
28th International Workshop on Computational Mechanics of Materials (IWCMM28) 

Edited by E. Oterkus, S. Oterkus and S. Schmauder 

Glasgow, United Kingdom, September 10 – 12, 2018 

 

REPRESENTATIVE VOLUME ELEMENT (RVE) BASED CRYSTAL 

PLASTICITY STUDY OF VOID GROWTH ON PHASE BOUNDARY IN 

TITANIUM ALLOYS 

U. B. ASIM1*, M. A. SIDDIQ1* and M. E. KARTAL1 

1 School of Engineering, University of Aberdeen, Fraser Noble Building, Aberdeen, AB24 3UE, UK 

Emails: amir.siddiq@abdn.ac.uk  

*Corresponding author 

Abstract. Crystal plasticity based finite element method (CPFEM) studies have been successfully used 

to model different material behaviour and phenomenon, including but not limited to; fatigue, creep and 

texture evolution. This capability can be extended to include the ductile damage and failure in the model. 

Ductile failure in metals is governed by void nucleation, growth, and coalescence. High strength 

titanium alloys can be formed from sheets and components and are prone to ductile failure. α – β 

Titanium alloys are in widespread use, ranging from aerospace, automotive, energy to oil and gas. They 

have multiple phases present in the microstructure but α and β phases are dominant and are present in 

various morphologies. This study focuses on the 3D representative volume element (RVE) simulations 

of spherical void of known initial porosity at the interface of α and β phase single crystals. The effect of 

initial porosity, applied triaxiality and orientation of RVE with respect to the loading direction is 

investigated. Slip based crystal plasticity formulation implemented as a user subroutine in commercially 

available software was used to simulate the void growth and the results of the same are presented. 

Lastly, a generalised correlation among loading type, loading direction, crystal orientation, phase 

interface orientation, and void growth is presented. 

Keywords: Crystal plasticity; phase boundary; void growth; titanium alloys; dual phase alloys 

1 INTRODUCTION 

Titanium alloys have been used in various application areas including, but not limited to, 

aerospace, automobile, biomedicine, process industry including oil and gas. 𝛼 – 𝛽 titanium 

alloys are the class of titanium alloys which have been widely used in the aerospace industry in 

larger quantities than other types because of their unique set of properties. Ductile fracture is 

an important consideration in their use and production [1–3]. It was established by the 

experiments carried out on Ti-10V-2Fe-3Al alloy which is an 𝛼-𝛽 titanium alloy, that void 

nucleation, growth and coalescence is the failure mechanism. Voids were found to nucleate on 

the phase boundaries between the 𝛼 and 𝛽 phases and different morphology 𝛼 phases [4–6]. 

This study comprises two aspects. In the first part unit cell calculations were carried out 

using fully validated crystal plasticity finite element method on RVEs having spherical void 

embedded at the interface of bicrystal of 𝛼 and 𝛽 phase each. The effect of initial porosity, 

applied stress triaxiality and phase boundary inclination (PBI) (term will be explained later in 

the article) was studied and quantified. This method has been used to develop better 

understanding of the micromechanics and underlying phenomenon that leads to ductile failure 

in single crystals [7,8,17,9–16]; on the interface of polycrystals with different hardening rates 

[18]; on bicrystal of the same phase having face centred cubic (FCC) crystal structure [19] and 

body centred cubic (BCC) crystal structure [20], with different crystal orientations.  

The second part of the presented work deals with the formulation of a model that predicts 

void growth in the form of evolution of normalised void volume fraction, for the voids present 
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at the interface of dissimilar material. A model is proposed that depends on the material 

properties, initial porosity, applied strain, stress triaxiality, and PBI. A comparison between the 

unit cell results and the predictions of the proposed model has been presented. 

2 UNIT CELL CALCULATIONS 

2.1 Crystal Plasticity Formulation 

The matrix material of the RVE around a void is modelled as a bicrystal, with properties of 

the single crystals of 𝛼 and 𝛽 phases assigned to each half of the RVE. Single crystal behaviour 

is modelled using crystal plasticity formulation which incorporates anisotropic elastic and slip 

based deformation mechanisms. A brief overview of the formulation used is given here, details 

of which can be found elsewhere [21]. Deformation gradient is described as a product of elastic,  

𝐹𝑒, and plastic, 𝐹𝑝, parts. 

𝑭 = 𝑭𝑒𝑭𝑝      (1)  

The elastic part can then be further decomposed into elastic stretch and rigid body rotation, 

resulting in: 

𝑭 = 𝑽𝑒𝑹𝑒𝑭𝑝     (2) 

The product of rigid body rotation and the plastic part is treated as an intermediate unloaded 

configuration, represented as 𝑭∗ = 𝑹𝑒𝑭𝑝.  

Velocity gradient, 𝒍, is defined as: 

𝒍 = 𝑭̇𝑭−1      (3) 

Transformation to the intermediate configuration, 𝑳̃, where  (∙)̃ represents the intermediate 

unloaded configuration, the total velocity gradient can be given by: 

𝑳̃ = 𝑽𝑒−1𝒍𝑽𝑒     (4) 

Symmetric and skew-symmetric parts of 𝑳̃, 𝑫̃ and 𝑾̃ respectively, can then be defined as: 

𝑫̃ = 𝑽𝑒𝑇𝒅𝑽𝑒 , 𝑾̃ = 𝑽𝑒𝑇𝒘𝑽𝑒    (5) 

Where 𝒅 and 𝒘 are the symmetric and skew symmetric parts of total velocity gradient. 

These can then be additively decomposed into elastic and plastic contributions using: 

𝑫̃ = 𝑬̇̃ + 𝑫̃∗, 𝑾̃ = skew(𝑽𝑒𝑇𝑽̇𝑒) + 𝑾̃∗   (6) 

Here 𝑫̃∗  and 𝑾̃∗  are the plastic contributions due to slip, skew(∙)  represents skew 

symmetric part of a quantity and 𝑬̇̃ is the elastic strain rate tensor. 

Anisotropic plasticity is used with the help of the second order tensor of elastic constants 

rotated to the unloaded configuration, ℂ̃𝑒, which relates 2nd Piola-Kirchhoff stress tensor, 𝑺̃, 

and applied elastic strain tensor, 𝑬̃𝑒, as: 

𝑺̃ = ℂ̃𝑒𝑬̃𝑒 , ℂ̃𝑒 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44]

 
 
 
 
 

  (7) 

Here 𝐶𝑖𝑗 are the elastic coefficients for hexagonal close packed (HCP) single crystals. For 

BCC crystals, 𝐶13 = 𝐶12 and 𝐶33 = 𝐶11. Plastic response due to slip is defined as: 

𝑫̃∗ = sym(𝑪̃𝑒𝛀̃𝑒) + ∑ 𝛾̇αsym(𝑪̃𝑒𝐙̃𝛼) 𝑁
𝛼=1    (8) 

𝑾̃∗ = skew(𝑪̃𝑒𝛀̃𝑒) + ∑ 𝛾̇αskew(𝑪̃𝑒𝐙̃𝛼)𝑁
𝛼=1    (9) 

Here 𝑪̃𝑒 is the elastic right Cauchy-Green tensor, 𝛀̃𝑒 is the spin of the lattice, 𝛾̇𝛼 is shear 

strain rate due to slip in 𝛼th slip system, 𝒁̃𝛼 is the Schmid tensor of 𝛼th slip system. 

Evolution of plastic slip in terms of shear strain rate due to slip on each slip system, was 

defined using the power law: 
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𝛾̇𝛼 = 𝛾̇0
𝛼 [

|𝝉𝛼|

𝜅𝑠
𝛼 ]

1

𝑚
sign(𝝉𝛼)     (10) 

Here, 𝛾̇0
𝛼 is the reference shear strain rate, 𝑚 is the strain rate dependence coefficient, 𝝉𝛼 is 

the resolved shear stress and 𝜅𝑠
𝛼 is the current slip system strength, on 𝛼th slip system. 

Voce type hardening was incorporated in the model using the following evolution relation, 

which makes the slip system harden with the evolution of accumulated slip till a saturation 

value is reached, beyond which it will behave as a perfectly plastic material. 

𝜅̇𝑠
𝛼 = ℎ0 (

𝜅𝑠,𝑆
𝛼 −𝜅𝑠

𝛼

𝜅𝑠,𝑆
𝛼 −𝜅𝑠,0

𝛼 )∑ |𝛾̇𝛼|𝑁
𝛼=1 , 𝜅𝑠,𝑆

𝛼 = 𝜅𝑠,𝑆0
𝛼 [

∑ |𝛾̇𝛼|𝛼

𝛾̇𝑠0
]
1\𝑚′

  (11) 

Where 𝜅̇𝑠
𝛼 is the current rate of hardening, 𝜅𝑠

𝛼 is the current value of slip system strength, ℎ0 

is the reference hardening coefficient, 𝜅𝑠,𝑆
𝛼  is the saturation value of strength which depends on 

the accumulated slip ∑ |𝛾̇𝛼|𝛼 , and its evolution is given by a power law. The rest of the 

quantities, 𝜅𝑠,0
𝛼 , 𝜅𝑠,𝑆0

𝛼 , 𝛾̇𝑠,0
𝛼  and 𝑚′  are the material parameters controlling the evolution of 

strength in the crystal. Critical resolved shear stress (CRSS) of each of the slip systems are 

assigned as 𝜅𝑠
𝛼(𝑡 = 0) in (11).  

2.2 Parameter identification 

Material parameters for the two phases used in this study were found by calibrating the 

model against tensile test results of Ti-1023 alloy at room temperature and at a strain rate of 1 

mm/min. As received alloy was heat treated at 700° C for 1 hour and then water quenched [22]. 

Volume fractions of the phases were found to be 40% 𝛼𝑝 and 60% 𝛽 phase [23]. Since the alloy 

tested was polycrystalline, properties of 200 randomly oriented grains of 𝛼 phase were assigned 

to one of the integration points and properties of the same number of grains of 𝛽 phase, having 

random Burger’s orientation relation (BOR), with 𝛼 grains were assigned to another integration 

point. A homogenised stress strain response was computed based on the volume fraction of the 

individual 40% 𝛼𝑝 and 60% 𝛽 phase. 

Figure 1 shows the comparison between experimental and the calibrated crystal plasticity 

model results. All material parameters used in RVE simulations are given in Table 1.  

 
Figure 1 Model calibration with experimental results of Ti-1023 from the literature [22]. 

Table 1 Material parameters for CPFEM of Ti-1023 𝛼-𝛽 phases 

𝛼 phase Properties 

Elastic 

Properties 

(GPa) 

C11 C12 C13 C33 C44 

163.0 114.0 69.3 191.0 38.0 

Plastic 

Properties 
𝛾̇0 𝑚 

ℎ0 𝜅0 𝜅𝑠,0 𝜅𝑠,𝑆0 
𝛾̇𝑆0 𝑚𝑆 

(MPa) 
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Basal 0.1 0.05 1 350 100 350 5x1010 0.005 

Prismatic 0.1 0.05 1 300 100 300 5x1010 0.005 

Pyramidal 0.1 0.05 1 750 100 750 5x1010 0.005 

𝛽 phase Properties 

Elastic 

Properties (GPa) 

C11 C12 C44 

140.0 128.0 50.0 

Plastic 

Properties 
𝛾̇0 𝑚 

ℎ0 𝜅0 𝜅𝑠,0 𝜅𝑠,𝑆0 
𝛾̇𝑆0 𝑚𝑆 

(MPa) 

{110}⟨111⟩ 0.1 0.05 1 285 100 285 5x1010 0.005 
{110}⟨112⟩ 0.1 0.05 1 320 100 320 5x1010 0.005 
{110}⟨123⟩ 0.1 0.05 1 380 100 380 5x1010 0.005 

2.3 Geometry and Boundary Conditions 

A spherical void is modelled at the centre of a cube with side length given by: 

𝑠 = (
4

3
𝜋𝑟3

𝑓0
)

1

3

     (12) 

Here, 𝑠 and 𝑟 are the side length and radius of the void and 𝑓0 is the initial porosity. Two 

values of 𝑓0=0.001 and 0.01 are used for the investigation. The cube with the void is then 

divided into two halves. One half was assigned 𝛼 phase single crystal properties and the other 

half was assigned 𝛽 phase properties, given in Table 1. The angle between the major loading 

direction, 𝐹 and normal to the phase interface, 𝑁 is termed as phase boundary inclination (PBI). 

Four PBIs were investigated from 90°, PBI 1, to 0°, PBI 4 with in an increment of 30° at both 

values of 𝑓0 . BOR (1̅01)𝛽 ||(0001)𝛼  and [111]𝛽 ||[21̅1̅0]𝛼  was used for all PBIs and the 

Euler angles for the crystal orientation for each PBI are given in Table 2. BOR constrain the 

Basal plane of the HCP crystal to be parallel with the interface between phases, because of 

which crystal orientation of the 𝛼 phase single crystal was changed as the PBI was rotated. 

Also, 𝛽 phase single crystal was updated accordingly as per BOR. Figure 2 shows geometries 

used in this study. Figure 2 (a) and (b) shows voids with two different initial porosities, and 

their location at the phase boundary of PBI 1 and PBI 2 respectively. Figure 2 (c-f) shows the 

geometries of PBI 1-4 respectively. Phases are shown in different shades, and the small HCP 

crystal was superimposed over the RVE to give an idea of the orientation of 𝛼 phase single 

crystal. 

All these geometries were tested at three levels of stress triaxiality values, 𝑋=1/3, 1 and 3. 

Stress triaxiality was kept constant using a multipoint constraint, MPC user subroutine of 

Abaqus software. 

Table 2 Euler angles of 𝛼 and 𝛽 phases for different phase boundary inclinations 

No. PBI 
𝛼 𝛽 

Ψ Θ 𝜙 Ψ Θ 𝜙 

1 90° 0° 0° 180° 324.74° 45.00° 180.00° 
2 60° 180° 30° 0° 289.73° 25.70° 138.27° 
3 30° 180° 60° 0° 231.59° 31.40° 073.67° 
4 0° 180° 90° 0° 210.00° 54.74° 045.00° 
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Figure 2 Some geometries used for RVE study, (a) PBI 1, 𝑓0=0.01, (b-i, ii) Halves of PBI 2, 𝑓0=0.001, 

(c-f) PBI 1-4. Green colour represents 𝛼 phase and beige colour is 𝛽 phase 

2.4 Results and Discussion 

2.4.1 Effect of PBI on void growth 
Void Volume Fraction (VVF) evolution was found to be strongly dependent on the phase 

boundary inclination. Figure 3 (a-c) shows the effect of PBI, stress triaxiality and equivalent 

strain on the evolution of void volume fraction, with the contour plots for 𝑓0=0.01 and 𝑋=1/3, 

1 and 3 respectively. They helped in better quantifying the void growth with respect to the 

identified parameters and helped in formulating the model.  

 Figure 4 (a-d) shows the evolution of normalised VVF against applied equivalent strain at 

𝑓0=0.001 and 0.01 and stress triaxiality of 1/3, 1 and 3 in PBI 1, 2, 3 and 4 respectively. It can 

be seen that for all cases void growth increases exponentially with respect to applied equivalent 

strain. Rate of void growth increased when stress triaxiality was increased from 1/3 to 3. When 

the PBI was moved from 1-3, the void grows faster. For the case of PBI 4, evolution of VVF 

compared to other PBIs vary at different applied stress triaxiality. At 𝑋=3, void growth in PBI 

4 is slowest as compared to other PBIs. But as the value of 𝑋 was decreased to 1 and then 1/3, 

void growth in PBI 4 accelerated and becomes higher than PBI 2. 

2.4.2 Effect of initial porosity on void growth 
The effect of initial porosity on the evolution of void volume fraction in bicrystals of the 𝛼 

and 𝛽 phase is also shown in Figure 4 (a-d) for three levels of applied stress triaxiality 1/3, 1 

and 3 in each of PBI 1, 2, 3 and 4 respectively. For higher initial porosity, slower void growth 

was observed for all PBIs and stress triaxialities with few exceptions. This trend is in agreement 

with the previous studies [14].  

3 PROPOSED MODEL 

Based on the findings made from the unit cell calculations, a model is sought which accounts 

for; applied strain (𝜀𝑒𝑞), stress triaxiality (𝑋), PBI (𝜃) and initial porosity. These parameters, 

except PBI have also been identified to influence the void growth and catered for in the model 

by Siddiq (2018). It was found from the RVE study that void growth increases exponentially 

with increasing equivalent strain. Rate of void growth was found to increase further as the stress 

triaxiality was increased and this increase is not linear with stress triaxiality, rather it increases 

exponentially with stress triaxiality. These trends are captured using a product of power laws 

of stress triaxiality and equivalent strains. Values of stress triaxiality were incremented by 1 to 

prevent reduction in void growth for 𝑋<1 for power higher than 1. Also, equivalent strain was 

scaled before using in the power law to balance its contribution towards void growth with stress 
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triaxiality. To insure the minimum value of normalised VVF, at 𝜖𝑒𝑞=0 remains 1, it is added as 

a constant term. The resulting relation is given as: 
𝑓

𝑓0
= 1 + (1 + 𝑋)𝐴. (

𝜀𝑒𝑞

𝐶
)
𝐵

= 𝛽    (13) 

 

 

 

 

 

 

 

 

Figure 3: Caption?? I deleted I guess!  

 
Figure 4 Effect of PBI on the normalized void volume fraction (VVF) evolution at 𝑋=1/3, 1 and 3 

at 𝑓0=0.001 and 0.01 

 
Figure 5 Comparison of normalized void volume fraction (VVF) evolution results of RVE 

simulations and proposed model for PBI 1, 2, 3 and 4 
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Here 𝐴 , 𝐵  and 𝐶  are parameters depending upon PBI, initial porosity and material 

properties. Values of 𝐴, 𝐵 and 𝐶 are first calibrated with unit cell results of 𝑓0=0.01 and for 

each PBI separately to get the best fit with the proposed model. The value of 𝐵 was found to be 

equal for all PBIs but values of 𝐴 and 𝐶 vary for each PBI. A 𝑠𝑒𝑐ℎ function was then used to 

relate the parameters 𝐴 and 𝐶 with the PBI getting following relations: 

𝐴 = 𝐷 sech(𝐸𝜃 − 𝐹)     (14) 

𝐶 = 𝐺 sech (𝐻𝜃 − 𝐼)     (15) 

Here coefficients 𝐷, 𝐸, 𝐹, 𝐺, 𝐻 and 𝐼 were calibrated with the values of 𝐴 and 𝐶 found for 

each PBI. 𝛽 in (13) is a non-dimensional strain like quantity which will be used to simulate 

material softening with void growth for future formulations. Parameters calibrated for 𝑓0=0.01 

are given in Table 3 for titanium alloy Ti-10V-2Fe-3Al. Figure 5 shows the comparison of unit 

cell results with the model prediction of normalized void volume fraction against applied 

equivalent strain for each PBI at three stress triaxialities 1/3, 1 and 3 at 𝑓0=0.01. It can be seen 

that the proposed model is in good agreement with the unit cell results. 

Table 3 Parameters of proposed model calibrated for 𝑓0=0.01, Ti-1023 alloy 

B D E F G H I 

1.20 5.30 1.20 1.25 7.00 1.80 2.50 

4 CONCLUSION 

Effects of initial porosity, stress triaxiality and PBI are studied in 𝛼 – 𝛽 titanium alloy (Ti-

10V-2Fe-3Al) using a unit cell study, with the RVEs having a spherical void at the interface of 

𝛼 and 𝛽 phases. It was found that PBI has a strong effect on void growth along with initial 

porosity and stress triaxiality. Void growth increased when PBI was changed from 90° to 0°. 

Void growth in 𝛽 phase was found to be higher than 𝛼 phase in most PBIs. A model is 

formulated that accounts for all these effects, calibrated using the unit cell study results, good 

agreement is found between the two. The model gives a non-dimensional strain like function 

that can be used simulate softening due to void growth in dual phase titanium alloys. 
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