SUPPLEMENTAL MATERIAL

Georgakis *et al.* Circulating monocyte chemoattractant protein-1 and risk of stroke: a meta-analysis of population-based studies involving 17,180 individuals.

Appendix I. Search strategy.

Online Table I. Summary of the study design, population characteristics, methods used for quantifying circulating MCP-1 levels, stroke outcome definitions, and assessments in the cohorts included in the meta-analysis.

Online Table II. Quality characteristics of the included studies according to the Newcastle-Ottawa Scale.

Online Table III. Associations between baseline circulating MCP-1 levels and risk of any stroke. Shown are the results from random-effects meta-analyses across the different models in the pooled sample consisting of six population-based studies.

Online Table IV. Associations between baseline circulating MCP-1 levels and risk of ischemic stroke. Shown are the results from random-effects meta-analyses across the different models in the pooled sample consisting of six population-based studies.

Online Table V. Associations between baseline circulating MCP-1 levels and risk of hemorrhagic stroke. Shown are the results from random-effects meta-analyses across the different models in the pooled sample consisting of six population-based studies.

Online Table VI. Meta-regression analyses for the effect of different study characteristics on the association between ln-transformed MCP-1 circulating levels at baseline (1 SD increment) with any stroke and etiological stroke subtypes (ischemic and hemorrhagic stroke).

Online Table VII. Associations between baseline circulating hsCRP, IL-6, and MCP-1 levels and risk of any stroke, ischemic stroke, and hemorrhagic stroke. Shown are the results from random-effects meta-analyses of the pooled sample consisting of four population-based studies, where both hsCRP and IL-6 levels were available.

Online Figure I. Flowchart of the study selection for the systematic review.

Online Figure II. Study-specific and pooled hazard ratios for incident any stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles. Shown are the results from random-effects meta-analyses.

Online Figure III. Study-specific and pooled hazard ratios for incident ischemic stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles. Shown are the results from random-effects meta-analyses (Model 2).

Online Figure IV. Study-specific and pooled hazard ratios for incident hemorrhagic stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles. Shown are the results from random-effects meta-analyses (Model 2).

Online Figure V. Pooled hazard ratios for incident fatal and non-fatal stroke per circulating MCP-1 levels, as derived from random-effects meta-analyses (Model 2).

Online Figure VI. Pooled hazard ratios for incident any stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles in sensitivity analyses omitting one study per time. Shown are the results from random-effects meta-analyses.

Online Figure VII. Pooled hazard ratios for incident ischemic stroke per standard deviation increase in In-transformed circulating MCP-1 levels and across MCP-1 level quartiles in sensitivity analyses omitting one study per time. Shown are the results from random-effects meta-analyses.

Online Figure VIII. Pooled hazard ratios for incident hemorrhagic stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles in sensitivity analyses omitting one study per time. Shown are the results from random-effects meta-analyses.

Online Figure IX. Pooled hazard ratios for incident ischemic stroke per standard deviation increase in Intransformed circulating MCP-1 levels, as derived from random-effects meta-analyses stratified by predefined study variables.

Online References.

Appendix I. Search strategy.

(CCL2 OR MCP1 OR CCL-2 OR MCP-1 OR "monocyte chemoattractant protein 1" OR "small inducible cytokine A2" OR "chemokine (C-C motif) ligand 2" OR "C-C motif ligand 2") AND (stroke OR cerebrovascular OR (coronary AND artery AND disease) OR (ischemic AND heart AND disease) OR (myocardial AND infarction))

1303 results in PubMed by March 15th 2019

Online Table I. Summary of the study design, population characteristics, methods used for quantifying circulating MCP-1 levels, stroke outcome definitions, and assessments in the cohorts included in the meta-analysis.

Cohort	Study design	Population characteristics	MCP-1 quantification	Definition-assessment of stroke
Atherosclerosis Risk in Communities (ARIC)	A sub-sample of the population-based prospective ARIC cohort study with available measurements on MCP-1 ¹	Inhabitants of 4 US communities (Forsyth County, North Carolina; Jackson, Mississippi; the northwestern suburbs of Minneapolis, Minnesota; and Washington County, Maryland) aged 45-64 years	Duplicate measurements using direct sandwich ELISA (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA) in fasting plasma samples (stored at -70 °C)	Non-fatal and fatal stroke were defined through linkage with the hospital records for possible stroke-related hospitalizations (International Classification of Diseases, Ninth Revision [ICD-9] codes 430–438 until 1997 and codes 430–436 afterwards) and the National Death Index for stroke deaths; physician reviewers adjudicated all possible strokes and classified them as definite or probable ischemic and hemorrhagic events ²
Dallas Heart Study (DHS)	A sub-sample of a population-based prospective cohort study designed to study cardiovascular disease with available measurements on MCP-1 ³	Multi-ethnic stratified random sample of Dallas County, US, residents aged 30-65 years	Duplicate measurements using immunoassay (BIOSITE Inc., San Diego, CA) on a high-throughput robotic platform (TECAN Genesis RSP 200/8) in fasting plasma samples (stored at -80 °C)	Non-fatal stroke was defined by either assessment of medical records during annual follow-up assessments or by tracking hospital admissions through the Dallas–Fort Worth Hospital Council Data Initiative database (coverage 90% of the study region) using the ICD 9 codes 430-438; fatal stroke was defined by death certification using the National Death Index according to the ICD 10 codes I60-I69 ⁴
European Prospective Investigation of Cancer (EPIC) - Norfolk study	Secondary analysis of a nested case- control study within the prospective population-based EPIC-Norfolk cohort of cases with coronary artery disease and healthy controls ⁵	Inhabitants of Norfolk, UK, aged 45-79 years who were free of stroke and myocardial infarction at baseline	Multiplex assay using the Bioplex Suspension Array (Bio-Rad, Veenendaal, the Netherlands) in non- fasting serum samples (stored at -80 °C)	Non-fatal stroke was defined by hospital admission record linkage with the NHS hospital information system and ENCORE (East Norfolk COmmission Record; fatal stroke was defined by death certification derived from the Office of National Statistics, and was defined according to the ICD 9 codes 430-438, or the ICD 10 codes I60-I69 ⁶
Framingham Heart Study (FHS) - Offspring Cohort	Participants of the community-based prospective cohort FHS study who attended the examination cycle 7 (1998- 2001) ⁷	Offspring of the participants of the Original Cohort of the FHS and their spouses aged 33-90 years	Duplicate measurements using a commercially available ELISA (R&D Systems) in fasting serum samples (stored at -70 °C) ⁸	Stroke was defined as rapidly developing signs of focal neurologic disturbance of presumed vascular etiology lasting more than 24 hours as part of an ongoing clinic and hospital surveillance including medical record review; laboratory testing; imaging; autopsy findings; and collaboration with general practitioners, emergency departments, and imaging facilities in the area ⁹
Monitoring of Trends and Determinants in Cardiovascular Disease sub-cohort of the Cooperative Health Research in the Region of Augsburg (MONICA/ KORA)	Secondary analysis of a case-cohort study within the prospective population-based MONICA/KORA cohort of incident cases with coronary artery disease and a representative sub-cohort of MONICA/KORA sample ¹⁰	Inhabitants of Augsburg and surrounding counties, Germany, aged 25-74 years	Luminex multiplex technology using a Luminex 100 analyzer (Luminex Corporation, Austin, TX, recombinant proteins and antibodies purchased from R&D systems) in non-fasting serum samples (stored at -80 °C)	Non-fatal stroke was defined by self-report validated by cross- linkage with hospital records and information gathered from the treating physicians of the participants; fatal stroke was defined by death certification derived from local health authorities and was defined according to the ICD 9 codes 430-434 (German modified version) ¹¹
Malmö Diet and Cancer Study (MDCS) - Cardiovascular (CV) sub-cohort	A random 50% sub-sample of the population-based prospective cohort MDCS study were included in the MDCS- CV sub-cohort designed to examine cardiovascular disease ¹²	Inhabitants of Malmö, Sweden, aged 45-64 years	Proximity Extension Assay technique using the Proseek Multiplex CVD96x96 reagents kit (Olink Bioscience) in fasting plasma samples (stored at -80 °C)	Non-fatal and fatal stroke were defined by record linkage with the National Inpatient Register, the Swedish Causes of Death Register, and the Stroke Register of Malmö (STROMA) and was defined according to the ICD 9 codes 430-438 ¹³

Online Table II. Quality characteristics of the included studies according to the Newcastle-Ottawa Scale.

Cohort	ARIC	DHS	EPIC- Norfolk	FHS Offspring	MONICA/KORA	MDCS-CV
Selection items						
Representativeness of exposed cohort (general population study)	*	*	*	*	*	*
Selection of the non-exposed cohort (patients selected independently of MCP-1 levels)	*	*	*	*	*	*
Ascertainment of exposure (serum/plasma MCP-1 levels assessed with validated assay)	*	*	*	*	*	*
Outcome not present a start of study (exclusion of prevalent stroke cases from analysis)	*	*	*	*	*	*
Comparability items						
Adjustments on age, sex, race	*	*	*	*	*	*
Adjustments on vascular risk factors	*	*	*	*	*	*
Outcome items						
Assessment of outcome (assessment through medical records, hospital admission records, and death certificates)	*	*	*	*	*	*
Length of follow-up (>5 years)	*	*	*	*	*	*
Adequacy of follow-up cohorts (<10% lost to follow-up rates)	*	*	*	*	*	*
Total score	9/9	9/9	9/9	9/9	9/9	9/9

		Model 1			Model 2			Alternative			Model 3	
Variables in the models	HR	95%CI	р	HR	95%CI	р	HR	Model 2 95%CI	р	HR	95%CI	р
Age (1-yr increment)	1.09	(1.07-1.12)	7E-13	1.08	(1.05-1.11)	7E-8	1.07	(1.04-1.11)	2E-6	1.08	(1.05-1.11)	2E-7
Sex (males vs. females)	1.26	(0.98-1.62)	0.067	1.21	(1.00-1.48)	0.056	1.13	(0.93-1.36)	0.214	1.22	(1.00-1.48)	0.051
Hypertension (yes vs. no)				1.80	(1.58-2.04)	2E-19				1.78	(1.57-2.03)	1E-20
SBP (10 mmHg-increment)							1.16	(1.12-1.19)	3E-18			
Intake of antihypertensive medication							1.47	(1.29-1.67)	5E-9			
Diabetes (yes vs. no)				1.739	(1.27-2.38)	0.001				1.79	(1.26-2.53)	0.001
Fasting glucose levels (10 mg/dl increment)							1.03	(1.00-1.07)	0.04			
Intake of glucose-lowering medication							1.33	(0.93-1.91)	0.117			
Smoking (current vs. non-current)				1.594	(0.99-2.56)	0.054	1.52	(0.94-2.46)	0.086	1.51	(0.98-2.34)	0.062
Hypercholesterolemia (yes vs. no)				1.021	(0.88-1.19)	0.784				1.02	(0.89-1.16)	0.804
LDL-C levels (10 mg/dl increment)							1.01	(0.99-1.02)	0.406			
HDL-C levels (5 mg/dl increment)							0.98	(0.95-1.01)	0.269			
Intake of lipid-lowering medication							1.05	(0.82-1.35)	0.694			
Chronic kidney disease (yes vs. no)				1.00	(0.89-1.12)	0.999				0.97	(0.89-1.06)	0.546
eGFR (10 ml/min/1.73 m2 increment)							1.00	(0.99-1.00)	0.48			
BMI (5 kg/m2 increment)				1.01	(0.91-1.11)	0.896	0.96	(0.87-1.05)	0.336	0.97	(0.95-1.00)	0.044
Heart failure (yes vs. no)				1.18	(0.80-1.73)	0.402	1.35	(0.91-1.99)	0.134	1.18	(0.80-1.76)	0.405
Coronary artery disease (yes vs. no)				1.80	(1.38-2.34)	2E-5	1.74	(1.32-2.29)	8E-5	1.76	(1.35-2.31)	4E-5
Atrial fibrillation (yes vs. no)				1.50	(0.94-2.39)	0.091	1.48	(0.92-2.36)	0.106	1.51	(0.94-2.41)	0.086
ln-hsCRP (1-SD increment)										1.12	(1.05-1.19)	0.0003
In-MCP1 (1-SD increment)	1.10	(1.01-1.19)	0.018	1.07	(1.01-1.14)	0.028	1.07	(1.00-1.15)	0.035	1.07	(1.00-1.14)	0.053
1 st quartile		reference			reference			reference			Reference	
2 nd quartile	1.17	(1.00-1.37)	0.058	1.16	(0.99-1.36)	0.075	1.16	(0.98-1.38)	0.079	1.18	(1.00-1.38)	0.048
3 rd quartile	1.35	(1.16-1.57)	0.0001	1.31	(1.12-1.53)	0.001	1.35	(1.14-1.58)	0.0003	1.32	(1.13-1.55)	0.0004
4 th quartile	1.43	(1.10-1.86)	0.004	1.33	(1.05-1.68)	0.008	1.37	(1.09-1.72)	0.005	1.34	(1.08-1.65)	0.007

Online Table III. Associations between baseline circulating MCP-1 levels and risk of any stroke. Shown are the results from random-effects meta-analyses across the different models in the pooled sample consisting of six population-based studies.

All models are additionally adjusted for race, but following study-specific classifications that precluded meta-analysis for this variable.

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; BMI, body mass index; hsCRP, high-sensitivity C-reactive protein; MCP-1, monocyte-chemoattractant protein 1; HR, hazard ratio; SD, standard deviation.

		Model 1			Model 2			Alternative Model 2			Model 3	
Variables in the models	HR	95%CI	р	HR	95%CI	р	HR	95%CI	р	HR	95%CI	р
Age (1-yr increment)	1.10	(1.07-1.12)	4E-13	1.08	(1.05-1.11)	7E-7	1.08	(1.04-1.11)	7E-6	1.08	(1.05-1.11)	4E-7
Sex (males vs. females)	1.28	(1.00-1.64)	0.050	1.22	(1.02-1.45)	0.029	1.12	(0.94-1.34)	0.193	1.23	(1.03-1.46)	0.022
Hypertension (yes vs. no)				1.80	(1.57-2.06)	3E-17				1.78	(1.55-2.05)	4E-16
SBP (10 mmHg-increment)							1.15	(1.10-1.20)	3E-11			
Intake of antihypertensive medication							1.52	(1.32-1.75)	3E-9			
Diabetes (yes vs. no)				1.88	(1.33-2.64)	0.0003				1.90	(1.32-2.72)	0.001
Fasting glucose levels (10 mg/dl increment)							1.04	(1.01-1.07)	0.013			
Intake of glucose-lowering medication							1.33	(0.90-1.96)	0.154			
Smoking (current vs. non-current)				1.55	(0.95-2.54)	0.082	1.47	(0.89-2.44)	0.137	1.48	(0.93-2.34)	0.097
Hypercholesterolemia (yes vs. no)				1.09	(0.92-1.28)	0.314				1.09	(0.94-1.26)	0.260
LDL-C levels (10 mg/dl increment)							1.01	(1.00-1.03)	0.112			
HDL-C levels (5 mg/dl increment)							0.98	(0.96-1.01)	0.243			
Intake of lipid-lowering medication							1.12	(0.86-1.47)	0.404			
Chronic kidney disease (yes vs. no)				0.97	(0.85-1.11)	0.664				0.94	(0.85-1.03)	0.198
eGFR (10 ml/min/1.73 m2 increment)							1.00	(0.99-1.00)	0.268			
BMI (5 kg/m2 increment)				1.01	(0.90-1.13)	0.877	0.95	(0.84-1.07)	0.412	0.99	(0.92-1.06)	0.721
Heart failure (yes vs. no)				1.16	(0.76-1.77)	0.501	1.29	(0.84-2.00)	0.246	1.16	(0.75-1.81)	0.508
Coronary artery disease (yes vs. no)				1.74	(1.22-2.48)	0.002	1.64	(1.13-2.38)	0.009	1.55	(0.97-2.48)	0.068
Atrial fibrillation (yes vs. no)				1.54	(0.94-2.54)	0.088	1.53	(0.93-2.54)	0.097	1.56	(0.95-2.56)	0.083
ln-hsCRP (1-SD increment)										1.14	(1.07-1.22)	0.0002
In-MCP1 (1-SD increment)	1.12	(1.03-1.23)	0.007	1.11	(1.02-1.21)	0.009	1.11	(1.02-1.21)	0.011	1.10	(1.01-1.21)	0.018
1 st quartile		reference			reference			reference			reference	
2 nd quartile	1.19	(1.01-1.41)	0.039	1.19	(1.00-1.42)	0.047	1.17	(0.97-1.41)	0.089	1.22	(1.03-1.45)	0.022
3 rd quartile	1.38	(1.17-1.63)	0.0001	1.35	(1.14-1.59)	0.0004	1.38	(1.16-1.65)	0.0003	1.36	(1.15-1.60)	0.0003
4 th quartile	1.43	(1.11-1.85)	0.003	1.38	(1.07-1.77)	0.008	1.39	(1.10-1.76)	0.006	1.38	(1.10-1.74)	0.004

Online Table IV. Associations between baseline circulating MCP-1 levels and risk of ischemic stroke. Shown are the results from random-effects meta-analyses across the different models in the pooled sample consisting of six population-based studies.

All models are additionally adjusted for race, but following study-specific classifications that precluded meta-analysis for this variable.

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; BMI, body mass index; hsCRP, high-sensitivity C-reactive protein; MCP-1, monocyte-chemoattractant protein 1; HR, hazard ratio; SD, standard deviation.

		Model 1			Model 2			Alternative Model 2			Model 3		
Variables in the models	HR	95%CI	р	HR	95%CI	р	HR	95%CI	р	HR	95%CI	р	
Age (1-yr increment)	1.08	(1.06-1.10)	0	1.08	(1.05-1.10)	7E-10	1.06	(1.03-1.09)	7E-5	1.07	(1.03-1.11)	0.0001	
Sex (males vs. females)	1.05	(0.62-1.78)	0.847	1.04	(0.63-1.71)	0.879	0.82	(0.49-1.37)	0.446	0.89	(0.64-1.22)	0.453	
Hypertension (yes vs. no)				1.94	(1.39-2.71)	0.0001				1.95	(1.39-2.73)	0.0001	
SBP (10 mmHg-increment)							1.23	(1.14-1.34)	3E-7				
Intake of antihypertensive medication							1.32	(0.82-2.13)	0.250				
Diabetes (yes vs. no)				1.05	(0.67-1.65)	0.832				1.05	(0.66-1.65)	0.842	
Fasting glucose levels (10 mg/dl increment)							0.95	(0.88-1.03)	0.224				
Intake of glucose-lowering medication							2.81	(0.94-8.38)	0.065				
Smoking (current vs. non-current)				1.57	(0.90-2.73)	0.110	1.49	(0.82-2.72)	0.193	1.36	(0.96-1.92)	0.087	
Hypercholesterolemia (yes vs. no)				0.83	(0.59-1.17)	0.286				0.80	(0.56-1.13)	0.199	
LDL-C levels (10 mg/dl increment)							0.98	(0.94-1.03)	0.465				
HDL-C levels (5 mg/dl increment)							1.05	(0.93-1.18)	0.417				
Intake of lipid-lowering medication							1.05	(0.48-2.32)	0.905				
Chronic kidney disease (yes vs. no)				1.17	(0.76-1.81)	0.474				1.17	(0.75-1.82)	0.487	
eGFR (10 ml/min/1.73 m2 increment)							1.00	(0.92-1.10)	0.937				
BMI (5 kg/m2 increment)				0.93	(0.75-1.15)	0.493	0.94	(0.71-1.23)	0.645	0.94	(0.83-1.07)	0.330	
Heart failure (yes vs. no)				6.93	(1.65-29.2)	0.008	12.0	(3.46-41.7)	9E-5	6.52	(1.24-34.2)	0.027	
Coronary artery disease (yes vs. no)				1.30	(0.49-3.48)	0.601	1.37	(0.50-3.76)	0.547	1.42	(0.53-3.86)	0.488	
Atrial fibrillation (yes vs. no)				3.97	(0.94-16.7)	0.061	3.83	(0.89-16.4)	0.071	3.90	(0.93-16.4)	0.064	
In-hsCRP (1-SD increment)										1.13	(0.96-1.34)	0.140	
ln-MCP1 (1-SD increment)	1.05	(0.84-1.30)	0.669	1.02	(0.82-1.29)	0.833	1.04	(0.79-1.37)	0.776	1.02	(0.80-1.31)	0.844	
1 st quartile		reference			reference			reference			reference		
2 nd quartile	0.96	(0.62-1.50)	0.873	0.95	(0.61-1.47)	0.807	0.97	(0.60-1.57)	0.907	0.96	(0.62-1.49)	0.860	
3 rd quartile	1.27	(0.84-1.92)	0.251	1.25	(0.82-1.91)	0.293	1.31	(0.80-2.15)	0.276	1.27	(0.84-1.93)	0.252	
4 th quartile	1.09	(0.71-1.66)	0.692	1.02	(0.66-1.56)	0.945	1.07	(0.67-1.71)	0.768	1.02	(0.67-1.57)	0.921	

Online Table V. Associations between baseline circulating MCP-1 levels and risk of hemorrhagic stroke. Shown are the results from random-effects meta-analyses across the different models in the pooled sample consisting of six population-based studies.

All models are additionally adjusted for race, but following study-specific classifications that precluded meta-analysis for this variable. The Dallas Heart Study (DHS) is not included in any of the analyses for hemorrhagic stroke due to the low number of events. The Atherosclerosis Risk in Community (ARIC) study is not included in the quartile analyses.

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; BMI, body mass index; hsCRP, high-sensitivity C-reactive protein; MCP-1, monocyte-chemoattractant protein 1; HR, hazard ratio; SD, standard deviation.

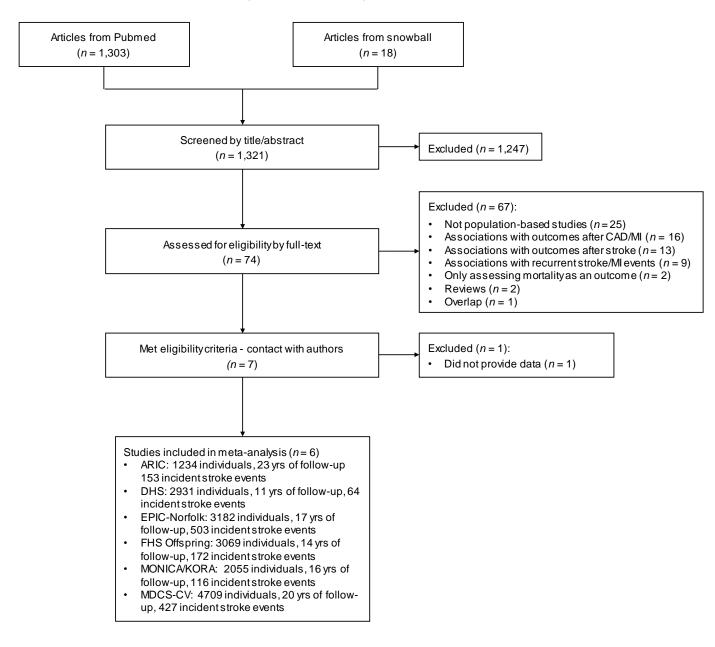
Online Table VI. Meta-regression analyses for the effect of different study characteristics on the association between Intransformed MCP-1 circulating levels at baseline (1 SD increment) with any stroke and etiological stroke subtypes (ischemic and hemorrhagic stroke).

	Any stroke		Ischemic strok	e	Hemorrhagic str	oke
Variable	Exponentiated regression coefficient (95% CI)	р	Exponentiated regression coefficient (95% CI)	р	Exponentiated regression coefficient (95% CI)	р
Age (1y-increment)	0.993 (0.979-1.007)	0.24	0.989 (0.974-1.005)	0.12	1.002 (0.914-1.099)	0.95
Males (5%-increment)	1.003 (0.941-1.068)	0.91	0.994 (0.919-1.075)	0.85	1.063 (0.950-1.190)	0.18
SBP (10 mmHg-increment)	0.932 (0.814-1.066)	0.22	0.897 (0.774-1.040)	0.11	1.065 (0.540-2.097)	0.79
Diabetes (5%-increment)	0.987 (0.903-1.079)	0.71	0:983 (0.877-1.102)	0.69	1.063 (0.857-1.320)	0.43
LDL-C (10 mg/dl-increment)	0.984 (0.933-1.037)	0.43	0.968 (0.919-1.020)	0.16	1.054 (0.833-1.335)	0.53
BMI (5kg/m ² -increment)	1.160 (0.776-1.734)	0.36	1.298 (0.856-1.970)	0.16	0.978 (0.098-9.707)	0.98
Current smokers (5%-increment)	0.997 (0.937-1.061)	0.91	0.994 (0.917-1.077)	0.84	1.076 (0.950-1.219)	0.16
eGFR (10ml/min/1.73m ² -increment)	1.064 (0.971-1.166)	0.13	1.090 (0.987-1.203)	0.07	1.016 (0.592-1.743)	0.93
Coronary artery disease (5%-increment)	1.033 (0.870-1.227)	0.63	1.058 (0.877-1.277)	0.45	0.830 (0.510-1.351)	0.31
hsCRP (1 unit-increment in ln(hsCRP))	1.028 (0.696-1.517)	0.84	1.125 (0.643-1.971)	0.55	0.992 (0.102-9.615)	0.99
Sample (serum vs. plasma)	0.985 (0.800-1.247)	0.88	0.943 (0.704-1.262)	0.61	1.043 (0.443-2.457)	0.89

Abbreviations: BMI, body mass index; hsCRP, high-sensitivity C-reactive protein; eGFR, estimated glomerular filtration rate; LDL, low-density liporprotein; MCP-1, monocyte chemoattractant protein-1; SBP, systolic blood pressure.

				Any	stroke			Ische	mic stroke			Hemor	rhagic stroke *	
Variables in the models	Population	Follow-up (y)	Events	HR	95%CI	р	Events	HR	95%CI	р	Events	HR	95%CI	р
Model adjusted for age, sex,	, race, vascular	risk factors†												
In-MCP1 (1-SD increment)	12686	15.6	777	1.08	(1.00-1.16)	0.056	634	1.12	(1.02-1.24)	0.020	108	0.90	(0.74-1.10)	0.298
1 st quartile	3184	15.7	145		reference		114		reference		26		reference	
2 nd quartile	3162	15.7	177	1.09	(0.87-1.37)	0.468	144	1.12	(0.87-1.43)	0.390	24	0.95	(0.51-1.79)	0.876
3 rd quartile	3177	15.6	212	1.21	(0.98-1.50)	0.080	175	1.27	(1.01-1.62)	0.044	31	1.15	(0.58-2.28)	0.692
4 th quartile	3163	15.3	243	1.33	(1.05-1.69)	0.014	201	1.43	(1.04-1.97)	0.022	27	0.91	(0.52-1.60)	0.745
Model adjusted for age, sex,	race, vascular	risk factors†, hsC	CRP levels											
In-hsCRP (1-SD increment)	12519	15.6	773	1.11	(1.03-1.20)	0.009	616	1.14	(1.05-1.24)	0.003	107	1.03	(0.83-1.26)	0.803
In-MCP1 (1-SD increment)	12519	15.6	773	1.06	(0.98-1.14)	0.098	616	1.12	(1.00-1.26)	0.048	107	0.91	(0.74-1.10)	0.321
1 st quartile	3155	15.7	142		reference		110		reference		25		reference	
2 nd quartile	3128	15.7	178	1.09	(0.87-1.36)	0.449	143	1.12	(0.87-1.44)	0.374	24	0.95	(0.51-1.77)	0.870
3 rd quartile	3138	15.6	213	1.22	(0.98-1.51)	0.073	174	1.28	(1.01-1.63)	0.041	31	1.16	(0.59-2.29)	0.661
4 th quartile	3098	15.3	240	1.32	(1.02-1.72)	0.039	189	1.42	(1.03-1.99)	0.037	27	0.92	(0.52-1.62)	0.777
Model adjusted for age, sex,	race, vascular	risk factors†, IL-	6 levels											
In-IL-6 (1-SD increment)	12516	15.6	758	1.12	(1.04-1.21)	0.003	614	1.17	(1.02-1.35)	0.025	107	1.12	(0.92-1.36)	0.251
In-MCP1 (1-SD increment)	12516	15.6	769	1.05	(0.98-1.4)	0.146	614	1.12	(0.99-1.28)	0.064	107	0.88	(0.72-1.08)	0.210
1 st quartile	3168	15.7	142		reference		109		reference		25		reference	
2 nd quartile	3148	15.7	177	1.09	(0.87-1.36)	0.465	142	1.10	(0.86-1.42)	0.445	24	0.96	(0.49-1.88)	0.901
3 rd quartile	3160	15.6	212	1.20	(0.96-1.49)	0.098	174	1.24	(0.97-1.58)	0.079	31	1.13	(0.56-2.27)	0.736
4 th quartile	3141	15.3	238	1.31	(0.97-1.76)	0.086	189	1.39	(0.99-1.96)	0.052	27	0.86	(0.48-1.53)	0.611
Model adjusted for age, sex,	race, vascular	risk factors†, hsC	CRP, and IL-	6 levels										
In-hsCRP (1-SD increment)	12516	15.6	758	1.08	(1.00-1.19)	0.058	610	1.12	(1.02-1.23)	0.018	107	0.88	(0.79-1.23)	0.877
In-IL-6 (1-SD increment)	12516	15.6	758	1.09	(1.00-1.19)	0.041	610	1.13	(0.96-1.35)	0.137	107	1.13	(0.92-1.40)	0.248
In-MCP1 (1-SD increment)	12516	15.6	758	1.05	(0.98-1.13)	0.178	610	1.12	(0.98-1.29)	0.078	107	0.88	(0.72-1.08)	0.234
1 st quartile	3168	15.7	141		reference		107		reference		25		reference	
2 nd quartile	3148	15.7	176	1.10	(0.88-1.37)	0.422	141	1.12	(0.87-1.44)	0.398	24	0.96	(0.49-1.88)	0.914
3 rd quartile	3160	15.6	211	1.21	(0.98-1.51)	0.078	173	1.26	(0.99-1.61)	0.059	31	1.14	(0.56-2.30)	0.718
4 th quartile	3141	15.3	230	1.30	(0.97-1.76)	0.096	189	1.39	(0.98-1.99)	0.063	27	0.88	(0.49-1.56)	0.660

Online Table VII. Associations between baseline circulating hsCRP, IL-6, and MCP-1 levels and risk of any stroke, ischemic stroke, and hemorrhagic stroke. Shown are the results from random-effects meta-analyses of the pooled sample consisting of four population-based studies, where both hsCRP and IL-6 levels were available.


The Atherosclerosis Risk in Community (ARIC) and the European Prospective Investigation of Cancer-Norfolk (EPIC-Norfolk) studies are not included in these analyses because of non-availability of data on IL-6 levels.

* The Dallas Heart Study (DHS) is not included in any of the analyses for hemorrhagic stroke due to the low number of events.

[†] Vascular risk factors included the models are: body mass index (1 kg/m² increment), smoking (current vs. non-current), estimated glomerular filtration rate (1 mL/min/1.73 m² increment), history of coronary artery disease, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, and heart failure at baseline.

Abbreviations: MCP-1, monocyte-chemoattractant protein 1; hsCRP, high-sensitivity C-reactive protein; IL-6, interleukin-6; HR, hazard ratio; SD, standard deviation.

Online Figure I. Flowchart of the study selection for the systematic review.

Online Figure II. Study-specific and pooled hazard ratios for incident any stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles. Shown are the results from random-effects meta-analyses (Model 2).

Study	N cohort	N cases	Follow-up	HR (95% CI)	% Weigh
1 SD in	cr				
ARIC	1183	147	23	● 1.57 (0.99, 2.47)	1.94
DHS	2853	62	10.98	1.16 (0.92, 1.46)	7.33
EPIC	3182	503	16.81	1.02 (0.93, 1.11)	35.23
FHS	3069	172	13.79	▲ 1.05 (0.90, 1.22)	15.72
KORA	2055	116	15.72	1.21 (0.99, 1.50)	9.15
MDCS	4542	408	19.5	• 1.02 (0.93, 1.13)	30.62
Subtota	l (I-squai	red = 12.	%, p = 0.338)	1.07 (1.01, 1.14)	100.0
Q2 vs C	21				
ARIC	296	29	23	1.04 (0.61, 1.77)	9.01
DHS	706	9	10.98	0.81 (0.37, 1.79)	4.01
EPIC	795	133	16.93	1.28 (1.00, 1.65)	39.88
FHS	767	43	13.79	1.29 (0.80, 2.07)	11.25
KORA	512	28	15.72	■ 1.58 (0.86, 2.89)	6.90
MDCS	1143	96	19.7	0.97 (0.72, 1.30)	28.95
Subtota	l (I-squai	red = 0.0	5, p = 0.522)	1.16 (0.99, 1.35)	100.0
Q3 vs C					
ARIC	296	39	23	1.46 (0.89, 2.39)	9.74
DHS	717	17	10.98	1.08 (0.53, 2.22)	4.55
EPIC	796	151	16.96	1.41 (1.10, 1.80)	39.19
FHS	767	42	13.79	1.09 (0.68, 1.76)	10.35
KORA	516	31	15.72	1.48 (0.81, 2.68)	6.62
MDCS	1138	121	19.5	1.23 (0.92, 1.62)	29.55
Subtota	l (I-squai	red = 0.0	p, p = 0.882)	1.31 (1.12, 1.53)	100.0
Q4 vs C				_	
ARIC	296	53	23	• 1.99 (1.27, 3.22)	15.23
DHS	711	23	10.98	▲ 1.38 (0.70, 2.72)	9.24
EPIC	795	107	16.31	1.00 (0.77, 1.31)	24.74
FHS	768	58	13.79	• 1.43 (0.91, 2.25)	15.57
KORA	507	40	15.72	• 1.90 (1.07, 3.36)	11.65
MDCS	1112	109	18.7	▲ 1.07 (0.80, 1.42)	23.57
Subtota	l (I-squai	red = 49.	%, p = 0.076)	1.33 (1.05, 1.68)	100.0
			.297 I	3.36	

The results are derived from Cox proportional hazard models adjusted for age, sex, race, body mass index (1 kg/m2 increment), smoking (current vs. non-current), estimated glomerular filtration rate (1 mL/min/1.73 m² increment), history of coronary artery disease, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, and heart failure at baseline. Analyses for 1 SD increment correspond to ln-transformed MCP-1 levels.

The gray squares around the point estimates correspond to the weight of the included studies in the meta-analysis. *Abbreviations:* ARIC, Atherosclerosis Risk in Communities Study; DHS, Dallas Heart Study; EPIC, European Prospective Investigation of Cancer; FHS Framingham Heart Study; KORA, Kooperative Gesundheitsforschung in der Region Augsburg; MDCS, Malmö Diet and Cancer Study.

Online Figure III. Study-specific and pooled hazard ratios for incident ischemic stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles. Shown are the results from random-effects meta-analyses (Model 2).

Study	N cohort	N cases	Follow-up	HR (95% CI)	% Weigh
1 SD in	cr				
ARIC	1183	136	23	● 1.54 (0.99, 2.39)	3.54
DHS	2853	42	10.98	1.35 (1.03, 1.76)	8.54
EPIC	3182	458	16.84	1.02 (0.93, 1.11)	32.09
FHS	3069	141	13.79	1.10 (0.93, 1.29)	17.68
KORA	2055	99	15.72	1.22 (0.97, 1.52)	11.37
MDCS	4542	334	19.5	1.03 (0.92, 1.15)	26.78
Subtota	l (I-squa	red = 35.	1%, p = 0.174)	• 1.11 (1.02, 1.21)	100.00
Q2 vs C	21				
ARIC	296	26	23	0.90 (0.52, 1.56)	9.77
DHS	706	5	10.98	• 0.77 (0.24, 2.44)	2.23
EPIC	795	125	16.95	1.37 (1.05, 1.78)	42.66
FHS	767	34	13.79	1.29 (0.76, 2.20)	10.49
KORA	512	23	15.72	1.46 (0.76, 2.81)	6.96
MDCS	1143	81	19.7	1.02 (0.73, 1.41)	27.90
Subtota	l (I-squa	red = 0.0	%, p = 0.555)	1.19 (1.00, 1.42)	100.00
Q3 vs C	21				
ARIC	296	36	23	1.36 (0.82, 2.24)	11.07
DHS	717	14	10.98	1.92 (0.77, 4.82)	3.27
EPIC	796	137	16.98	1.44 (1.11, 1.87)	41.13
FHS	767	35	13.79	1.13 (0.67, 1.92)	9.84
KORA	516	24	15.72	1.25 (0.65, 2.39)	6.51
MDCS	1138	101	19.5	1.27 (0.93, 1.74)	28.17
			%, p = 0.917)	1.35 (1.14, 1.59)	100.00
Q4 vs C)1				
ARIC	296	48	23	1.86 (1.15, 2.99)	16.25
DHS	711	40 16	10.98	2.00 (0.81, 4.97)	6.45
EPIC	795	97	16.35	1.03 (0.78, 1.36)	26.23
FHS	768	49	13.79		15.26
KORA	507	49 37	15.72		11.98
MDCS	1112	37 87	18.7	1.07 (0.78, 1.47)	23.83
			1%, p = 0.099)	1.07 (0.78, 1.47)	23.03
	i (i-syual	ieu = 40.	170, p = 0.099j		100.00
			l .201	l l 1 4.97	

The results are derived from Cox proportional hazard models adjusted for age, sex, race, body mass index (1 kg/m2 increment), smoking (current vs. non-current), estimated glomerular filtration rate (1 mL/min/1.73 m² increment), history of coronary artery disease, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, and heart failure at baseline. Analyses for 1 SD increment correspond to In-transformed MCP-1 levels.

The gray squares around the point estimates correspond to the weight of the included studies in the meta-analysis. *Abbreviations:* ARIC, Atherosclerosis Risk in Communities Study; DHS, Dallas Heart Study; EPIC, European Prospective Investigation of Cancer; FHS Framingham Heart Study; KORA, Kooperative Gesundheitsforschung in der Region Augsburg; MDCS, Malmö Diet and Cancer Study.

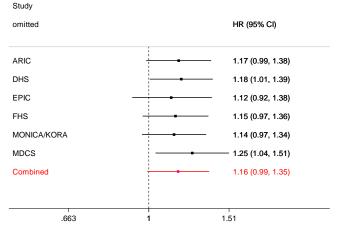
Online Figure IV. Study-specific and pooled hazard ratios for incident hemorrhagic stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles. Shown are the results from random-effects meta-analyses (Model 2).

Study	N cohort	N cases	Follow-up	HR (95% Cl)	% Weight
1 SD in	or				
ARIC	1183	11	23	♦ 3.02 (0.94, 9.64)	3.59
EPIC	3182	76	17.21	1.14 (0.92, 1.42)	33.42
FHS	3069	22	13.79	0.77 (0.52, 1.16)	19.20
KORA	2055	17	15.72		13.33
MDCS		68	19.72	0.90 (0.70, 1.16)	30.46
			%, p = 0.113)	1.02 (0.82, 1.29)	100.00
	ii (i oquai	00 - 10.1	,, p = 0.110)		100.00
Q2 vs C					
EPIC	795	16	17.3	0.98 (0.50, 1.95)	41.33
FHS	767	6	13.96	1.05 (0.31, 3.48)	13.44
KORA	512	5	15.72	2.76 (0.53, 14.33)	7.15
MDCS	1143	14	19.7	0.72 (0.35, 1.46)	38.08
Subtota	ıl (I-squar	ed = 0.0%	%, p = 0.524)	0.95 (0.61, 1.47)	100.00
Q3 vs C		~ /			
EPIC	796	24	17.45	1.49 (0.80, 2.78)	43.30
FHS	767	5	13.72	0.80 (0.23, 2.83)	11.00
KORA	516	7	15.72	→ 3.60 (0.74, 17.44)	7.08
MDCS		19	19.5	0.97 (0.51, 1.91)	38.62
Subtota	ıl (I-squar	ed = 2.6%	%, p = 0.380)	1.25 (0.82, 1.91)	100.00
Q4 vs C	01				
EPIC	795	19	16.71	1.18 (0.61, 2.27)	42.33
FHS	768	6	13.14	0.91 (0.27, 3.07)	12.29
KORA	507	3	15.72	→ 1.15 (0.19, 6.99)	5.60
MDCS		18	18.7	0.88 (0.45, 1.74)	39.78
			6, p = 0.939)	1.02 (0.66, 1.56)	100.00
	ii (Foyudi	cu = 0.07	o, p = 0.303)	1.02 (0.00, 1.00)	100.00
			I		
			.0573	1 17.4	

The results are derived from Cox proportional hazard models adjusted for age, sex, race, body mass index (1 kg/m2 increment), smoking (current vs. non-current), estimated glomerular filtration rate (1 mL/min/1.73 m² increment), history of coronary artery disease, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, and heart failure at baseline. Analyses for 1 SD increment correspond to ln-transformed MCP-1 levels.

The Dallas Heart Study (DHS) is not included in any of the analyses for hemorrhagic stroke due to the low number of events. The Atherosclerosis Risk in Community (ARIC) study is not included in the quartile analyses due to the low number of events. The gray squares around the point estimates correspond to the weight of the included studies in the meta-analysis. *Abbreviations:* ARIC, Atherosclerosis Risk in Communities Study; EPIC, European Prospective Investigation of Cancer; FHS Framingham Heart Study; KORA, Kooperative Gesundheitsforschung in der Region Augsburg; MDCS, Malmö Diet and Cancer Study. **Online Figure V.** Pooled hazard ratios for incident fatal and non-fatal stroke per circulating MCP-1 levels, as derived from random-effects meta-analyses.

			%
Outcome		HR (95% CI)	Weight
Model 1			
Non-fatal stroke		- 1.10 (0.92, 1.32)	12.56
Fatal stroke		1.08 (1.01, 1.16)	87.44
Subtotal (I-squared = 0.0%, p = 0.869)	$\langle \rangle$	1.09 (1.02, 1.16)	100.00
Model 2			
Non-fatal stroke	•	→ 1.12 (0.91, 1.37)	9.92
Fatal stroke		1.08 (1.01, 1.15)	90.08
Subtotal (I-squared = 0.0%, p = 0.738)	$\langle \rangle$	1.08 (1.01, 1.15)	100.00
Model 3			
Non-fatal stroke -	•	1.08 (0.93, 1.24)	20.04
Fatal stroke	•	1.07 (1.00, 1.15)	79.96
Subtotal (I-squared = 0.0%, p = 0.982)	$\langle \rangle$	1.07 (1.01, 1.14)	100.00
.732	1	1.37	


Analyses correspond to 1 SD increment in ln-transformed MCP-1 levels and represent pooled results of meta-analyses of all six studies. The results are derived from Cox proportional hazard models adjusted for age, sex, race, body mass index (1 kg/m2 increment), smoking (current vs. non-current), estimated glomerular filtration rate (1 mL/min/1.73 m² increment), history of coronary artery disease, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, and heart failure at baseline (Model 2).

Online Figure VI. Pooled hazard ratios for incident any stroke per standard deviation increase in Intransformed circulating MCP-1 levels and across MCP-1 level quartiles in sensitivity analyses omitting one study per time. Shown are the results from random-effects meta-analyses.

(A) 1 SD increment

(B) Q2 vs. Q1

(C) Q3 vs. Q1

(D) Q4 vs. Q1

Study		Study	
omitted	HR (95% CI)	omitted	HR (95% CI)
ARIC	1.29 (1.09, 1.51)	ARIC	 1.25 (1.00, 1.57)
DHS	1.31 (1.12, 1.53)	DHS	 1.33 (1.01, 1.76)
EPIC	•	EPIC	 1.47 (1.10, 1.95)
FHS	1.33 (1.13, 1.56)	FHS	•
MONICA/KORA	1.29 (1.10, 1.52)	MONICA/KORA	 1.26 (1.00, 1.58)
MDCS	——— 1.35 (1.12, 1.62)	MDCS	 1.46 (1.07, 2.00)
Combined	——— 1.30 (1.12, 1.53)	Combined	——— 1.33 (1.05, 1.68)
.617	1 1.62	.501	1 2

The results are derived from Cox proportional hazard models adjusted for age, sex, race, body mass index (1 kg/m2 increment), smoking (current vs. non-current), estimated glomerular filtration rate (1 mL/min/1.73 m² increment), history of coronary artery disease, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, and heart failure at baseline.

Analyses for 1 SD increment correspond to In-transformed MCP-1 levels.

Online Figure VII. Pooled hazard ratios for incident ischemic stroke per standard deviation increase in Intransformed circulating MCP-1 levels and across MCP-1 level quartiles in sensitivity analyses omitting one study per time. Shown are the results from random-effects meta-analyses.

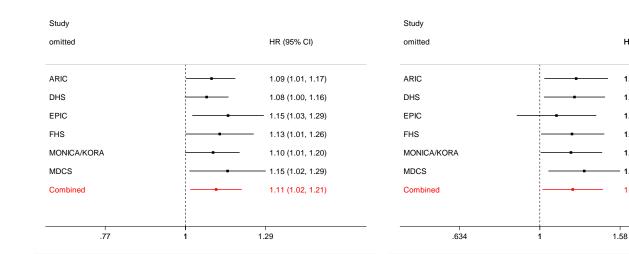
(B) 1 SD increment

(B) Q2 vs. Q1

HR (95% CI)

1.23 (1.03, 1.47)

1.22 (1.02, 1.45)


1.10 (0.88, 1.38)

1.20 (1.01, 1.44)

1.19 (1.00, 1.42)

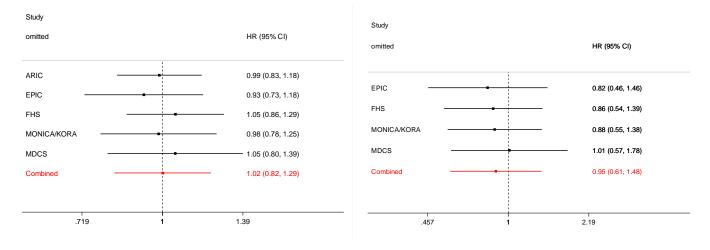
1.29 (1.05, 1.58)

1.19 (1.00, 1.42)

(D) Q3 vs. Q1

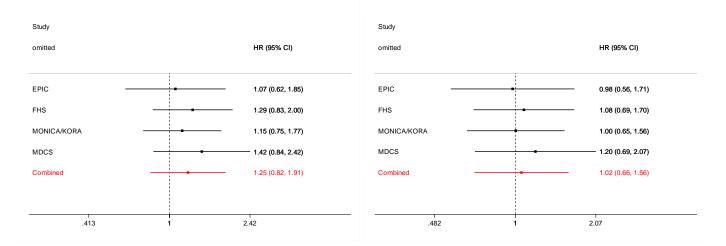
(D) Q4 vs. Q1

Study		Study	
omitted	HR (95% CI)	omitted	HR (95% CI)
ARIC	 1.34 (1.12, 1.59)	ARIC	•
DHS	 1.32 (1.12, 1.57)	DHS	 1.34 (1.02, 1.74)
EPIC	——— 1.27 (1.02, 1.58)	EPIC	 1.50 (1.12, 2.02)
FHS	1.37 (1.14, 1.63)	FHS	•
MONICA/KORA	1.35 (1.13, 1.60)	MONICA/KORA	 1.28 (1.01, 1.60)
MDCS	1.38 (1.13, 1.68)	MDCS	 1.50 (1.11, 2.04)
Combined	1.35 (1.14, 1.59)	Combined	•
.595	1 1.68	.491	1 2.04


The results are derived from Cox proportional hazard models adjusted for age, sex, race, body mass index (1 kg/m2 increment), smoking (current vs. non-current), estimated glomerular filtration rate (1 mL/min/1.73 m² increment), history of coronary artery disease, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, and heart failure at baseline.

Analyses for 1 SD increment correspond to In-transformed MCP-1 levels.

Online Figure VIII. Pooled hazard ratios for incident hemorrhagic stroke per standard deviation increase in ln-transformed circulating MCP-1 levels and across MCP-1 level quartiles in sensitivity analyses omitting one study per time. Shown are the results from random-effects meta-analyses.


(C) 1 SD increment

(E) Q3 vs. Q1

The results are derived from Cox proportional hazard models adjusted for age, sex, race, body mass index (1 kg/m2 increment), smoking (current vs. non-current), estimated glomerular filtration rate (1 mL/min/1.73 m² increment), history of coronary artery disease, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, and heart failure at baseline.

Analyses for 1 SD increment correspond to In-transformed MCP-1 levels.

Online Figure IX. Pooled hazard ratios for incident ischemic stroke per standard deviation increase in In-transformed circulating MCP-1 levels, as derived from random-effects meta-analyses stratified by predefined study variables.

	Sample							
category	size	Events (N)	Follow-up				i2	phet
	(N)		(years)		HR (95% CI)	р		
Sex								
females	8737	562	16.3		1.12 (0.94, 1.32)	.193	61.6	.023
males	8333	659	16.4	• • • • • • • • • • • • • • • • • • •	1.10 (1.01, 1.20)	.02	0	.817
Subtotal (I-sq	uared = 0.0%	%, p = 0.896)			1.11 (1.03, 1.19)			
•								
Hypertension	k							
no	7706	266	16.2		1.05 (0.96, 1.16)	.293	22.6	.271
yes	8181	819	15.4		1.09 (1.01, 1.18)	.034	0	.605
Subtotal (I-sq	uared = 0.0%	%, p = 0.510)			1.07 (1.01, 1.14)			
Diabetes*								
no	14308	927	15.9		1.08 (1.02, 1.15)	.039	0	.541
yes	1579	158	15.2		1.02 (0.85, 1.23)	.714	0	.511
Subtotal (I-squared = 0.0%, p = 0.540)			1.08 (1.02, 1.14)					
BMI*								
<30 kg/m2	12333	647	16.2	-	1.05 (0.96, 1.14)	.269	6.8	.37
>=30 kg/m2	3555	213	14.4		→ 1.15 (0.94, 1.41)	.17	48.7	.099
Subtotal (I-sq	uared = 0.0%	%, p = 0.396)		$\langle \rangle$	1.06 (0.98, 1.15)			
-								
				l l				
			I					
			.711	1	1.41			

The p-values (p) correspond to the results of the random-effects meta-analyses and test statistical significance for the hazard ratios, whereas the p-values for heterogeneity (p-het) correspond to the Cochran Q test and test for statistical significance for the presence of heterogeneity in the respective meta-analysis. The results of heterogeneity between the pooled effects across the different variable categories are presented under the results for each variable.

The gray squares around the point estimates correspond to the weight of the included studies in the meta-analysis.

* ARIC has not been included in these analyses.

Online References

1. Hoogeveen RC, Morrison A, Boerwinkle E, Miles JS, Rhodes CE, Sharrett AR and Ballantyne CM. Plasma MCP-1 level and risk for peripheral arterial disease and incident coronary heart disease: Atherosclerosis Risk in Communities study. *Atherosclerosis*. 2005;183:301-7.

2. Rosamond WD, Folsom AR, Chambless LE, Wang CH, McGovern PG, Howard G, Copper LS and Shahar E. Stroke incidence and survival among middle-aged adults: 9-year follow-up of the Atherosclerosis Risk in Communities (ARIC) cohort. *Stroke*. 1999;30:736-43.

3. Deo R, Khera A, McGuire DK, Murphy SA, Meo Neto Jde P, Morrow DA and de Lemos JA. Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. *J Am Coll Cardiol*. 2004;44:1812-8.

4. Maroules CD, Rosero E, Ayers C, Peshock RM and Khera A. Abdominal aortic atherosclerosis at MR imaging is associated with cardiovascular events: the Dallas heart study. *Radiology*. 2013;269:84-91.

5. van Wijk DF, van Leuven SI, Sandhu MS, Tanck MW, Hutten BA, Wareham NJ, Kastelein JJ, Stroes ES, Khaw KT and Boekholdt SM. Chemokine ligand 2 genetic variants, serum monocyte chemoattractant protein-1 levels, and the risk of coronary artery disease. *Arterioscler Thromb Vasc Biol.* 2010;30:1460-6.

6. Sinha S, Myint PK, Luben RN and Khaw KT. Accuracy of death certification and hospital record linkage for identification of incident stroke. *BMC Med Res Methodol*. 2008;8:74.

7. Shoamanesh A, Preis SR, Beiser AS, Kase CS, Wolf PA, Vasan RS, Benjamin EJ, Seshadri S and Romero JR. Circulating biomarkers and incident ischemic stroke in the Framingham Offspring Study. *Neurology*. 2016;87:1206-11.

8. McDermott DH, Yang Q, Kathiresan S, Cupples LA, Massaro JM, Keaney JF, Jr., Larson MG, Vasan RS, Hirschhorn JN, O'Donnell CJ, Murphy PM and Benjamin EJ. CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. *Circulation*. 2005;112:1113-20.

9. Carandang R, Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Kannel WB and Wolf PA. Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. *JAMA*. 2006;296:2939-46.

10. Herder C, Baumert J, Thorand B, Martin S, Lowel H, Kolb H and Koenig W. Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. *Arterioscler Thromb Vasc Biol*. 2006;26:2147-52.

11. Thiele I, Linseisen J, Heier M, Holle R, Kirchberger I, Peters A, Thorand B and Meisinger C. Time trends in stroke incidence and in prevalence of risk factors in Southern Germany, 1989 to 2008/09. *Sci Rep.* 2018;8:11981.

12. Schiopu A, Bengtsson E, Goncalves I, Nilsson J, Fredrikson GN and Bjorkbacka H. Associations Between Macrophage Colony-Stimulating Factor and Monocyte Chemotactic Protein 1 in Plasma and First-Time Coronary Events: A Nested Case-Control Study. *J Am Heart Assoc.* 2016;5.

13. Rosvall M, Janzon L, Berglund G, Engstrom G and Hedblad B. Incidence of stroke is related to carotid IMT even in the absence of plaque. *Atherosclerosis*. 2005;179:325-31.