm for ZnO 0.8% and CuO 0.8%, respectively. These 

can be represented as 24.6% and 27.6% reductions relative to the base drilling fluid for the 

ZnO and CuO nanoparticle-based drilling fluids, respectively.    

Generally, it is necessary to keep the mud cake as thin as possible. According to Onuh et al. 

less than 2/32 in, or 1.5875 mm, of mud cake is considered to be an acceptable thickness 38, as 

an inappropriate mud thickness can result in problems such as a stuck pipe in highly-permeable 

formations 39. From Figure 11, it can be seen that the ZnO 0.8%, ZnO 1%, CuO 0.3%, ZnO 

0.8% and ZnO 1% drilling fluids resulted in mud cake thickness lower than that of the standard 

thickness. In order to form a thin mud cake, the drilling fluid must contain small-sized particles 

that will precipitate and plug the pores in permeable formations. This engineered 

impermeability allows less fluid loss to occur, resulting in less excess precipitation from the 

other drilling fluid components flowing through the mud cake 25. For the ZnO 1% and CuO 1% 

drilling fluids, the precipitation of nanoparticles might have been lower due to the larger 

agglomerated sizes of the nanoparticles that would be unable to plug the tiny pores.  

Figure 12 shows a comparison of the filtration losses among ZnO, CuO and other nanoparticles 

at elevated pressure and temperature.  
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Figure 12: Comparison of filtration loss from various nanoparticle-based drilling fluids at 

elevated temperatures and pressures 

All the results are the best obtained from each study. The poly (sodium p-styrene sulfonate)-

modified Fe3O4 nanoparticles have the highest value among the other nanoparticles, at roughly 

37 ml 28. The Al2O3 and SiO2 nanoparticles and multi-walled carbon nanotubes exhibited the 

same range of filtration loss at 19.5, 18 and 16 ml, respectively  27, 40, 41. The SiO2 nanoparticles 

27 and graphene nanoplatelets 41 resulted in 12.5 ml and 14 ml, respectively, similar in 

performance to the ZnO (14 ml) and CuO (12 ml) nanoparticles in this study. Lastly, the ferric 

oxide nanoparticles exhibited superior filtration loss, at only 6.9 ml – a huge difference 

compared to the other nanoparticles 25. 

3.3 Characterization of Filter cake Generated by Cuo and ZnO nanoparticles Based 

Drilling Fluids Using Scanning Electron Microscope (SEM). 

A detailed investigation was carried on the filter cakes generated from base drilling fluid 

without nanoparticles (figures 13 a & b), Nanoparticle drilling fluid with 0.8% CuO (figures 

14 a and b), and Nano-based drilling fluid with 0.8% ZnO (figures 15 a and b) nanoparticles 

using SEM. The SEM photomicrographs were taken from cross section of the filter cakes. 
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Figures 13 a and b are the photomicrographs from the drilling fluid without nanoparticles. The 

morphology appears to be porous and permeable. 

 

Figure 13a: SEM photomicrograph of filter cake generated from drilling fluid without CuO 

and ZnO nanoparticles at 900X. 

 

Figure 13b: SEM photomicrograph of filter cake generated from drilling fluid without CuO 

and ZnO nanoparticles at 200X. 
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Figures 14 a and b are the photomicrographs for the filter cake with 0.8% CuO. The 

morphology appears to be less porous and less permeable compared to the filter cake of the 

base drilling fluid shown in figures 13 a & b. The pores in figures 13 a & b have been plugged 

effectively plugged by the CuO nanoparticles. The nanoparticles in the filter cake from 0.8% 

CuO drilling fluid, at first effectively plugged the pores and secondly, the permeability is 

reduced. Then lastly, the rate of filtration is drastically reduced leading to low volume of fluid 

loss. Hence, the better performance of 0.8% CuO drilling fluid as an effective fluid loss control 

agent than the base drilling fluid without nanoparticles and the 0.8% ZnO nanoparticle drilling 

fluid. 

 

Figure 14a: SEM photomicrograph of filter cake generated from drilling fluid with 0.8% CuO 

nanoparticles at 900X 
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Figure 14b: SEM photomicrograph of filter cake generated from drilling fluid with 0.8% CuO 

nanoparticles at 350X 

The figures 15a & b are the photomicrographs of the filter cake for 0.8% ZnO drilling fluid. 

The ZnO nanoparticles have shown increased agglomeration 42 and ineffective plugging which 

have affected filtration profile 16, 43. However, despite the agglomeration of the nanoparticles 

in the filter cake of 0.8% ZnO nanoparticle drilling fluid, it has proved to be a better fluid loss 

control agent than the base drilling fluid without nanoparticles because to a certain degree, 

plugging of pores occurred and this resulted to low filtration leading to ineffective fluid loss 

control in the 0.8% ZnO nanoparticle drilling fluid. 
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Figure15a: SEM photomicrograph of filter cake generated from drilling fluid with 0.8% ZnO 

nanoparticles at 900X 

 

Figure15b: SEM photomicrograph of filter cake generated from drilling fluid with 0.8% ZnO 

nanoparticles at 350X 
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3.3.1 Determination of Permeability values for Filter Cakes 

The parameters mentioned in equation (1) were determined from experimental data during 

filtration process for base drilling fluid without nanoparticles and for drilling fluid with 0.8% 

CuO and 0.8% ZnO nanoparticles. Then the following permeability values  𝐾𝑏𝑓 , 𝐾𝐶𝑢𝑂  and  

𝐾𝑍𝑛𝑂 were determined and presented in figure 16. The permeability values Kbf > KZnO > KCuO 

as shown in figure 16 is an indication that filter cake of 0.8% CuO nanoparticle drilling fluid 

with KCuO =6.3X10-6D has proved to be of a better plugging performance and hence a better 

fluid loss control agent than filter cake of 0.8% ZnO nanoparticle drilling fluid with KZnO 

=7.60X10-6D. The filter cake from the base drilling fluid without nanoparticles has the highest 

permeability value Kbf =1.2X10-5D. 

Figure 16: Permeability Data for kbf =1.20 X 10-5 D, KCuO = 6.30X 10-6 D and KZnO =7.60 X 

10-6 D. 
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4. Discussion of Results 

Based on the shear stress versus shear rate results, it can be speculated that, at low 

concentrations, the distinctive effect of adding nanoparticles was to disorganize the bonds 

between the other drilling fluid components 33 resulting in a substantial reduction of the shear 

stress. In contrast, at higher nanoparticle concentrations, a greater quantity of solid particles 

dominated and the disrupting effect of the nanoparticles was reduced. A greater reduction in 

shear stress was exhibited by the ZnO nanoparticle fluid. This was caused by the smaller 

surface area of ZnO (at 10.8 m2/g) compared to CuO (at 29.7 m2/g), which affects the ability 

to disperse and disrupt the bonds inside the drilling fluid. In addition, the viscoelastic behaviour 

of the nanoparticle-based drilling fluids obtained from the experiment indicates their flexibility 

in changing their rheological properties during drilling operations. Drilling fluids are required 

to have low stress for ease of pumping while the drill bit is penetrating, but their strength must 

be high enough to suspend the rock cuttings when the operation is stopped 44. 

The nanoparticle-based drilling fluids cause a decrease in PV.  This is believed to be the result 

of the nanoparticles reducing the mechanical friction between the drilling fluid compositions 

45. This leads to an easier flow of fluid through the drill bit and in the annulus. The lower 

apparent viscosity (AV) at high-speed shear rates would result in a faster penetration of the 

drill bit when operations start; however, the lower AV might decrease the cuttings lifting ability 

of the drilling fluid 46. A reduction of initial resistance to flow of the drilling fluid was obtained 

from the nanoparticle-based drilling fluids. The reduction in YP results from a decrease in 

electrochemical forces between the drilling fluid formulations due to the addition of 

nanoparticles 33. A better optimisation of gel strength over base drilling fluid, which reduces 

the pump power required to recirculate flow after stopping the operation, was obtained using 

both types of nanoparticles. Finally, a reduction in gel strength at 10 minutes at 1 wt% 
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concentration was observed. This resulted from a closer distance between nanoparticles in the 

drilling fluid, so that they started to agglomerate and act similar to larger particles 27.       

The improvement of the rheological properties resulting from greater nanoparticle 

concentrations found in this study is consistent with results from a study by Perween et al.,in 

2018, during their research on ZnTiO3 nanoparticles 33. Referring to the findings herein, that 

improved rheological properties resulted from the larger surface area of CuO nanoparticles 

compared to ZnO nanoparticles, Perween et al.,in 2018, also obtained similar rheological trend 

results from higher-surface-area material (ENP ZnTiO3 – 24.47 m2/g)) over lower-surface-area 

material (SNP ZnTiO3 – 1.04 m2/g) 33. The authors also noted the trade-off that an increasing 

trend might increase the capacity of the drilling fluid to hold more rock cuttings. 

The shear thinning characteristic of the nanoparticle-based drilling fluids at elevated 

temperatures showed an ability of the fluids to still work effectively at higher temperatures. 

Thermal expansion at higher temperatures decreases the stress between the particles 31. Drilling 

fluid’s viscosity reduction at higher temperatures also reduces the shear stress. The effects of 

different concentrations of ZnO and CuO nanoparticles on the shear stress trend at elevated 

temperatures were the same as at 25oC. This indicates that there is no sign of thermal 

degradation of the nanoparticle-based drilling fluids. Similar evidence was reported by William 

et al., in 2014, in which ZnO and CuO nanoparticles as drilling fluid additives were tested and 

found to give a good indication of thermal stability enhancement, even at temperatures up to 

110oC 31. 

There is greater consistency in the results at the higher testing temperature in the CuO 

nanoparticle-based drilling fluid (i.e. constant increasing shear stress versus shear rate trend 

with concentration). The thermal conductivity of CuO nanoparticles is higher than that of ZnO 

nanoparticles, according to the study of Ponmani et al., in 2014 This property of drilling fluids 
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determines how quickly heat can be transferred inside the fluid column  22, 23. Higher thermal 

conductivity means that the fluid holds heat for a shorter time, resulting in a greater thermal 

stability of the drilling fluid 47. 

According to the rheological property results (50oC and 80oC), it can be inferred that the surface 

area of the nanoparticles was a dominant factor in the trend of the rheological properties at both 

low and elevated temperatures. For particles with a greater surface area, the volume or amount 

of particles that can be added to the drilling fluid is less and there is less of an agglomeration 

problem, as can be seen in the case of CuO nanoparticles. On the other hand, the smaller surface 

area nanoparticles have the ability to decrease the interactions among larger molecules, due to 

their smaller size 33. However, at higher concentrations the quantity of particles needed to be 

added is higher. Then, agglomeration of the particles becomes a dominant effect and 

enhancement of the shear stress is no longer an issue as a result of the reduction in 10-minute 

gel strength in the ZnO 0.8% to 1% drilling fluids. 

Comparison of various filtration loss property results from different nanoparticle-based drilling 

fluids shows a successful development of the formulation of ZnO and CuO nanoparticle-based 

drilling fluids in this study. In general, a filtration loss of 10 ml for the API standard filtration 

test at low pressure and low temperature (LPLT) condition can be considered a low fluid loss 

48. Since HPHT conditions always result in greater fluid loss (due to lower fluid viscosity), it 

can be seen that the results obtained in this study are practically acceptable. Nevertheless, a 

better drilling fluid formulation to further reduce filtration may need to be studied. The results 

from this study indicate a better filtration loss compared to most other studies, apart from the 

ferric oxide nanoparticles. The nanoparticles used in the other studies were directly added to 

the drilling fluid formulation as a calculated wt%, whilst in this study, nanoparticles were added 

to a mixture of 0.4 wt% xanthan gum and distillated water, and then 1 vol% of these mixtures, 

or nanofluids, were added to the prepared base drilling fluid. In real oil and gas industrial 
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applications, less chemical exposure is always preferable 49. Consequently, this preparation 

procedure might be a better alternative in order to reduce exposure levels to the environment, 

whilst still obtaining a satisfactory enhancement of the drilling fluid properties. 

The detailed SEM investigation carried out in this study indicates that the process of filtration 

as observed from the SEM analysis of the filter cake from base drilling fluid without 

nanoparticles (figures 13 a & b) appears to be very porous and permeable. While for 0.8% CuO  

filter cake (figures 14  a & b) and 0.8% ZnO filter cake (figures 15 a & b) cases, the 

nanoparticles are able to reduce the fluid loss considerably35 by plugging the pores/holes 

observed in figures (13 a & b)15, 16, 42 and this mechanism has resulted to thin and less permeable  

filter cake with low porosities as the volume of filter cake formed per cubic centimeter of 

filtrate has become very small35. However, the agglomeration of nanoparticles observed with 

0.8% ZnO filter cake is because these magnetic particles can aggregate easily in water based 

fluids which results in bigger particles (figures 15 a & b) and leads to higher fluid losses 

because pristine inorganic nanoparticles are able to aggregate because of their high surface 

energy15, 42. The 0.8% CuO filter cake showed little or no aggregation (figures 14 a & b) hence 

the better hole plugging performance16, 42, 43 giving rise to a low filtration velocity and a small 

volume of filter cake formed per cubic centimeter of filtrate and ultimately a thinner filter cake 

thickness35. The Permeability values in Darcy presented in figure 16, Kbf > KZnO > KCuO 

validates the observations in figures 13-15. The agglomeration of the nanoparticles in the filter 

cake from 0.8% ZnO nanoparticle drilling fluid (figures 15 a & b) led to a permeability value 

of KZnO = 7.60X10-6D while the filter cake from 0.8% CuO nanoparticle drilling fluid which 

have shown little or no  agglomeration (figures 14 a & b) have a lower permeability value of 

KCuO = 6.30X10-6D, hence the filter cake from 0.8% CuO nanoparticle drilling fluid was able 

to show a better performance in the fluid loss control process than the filter cakes from base 

drilling fluid (figure 13 a & b) without nanoparticles, having the highest permeability value of 
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Kbf = 1.2X10-5D and 0.8% ZnO nanoparticle drilling fluid with KZnO =7.60X10-6D. The 

permeability values have also affected the effective reduction in the thickness of the filter 

cakes. The mechanism attributed to the effective reduction in thickness of filter cake is linked 

to the plugging of the existing pores by the nanoparticles that have reduced the filtration process 

and the rate at which particulates were deposited. 

 

5. Conclusions  

This study aimed to develop a high-performance, water-based drilling fluid by using ZnO and 

CuO nanoparticles as nanofluid additives. From the rheological testing, a significant reduction 

in shear stress and improvement in rheological properties were observed after the addition of a 

small quantity of nanoparticles. With higher concentrations of nanoparticles, the shear stress 

gradually increased and the rheological properties gradually deteriorated for both nanoparticle 

types, although the ZnO nanoparticles produced better rheological properties than the CuO 

nanoparticles. Moreover, at higher temperatures, the drilling fluids still exhibited shear 

thinning characteristics, decreases in shear stress and improvement in other rheological 

properties.  

For the filtration tests under elevated pressure and temperature conditions (500 psi and 100oC), 

18.6% and 30.2% reductions in filtration loss, compared to the base drilling fluid (17.2 ml), 

resulted from 0.8 wt% ZnO and 0.8 wt% CuO nanoparticle-based drilling fluids, respectively. 

However, after increasing the concentration of ZnO and CuO nanoparticles to 1 wt%, the 

nanoparticle-based drilling fluid filtration loss increased due to the agglomeration of 

nanoparticles.  Mud cake thicknesses showed 24.6% and 27.6% reductions, compared to the 

base drilling fluid, for ZnO and CuO nanoparticles, respectively. The filter cakes for base 

drilling fluid, 0.8%CuO base drilling fluid and 0.8% ZnO base drilling fluids have been 
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characterized using SEM. The mechanism for thicker filter cakes has been attributed to a 

faster/increased velocity of filtration due to a poor plugging performance. The permeabilities 

of the filter cakes were calculated and the base drilling fluid have a higher permeability 

followed by 0.8% ZnO based drilling fluid then 0.8% based drilling fluid have the lowest 

permeability (kbf >kZnO>kCuO ). 

In conclusion, the ZnO nanoparticles exhibited a better ability to improve the rheological 

properties, while the CuO nanoparticles showed superior filtration loss reduction. However, 

CuO nanoparticles might be considered a more environmentally-friendly drilling fluid additive. 

Overall, nanoparticles have the potential to enhance the industry-required properties of drilling 

fluids.     
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