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Abstract 
By analogy with Pavlov’s dogs, certain pathogens have evolved anticipatory behaviours that 

exploit specific signals in the human host to prepare themselves against imminent host 

challenges.  This adaptive prediction, a type of history-dependent microbial behaviour, 

represents a primitive form of microbial memory.  For fungal pathogens, adaptive prediction 

helps them circumvent nutritional immunity, protects them against phagocytic killing, and 

activates immune evasion strategies.  We describe how these anticipatory responses, and 

the contrasting lifestyles and evolutionary trajectories of fungal pathogens, have influenced 

the evolution of such adaptive behaviours, and how these behaviours affect host 

colonisation and infection.  
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Microbial memory 

Microorganisms often inhabit dynamic niches where they are confronted by 

continuously fluctuating environmental challenges that are often perceived as stresses.  

Consequently, to survive, microbes have evolved adaptation mechanisms that mitigate 

against these challenges.  Certain niches impose stresses that recur in a reasonably 

predictable manner in which one input is often followed by a second input of a certain type.  

This presents the resident microbes with an opportunity to develop anticipatory behaviours 

that have the potential to enhance their fitness in this niche.  This is somewhat analogous to 

Pavlov’s dogs, who were entrained to salivate upon hearing a bell in anticipation of being fed 

[1].  The rationale of adaptive prediction is that a microbe is likely to have a selective 

advantage over its competitors if it has evolved to activate a response to, and hence become 

protected against, a second impending input, when it is exposed to the initial (first) input [2] 

(Figure 1).   

The extent of this selective advantage will depend upon the cost-benefits of the 

anticipatory gene expression mechanism.  In other words, the energetic cost of the 

anticipatory response is weighed against the degree of protection it offers [3].  Theoretically, 

if the regulatory machinery comes at no cost to the organism, an optimal level of constitutive 

expression could provide higher fitness levels than responsive gene expression [4].  

However, the significant cost of this machinery is illustrated by the down-regulation of the 

transcriptional and translational apparatus during times of stress [5].  Furthermore, elevating 

the basal levels of expression for certain stress factors can have a negative impact on other 

virulence traits [6].  Therefore, the expression of stress functions in the absence of stress 

does incur a fitness cost [6,7].  Nevertheless, clear examples of microbial stress priming 

have been reported, as summarised in this review and elsewhere [8], indicating that the 

fitness advantage conferred by some anticipatory responses outweighs their fitness cost. 

The likelihood of developing an anticipatory response will also depend on the 

frequency and predictability of the relevant environmental challenges relative to the transient 

protection that the adaptive response confers (Figure 1).  This implies that anticipatory 

behaviours probably become most entrained in organisms that experience specific 

environmental perturbations or rhythms or oscillations frequently and predictable within the 

niches they occupy.  

Survival in dynamic environments can be enhanced via alternative mechanisms, such 

as noisy gene expression, switch-like behaviours or robust core stress responses.  

Nevertheless, examples of adaptive prediction have been reported in gut bacteria to take 

advantage of predictable changes in carbon source in the gastrointestinal tract, and in yeast 

to deal with sequential thermal, ethanol and oxidative stresses during wine fermentations [2].  
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The transcriptional programmes associated with circadian rhythms also provide excellent 

examples of anticipatory behaviours, tuning fungal metabolism and virulence traits to light 

dark cycles [9-13].  Historical behaviours can be evolved in vitro through the growth of 

Saccharomyces cerevisiae or bacteria under conditions that impose repetitive environmental 

changes [2,3,14-16].  It has been suggested that anticipatory behaviours such as these 

represent a primitive form of memory [15,17,18].   

Recent observations indicate that anticipatory behaviours are highly relevant to fungal 

pathogens and their interactions with the human host.  The significant impact of fungal 

pathogens upon human health is generally underappreciated [19].  The main killers, 

Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Pneumocystis 

jirovecii, have been estimated to kill over one million people each year, and dimorphic fungi, 

Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Paracoccidioides 

brasiliensis, Sporothrix schenckii and Penicillium marneffei annually cause tens of thousands 

of deaths in North and South America and Asia [19].  The immune status of the individual 

strongly influences the incidence and/or severity of many infections caused by these fungi 

[20,21].  It is becoming clear that certain pathogenic fungi, and C. albicans in particular, have 

probably evolved anticipatory behaviours that address challenges posed by our immune 

defences.  We discuss these anticipatory behaviours, the mechanisms by which they 

counteract immunity, and the probable basis for anticipatory behaviours in fungal pathogens. 

 

Evolutionary trajectories, lifestyles and anticipatory behaviours 

How likely is a fungal pathogen to have developed anticipatory behaviours that 

promote human colonisation and disease?  This will depend on the lifestyle and evolutionary 

trajectory of the fungus, as well as the predictability of the inputs in host niches, and the 

cost-benefits to the fungus of the anticipatory behaviour. 

Fungal pathogenicity has evolved independently in diverse branches of the fungal 

kingdom [22].  This implies that, with the exception of ancient environmental inputs such as 

the light-dark cycles underlying circadian rhythms [9-11], evolutionarily distant fungal 

pathogens have probably evolved different solutions to the common challenges they 

encounter in the human host, which include the ability to overcome or evade the immune 

system.  It has been reported that adaptive prediction can emerge in relatively short 

evolutionary timescales in vitro (50-150 generations) [23].  Such behaviours are likely to take 

longer to emerge in natural niches because these environments are less prescriptive (in that 

the frequency and doses of natural stresses are variable), and more complex (fungal cells 

are exposed to multifarious inputs in their natural niches, in addition to the inputs of interest) 

than most in vitro microevolution experiments.  Nevertheless, depending on the degree to 
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which they confer an evolutionary advantage, anticipatory behaviours may have emerged 

relatively recently in evolutionary time.  Taken together, this suggests that different 

anticipatory behaviours may have emerged in different pathogenic fungal species to address 

common challenges they face in the human host.  

In evolutionary terms, P. jirovecii is highly tuned to its human host.  This fungus has 

become so dependent on its intracellular niche that it has shed key metabolic pathways and 

cannot be cultured in vitro [24].  Despite the homeostatically buffered niche that it occupies, 

P. jirovecii could conceivably have evolved anticipatory behaviours that predict metabolic or 

stress responses in the host cell, for example.  However, if such behaviours do exist in this 

fungus, they are likely to remain obscure for some time given the technical difficulties 

inherent in dissecting them in an organism that is currently non-culturable.  

At the other extreme, some fungal pathogens are saprophytic, primarily occupying 

environmental niches.  For example, A. fumigatus, C. neoformans, H. capsulatum, C. immitis 

and B. dermatitidis are abundant in the environment, and inhaled by individuals, causing life-

threatening infections in immunocompromised patients.  While much attention is paid to their 

virulence factors, the evolutionary pressures that have shaped these fungi have been 

imposed in their environmental niches, not in humans.  For example, the “grass eater”, 

A. fumigatus is often viewed as an accidental pathogen that happens to possess properties 

that permit colonisation and infection in humans [25].  However, some fungal pathogens, 

Penicillium marneffei as well as Cryptococcus and Candida species for example, can infect 

animals, thereby providing potential reservoirs for human infection [26-28].  Clearly 

anticipatory behaviours of relevance to human infection may have evolved in these 

alternative hosts.  Anticipatory behaviours that promote colonisation in humans may also 

have evolved in other environmental niches, for example through interactions with soil 

amoebae [29].  

C. albicans is an interesting fungal pathogen, particularly from the perspective of the 

potential to evolve anticipatory behaviours within humans.  Firstly, although there are reports 

of potential environmental reservoirs for this fungus [30,31], C. albicans is generally viewed 

as a commensal of humans, and is carried by many individuals in their orogastrointestinal 

and urogenital tracts [32,33], suggesting that it may have evolved in concert with its human 

host over recent evolutionary timescales.  Secondly, the environmental responses of this 

fungal pathogen are relatively well characterised [34,35], raising the possibility that evidence 

of anticipatory behaviours might already exist for C. albicans.  

 

Anticipating nutritional immunity 
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In an attempt to limit the proliferation of invading microbes, the mammalian host 

sequesters essential micronutrients, such as iron and zinc, via a process termed “nutritional 

immunity” [36-38].  A fungal pathogen must overcome the resultant micronutrient depletion 

by activating iron and zinc scavenging mechanisms if it is to proliferate and colonise these 

hosts [39-42].  Interestingly, in C. albicans, certain micronutrient scavenging mechanisms 

are linked to yeast-hyphal morphogenesis.   

Morphological transitions play a key role in fungal virulence [43-46], and in C. albicans 

the yeast-to-hyphal transition is strongly associated with host invasion [47,48].  The 

formation of C. albicans hyphae can be stimulated by a variety of different experimental 

conditions, including exposure to bacterial peptidoglycan [49], but genome-wide 

transcriptional profiling has revealed a core set of only eight genes that are up-regulated 

during hyphal development under different hypha-inducing conditions [50].  Yet the formation 

of C. albicans hyphae is not dependent on hypha-specific genes [51].   

These eight core hypha-specific genes in C. albicans include ALS3 and ECE1 [50].  

Als3 promotes the assimilation of iron by scavenging ferritin, an iron storage protein, from 

the milieu [52].  ECE1 encodes candidalysin [53], a cytolytic peptide toxin that generates 

pores in host membranes and hence presumably makes ferritin more accessible to the 

invading fungus.  Therefore, the induction of two genes involved in the acquisition of an 

essential micronutrient is hardwired to hyphal development (Figure 2).  Yet these genes are 

not essential for hypha formation.  Furthermore, the PRA1 and ZRT1 genes, which promote 

scavenging of another essential micronutrient, zinc [42], are up-regulated during pH-induced 

hyphal development.  Therefore, C. albicans induces iron and zinc scavenging mechanisms, 

just as it initiates hyphal growth and tissue invasion.  Tissue invasion coincides with the 

imposition of nutritional immunity by the host as it attempts to limit fungal colonisation by 

limiting micronutrient availability [38,54].  Therefore, this appears to represent an excellent 

example of adaptive prediction, where the pathogen is essentially anticipating micronutrient 

deprivation before it invades micronutrient limiting domains [55,56] (Figure 2).   

Iron starvation is a signal that triggers the activation of key virulence factors in 

C. neoformans, such as capsule formation [57].  This is likely to represent an anticipatory 

response (see Anticipating phagocytic recognition, below).  In A. fumigatus, iron assimilation 

is integrated with pH, oxidative stress and central carbon metabolism [58] rather than 

virulence factors per se [59].  Therefore, C. albicans appears to anticipate that micronutrient 

starvation will follow tissue invasion, and C. neoformans exploits this micronutrient starvation 

to trigger other virulence factors, whereas the saprophyte A. fumigatus simply triggers 

micronutrient scavenging mechanisms upon micronutrient starvation.   
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Anticipating phagocytic recognition  

Recent evidence suggests that fungal pathogens have also developed anticipatory 

behaviours that promote immune evasion in the host.  The first step in the development of 

an immunological response against fungal pathogens involves their recognition by the innate 

immune system.  Innate immune cells exploit a range of Toll-like receptors (TLRs) and C-

type lectin receptors (CLRs) to detect specific pathogen-associated molecular patterns, 

many of which are located at the fungal cell surface [60,61].  These include the canonical 

CLR, Dectin-1, which recognizes β-glucan [62], the mannose receptor [63], and MelLec, 

which recognises melanin [64].  The recognition of these pathogen-associated molecular 

patterns (PAMPs) leads to the activation of innate immune defences including phagocytic 

clearance, and the development of adaptive immune responses [63,65].  β-Glucan 

recognition by Dectin-1, in particular, plays a major role in antifungal immunity [66,67], 

amplifying the response to other PAMPs [68].  The recognition of chitin by the intracellular 

receptors, TLR9 and NOD2, is thought to play a role in dampening inflammation once the 

fungal threat has been dealt with [69].  

Changes in PAMP exposure at the fungal cell surface affect immune recognition and 

thereby influence the ability of a fungal pathogen to colonise its host.  The degree of 

exposure of β-glucan on the C. albicans cell surface changes during morphogenesis and 

during infection [70-72] and affects competitive fitness in the gastrointestinal tract [73].  The 

degree of β-glucan exposure initially declines during deep-seated infections of internal 

organs, but then increases following neutrophil attack, thereby enhancing immune 

recognition [71,74].  What triggers the initial decline in β-glucan exposure on C. albicans 

cells during infection?  Physiological levels of the carboxylic acid, lactate, have been shown 

to trigger the masking of β-glucan, which leads to attenuated cytokine responses and 

neutrophil recruitment [75].  Furthermore the virulence of C. albicans in the murine model of 

systemic candidiasis is enhanced by growth in the presence of lactate [76].  This β-glucan 

masking can be triggered by either host-derived or microbiota-derived lactate. It is activated 

via a non-canonical signalling pathway that has recruited key factors from signal 

transduction pathways involved in cellular morphogenesis and cell wall remodelling, namely 

the receptor Gpr1 and the transcription factor Crz1 [75].  Therefore, C. albicans would 

appear to have developed an anticipatory response to lactate that promotes fungal 

protection against subsequent immune attack in certain host niches (Figure 3). 

β-Glucan masking can be triggered by a second host input, hypoxia, which leads to 

attenuated phagocytic recognition and uptake of C. albicans cells [77,78].  Hypoxia is 

imposed at infection sites through fungal-dependent neutrophil recruitment, which then leads 

to β-glucan masking and immune evasion [78].  As was observed for lactate-induced 
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masking, evolutionarily conserved signalling modules have been recruited to drive this 

hypoxia-induced β-glucan masking.  The response to hypoxia is dependent upon 

mitochondrial signalling, which then activates the cyclic AMP-protein kinase A pathway, 

leading to cell wall remodelling and β-glucan masking [77].  This suggests that, depending 

upon the host niche, C. albicans has evolved to exploit either of two host signals – hypoxia 

or lactate – to promote immune evasion (Figure 3).  

C. albicans does not appear to mask cell surface β-glucan at all human infection sites.  

For example, the low ambient pH in vaginal niches trigger cell wall remodelling, which leads 

to the unmasking of underlying β-glucan in the C. albicans cell wall.  This in turn leads to the 

enhanced release of inflammatory cytokines by macrophages, and increased neutrophil 

recruitment [79].  Accordingly, anticipatory responses that promote PAMP masking and 

immune evasion would appear to be relevant to some host niches but not others.  

Other fungal pathogens mask PAMPs at their cell surface [80-82].  For example, 

Histoplasma, Paracoccidioides and Blastomyces increase the amount of α-glucan in their 

cell walls during the process of cellular morphogenesis that generates their pathogenic yeast 

forms.  The increase in α-glucan correlates with elevated virulence [83,84], perhaps due to 

immune avoidance.  In the case of H. capsulatum, the α-glucan outer layer is thought to 

mask the immuno-stimulatory β-glucan in the cell walls [85].  During the development of the 

pathogenic yeast form, H. capsulatum also synthesizes the β-glucanase Eng1 which, 

together with α-glucan synthesis, promotes β-glucan masking and immune evasion [86].  

A. fumigatus and C. neoformans also mask PAMPs at their cell surface.  The melanin in the 

cell wall of A. fumigatus spores is masked by the hydrophobin, RodA, thereby protecting 

spores from MelLec-mediated recognition, the binding of host fibronectin, and phagocytosis 

[64,87,88].  C. neoformans synthesizes an elaborate capsule that masks the mannan and β-

glucan in its cell wall [89].  The capsule is a key virulence factor for this pathogen, but the 

capsule does not simply represent an immune evasion mechanism as the capsule itself is 

recognised by TLRs [90].  Nevertheless, the fact that capsule formation is stimulated by iron 

depletion, suggests that C. neoformans has evolved an anticipatory response whereby 

nutritional immunity in the host triggers PAMP masking in anticipation of impending 

phagocytic attack.  The master regulator Cir1 appears to control this anticipatory response 

by integrating iron sensing with capsule formation [57].  These fungi all cause debilitating 

infections in humans, but they exist primarily in environmental niches.  Therefore, these 

anticipatory responses are likely to have developed as a result of evolutionary pressures in 

these microenvironments, possibly in non-human animal hosts, rather than specifically in 

human niches.  
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Anticipating phagocytic attack     

The ability of fungal pathogens to evade immune detection (above) was described by 

Underhill as “stealth” [81].  He also reviewed fungal mechanisms that promote “control” 

(mechanisms that modulate inflammatory processes) or “attack” (mechanisms that actively 

kill or counteract host defences).  These mechanisms include the ability to bind complement 

regulatory proteins on the fungal cell surface [91,92] or to degrade complement proteins 

[93,94], thereby inhibiting the complement cascade.  They include the development of 

growth forms that are recalcitrant to phagocytosis, such as C. neoformans Titan cells 

[44,95], C. immitis spherules, A. fumigatus germination and C. albicans hyphae, switching 

phenotypes and Goliath cells [96-99].  Even after phagocytosis, fungal pathogens are able to 

evade killing by perturbing phagolysosomal maturation and fungal killing [100-102], by 

escaping from macrophages by non-lytic vomocytosis [103,104], or by destroying 

macrophages via pyroptosis and other killing mechanisms [105-108].  In addition, many 

fungal pathogens activate robust stress responses to detoxify the reactive chemical species 

used by phagocytes to mediate microbial killing [34,109-111].  

Although this has not been addressed explicitly, it is conceivable that some of these 

fungal behaviours are linked to anticipatory behaviours that have evolved in environmental 

niches or in the human host.  For example, it is attractive to speculate that the induction of 

cryptococcal Titan cells in response to bacterially-derived peptidoglycan [95] might represent 

an example of adaptive prediction whereby exposure to an environmental stimulus promotes 

a fungal response that will protect it against subsequent amoebic attack.  Similarly, the 

transcriptional programmes of dimorphic fungi include genes which are induced during the 

thermal transitions that induce their pathogenic forms, but which are not required for their 

growth at elevated temperatures.  Some of these genes might represent further examples of 

anticipatory behaviours.  For example, the expression of Blastomyces BAD1, an adhesin 

that suppresses pro-inflammatory responses, is induced in response to temperature [112].  

In Coccidioides, the expression of the Mep1 metalloproteinase helps to mask an immuno-

dominant cell surface antigen (SOWgp) during the development of pathogenic endospores, 

thereby enhancing the pathogenicity of this fungus [113].  Meanwhile the thermal induction 

of Cbp1 expression in Histoplasma subsequently causes alveolar macrophages that 

phagocytose the fungus to activate pro-apoptotic programmes, an essential step in the 

pathogenesis of this fungus [114].  Therefore, dimorphic fungal pathogens, which have 

evolved primarily in non-human niches in the environment, would appear to have developed 

potent anticipatory responses that enhance their virulence in the human host.  
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Nevertheless, the following story [115], which links metabolic adaptation to immune 

evasion, provides a defined example of an anticipatory behaviour in a fungal pathogen that 

is likely to have evolved in the mammalian host.  

In addition to the robust oxidative stress responses displayed by many fungal 

pathogens which protect them against phagocytic attack [34], these pathogens tend to 

display a high degree of metabolic flexibility, which enhances their ability to colonise 

divergent niches in their host and/or the environment [35,59,116-119].  An anticipatory 

behaviour in C. albicans was revealed by an unexpected link between metabolic and stress 

regulation in this fungus.  In contrast to the benign “model yeast” Saccharomyces cerevisiae, 

in which glucose represses stress resistance [120,121], glucose enhances oxidative stress 

resistance in C. albicans [115].  Glucose concentrations are essentially zero in the colon, but 

when C. albicans transits into the bloodstream they are exposed to about 0.06–0.1% 

glucose [122].  Exposure to these physiological concentrations of glucose, or indeed plasma 

itself, is sufficient to trigger oxidative stress resistance in C. albicans [115].  Furthermore, the 

degree of oxidative stress protection is sufficient to provide protection against neutrophil 

killing [115].  This phenomenon is consistent with an anticipatory scenario where exposure to 

blood appears to be an early warning system for C. albicans, which then activates oxidative 

stress resistance mechanisms, and thereby becomes better protected against subsequent 

phagocytic attack (Figure 4).  

A recent report reinforces the view that C. albicans has developed anticipatory 

behaviours that prepare the fungus for impending environmental change within its 

mammalian host [123].  C. albicans forms biofilms efficiently on abiotic surfaces such as 

catheters, which can become reservoirs of “dispersal” cells that seed bloodstream infection 

[124,125].  Interestingly, these dispersal cells display a transcriptional programme that 

includes features that appear to reflect future habitats rather than the biofilm environment 

from which they came [123].  For example, dispersal cells induce zinc and iron scavenging 

functions, apparently predicting nutritional immunity.  Also, unlike their biofilm mother cells in 

the same rich medium, the dispersal cells express gluconeogenic and glyoxylate cycle 

genes [123], suggesting that they are primed to colonise glucose-poor niches in the host or 

to face phagocytic attack, during which glycoxylate cycle genes such as ICL1 are induced 

[116,126].  

 

Conclusions and future perspectives 

It is becoming clear that fungal pathogens have evolved anticipatory behaviours that 

enhance their ability to counteract certain challenges they face in their human hosts.  In 

C. albicans, this primitive form of memory helps the fungus to overcome the micronutrient 
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depletion imposed by the host through nutritional immunity, to evade immune recognition by 

masking a key PAMP on its cell surface, and to combat phagocytic killing via prior activation 

of oxidative stress resistance mechanisms.  Anticipatory behaviours may also be displayed 

by other fungal pathogens, which involve alternative mechanisms of immune evasion (see 

Outstanding Questions).  Such behaviours will become more apparent as more investigators 

examine temporal correlations between phenotypes, rather than studying these phenotypes 

in isolation, and as they consider the in vivo context in which these dynamic adaptive 

responses occur.   

The emergence of an anticipatory behaviour is no doubt dependent on the probability 

with which the relevant environmental inputs occur in the niche of interest, and the cost-

benefits of the behaviour to the fungus, but how might the regulation of the relevant adaptive 

responses become linked?  (See Outstanding Questions.)  This might be relatively 

straightforward, given the relative ease with which transcriptional networks can diversify 

[127], and the ease with which new protein kinase target sites can evolve on a regulatory 

protein [128].  These types of mechanism could potentially bring a stress regulon under the 

control of a new signalling pathway, for example [129].  Indeed, precedents for this exist in 

model yeasts.  The analysis of S. cerevisiae strains that were able to anticipate transitions 

between carbon sources in vitro revealed that the adaptive mutations that drove this 

anticipatory behaviour lie in key transcriptional regulators [130].  Also, the emergence of 

regulatory mutations was sufficient to link normally unrelated phenotypes following the 

exposure of S. cerevisiae to repetitive environmental cues in vitro [23].  This is worthy of 

investigation in pathogenic fungi, because such mechanisms could account for the speed 

with which anticipatory behaviours can emerge, at least in vitro [23].  

It has been said that the ultimate aim of research into host–fungus interactions is to 

translate observations about these interactions into novel therapies for patients who are 

vulnerable to lethal fungal infections [63].  A better understanding of anticipatory responses 

in fungal pathogens could potentially provide opportunities in this regard.  For example, 

blocking the mechanisms by which specific host signals trigger PAMP masking by the 

fungus would, in principle, render the pathogen more vulnerable to immune clearance.  

Therefore, the characterisation of anticipatory responses in fungal pathogens could 

potentially reveal new therapeutic strategies as well as informing us about the nature of the 

dynamical challenges faced by fungal pathogens in host niches.  These challenges 

represent more than the quest for food.  Nevertheless, the fungal anticipatory responses that 

address these challenges are reminiscent of Pavlov’s use of a bell to entrain salivatory 

responses in his dogs [1].    
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Figure Legends  

 

Figure 1: Anticipatory responses in dogs and fungi.  

[A] Pavlov’s dogs learned to associate sound (a bell ringing) with the likely provision of food, 

and consequently, they developed an anticipatory behaviour (salivation) upon receiving the 

initial signal (the ringing bell) [1].  By analogy, brewing strains of yeast have “learned”, in the 

context of wine fermentations, to anticipate that an oxidative stress often follows a rise in 

temperature.  Consequently they have developed an anticipatory transcriptional response 

whereby oxidative stress genes, as well as heat shock genes, are induced in response to 

heat shock [2].  [B] This type of anticipatory behaviour, which has been termed “adaptive 

prediction”, leads to stress cross protection, whereby exposure to the first input (blue: e.g. a 

mild heat shock in S. cerevisiae) protects against subsequent exposure to a different type of 

input (red: e.g. oxidative stress) [2,34].  Upper graphs represent the adaptive transcriptional 

responses, whereas the lower graphs represent the fitness of cells following each stress.  

Note: In the absence of adaptive prediction, the initial blue stress only activates the 

corresponding blue genes, and the second red stress induces the expression of red genes 

(upper graphs).  In contrast, during adaptive prediction, the initial response to the blue stress 

includes transcriptional adaptation of both blue and red genes (red and blue stripes), thereby 

enhancing fitness following the imposition of the second red stress (lower graphs).   

 

Figure 2: Anticipatory responses protect fungal pathogens against nutritional 
immunity.  [A] In C. albicans, morphogenetic signals trigger hyphal development.  Hyphal 

growth promotes fungal invasion into host tissues where nutritional immunity is activated to 

limit iron availability to the fungus [38].  The core set of genes that are induced during hyphal 

development include genes involved in the scavenging of essential micronutrient, iron [50].  

[B] These genes include ALS3 and ECE1, which encode Als3 and candidalysin.  Neither is 

essential for hyphal development, but ALS3 promotes, and ECE1 probably enhances, the 
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scavenging by C. albicans of iron in the form of ferritin (yellow star).  Candidalysin forms a 

pore that would allow the escape of ferritin from host cells, and Als3 promotes the uptake of 

ferritin into the fungal hypha [52]. Therefore, upon induction of hyphal growth C. albicans 

anticipates iron limitation and induces ferritin scavenging mechanisms.  

 

Figure 3: Pathogenic fungi evade immune recognition via anticipatory responses.   

[A] C. albicans cells expose β-glucan at their cell surface during the growth of new cell wall.  

β-Glucan is a key PAMP that is recognised by host PRRs to trigger antifungal responses by 

the innate immune system [60,62].  However, in response to specific host signals, such as 

lactate or hypoxia, C. albicans cells activate β-glucan masking [75,77].  [B] This reduces the 

recognition of fungal cells by phagocytes and attenuates the cytokine responses of 

neutrophils [75,77,78].  

 

Figure 4: Anticipatory responses protect fungal pathogens against killing by innate 
immune cells.  [A] In S. cerevisiae, glucose represses stress resistance.  In contrast, in 

C. albicans, glucose exposure leads to the activation of oxidative stress genes.  As a result, 

glucose exposure protects C. albicans cells against a subsequent acute oxidative stress 

[115].  [B] Glucose also protects C. albicans cells against neutrophil killing [115], suggesting 

that, following exposure to blood, the fungal cells detect the glucose (yellow boat form) and 

activate an oxidative stress response to become resistant to this stress (red cell).  This 

anticipatory response protects them against subsequent attack and killing by circulatory 

neutrophils.     

 

 

Highlights 

o Recent evidence indicates that fungal pathogens have evolved anticipatory 

behaviours. 

o These anticipatory behaviours exploit specific signals in the human host to prepare the 

fungus for imminent host challenges. 

o These anticipatory behaviours represent a primitive form of fungal memory. 

o These anticipatory behaviours can activate micronutrient acquisition mechanisms 

before a fungal pathogen is exposed to nutritional immunity. Masking of pathogen-

associated molecular patterns at the fungal cell surface can attenuate subsequent 
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immune recognition. Stress responses can be induced to protect the fungus against 

impending phagocytic killing mechanisms.  

o Together, these anticipatory behaviours promote immune evasion, fungal colonisation 

and infection.   

 

 

Outstanding questions 

o How common are anticipatory behaviours in fungal pathogens? 

o To what extent do these behaviours promote fungal colonisation and infection in their 

human host or, alternatively, fitness in an environmental niche?  

o What are the molecular mechanisms by which specific adaptive responses have 

become linked to create an anticipatory response?   

o Do these mechanisms involve the extension of transcriptional regulons, or the addition 

of new regulatory targets for protein kinases, for example? 

o Does the pharmacological inhibition of these anticipatory behaviours present a 

therapeutic opportunity?  
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