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A Comparison of Professional and Private Time Preferences of 

General Practitioners 
 

Abstract  

In a perfect agency relationship, doctors consider all information and select the patient’s 

‘utility maximising’ option given the patient’s preferences. The patient’s time preferences are 

important as treatments vary in the timing and length of their benefits.  However, doctors 

often do not have full information on patients’ preferences and may apply their own 

preferences. This has generated empirical interest in estimating doctors’ time preferences.  

However, these studies generally elicit doctors’ private preferences (preferences for their own 

health) rather than professional preferences (preferences for the patient).  We hypothesise that 

private and professional preferences may differ. Professional time preferences may be 

‘taught’ in medical school or learned through repeated interactions with patients. If 

preferences differ then estimates of doctors’ private preferences are less informative for 

medical decision-making. This study compares private and professional time preferences for 

health in a national sample of General Practitioners, using a between sample design. Time 

discounting is explored using exponential and quasi-hyperbolic models. We elicit time 

preferences using multiple price lists. We find no significant difference between the time 

preference for the self or the patient. This result holds for axiomatic discounting classification 

and maximum likelihood estimates. We do not find evidence of present-bias. There are a high 

proportion of increasingly impatient GPs, potentially implying a maximum ‘willingness to 

wait’ for treatment benefits. GPs value the health state differently between themselves or for 

a patient. These results suggest that we can use estimates of private preferences from doctors 

to inform medical decision-making.  
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1. Introduction 

Since before Arrow (1963), the asymmetry of information between doctors and patients has 

been recognised in the profession. Understanding the doctor’s role as the patient’s agent, 

guiding their choice, is paramount to analysing medical decision-making. In a perfect agency 

relationship, doctors consider all available alternatives and select the patient’s ‘utility 

maximising’ option given the patient’s preferences. This includes their time and risk 

preferences. However, the agency relationship is imperfect. Doctors do not have full 

information on patients’ preferences and may apply their own preferences. This has generated 

empirical interest in estimating doctors’ preferences [removed for anonymization] (Gyrd-

Hansen, 2002) and in understanding differences in preferences between doctors and their 

patients (Jahng, Martin, Golin, & DiMatteo, 2005). Recent work by [removed for 

anonymization] explicitly compares matched patients and doctors, finding patients and their 

doctors have similar risk preferences, but different time preferences. However, these studies 

generally elicit doctors’ private preferences: preferences for their own health. We hypothesise 

that doctors have both private preferences and professional preferences (preferences for their 

patients) and that these may differ. For example, professional preferences may differ because 

they are ‘taught’ in medical school and/or learned through repeated interactions with patients. 

If doctors use professional preferences in the medical decision-making context, then 

estimates of their private preferences are less informative. This paper directly compares 

private and professional time preferences in doctors.  

 

We concentrate on time preferences for health as these determine decisions about treatments 

that vary in the timing and length of their benefits (Fuchs, 1982; Gafni & Torrance, 1984). 

There is a growing literature on eliciting time preferences but only a few studies have elicited 

time preferences in doctors (Gyrd-Hansen, 2002; Höjgård et al., 2002; Redelmeier & Heller, 
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1993). Redelmeier & Heller (1993) investigated doctors’ and medical students’ time 

preferences for themselves, using a standard gamble framework to elicit indifference points. 

A majority (62.1%) of their respondents displayed an exponential discount rate of zero. 

Within a sample of health students and doctors, Gyrd-Hansen (2002) asked questions from 

both private and professional perspectives. However, the use of different elicitation methods 

and health outcomes means the estimated rates are not comparable. Höjgård et al. (2002) 

elicited professional time preference for health in doctors by obtaining the probability of 

death during an operation that would make a doctor indifferent to recommending surgery or 

not to an entire group of patients. This result was used to estimate the implied time discount 

rate in an exponential model. The 95% confidence interval for GPs’ discount rates was 13.58 

– 20.46; for 60-year old men it was 11.85 – 20.07. [removed for anonymization] elicited time 

preferences from doctors in Greece for money and for their own health. Across studies, the 

estimated range of the exponential discounting parameter is wide, from 0.021 [removed for 

anonymization] to 0.21 (Höjgård et al., 2002).  

 

A few previous studies have examined the impact of perspective (own versus others) on time 

preferences in general population or student samples. Lazaro et al. (2001) explore the private 

and social time preferences of law students, finding a statistically significant difference 

between private and social time preferences for health. However, [removed for 

anonymization] found similar rates for private and social preferences in the general public. 

Given the mixed results, and that these results cannot necessarily be generalised to doctors, it 

is important to directly compare the private and professional time preferences of doctors.  

 

Ours is the also one of first studies to investigate the role of quasi-hyperbolic discounting 

(Laibson, 1997) in doctors. Quasi-hyperbolic discounting allows for time inconsistency and 
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has been hypothesised (Elliott, Shinogle, Peele, Bhosle, & Hughes, 2008) and investigated as 

a factor in health behaviours and outcomes [removed for anonymization](Khwaja, Silverman, 

& Sloan, 2007). Evidence suggests that many individuals are quasi-hyperbolic discounters 

(Frederick, Loewenstein, & O'Donoghue, 2002) although this has been debated more recently 

(Andersen, Harrison, Lau, & Rutström, 2014; Bleichrodt, Gao, & Rohde, 2016). Time 

consistency is important for medical decision-making as it may explain non-adherence: 

patients not following through with treatment recommendations that they agreed to. Doctors 

may recognise that several patients are present biased and may make treatment 

recommendations in line with the patient’s present biased preferences. However, time 

inconsistency may be undesirable from the perspective of the past self (Bénabou & Pycia, 

2002; Fudenberg & Levine, 2006). Doctors may therefore make treatment recommendations 

that reflect time consistent preferences and encourage patients to do what they planned for 

their future selves. Only one previous study has examined quasi-hyperbolic discounting in 

doctors [removed for anonymization]. The estimated present bias parameter in a sample of 

Greek hospital doctors was 1.04 for health and 0.99 for money suggesting that on average 

doctors do not exhibit significant present bias.  

 

We compare private and professional time preferences in a national sample of Scottish 

General Practitioners (GPs). GPs are primary healthcare workers who often act as the 

gatekeeper to hospital services. They are involved in helping patients manage long-term 

conditions such as back pain where there are clear trade-offs in the intensity and timing of 

different treatments. They are therefore more likely to be familiar with the concept of trading 

costs and benefits over time. Furthermore, GPs’ frequent interactions with their chronic 

patients could make it more efficient for them to maintain separate private and professional 

preferences.  
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This paper also examines the impact of the GP’s characteristics (such as gender and years 

since qualifying) and the characteristics of their practice (such as number of patients on the 

list per GP) on their time preferences for health. This may provide important insights into 

potential underlying mechanisms for variations in clinical practice.  

 

The remainder of the paper is structured as follows. In Section 2 we review time preference 

theory, before setting out the analytical methods in Section 3. Section 4 contains the main 

results. Section 5 then discusses these and Section 6 concludes. 

 

2. Time preferences  

Time preferences model how individuals choose between outcomes that occur over time. 

Imagine an individual has a preference relation ≿ representing their ordering over pairs of 

outcomes available at given times, and two outcomes X and Y (X ≺ Y if both available the 

same time) can be obtained at time t and s (t < s) respectively. If this person is indifferent 

between these two: (𝑋, 𝑡) ~ (𝑌, 𝑠), then the preferences exhibit stationarity (Time 

Consistency, TC) if the relationship is maintained as both options are shifted forward in time 

by an equal amount σ. Stationary preferences can be represented by an exponential discount 

function (Prelec, 2004): 

(𝑋, 𝑡) ~ (𝑌, 𝑠) 𝑎𝑛𝑑 (𝑋, 𝑡 + 𝜎)~(𝑌, 𝑠 + 𝜎)      (1) 

𝐷(𝛿, 𝑡) =
1

(1+𝛿)𝑡        (2) 

Where  is the time preference rate. When  is low, the discount factor D(·) is high. An 

individual who places a lot of weight on future outcomes relative to today has a low  and is 

described as more patient. 
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Preferences exhibit decreasing impatience (DI) when shifting the options forward means the 

person now prefers the larger more delayed reward, and this condition is necessary for 

hyperbolic discounting (Prelec, 2004): 

(𝑋, 𝑡) ~ (𝑌, 𝑠) 𝑎𝑛𝑑 (𝑋, 𝑡 + 𝜎) ≺ (𝑌, 𝑠 + 𝜎)     (3) 

Intuitively, this profile of choices can be justified by reasoning such as “what’s one more 

day?” – the relative weight of the extra length between rewards in comparison to the delay to 

the first available reward is smaller (Read & Roelofsma, 2003). Lastly, preferences might 

exhibit increasing impatience (II), where the individual becomes less willing to wait as the 

outcomes are shifted forward in time: 

(𝑋, 𝑡) ~ (𝑌, 𝑠) 𝑎𝑛𝑑 (𝑋, 𝑡 + 𝜎) ≻ (𝑌, 𝑠 + 𝜎)     (4) 

Increasing impatience is less discussed than decreasing impatience and lacks a strong 

theoretical basis. The non-exponential quasi-hyperbolic form can be used for increasingly or 

decreasingly impatient individuals (Laibson, 1997): 

𝐷(𝛽, 𝛿, 𝑡) = {
1 𝑖𝑓 𝑡 = 0

𝛽 ∗
1

(1+𝛿)𝑡  𝑖𝑓 𝑡 > 0
      (5) 

β is a measure of present bias. When β is less than one, the individual exhibits present bias: 

they care more about very near term rewards than future rewards. However, they weight two 

points in the further-future consistently (as if an exponential discounter). This reflects 

decreasing impatience. A β larger than 1 indicates increasing impatience. Events in the near 

future are valued higher than events today, but two future outcomes are consistently 

weighted.  

 

3. Methods 

We use a split sample design to compare private and professional time preference for health 

in a sample of Scottish GPs. Data were collected using a postal questionnaire with 
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personalised cover letter (Appendices 1 & 2). It was not possible to collect the data through 

online surveys. It is not known what the preferred mode of data collection is in time 

preference experiments.   

 

Time preferences 

Time preferences are elicited using the Multiple Price List (MPL), a standard method to 

ascertain time preferences outlined in Coller and Williams (1999). We ask the doctor to 

assume either they, or the patient, are in a given health state. They choose between two 

treatments, associated with a number of days in full health with certainty, at different points 

in time. Our health state symptoms are intended to reflect mild back pain: “Mild (chronic) 

pain that restricts some daily activities, such as your normal work and leisure activities. 

Otherwise, you have no restrictions in walking about and are not anxious or depressed”. The 

health state is mild to avoid potentially non-standard behaviour observed around treatments in 

a severe health state (Chapman, 2005). After treatment, the respondent, or the patient, returns 

to the original health state. This is aligned to the approach taken in the money domain: by 

assumption, a prize is spread over a given period before the individual returns to their original 

income. This design also places us firmly in the domain of gains. We wanted to minimise 

negative discounting behaviour associated with health losses due to anticipation [removed for 

anonymization]. The questions are also abstract to reduce the likelihood of respondents 

telling us that certain treatments do not exist or would not be appropriate, even if they were 

empirically necessary to identify time preferences.  

 

There are 10 choices within each MPL. We use the same set of payoffs in each block (see 

Example Block 3) to allow for axiomatic testing. Our early reward is always 14 days in full 

health. The later rewards start at 14 days as a check for negative discounting (δ < 0). Our 
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maximum number of future days in full health is 23, implying a weekly discount rate of more 

than 28% for a 2 week delay and 13% for a 4 week delay if a respondent never switches. The 

questions are hypothetical as ethically it is not possible to apply treatment preferences in 

practice. There is mixed evidence on the impact of incentivisation on time preference in the 

monetary domain (Andersen et al., 2014; Holt & Laury, 2002; Kirby & Maraković, 1996). It 

should be noted that the interest in this study is the difference between private and 

professional time preference rather than the mean rate.  

 

[Figure 1 here] 

 

Most studies using the MPL take a structural approach to estimating parameters of a 

discounting function. By careful construction, blocks of questions can be used to identify 

axiomatic forms of preference, as in [removed for anonymization] and Halevy (2015). A key 

advantage of the axiomatic test is that it does not require assumptions about the shape of the 

utility function for days of full health. Respondents were presented with four blocks (MPLs), 

allowing two axiomatic tests of stationarity versus present bias (Read & Roelofsma, 2003). 

We used two ‘delays’ to the early reward (0 or 2 weeks) and two different ‘lengths’ of time 

between the two rewards (2 or 4 weeks). This gives four blocks (MPLs): Block 1 has 0 delay, 

length 2 weeks. Block 2 has 0 delay and length 4. Block 3 has delay 2 and length 2. Finally, 

Block 4 has delay 2 and length 4. This gives two axiomatic tests of stationarity (present bias) 

by comparing blocks 1 & 3, or 2 & 4 because these pairs have the same lengths and different 

delays.  

 

The lengths and delays were chosen to reflect clinically relevant decisions made by GPs for 

minor states such as back pain. In the case of non-specific low back pain, GPs can 
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recommend fast-acting pharmacological interventions such as ibuprofen or interventions 

which need longer to take effect, such as group exercise and manual therapies. Similar 

recommendations exist for other conditions. For osteoarthritis, some treatments that have 

fast-acting benefits: painkillers; some with delayed benefits: corticosteroid injections; and 

more-delayed benefits: a managed exercise programme. Our hypothetical treatments 

therefore reflect real choices facing doctors. We used the back-pain example in the cover 

letter to explain how GPs trade-off outcomes over time when making treatment decisions 

(Appendix 1).  

 

To test for differences between private and professional preferences the questions were 

framed in terms of own or patient health. This type of framing has been successfully used to 

explore differences in doctors’ preferences for themselves and for their patients (Janssen, 

Teunis, Guitton, & Ring, 2015; Ubel, Angott, & Zikmund-Fisher, 2011). The private arm 

asked purely ‘for you’ questions: the respondent was asked to imagine they were in the health 

state, asked how they would rate the health state on a Visual Analogue Scale (VAS) of 0 

(worst health) to 100 (perfect health) for them, and which treatment ‘they would prefer’ (a 

point reinforced in each block). In contrast, the professional arm was worded from the point 

of view of a doctor facing a patient. The respondent was asked to ‘imagine a patient’ in the 

health state, how would they rate the health state on a VAS for the patient and which 

treatment they would recommend to ‘this patient’, again reinforced in each question block. 

To check whether the frame worked, the professional frame were asked if they imagined a 

specific patient. See Appendix 2 for the two surveys.  
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Other questions  

We collected demographic data: year qualified, gender, full- or part-time, practice location 

(urban or rural), the number of patients on the list and the number of GPs in the practice. We 

also included risk attitude questions on willingness to engage in financial risks, career and 

professional risks, and clinical risks based on the MABEL survey (Joyce et al., 2010). The 

data on risk attitude are used in another paper comparing Scottish GPs and UK qualified GPs 

in Australia. 

 

Methods of Analysis 

We first present the mean switching point across the four blocks by frame. The switching 

point is defined as the first row the respondent chooses B in a block. With 10 rows, switching 

row can vary from 1 to 10. We use 11 as a code for individuals that always choose the early 

days of full health. We conduct axiomatic tests of discounting types by comparing blocks 1 & 

3, and 2 & 4. We categorise respondents as follows: Time Consistent (TC) if the switching 

rows are the same; Decreasingly Impatient (DI) if the individual switches earlier in the later 

block; Increasingly Impatient (II) if the individual switches later in the later block. We take 

the responses as strict preferences: if a person switches from A to B in row 6 of block 1 and 

row 5 of block 3, they are Decreasingly Impatient (DI). This does not allow for any 

uncertainty or random error in responses. We therefore conduct a sensitivity analysis, 

widening the definition of TC to ±1 row. This analysis is exploratory as there is usually a 

proportion of individuals who cannot be classified as they never switch: they always choose 

the nearer or later option (in Meier and Sprenger (2015) 40% of respondents never switch). 

Individuals may appear time consistent because their responses are the same across the 

compared blocks (‘all A’ or ‘all B’). However, they may have displayed different switching 

points if a wider range of days of full health in option B had been offered. We also exclude 
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responses with missing values for the same reason: a single observation in each block does 

not allow us to observe where the switching point occurred.  

 

We run maximum likelihood (ML) analyses in a similar vein to Andersen et al. (2008; 2014). 

This approach involves the estimating a utility function’s parameters. Initially, linear utility 

functions were assumed to estimate time preferences. It has been recognised that this may 

bias the estimates if the utility function is non-linear. Risk preferences are used in the money 

domain to curve the utility function (Andersen et al., 2008; Laury, McInnes, & Swarthout, 

2012). However, due to survey length we were not able to collect a compatible risk 

preference measure. Linear utility of days in full health may bias estimates of the discount 

rate upward: it should be noted that the interest lies in the difference between the discount 

rates across frames, not the rates themselves. Recent evidence from Abdellaoui et al. (2013) 

suggests there is less non-linearity in the utility function in the time dimension than in the risk 

dimension. We allow for the non-linearity of the utility function with respect to healthy days 

in further analysis (details below).  

 

When making intertemporal choices, we model individuals as following one of two 

discounting approaches: exponential (equation 2) or quasi-hyperbolic (equation 5). Assuming 

the number of days in full health is a linear reward in the utility function, we treat individuals 

as if they compare the present values of the two flows, choosing the larger option: 

𝑃𝑉𝑗 = 𝐷(𝛽, 𝛿, 𝑡) ∗ 𝑋      (6) 

Where j is column A or B, X the size of the reward, β and δ are discounting parameters as 

above, and t the time at which the reward is available. When β equals one, the discount factor 

D(.) is 
1

(1+𝛿)𝑡. A more complicated approach would treat the values of the healthy days as 

separate instantaneous utilities, to calculate a ‘true’ daily discount rate. While this might be 
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theoretically more appealing, our primary aim is to compare across samples, not a robust 

estimate of the doctors’ discount rates. 

 

Using our choice data (each row in the survey), we generate an index of the present-value 

differences and estimate the parameters of the utility function. The index is (Andersen et al., 

2014): 

 ∇𝑃𝑉 =
1

𝑣
(𝑃𝑉𝑎 − 𝑃𝑉𝑏)       (7) 

Where ν is a scale parameter. The likelihood function depends on these parameters, the 

observed choices and personal characteristics (Andersen et al., 2008): 

 ln 𝐿(𝛽, 𝛿,  𝜈) =  ∑ ((ln (𝑖 ∇𝑃𝑉)| 𝑐𝑖 = 0) + (ln(1 − ∇𝑃𝑉) |𝑐𝑖 = 1))  (8) 

Where i is the individual, ci the observed choice in a given row (0 indicates a choice in 

column A, 1 a choice in column B), and responses have standard errors clustered by 

individual. We test whether  =1. We explore the effect of framing and demographic 

variables as linear covariates on the parameters ,  : 

𝛽𝑖 = 𝛾0 + ∑ 𝛾𝑘 𝑧𝑘𝐾       (9) 

where K is the number of covariates in the model. We have 5 variables other than the frame: 

gender, full-time, urban practice, thousands of patients per GP and years since qualification. 

This gives 10 covariates: 5 each on δ and β. We use joint significance tests first on all 

covariates then on gender and years qualified (proxy for age) to remove covariates that are 

not jointly significant for more parsimonious models. Gender and age are the two 

demographic covariates most likely to be associated with time preferences based on previous 

evidence (Chao, Szrek, Pereira, & Pauly, 2009; Kirby & Maraković, 1996). We test which 

model of discounting – quasi-hyperbolic or exponential – is a better fit for the data by 

running two versions of the analysis; one with β varying freely and one without β, 

constraining it to 1. Goodness of fit is assessed using the Akaike Information Criterion (AIC).  



  14 

 

As mentioned above, we do not have a standard measure of risk to separate the effects of risk 

preference from time preference. We explore the impact of non-linearity of the utility 

function on β using a Constant Relative Risk Aversion (CRRA) specification: 

𝑌(𝑥) =  {

𝑥(1−𝜃)

(1−𝜃)
 𝑖𝑓 𝑡 = 0

𝛽

(1+𝛿)𝑡 (
𝑥(1−𝜃)

(1−𝜃)
)  𝑖𝑓 𝑡 > 0

    (10) 

Models where θ varies freely do not converge, hence we test three values for θ: 0.1 (Andreoni 

& Sprenger, 2012; Galizzi et al., 2016), 0.6 (Andersen et al., 2014; Cheung, 2015; Tanaka, 

Camerer, & Nguyen, 2010), and 1. When θ equals one, CRRA reduces to log-utility and 

represents strong risk aversion compared to values found in the literature (Ida & Goto, 2009). 

Without an empirical measure of risk, θ can be interpreted as the decreasing marginal utility 

of additional healthy days. We also explore the impact of payoff on the estimates by 

including the VAS score as a multiplicative factor on the number of healthy days: x in (10) 

becomes VAS * x. 

 

The most popular method for correcting for utility curvature uses a risk aversion parameter 

elicited in a separate task.  However, this task is relatively complex and may not always be 

feasible to include given survey length. This may explain why Andersen et al. (2014) found 

that only 6 of 20 studies explicitly corrected for curvature in the money domain. When 

eliciting risk aversion is not feasible, as was the case in our survey, simulation can provide 

insights into the sensitivity of results to utility curvature.  However, the analyses are 

exploratory only.   
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Sample 

We use a random sample of General Practitioners in Scotland, stratified by health board. A 

between sample design is used as it is likely that any respondent receiving two very similar 

questions either would work out the hypotheses, biasing their response, or would fail to 

appreciate the difference between the surveys and hence replicate responses across frames. 

Robust sample size calculations for this study are difficult because there are no previous 

estimates of time preference rates in UK GPs. The closest study is the paper by Anonymous 

(2016) who elicited time preferences for health using MPLs in a sample of Greek hospital 

doctors. However, they used a different health outcome and different outcome magnitudes, 

which are known to influence time preference estimates. These values may, therefore, not be 

a good approximation of our sample’s time preferences. Additionally, there is no clear 

definition of what a minimally important difference in time preference is. Decisions 

involving relatively long term outcomes are highly sensitive to the time preference rate: even 

small differences in time preference rates can lead to different options being chosen. Using a 

conservative estimate of a 0.0015 (0.15%) difference in time preference rates (δ) and taking 

the mean and standard error from Anonymous (2016) (δ=0.0231, s.e. 0.0031) the minimum 

sample size was 138 (69 per group), assuming 80% power.  

 

Response rates are generally low in this population. Assuming a response rate of around 10%, 

we take a 40% random sample of the 5,000 GPs in Scotland and send out 2,001 surveys to 

ensure there would be sufficient responses under a conservative return rate. Scotland is split 

into 14 regional health boards, covering diverse geographical areas. To ensure proportionate 

coverage in all boards, from the largest (Greater Glasgow and Clyde) to the smallest 

(Orkney), we stratified on the number of GPs in each board taken from the list of contact 

details available from Information Services Division (ISD) Scotland. After stratification, each 
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individual was randomised to receive either the ‘private’ frame or the ‘professional’ frame 

time preferences questionnaire. Data were collected by postal questionnaire. No reminders 

were sent. 

 

In total, 322 questionnaires were returned (16%): 22 were non-delivered returns, 4 were 

‘protest’ responses and the remaining 296 (159 private and 137 professional) contained at 

least some response useful for analysis. This useable response rate of 14.8% is higher than 

anticipated. There was a difference between response rates in each frame (15.9% private and 

13.6% professional). This could be because doctors were more willing to make choices for 

themselves, rather than a hypothetical patient. However, the difference was not statistically 

significant (p=0.14). There were 3 protest responses in the professional frame and one in the 

private (identified from handwritten notes from respondents). Ethical approval for the study 

was granted by the College Ethics Review Board, University of Aberdeen and NHS Scotland 

R&D approval was obtained for all health boards. 

 

4. Results 

Respondent characteristics 

Table 1 shows descriptive statistics for the sample. The majority of the sample is female, in 

fulltime employment and based in urban practices. The average respondent left medical 

school 20 years ago. The demographic variables are not significantly different across frames 

at the 5% level.  

 

[ Table 1 Here ] 
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To explore non-response bias, we compared our sample in terms of gender, urban setting, list 

size and number of GPs in the practice. The proportion of females, the numbers of patients on 

their lists, and whether the practice is urban, is similar compared to the sample sent out. 

Furthermore, the proportion of female responses is not significantly different from the 

population for all returns, or by frame. This also holds for the urban setting of the practice. 

However, the average number of GPs per practice is higher for our sample compared to the 

sample sent out (p=0.04). Note that list size was also slightly larger for the sample sent out 

compared to the full population due to the randomisation procedure. We randomise at health 

board level, not practice level, and so are more likely to select doctors from practices that 

have more GPs and patients. 

 

The average VAS score of the health state is higher in the private frame (64.9) compared to 

the professional frame (58.0). As the data in each frame are not normally distributed (see 

Figure 2), we used a Kolmogorov-Smirnov test, which rejects equality of the distributions at 

the 5% level (D=0.21, p=0.01).  The difference in VAS score suggests the framing worked in 

that GPs were imagining someone other than themselves in the professional frame.  

Furthermore, when respondents were asked to describe the patient they imagined only two 

out of 41 that provided responses noted ‘myself’. 

 

[Figure 2 Here] 

 

Time preferences 

Figure 3 shows the proportion of respondents choosing the earlier days of full health as the 

number of future days of full health increases. In line with other studies, a higher proportion 

of respondents choose the earlier days of full health if they start now rather than in 2 weeks’ 
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time and if the delay between the earlier and later days of full health is longer. Several 

respondents never choose the later days of full health, especially for the longer lengths 

between earlier and later days of full health.  

 

[Figure 3 Here] 

 

Table 2 reports the mean switching row by block. The mean switching row is higher in the 

private frame suggesting that GPs are more impatient for themselves than for their patients. 

However, none of the differences in means are statistically significant. Comparing the mean 

switching row across blocks provides some indication of the impact of delay (starting point) 

on time preferences. Testing the means across pairs of blocks indicates a difference between 

private and professional frames. We reject the null hypothesis that the block 1 mean is equal 

to the block 3 mean in the professional frame (p=0.03), but not the private frame (p=0.40). 

However, in block 2 to 4, we reject this hypothesis in both professional (p=0.02) and private 

frames (p=0.03). This is an early indication that there could be increasing impatience in the 

sample.  

 

[ Table 2 Here ]  

 

Our axiomatic approach classifies the majority of respondents as either time consistent or 

increasingly impatient. In total, 18.4% of respondents are DI, 34.0% are TC and 47.6% are II. 

This is similar across the two axiomatic test (2 weeks versus 4 weeks length of time between 

rewards). The axiomatic test is strict in that is does not allow for randomness or inattention in 

choices. In part this motivates the ML analysis. We conducted sensitivity analysis by relaxing 

the definition of TC to be ±1 row in comparing across blocks. With the relaxed definition, 
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55.9% are TC with the proportions of DI and II falling to 12.4% and 31.7% respectively. This 

suggests there is some uncertainty around the axiomatic classification which is addressed in 

the ML estimation. Note that this excludes individuals missing data (47) or censored in both 

blocks of a pair. There were 31 individuals with censored observations in the block 1 to 3 

comparison, and 70 in the block 2 to 4 comparison. Of these, 75 individuals were censored or 

had missing data in all four blocks.  

 

Comparing discounting types across professional and private frame, a chi-square test on the 

distributions for blocks 1 to 3 indicates that the distributions are the same (Χ2=1.08, d.f.=2, 

p=0.58). This contrasts with the result above that the mean switching row in blocks 1 and 3 is 

different in the professional frame but not the private frame. However, the results cannot be 

directly compared as the axiomatic approach excludes a substantial proportion of respondents 

and different statistical tests are used. The full set of axiomatic results are available in 

Appendix 3, Table A.1. A weakness of the axiomatic approach is that it excludes individuals 

that are censored or have missing data. Structural estimation can therefore exploit more of the 

data. 

 

Table 3 shows the results of the maximum likelihood estimations. The 39 individuals who 

had censored observations across all four blocks (non-switchers) are included in this analysis. 

In the model with no demographics β = 1.037 (95% CI: 1.005, 1.069), δ = 0.017 (95% CI: 

0.015, 0.019) in the quasi-hyperbolic model and  = 0.017 (95% CI: 0.015, 0.018) in the 

exponential model. There is some evidence of aggregate increasing impatience in the sample. 

We reject β = 1 at the 5% level (p = 0.024). Framing did not have statistically significant 

effects on β or δ suggesting that under the assumption of linear utility in days of full health 
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there is no difference on average between how doctors would choose treatments for 

themselves or for their patients.  

 

[ Table 3 Here ] 

 

Similar results are found when the demographics are included. In the full model none of the 

demographic covariates were individually significant and they were also not jointly 

significant (Appendix 3 Table A.2). A joint significance test on a model including all 10 

covariates did not reject H0 at the 10% level (p=0.45, d.f.=10). Taking β and δ separately, we 

do not reject covariates on δ all being jointly zero (p=0.27, d.f.=5); nor the β covariates 

(p=0.92, d.f.=5). The model therefore includes gender and years qualified only which were 

jointly significant in both the quasi-hyperbolic model and the exponential model. In both 

models, being female is statistically significant at the 5% level. Women have a lower δ (more 

patient), in accordance with previous findings (Kirby & Maraković, 1996; Meier & Sprenger, 

2010).  

 

Table 4 shows the maximum likelihood estimates when assuming non-linear utility. The 

results are qualitatively similar to Table 3: β remains larger than one and can be rejected at 

the 5% level. The frame remains insignificant in all models. As expected, increasing the 

curvature of the utility function reduces the point estimates of δ (Model 1: 0.015, Model 3: 

0.006) and β (Model 1: 1.034, Model 3: 1.013). This is in keeping with previous results that 

non-linearity in the utility function biases estimates of time preferences. 

 

[ Table 4 Here ] 
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5. Discussion 

Our results show that doctors have similar time preferences for themselves and their patients, 

in terms of rates and underlying discounting types. It may be that our framing was 

unsuccessful and GPs imagined themselves in the professional frame rather than their patient. 

In an abstract and cognitively complex task it may be easier for participants to apply their 

own preferences. However, the clear differences in VAS distributions imply framing was 

successful. The task was also deliberately abstract: providing more detailed information in 

the professional frame such as the specific medical condition, age or gender of the patient 

may influence the time preference estimates due to framing effects. Perspective, own versus 

professional, was made salient throughout the questionnaire. Further research should explore 

whether the results are sensitive to different types of framing.  

 

The results showed that doctors perceive a health state as more severe when experienced by a 

patient rather than themselves. This is important in the medical context as treatment 

recommendations may vary depending on whether the GP is using professional or private 

health state values. It is unclear whether their professional or private preferences are better 

aligned with the patient’s health state values and this would be an interesting line of future 

enquiry. 

 

The paper also contributes to the debate on whether time preferences are appropriately 

modelled by quasi-hyperbolic or exponential discounting. On average, GPs had a β close to 

one. There is some evidence that on average individuals are increasingly impatient and the 

axiomatic test showed that a substantial proportion of the sample is increasingly impatient: 

47.6% of doctors as increasingly impatient (future-bias). The proportion of increasing 

impatience is high compared to most studies in the monetary domain. Meier and Sprenger 
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(2010) found 9% of their primary sample were future-biased and Halevy (2015) found 

statistically insignificant evidence of increasing impatience. Augenblick et al. (2015) found 

17% of subjects are future biased in money, and 33% are for their effort task. In the health 

domain, Bleichrodt et al. (2016) found 25% of respondents were increasingly impatient in a 

sample of 36, using a Time Trade Off method. They found that hyperbolic, rather than quasi-

hyperbolic, discounting represented the data better. 

 

While time consistency and decreasing impatience have widely discussed interpretations, 

increasing impatience does not. Increasing impatience implies that as we shift two outcomes 

forward in time by equal amounts, one now prefers the smaller sooner option to the larger 

later one. A potential explanation is that doctors have a maximum ‘willingness to wait’ for 

treatment benefits to begin because the patient experiences ill health during the initial delay. 

They become more impatient as outcomes are shifted forwards because they want to move 

the patient away from a ‘bad state’ by a certain time after the patient first arrives in the clinic, 

similar to the finding that there are ‘maximal endurable’ times in a health state (Stalmeier & 

Verheijen, 2013).  

 

Compared to other studies, our mean estimates of δ are in line with health studies using 

MPLs [removed for anonymization], and comparable to those in the monetary domain (0.021, 

Tanaka et al. (2010); 0.07, Andersen et al. (2014)). Our estimate of β is relatively high, with 

the majority of studies finding β either equal to 1 (Andersen et al. (2014), money domain; 

[removed for anonymization], health domain), or lower (0.6, Tanaka et al. (2010); 0.7, Meier 

and Sprenger (2015); 0.89, [removed for anonymization]). However, our estimate of 1.037 in 

the base model (without individual covariates) is remarkably close to [removed for 
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anonymization], the only other study that elicited present-bias in doctors. Our result adds to 

the evidence against present-bias in doctors making choices over time in the health domain.  

 

There are several limitations to the study. We assume utility linear in healthy days and find 

that doctors have the same time preferences for themselves and their patients. However, there 

is a statistical difference in how the sample viewed the same health state applied to 

themselves or a patient. Whilst the VAS uses a single open-ended question only to elicit 

health state values, it is a well-established and reliable method for eliciting ratings for health 

states (Krabbe et al., 2017; McCormack, de L. Horne, & Sheather, 1988; Parkin & Devlin, 

2006). Other studies suggest that individuals discount smaller rewards more steeply than 

larger ones (Andersen, Harrison, Lau, & Rutström, 2013; Benzion, Rapoport, & Yagil, 1989; 

Kirby & Maraković, 1996). We therefore expect ‘professional’ frame doctors to have lower 

discount rates (be more patient) than those in the ‘private’ frame because the professional 

frame perceive the reward as larger. We found no difference in the analysis. Second, as 

mentioned above similar estimates may be the result of doctors not making decisions from 

the correct perspective. It may also be that the similarity is caused by mid-point bias: 

respondents are more likely to switch near the middle (Andersen, Harrison, Lau, & Rutström, 

2006). Assuming this effect did not vary by frame because both use the same scale, this 

would bias our survey against finding a difference between frames. 

  

This conflict demonstrates that applying estimated discount rates for health involves 

uncertainty for the researcher. In the money domain, this is addressed by using incentivised 

risk questions to adjust the utility function. In the health domain this is more complex. 

Fourthly, despite offering a wide range of implied weekly discount rates in the MPLs (up to 

28%), a relatively large number of respondents never switched, especially in block 4. For 
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these individuals, more limited information is available on their time preferences. However, 

the proportion is similar to other studies (Meier & Sprenger, 2015).  

 

6. Conclusion 

This study is the first to directly compare time preferences for the self or a patient in a 

national sample of General Practitioners, and the first to explore quasi-hyperbolic discounting 

in GPs. The study used a between sample design to elicit time preferences from doctors for a 

hypothetical chronic ill-health state that could be cured for given lengths of time. We find a 

significant difference in how health states are perceived. However, there is no significant 

difference between the time preference for the self or the patient. We found evidence of 

increasing impatience in both frames, an understudied aspect of discounting that could be 

particularly relevant to health outcomes. This study therefore also adds to the evidence 

against present-bias as a widespread phenomenon. These results suggest that we can use 

estimates of private preferences from doctors to inform medical decision-making. Future 

research is clearly required in terms of the impact differences in health state values have on 

time preferences and in examining whether the results hold across specialties.  
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