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Dense active matter model of motion patterns
in confluent cell monolayers
Silke Henkes 1,2✉, Kaja Kostanjevec3, J. Martin Collinson3, Rastko Sknepnek 4,5✉ & Eric Bertin6✉

Epithelial cell monolayers show remarkable displacement and velocity correlations over

distances of ten or more cell sizes that are reminiscent of supercooled liquids and active

nematics. We show that many observed features can be described within the framework of

dense active matter, and argue that persistent uncoordinated cell motility coupled to the

collective elastic modes of the cell sheet is sufficient to produce swirl-like correlations. We

obtain this result using both continuum active linear elasticity and a normal modes formalism,

and validate analytical predictions with numerical simulations of two agent-based cell models,

soft elastic particles and the self-propelled Voronoi model together with in-vitro experiments

of confluent corneal epithelial cell sheets. Simulations and normal mode analysis perfectly

match when tissue-level reorganisation occurs on times longer than the persistence time of

cell motility. Our analytical model quantitatively matches measured velocity correlation

functions over more than a decade with a single fitting parameter.
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Collective cell migration is of fundamental importance in
embryonic development1–4, organ regeneration and
wound healing5. During embryogenesis, robust regulation

of collective cell migration is key for formation of complex tissues
and organs. In adult tissues, a paradigmatic model of collective
cell migration is the radial migration of corneal epithelial cells
across the surface of the eye6,7. Major advances in our under-
standing of collective cell migration have been obtained from
in vitro experiments on epithelial cell monolayers4,8–11. A key
observation is that collective cell migration is an emergent,
strongly correlated phenomenon that cannot be understood by
studying the migration of individual cells12. For example, forces
in a monolayer are transmitted over long distances via a global
tug-of-war mechanism9. The landscape of mechanical stresses is
rugged with local stresses that are correlated over distances
spanning multiple cell sizes10. These strong correlations lead to
the tendency of individual cells to migrate along the local
orientation of the maximal principal stress (plithotaxis10,13) and a
tendency of a collection of migrating epithelial cells to move
towards empty regions of space (kenotaxis14). Furthermore, such
coordination mechanisms lead to propagating waves in confined
clusters15,16, expanding colonies17 and in colliding monolayers18,
which all occur in the absence of inertia.

Active matter physics19,20 offers a natural framework for
describing subcellular, cellular and tissue-level processes. It stu-
dies the collective motion patterns of agents each internally able
to convert energy into directed motion. In the dense limit,
motility leads to a number of unexpected motion patterns,
including flocking21, oscillations22, active liquid crystalline20, and
arrested, glassy phases23. In silico studies22,24–27, in the dense
regime have been instrumental in describing and classifying
experimentally observed collective active motion.

Continuum active gel theories28,29 are able to capture many
aspects of cell mechanics30, including spontaneous flow of cor-
tical actin31 and contractile cell traction profiles with the sub-
strate32. In some cases, cell shapes form a nematic-like texture4,33

and topological defects present in such texture have been argued
to assist in the extrusion of apoptotic cells4. To date, however, the
cell-level origin of the heterogeneity in flow patterns and stress
profiles in cell sheets is still poorly understood. Many epithelial
tissues show little or no local nematic order or polarization, and
even where order is present, the local flow and stress patterns
only follow the continuum prediction on average, while indivi-
dual patterns are dominated by fluctuations. This suggests that
active nematic and active gel approaches capture only part of the
picture.

Confluent cell monolayers exhibit similar dynamical behaviour
to supercooled liquids approaching a glass transition. One
observes spatio-temporally correlated heterogeneous patterns in
cell displacements34 known as dynamic heterogeneities35, a
hallmark of the glass transition36 between a slow, albeit flowing
liquid phase and an arrested amorphous glassy state. The notion
that collectives of cells reside in the vicinity of a liquid to solid
transition provides profound biological insight into the
mechanisms of collective cell migration. By tuning the motility
and internal properties of individual cells, e.g. cell shape37–39 or
cell–cell adhesion40, a living system can drive itself across this
transition and rather accurately control cell motion within the
sheet. This establishes a picture in which tissue-level patterning is
not solely determined by biochemistry (e.g. the distribution of
morphogens) but is also driven by mechanical cues.

In this paper, we show that the cell-level heterogeneity, that is
variations in size, shape, mechanical properties or motility
between individual cells of the same type inherent to any cell
monolayer, together with individual, persistent, cell motility and
soft elastic repulsion between neighbouring cells leads to

correlation patterns in the cell motion, with correlation lengths
exceeding ten or more cell sizes. Inspired by the theory of sheared
granular materials41,42, we develop a normal modes formalism for
the linear response of confluent cell sheets to active perturbations
(see Fig. 1a), and derive a displacement correlation function with
a characteristic length scale of flow patterns. Using numerical
simulations of models for cell sheets, including a soft disk model
as well as a self-propelled Voronoi model (SPV)37,38, we show
that our analytical model provides an excellent match for both
types of simulations up to a point where substantial flow in the
sheet begins to subtly alter the correlation functions (Fig. 1b). At
the level of linear elasticity, we are able to make an analytical
prediction for the velocity correlation function and the mean
velocity in a generic cell sheet. We test our theoretical predictions,
which apply to any confluent epithelial cell sheet on a solid
substrate dominated by uncoordinated migration, with time-lapse
observations of corneal epithelial cells grown to confluence on a
tissue culture plastic substrate. We find very good agreement
between experimental velocity correlations and analytical pre-
dictions and are, thus, able to construct fully parametrized soft
disk and SPV model simulations of the system (Fig. 1c) that
quantitatively match the experiment. Garcia, et al.40 observed
similar correlations and proposed a scaling theory based on
coherently moving cell clusters, and either cell–substrate or
cell–cell dissipation. Our approach generalises their result for
cell–substrate dissipation, and we recover both the scaling results
and also find quantitative agreement with the experiments pre-
sented in ref. 40.

Results
Model overview. We model the monolayer as a dense packing of
soft, self-propelled agents that move with overdamped dynamics,
and where the main source of dissipation is cell–substrate friction.
The equations of motion for cell centers are

ζ _ri ¼ Facti þ Finti ; ð1Þ
where ζ is the cell–substrate friction coefficient, Facti is the net
motile force resulting from the cell–substrate stress transfer, and
Finti is the interaction force between cell i and its neighbours.
Commonly used interaction models are short-ranged pair forces
with attractive and repulsive components43 and SPV models37,38.
Here we only require that the intercell forces can be written as the
gradients of a potential energy that depends on the positions of
cell centres, Finti ¼ �∇ri

VðfrjgÞ. Furthermore, we neglect cell
division and extrusion for now, but we will reconsider the issue
when we match simulations to experiment below. The precise
form and molecular origin of the active propulsion force Facti is a
topic of ongoing debate, and interactions between cells through
flocking, nematic alignment, plithotaxis and kenotaxis have all
been proposed. What is clear, however, is that all alignment
mechanisms occur over a substantial background of uncoordi-
nated motility, and therefore, as a base model, we assume that the
active cell forces undergo random, uncorrelated fluctuations in
direction. With Facti ¼ Factn̂i, where n̂i is the unit vector that
makes an angle θi with the x -axis of the laboratory frame, the
angular dynamics is

_θi ¼ ηi; hηi tð Þηjðt0Þi ¼
1
τ
δijδ t � t0ð Þ; ð2Þ

where τ sets a persistence time scale, and different cells are not
coupled (Fig. 1a). This dynamics is equivalent to active Brownian
particles44, and in isolation, model cell motion is a persistent
random walk. At sufficiently low driving, such models form active
glasses23,45–47, where the system moves through a series of local
energy minima (i.e. spatial configurations of cells) on the time
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scale of the alpha-relaxation time τα, which diverges at dynamical
arrest.

We now develop a linear response formalism. As shown in
Fig. 1a, on time scales below τα, the self-propulsion reduces to a
stochastic, time-correlated force fluctuating inside a local energy
minimum. If the persistence time scale τ ≪ τα, the full dynamics
can be described by a statistical average over long periods
fluctuating around different energy minima, by assuming that the
brief periods during which the system rearranges do not
contribute appreciably (see also ref. 47). We linearize the
interaction forces in the vicinity of an energy minimum, i.e. a
mechanically stable or jammed configuration fr0i g by introducing
δri ¼ ri � r0i . After introducing the active velocity v0= Fact∕ζ, Eq.
(1) becomes

ζδ _ri ¼ ζv0n̂i �
X
j

Kij � δrj; ð3Þ

where Kij ¼ ∂2V frigð Þ
∂ri∂rj

jfr0j g is the dynamical matrix48, organised as

2 × 2 blocks corresponding to cells i and j. In this limit, we can
solve the dynamics exactly, see Supplementary Note 1.

Normal mode formulation. Assuming that there are a sufficient
number of intercell forces to constrain the tissue to be elastic at
short time scales, the dynamical matrix has 2N independent
normal modes ξν with positive eigenvalues λν. If we project
Eq. (3) onto the normal modes, we obtain

ζ _aν ¼ �λνaν þ ην; ð4Þ
where aν ¼

P
i δri � ξνi and the self-propulsion force has been

projected onto the modes, ην ¼ ζv0
P

i n̂i � ξνi . The self-
propulsion then acts like a time-correlated Ornstein-Uhlenbeck
noise (see Supplementary Note 1), with hηνðtÞην0 ðt0Þi ¼
1
2 ζ

2v20 expð�jt � t0j=τÞδν;ν0 . We can integrate Eq. (4) and obtain
the moments of aν. In particular, the mean energy per mode is
given by

Eν ¼
1
2
λνha2νi ¼

ζv20τ
4 1þ λντ=ζð Þ ; ð5Þ

explicitly showing that equipartition is broken due to the mode-
dependence induced by λν in Eq. (5). In the limit τ → 0, we
recover an effective thermal equilibrium, Eν ! ζv20τ=4 :¼ Teff=2,

where Teff ¼ ζv20τ=2, consistent with previous work37,45. In
Fig. 2a, the leftmost column is for a simulated thermal system,
with properties that are nearly indistinguishable from the τ= 0.2
results. In the opposite, high persistence limit when τ → ∞, we
obtain instead Eν ¼ ζ2v20=4λν , i.e. a divergence of the contribu-
tion of the lowest modes. A predominance of the lowest modes in
active driven systems was also noted in ref. 22,37,49.

It thus becomes clear that for large values of τ, Teff can no
longer be interpreted as temperature since the fluctuation-
dissipation theorem is no longer valid. An analogous result to
the τ → ∞ limit has been obtained in granular material with an
externally applied shear41,42, showing that the mechanisms at
play are generic, and that tuning τ allows active systems to bridge
between features of thermal systems and (self-)sheared systems
(see also ref. 37,47). However, the glass transition lies on a curve of
constant Teff with moderate τ contributions (Fig. 2 and ref. 46),
making Teff a convenient parameter, in spite of its lack of genuine
thermodynamic interpretation.

In order to make connections to experiments on cells sheets,
we compute several directly measurable quantities. One measure
that is easily extracted from microscopy images is the velocity
field, using particle image velocimetry (PIV)50. We compute
the Fourier space velocity correlation function, 〈∣v(q)∣2〉=
〈v(q) ⋅ v*(q)〉, with vðqÞ ¼ 1=N

PN
j¼1 e

iq�r0j δ _rj, where the fr0j g
are the positions of the cell centres at mechanical equilibrium.
Expanding over the normal modes, and taking into account the
statistical independence of the time derivatives _aν of the modes
amplitudes for different modes, we first derive (see Supplemen-
tary Note 1) the mode correlations h _a2νi ¼ v20= 2 1þ λντ=ζð Þ½ �, so
that in Fourier space, we obtain

hjvðqÞj2i ¼
X
ν

v20
2ð1þ λντ=ζÞ

jξνðqÞj2; ð6Þ

where ξν(q) is the Fourier transform of the vector ξνi .

Continuum elastic formulation. In most practical situations, it is
impossible to extract either the normal modes or their eigenva-
lues. While it is possible to do so in, e.g. colloidal particle
experiments51,52, the current methods are strictly restricted to
thermal equilibrium, and also require an extreme amount of data.
Fortunately, the results above are easily recast into the language of
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Fig. 1 Active elasticity leads to correlated velocity fields. a Mechanisms at the origin of the active elastic theory in the energy landscape (top), inside an
energy minimum (bottom left), and between particles (bottom right). b Velocity fields in simulated cell sheets. Top—System-spanning correlations in a
solid soft disk system at τ= 2000. Bottom left—liquid soft disk system at τ= 200, and bottom right—SPV model simulation at τ= 200, cell outlines in
white. c Velocity fields in experimental cell sheets. Top—sample experimental velocity field, overlaid over phase-contrast image of the cell sheet. Bottom
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solid state physics53. We rewrite Eq. (3) as

ζ _uðRÞ ¼ ζv0n̂ðRÞ �
X
R0

DðR� R0ÞuðR0Þ; ð7Þ

where u(R) denotes the elastic deformations from the equilibrium
positions R in the solid, and DðR� R0Þ is the continuum dyna-
mical matrix. The normal modes of the system are now simply
Fourier modes with

�iζωuðq;ωÞ ¼ Factðq;ωÞ �DðqÞuðq;ωÞ; ð8Þ
where Factðq;ωÞ ¼ ζv0

R1
�1 dt

P
R n̂ðR; tÞeiωteiq�R and D(q) are

Fourier transforms of the active force and the dynamical matrix,
respectively. Note that we assume that the system has a finite
volume, so that Fourier modes are discrete. At scales above the
cell size a, the noise n̂ðR; tÞ is spatially uncorrelated, and we find
the noise correlators (see Supplementary Note 2)

hFactðq;ωÞ � Factð�q;ω0Þi ¼ 2πNζ2v20
2τ

1þ τωð Þ2 δðωþ ω0Þ:

ð9Þ
The dynamical matrix D(q) has two independent eigenmodes
in two dimensions, one longitudinal q̂ with eigenvalue B+ μ
and one transverse one q̂? with eigenvalue μ, where B and μ are
the bulk and shear moduli, respectively. We can then decompose
our solution into longitudinal and transverse parts, uðq;ωÞ ¼
uLðq;ωÞq̂þ uTðq;ωÞq̂?. We are interested in the equal time,
Fourier transform of the velocity, which we find to be (see Sup-
plementary Note 2)

h vðqÞj j2i ¼ Nv20
2

1

1þ ðξLqÞ2
þ 1

1þ ðξTqÞ2
" #

; ð10Þ

where we have introduced the longitudinal and transverse cor-
relation lengths ξ2L ¼ Bþ μð Þτ=ζ and ξ2T ¼ μτ=ζ . Note that there
are subtle differences in prefactors between expressions for
velocity correlation function in Fourier space (cf., Eq. (6), Eq. (10)
and Eq. (52) in Supplementary Note 2), and that in two dimen-
sions, [μ∕ζ]= [B∕ζ]= L2T−1. As discussed in detail in Supple-
mentary Note 2, these differences are due the use of discrete vs.
continuum Fourier transforms and are important for comparison
with simulations and experiments. Finally, the mean-square
velocity of the particles h vj j2i ¼ h1N

P
i jvij2i decreases with active

correlation time as

vj j2� � ¼ v20a
2

8π
1

ξ2L
log 1þ ξ2Lq

2
m

� �þ 1

ξ2T
log 1þ ξ2Tq

2
m

� �" #
; ð11Þ

where qm= 2π∕a is the maximum wavenumber and the high-q

cutoff a is of the order of the cell size. Eq. (10) shows that the
correlation length of the system scales as

ffiffiffi
τ

p
. In the limit τ → ∞,

〈∣v(q)∣2〉 diverges at low q, as was found in ref. 54. The dominant
scaling h vj j2i � 1=ξ2 is the same as results from the scaling
Ansatz for cell–substrate dominated coordinated motion obtained
by ref. 40.

While Eq. (10) is elegant, correlations of cell velocities
expressed in the Fourier space are not easy to interpret.
Therefore, we derive a more intuitive, real-space expression for
the correlation of velocities of cells separated by r, defined as

CvvðrÞ ¼
1

L2

Z
d2r0hvðr0 þ rÞ � vðr0Þi: ð12Þ

In the infinite size limit L → ∞, the real-space correlation
function Cvv(r) can be evaluated from the Fourier correlation
〈∣v(q)∣2〉 as

CvvðrÞ ¼
a2

ð2πÞ2N

Z
d2q hjvðqÞj2i e�iq�r : ð13Þ

Using Eq. (11), one finds the explicit result (see Supplementary
Note 2)

CvvðrÞ ¼
a2v20
4π

K0ðr=ξLÞ
ξ2L

þ K0ðr=ξTÞ
ξ2T

" #
; ð14Þ

where K0 is the modified Bessel function of the second kind. Note
that this expression describes velocity correlations for r > a, with
a the cell size. For r∕ξL,T ≫ 1, i.e. for distance much larger than the
correlation lengths,

CvvðrÞ �
a2v20
4π

ffiffiffiffiffi
π

2r

r
e�r=ξL

ξ3=2L

þ e�r=ξT

ξ3=2T

 !
; ð15Þ

i.e. as expected and consistent with the results of ref. 40, Cvv

decays exponentially at large distances.

Comparison to simulations. We proceed to compare predictions
made in the previous section to the correlation function measured
in numerical simulations of an active Brownian soft disk model,
as well as to an SPV model. The active Brownian model is defined
by Eq. (1) and Eq. (2), with self-propulsion force Facti ¼ v0n̂i and
pair interaction forces Fij that are purely repulsive. We simulate a
confluent sheet in this model by setting the packing fraction to
ϕ = 1 in periodic boundary conditions. The SPV model is the
same as introduced in refs. 37,38, and assumes that every cell is
defined by the Voronoi tile corresponding to its centre. For this
model, we choose the dimensionless shape factor �p0 ¼ 3:6, put-
ting the passive system into the solid part of the phase
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Fig. 2 Glassy dynamics. Alpha-relaxation time τα as a function of the persistence time τ and effective temperature Teff ¼ ζv20τ=2. The gray scale indicates
log τα. a Soft disk model at ϕ= 1, the leftmost column is for a thermal system at T= Teff. b SPV model at �p0 ¼ 3:6 (see Methods).
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diagram37,55, and we employ open boundary conditions. Please
see the method section for full details of the numerical models
and simulation protocols.

The effective temperature Teff ¼ ζv20τ=2 has emerged as a good
predictor of the active glass transition45,54, at least at low τ, and
we use it together with τ itself as the axes of our phase diagram.
The liquid or glassy behaviour of the model can be characterised
by the alpha-relaxation time τα. Fig. 2 provides a coarse-grained
phase diagram where τα is represented in grey scale as a function
of persistence time τ and Teff. For a fixed persistence time, the
system is liquid at high enough temperature and glassy at low
temperature, as expected. Now fixing the effective temperature,
the system becomes more glassy when τ increases. This non-
trivial result is consistent with the recent RFOT theory of the
active glass transition46 and related simulation results46,47. It can
be partly understood from the fact that v0 decreases when τ
increases at fixed Teff, meaning that the active force decreases and
it becomes more difficult to cross energy barriers. In contrast,
existing mode coupling theories of the active glass transition54

only apply in the small τ regime. We note that the features of the
active glass transition of the soft disk model and the SPV model
are very similar.

As is apparent from Fig. 1b, the growing correlation length
with increasing τ is readily apparent as swirl-like motion (see also
Supplementary Movies 1-4). Fig. 3a-c shows the Fourier velocity
correlation 〈∣v(q)∣2〉 measured in the numerical simulations for
different values of v0, after normalizing 〈∣v(q)∣2〉 by v20N . In panel
A, we show that for soft disks at low Teff= 0.005, where the
system is solid, the correlation function develops a dramatic 1∕q2

slope as τ increases (dots), exactly in line with our modes
predictions (lines). We can determine the bulk and shear moduli
of the soft disk system (B= 1.684 ± 0.008, μ= 0.510 ± 0.004, see
Methods section) and then draw the predictions of Eq. (10) on
the same plot (dashed lines). At low q, where the continuum
elastic approximation is valid, we have excellent agreement, and
at larger q, the peak associated with the static structure factor
becomes apparent (in the limit τ → 0, the correlation function
reduces to S(q), see Supplementary Fig. 2). In panel C, we show
the same simulation results for the SPV model (dots),
accompanied by the continuum predictions (dashed lines) using
B= 7.0 and μ= 0.5, as estimated from ref. 55 for �p0 ¼ 3:6. We did
not compute normal modes for the SPV model. Note that due to
μ ≪ μ+ B, the contribution of the transverse correlations
dominate the analytical results in both cases. In panel B, we show
the soft disk simulation at τ= 20 when the transition to a liquid is
crossed as a function of Teff. Deviations from the normal mode
predictions become apparent only at the two largest values of Teff,
when τ > τα (Fig. 2a), and even in these very liquid systems, a
significant activity-induced correlation length persists. In Supple-
mentary Fig. 3, we show that for all τ and both soft disk and SPV
models, our predictions remain in excellent agreement with the
simulations for Teff= 0.02, where τ≲ τα. In Fig. 3d, we show the
mean-square velocity normalized by v0 as a function of the
dimensionless transverse correlation length ξT=a � ffiffiffi

τ
p

, for all
our simulations, using a= σ, the particle radius. The dramatic
drop corresponds to elastic energy being stored in distortions of
the sheet, and it is in very good agreement with our analytical
prediction in Eq. (11) (solid lines). In Supplementary Fig. 4, we
compare our numerical results for the spatial velocity correlations
to the analytical prediction Eq. (14). The data and the predictions
are in reasonable agreement.

Comparison to experiment. We now compare our theoretical
predictions and numerical simulations with experimental data
obtained from immortalised human corneal epithelial cells grown

on a tissue culture plastic substrate (see Methods section and
Supplementary Movie 5). We use PIV to extract the velocity fields
corresponding to collective cell migration (Fig. 4a, Fig. 1c and
Supplementary Movie 6). We first extract a mean velocity of

�v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjvðr; tÞj2i

q
¼ 12± 2μm=h (n= 5 experiments, see Fig. 4e),

consistent with the typical mean velocities of confluent epithelial
cell lines grown on hard substrates. To reduce the effects of varying
mean cell speed at different times and in different experiments, we

use �vðr; tÞ ¼ vðr; tÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjvðr; tÞj2ir

q
, i.e., the velocity normalized by

its mean-square spatial average at that moment in time. Using
direct counting, we find an area per cell of 〈A〉 ≈ 380 μm2 corre-
sponding to a particle radius of 〈σ〉 ≈ 11 μm, setting the micro-
scopic length scale a. To compare the experimental result to our
theoretical predictions, we perform a Fourier transform on the PIV
velocity field and compute h �vðqÞj j2i, shown in Fig. 4b. Using the
results from Eq. (11) we can rewrite Eq. (10) as

h �vðqÞj j2i ¼ N
2

v0
�v

� �2 1

1þ ξ2Lq
2
þ 1

1þ ξ2Tq
2

" #
; ð16Þ

where ξ2L and ξ2T are the longitudinal and transverse squared cor-
relation lengths (with units of μm2) defined below Eq. (10). As can
be seen from Eq. (11), the ratio v0=�v is a function only of the
dimensionless ratios ξL∕a and ξT∕a. If we further make the plausible
assumption that the ratio of elastic moduli is the same as in the soft
disk simulations, (μ+ B)∕μ= 4.3, the correlation lengths ξL and ξT
are not independent. Therefore, we are left with a single fitting
parameter, ξT. The best fit to the theory is obtained with ξT= 100
μm as indicated by the solid black line in Fig. 4a, with the interval
of confidence denoted by dashed lines. The q= 0 intercept of the
correlation function gives a ratio v0=�v � 10, corresponding to the
high activity limit where most self-propulsion is absorbed by the
elastic deformation of the cells. Consistent with this, on the
dimensionless plot Fig. 3d we are located at the point
ξT∕a ≈ 5, 〈v〉∕v0 ≈ 0.1, on the right, strongly active side. The
deviations between theory and experiment in the tail of the dis-
tribution are not due to loss of high-q information in imaging, as
far as we could determine, and the disappearance of the peak at
high q is particularly striking in this context.

In Fig. 4c, we show the real-space velocity correlations for the
experiments, and the analytical prediction Eq. (14) with ξT= 100
μm. We obtain a very good fit for experiments 1, 2, 3 and 7, but
experiments 5 and 6 have significantly longer-ranged correlations.
This indicates that the precise value of the correlation length is
very sensitive to the exact experimental conditions that are not
simple to accurately control. The qualitative features of the
correlation function are, however, robust. Note that experiments
5 and 6 have the same mean density as experiments 1 − 3, 7.

To match experiments and simulations, we consider the temporal
autocorrelation function 〈v(t) ⋅ v(0)〉 in Fig. 4d. As Eq. (57) in
Supplementary Note 2 shows, it is a complex function with a
characteristic inverse S-shape that also depends on the moduli and
qm. Using the value of ξ

2
T ¼ 104μm2 extracted from fitting h �vðqÞj j2i

and the ratio (μ+ B)∕μ= 4.3, we used different μ∕ζ and τ compatible
with ξ2T ¼ μσ2=ζτ to obtain the best (numerically integrated)
analytical fit to the experimental result. We settled on a best fit
autocorrelation time of τ= 2.5 h and μ∕(σ2ζ)= 60.5 h−1 (black
line in Fig. 4d). Experiments 5 and 6 have significantly longer
autocorrelation times, and we achieve a good fit to experiment 5
for τ5= 20 h and the same μ∕ζ (light gray line). This is consistent
with the longer spatial correlations observed in Fig. 4d, where the
light grey line corresponds to ξT= 100 μm

ffiffiffiffiffiffiffiffiffi
τ5=τ

p � 283μ m.
There is also potentially weak local cell alignment in the
experiment, not considered in the present theory.
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We can now fully parametrise particle and SPV model
simulations to the experiment as follows. Our results for �v and
the ratio v0=�v can be combined to give an initial estimate of v0=
120 μm h−1. Then, the normalised time autocorrelation function of
the cell velocities is only a function of ξ and τ, and we can use it to
determine the elastic moduli. Then, finally, we can determine
the appropriate model parameters: In Fig. 4b, the red and blue
dashed lines show Eq. (10) with B and μ chosen with the same ratio
as in the previous particle (respectively, SPV) simulations. From
these values, we can approximate the parameter values k∕ζ= μ∕σ2 for
the particle model and K∕ζ= μ∕〈A〉2, Γ∕ζ= μ∕〈A〉 for the SPV model.
The solid red and blue curves in Fig. 4b show the best fit
simulations that we obtain this way, for k∕ζ= Γ∕ζ= 55 h−1, K∕ζ=
0.454 μm−2 h−1 and v0= 90μm h−1, and snapshots are shown in
Fig. 1c (see also Supplementary Movies 7, 9 and 10). The red and
blue dashed lines in Fig. 4d show the autocorrelations of our
matched simulations for soft disk and vertex simulations,
respectively.

Our results are in quantitative agreement with ref. 40 for
confluent but still motile cells, with a reported maximum
correlation length of ξ= 100 μm, and a cell crawling speed that
drops by a factor of 10 from ~ 90 μm h−1 at low density to this
point of maximal correlation. Note also that we have an elastic
time scale (k∕ζ)−1 ≈ 0.02h, much shorter than our correlation time
scale τ= 2.5h, confirming again that we are in the strongly active
regime.

As can be seen in Supplementary Movie 5, a significant number
of divisions take place in the epithelial sheet during the 48h of the
experiment. While it is difficult to adapt our theory to include
divisions, we can simulate our particle model with a steady-state
division and extrusion rate at confluence using the model
developed in refs. 56,57. With a typical cell cycle time of
τdiv ¼ 48h, we obtain results (green line) that are very similar to
the model without division (red line), suggesting that typical cell
division rates do not change the velocity correlations noticeably
(see also Supplementary Movie 8). This result is consistent with
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the observed separation of motility time scale τ and division time
scale τdiv. We have also considered the effect of weak polar
alignment between cells, using the model from ref. 22. For weak
alignment with time scales τv ≥ τ that do not lead to global
flocking of the sheet, which we do not observe, 〈∣v(q)∣2〉 does not
change significantly, though we find somewhat longer autocorre-
lation times. Finally, the simulations can also give us information
about the velocity distribution function, a quantity that is not
accessible from our theory. In Fig. 4d, we show the experimental
normalised velocity distribution (black line with grey confidence
interval), together with the distribution we find from the best fit
simulations (coloured lines). As can be seen, there is an excellent
match in particular with the SPV model simulation. The particle
model with division has additional weight in the tail due to the
particular division algorithm implemented in the model (over-
lapping cells pushing away from each other).

Discussion
In this study, we have developed a general theory of motion in
dense epithelial cell sheets (or indeed other dense active assem-
blies58) that only relies on the interplay between persistent active
driving and elastic response. We find an emerging correlation
length that depends only on elastic moduli, the substrate friction
coefficient and scales with persistence time as τ1∕2. While we found
an excellent match between theory and simulations, further
experimental validations with different cell lines and on larger
systems should be performed. Note that without a substrate, the
mechanisms of cell activity are very different59. More generally,
including cell–cell dissipation in addition to cell–substrate dis-
sipation could significantly modify scalings40, a known result in
continuum models of dry (substrate dissipation) vs. wet (internal
dissipation) active materials. Due to the suppression of tangential
slipping between cells, it could also be responsible for the dis-
appearance of the high-q peak in the velocity correlations. The
assumption of uncoordinated activity between cells is a strong one,
and it will be interesting to extend the theory by including dif-
ferent local mechanisms of alignment22,49. From a fundamental
point of view, our theoretical results (and also the results of ref. 22)
are examples of a larger class of non-equilibrium steady-states that
can be treated using a linear response formalism60.

Methods
Experiment. Spontaneously immortalised, human corneal epithelial cells (HCE-S)
(Notara & Daniels, 2010) were plated into a 12-well plate using growth medium
consisting of DMEM/F12 (Gibco) Glutamax, 10% fetal bovine serum, and 1%
penicillin/streptomycin solution (Gibco). The medium was warmed to 37∘C prior
to plating and the cells were kept in a humidified incubator at 37 °C and an
atmosphere of 5% CO2 overnight until the cells reached confluence. Before imaging
the cells were washed with PBS and the medium was replaced with fresh medium
buffered with HEPES. The cells were imaged using a phase-contrast Leica DM IRB
inverted microscope enclosed in a chamber which kept the temperature at 37 °C.
The automated time-lapse imaging setup took an image at 10 minute intervals at a
magnification of ×10, corresponding to a field of view of 867 × 662 μm that was
saved at a resolution of 1300 × 1000 pixels. The total experimental run time for
each culture averaged 48 h, or 288 separate images. The collected data consists of
seven experimental imaging runs, of which number 3 and 4 were consecutive on
the same well-plate (number 4 was not used in this article). Cell extrusions were
counted at three time points during the experimental run by direct observation and
counting from the still image (extruded cells detach from the surface and round up,
appearing as white circles above the cell sheet in phase contrast). From this data, a
typical cell number of N= 1400, and a typical cell radius of r= 10.95 μm were
extracted. Cell movements were determined using Particle Image Velocimetry
(PIV), using an iterative plugin for ImageJ (https://sites.google.com/site/
qingzongtseng/piv). At the finest resolution (level 3), it provides displacement
vectors on a 54 × 40 grid, corresponding to a resolution of 16 μm in the x and the y-
direction, i.e. slightly less than 1 cell diameter. The numerous extruded cells and
the nucleoli inside the nuclei acted as convenient tracer particles for the PIV
allowing for accurate measurements.

Simulations. The main simulations consist of N= 3183 particles simulated with
either soft repulsion, or the SPV model (in literature also refered to as the Active
Vertex Model (AVM)) potential, using SAMoS (https://github.com/sknepneklab/
SAMoS). The interaction potential for soft harmonic disks is Vi ¼P

j
k
2 ðσi þ σ j � jrj � rijÞ2 if ∣rj − ri∣ ≤ σi+ σj and 0 otherwise. To emulate a con-

fluent cell sheet, we used periodic boundary conditions at packing fraction ϕ= 1,
where ϕ ¼Pi πσ

2
i =L

2 and thus double-counts overlaps. We also introduce 30%
polydispersity in radius, to emulate cell size heterogeneity. At this density, the
model at zero activity is deep within the jammed region (ϕ > 0.842) and has a
significant range of linear response. The disk simulations fitted to experiment also
include a short-range attractive region as in57 with ε = 0.15.

For the SPV, cells are defined as Voronoi polygonal tiles around cell centers,
and the multiparticle interaction potential is given by
Vi ¼ K

2 ðAi � A0Þ2 þ Γ
2 ðPi � P0Þ2, where Ai is the area of the tile, and Pi is its

perimeter, K and Γ are the area and perimeter stiffness coefficients and A0 and P0
are reference area and perimeter, respectively. SPV is confluent by construction,
and its effective rigidity is set by the dimensionless shape parameter �p0 ¼ P0=

ffiffiffiffiffiffi
A0

p
,

with a transition from a solid to a fluid that occurs for �p0 � 3:812. We simulate the
model at �p0 ¼ 3:6, well within the solid region at zero activity37,55, and also
introduce 30% variability in A0. AVM was implemented with open boundary
conditions, and we use a boundary line tension λ= 0.3 to avoid a fingering
instability at the border that appears especially at large τ.

Both models are simulated with overdamped active Brownian dynamics
ζ _ri ¼ v0n̂i � ∇ri

Vi , where the orientation vector n̂i ¼ ðcos θi; sin θiÞ follows
_θi ¼ ηi , hηiðtÞηjðt0Þi ¼ 1

τ δijδðt � t0Þ. Equations of motions are integrated using a
first order scheme with time step δt= 0.01. Simulations are 5 × 104 time units long,
with snapshots saved every 50 time units, and the first 1250 time units of data are
discarded in the data analysis.

Velocity correlations and glassy dynamics. We compute the velocity correlation
function for a given simulation directly from particle positions and velocities by
first computing the Fourier transform. Then for a given q and configuration, the
correlation function is ∣v(q)∣2= v(q) ⋅ v*(q), of which we then take a radial q
average, followed by a time average. The procedure is identical for the experimental
PIV fields using the grid positions and velocities, with N= 54 × 40 grid points as
normalization. We compute the α-relaxation time from the self-intermediate

scattering function Sðq; tÞ ¼ h 1N
P

j e
iq� rjð ðt0þtÞ�rjðt0Þi

t0 ;jqj¼q
, where the angle brackets

indicate time and radial averages. At q= 2π∕σ, we determine τα as the first time
point where S(q, t) < 0.5, bounded from above by the simulation time.

Normal mode analysis. The normal modes are the eigenvalues and eigenvectors of
the Hessian matrix Kij= ∂2V({ri})∕∂ri∂rj, evaluated at mechanical equilibrium. We
first equilibrate the t= 2500 snapshot with v0= 0 for 2 × 105 time steps, equivalent
to a steepest descent energy minimization. We made sure that results are not
sensitive to the choice of snapshot as equilibration starting point (with the
exception of the deviations apparent in Fig. 3 at τ= 2000). For the soft disk model,
each individual ij contact with contact normal n̂ij and tangential t̂ij vectors con-

tributes a term Kij ¼ �kn̂ij ´ n̂ij þ jf ij ĵtij ´ t̂ij to the ij 2 × 2 off-diagonal element of
the matrix and −Kij is added to the ii diagonal element48. We use the NumPy eigh
function (numpy.linalg.eigh). As the system is deep in the jammed phase, with the
exception of two translation modes, all eigenvalues of the Hessian are positive.
We compute the Fourier spectrum of mode ν through ξνðqÞ ¼ 1

N

P
j e

iq�rj ξjν and

then jξνðqÞj2 ¼ ξνðqÞ � ðξνðqÞÞ� . The 2 × 2 continuum Fourier space dynamical
matrix D(q) has one longitudinal eigenmode along q̂ with eigenvalue (B+ μ)q2

and one transverse eigenmode along q̂? with eigenvalue μ. We compute
DðqÞαβ ¼ 1

N

P
j

P
l e

iqαrj;αHjl;αβe
�iqβrj;β , where the greek indices α, β correspond to x

or y and there is no sum implied. We diagonalise the resulting matrix, and choose
the longitudinal eigenvector as the one with the larger projection onto q̂, and from
there the longitudinal and transverse eigenvalues λL(q) and λT(q) after a radial q
average. We fit B+ μ as the slope of λL(q) vs q2 up to q= 1.5, and the same for μ
and λT(q) (Supplementary Fig. 3).

Data availability
Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request.

Code availability
Simulation and analysis code used in this study are available under an open source (GNU
GPL v3.0) licence at: https://github.com/sknepneklab/SAMoS (https://doi.org/10.5281/
zenodo.3616475).
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