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Abstract Emulsifiers are common components of processed foods consumed as part of a

Western diet. Emerging in vitro cell-line culture, mouse model and human

intestinal tissue explant studies have all suggested that very low concentrations of

the food emulsifier polysorbate 80 may cause bacterial translocation across the

intestinal epithelium, intestinal inflammation and metabolic syndrome. This raises

the possibility that dietary emulsifiers might be factors in conditions such as

coronary artery disease, type 2 diabetes and Crohn’s disease. The potential

mechanism behind the observed effects of this emulsifier is uncertain but may be

mediated via changes in the gut microbiota or by increased bacterial translocation,

or both. It is also unknown whether these effects are generalisable across all

emulsifiers and detergents, including perhaps the natural emulsifier lecithin or even

conjugated bile acids, particularly if the latter escape reabsorption and pass

through to the distal ileum or colon. A major objective of the Medical Research

Council (MRC)-funded Mechanistic Nutrition in Health (MECNUT) Emulsifier

project is therefore to investigate the underlying mechanisms and effects of a range

of synthetic and natural emulsifiers and detergents in vitro and in vivo, and to

determine the effects of a commonly consumed emulsifier (soya lecithin) on gut

and metabolic health through a controlled dietary intervention study in healthy

human volunteers – the FADiets study. This report provides an overview of the

relevant literature, discussing the impact of emulsifiers and other additives on

intestinal and metabolic health, and gives an overview of the studies being

undertaken as part of the MECNUT Emulsifier project.
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Introduction

Permitted food additives in the Western diet

Food additives are substances which are purposely

added to food and drink products to perform certain

functions, such as to colour, sweeten and/or stabilise
and preserve (Mepham 2011). The use of food additives

has increased dramatically since they were intentionally

used for food preservation in the early 1800s (Fennema
1987; Carocho et al. 2014; Zin€ocker & Lindseth

2018). Today, when grocery shopping, it is nearly

impossible to avoid processed foods, particularly in the
consumption of a typical Western diet – a modern diet-

ary pattern that is characterised by low intake of fruit,

legume and vegetable fibre and high intake of red meat,
dairy, eggs and refined grains, saturated fat, sugar and

salt along with increased exposure to additives due to

their use in processed foods (Slimani et al. 2009; Adams
& White 2015; Zhong et al. 2018). Some processed

foods can form part of a healthy, balanced diet (e.g.
wholemeal bread; low-sugar, high-fibre breakfast cere-
als), whilst others may be considered more detrimental

for health (e.g. processed meats, high-fat dairy and bak-

ery products, confectionery, foodstuffs containing
hydrogenated oils and high fructose corn syrups) (Caro-

cho et al. 2014; Zin€ocker & Lindseth 2018). Today,

there are over 2500 permitted additives that are
included in foods to enhance appearance, smell, texture

and taste, and/or to extend shelf-life (Branen et al.
2001; Carocho et al. 2014). In the European Union,
these are classified into 26 functional classes (Table 1),

with some of the most commonly consumed additives

being sweeteners, colourants and emulsifiers/surfactants
(Huvaere et al. 2012; Roberts et al. 2013; Stevens et al.
2014). Data acquired through surveys from a number

of populations (including the UK, mainland Europe, the
US, Canada, New Zealand and South America) have

suggested consumption of additive-containing pro-

cessed food products can contribute to between 25 and
50% of total daily energy intake (Slimani et al. 2009;
Moubarac et al. 2013; Adams & White 2015; Costa

Louzada et al. 2015; Steele et al. 2016; Zhong et al.
2018; Cediel et al. 2018), whilst total intake of food

additives per person in industrial countries has been

suggested to be 7-8 kg per annum (Mepham 2011),
although this represents only 0.7-0.8% of the total food

intake of a US adult consuming ~ 996 kg per annum

(National Geographic/FAOSTAT 2011).
There have been reports of associations between

‘ultra-processed’ foods and adverse health outcomes in
populations around the world, including allergic and

autoimmune disorders, some types of cancer, cardio-
vascular diseases and metabolic disorders, such as type

2 diabetes and obesity (Cs�aki 2011; Fardet 2018;

Srour et al. 2019). ‘Ultra-processed’ foods have been
defined by researchers in South America as industrial

formulations ‘. . .made from processed substances

extracted or refined from whole foods. . . are typically
energy dense; have a high glycaemic load; are low in

dietary fibre, micronutrients, and phytochemicals; and

are high in unhealthy types of dietary fat, free sugars,
and sodium’ (Monteiro et al. 2013) and ‘formulations

made mostly or entirely from substances derived from

foods and additives, with little if any intact. . .food’
(Monteiro et al. 2017). Furthermore, the researchers

state that ‘intense palatability’ achieved by high con-

tent of fat, sugar, salt and cosmetic and other addi-
tives (along with other factors such as marketing)

encourages overconsumption of such foods (Monteiro

et al. 2013) and that ‘classes of additives found only
in ‘ultra-processed’ products include those used to imi-

tate or enhance the sensory qualities of foods or to

disguise unpalatable aspects of the final product.
These additives include dyes and other colours, colour

stabilizers; flavours, flavour enhancers, non-sugar

sweeteners; and processing aids such as carbonating,
firming, bulking and anti-bulking, de-foaming, anti-

caking and glazing agents, emulsifiers, sequestrants

and humectants (Monteiro et al. 2017). Suggested
examples of ‘ultra-processed’ foods include ice creams,

cake mix, powered soups, reconstituted meat prod-

ucts, packaged ‘instant’ noodles and pre-prepared
meat, fish, vegetable and cheese dishes (Monteiro

et al. 2013; Monteiro et al. 2017). It should be noted,

however, that the definition of ‘ultra-processed’ foods,
and indeed examples of foods within this category, is

highly variable and open to interpretation, highlight-

ing that foods are perhaps better categorised based on
their nutrient value rather than level of processing and

presence of particular ingredients including additives

(Gibney 2018). Regulatory bodies ensure that food
additives are rigorously tested for safety and additives

continue to undergo long-term monitoring for their

effects on chronic health conditions. Food additives
that pass these safety tests are given an ‘E’ number

which must be listed on packaging (FSA 2018b).

Widespread use of emulsifiers in the Western diet

Whilst consumption of some food additives (e.g. artifi-
cial sweeteners such as sucralose) can be limited

through food choice, it may be much more difficult to
avoid ingestion of emulsifiers (also known as

© 2019 The Authors. Nutrition Bulletin published by John Wiley & Sons Ltd on behalf of British Nutrition Foundation Nutrition Bulletin, 44, 329–349

330 D. Partridge et al.



surfactants or detergents) because they are commonly

added to a wide variety of foods within the modern
Western diet (see Table 2). Whilst regulatory bodies

can define limits on amounts that can be added to

food products, information regarding actual content
within foods is lacking on food labels, limiting our

knowledge of levels consumed and our ability to avoid

consumption of a large, diverse array of surfactant
compounds used in foods (Halmos et al. 2019). The

term ‘emulsifier’ is commonly used for surfactants that

are used in both the food and pharmaceutical indus-
tries, whilst the term ‘detergent’ is more commonly

Table 1 Functional classes and examples of additives in foods – adapted from European Parliament (2008)

Functional class Description Example additive (E number*)

Acidity regulators Alter or control the acidity or alkalinity pH of a foodstuff E325 Sodium lactate

Acids Increase the acidity of a foodstuff and/or impart a sour taste to it E507 Hydrochloric acid

Anti-caking agents Reduce the tendency of individual particles of a foodstuff to adhere to one another E341 Calcium phosphate

Anti-foaming agents Prevent or reduce foaming E905a Mineral oil

Antioxidants Prolong the shelf-life of foods by protecting them against deterioration caused by oxidation, such

as fat rancidity and colour changes

E300 Ascorbic Acid

Bulking agents Contribute to the volume of a foodstuff without contributing significantly to its available energy

value

E336 Potassium tartrates

Carriers Dissolve, dilute, disperse or otherwise physically modify a food additive or a flavouring, food

enzyme, nutrient and/or other substance added for nutritional or physiological purposes to a

food without altering its function (and without exerting any technological effect themselves) to

facilitate its handling, application or use

E1200 Polydextrose

Colours Add or restore colour in a food, and include natural constituents of foods and natural sources,

which are normally not consumed as foods as such and not normally used as characteristic

ingredients of food

E100 Curcumin

Emulsifiers Make it possible to form or maintain a homogenous mixture of two or more immiscible phases

such as oil and water in a foodstuff

E322 Lecithin

Emulsifying salts Convert proteins contained in cheese into a dispersed form and thereby bring about

homogenous distribution of fat and other components

E325 Sodium lactate

Firming agents Make or keep tissues of fruit or vegetables firm or crisp, or interact with gelling agents to

produce or strengthen a gel

E333 Calcium citrates

Flavour enhancers Enhance the existing taste and/or odour of a foodstuff E620 Glutamic acid

Flour treatment agents Added to flour or dough to improve its baking quality E927b Carbamide

Foaming agents Make it possible to form a homogenous dispersion of a gaseous phase in a liquid or solid

foodstuff

E999 Quillaia extract

Gelling agents Give a foodstuff texture through formation of a gel E441 Gelatine

Glazing agents When applied to the external surface of a foodstuff, impart a shiny appearance or provide a

protective coating

E901 Bees wax

Humectants Prevent foods from drying out by counteracting the effect of an atmosphere having a low degree

of humidity, or promote the dissolution of a powder in an aqueous medium

E965 Maltitol

Modified starches Obtained by one or more chemical treatments of edible starches, which may have undergone a

physical or enzymatic treatment, and may be acid or alkali thinned or bleached

E1404 Oxidised starch

Packaging gases Gases other than air, introduced into a container before, during or after the placing of a foodstuff

in that container

E938 Argon

Preservatives Prolong the shelf-life of foods by protecting them against deterioration caused by micro-

organisms and/or which protect against growth of pathogenic micro-organisms

E200 Sorbic acid

Propellants Gases other than air that expel a foodstuff from a container E942 Nitrous oxide

Raising agents Substances or combinations of substances that liberate gas and thereby increase the volume of a

dough or a batter

E500 Sodium carbonate

Sequestrants Form chemical complexes with metallic ions E385 Calcium disodium

ethylene diamine tetraacetate

Stabilisers Make it possible to maintain the physico-chemical state of a foodstuff E415 Xanthan gum

Sweeteners Impart a sweet taste to foods or in table-top sweeteners E955 Sucralose

Thickeners Increase the viscosity of a foodstuff E1400 Dextrin

*FSA (2018a).
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used to refer to specific surfactants used in household

and cleaning products (e.g. washing liquids, sham-
poos, toothpastes). A wide range of surfactants is

available, both those that are man-made (e.g. polysor-
bates, derived from polyethoxylated sorbitan and oleic
acid, also known as Tween) and natural (e.g. lecithin),
many of which can also be modified chemically to

alter their properties (Table 2). Surfactants have the
common property of being amphophilic [i.e. with a

molecular structure that includes both a hydrophile

(water-loving, polar) and a lipophile (fat-loving) com-
ponent]. Lipophilic components tend to be similar, but

hydrophilic components vary and form the basis for

the classification of surfactants as non-ionic, anionic,
cationic and amphoteric. Within the food industry,

synthetic non-ionic polysorbates were introduced in

the 1930s, initially incorporated into margarines and
then used extensively in the baking industry as preser-

vatives to prevent staling, and enhance firmness and

volume of bakery goods (Langhans & Thalheimer
1971; Hasenhuettl & Hartel 2008). Polysorbates, and

other synthetic emulsifiers, are frequently incorporated

into dietary products, either singly or in combination,
usually at doses of 0.2-0.5% of flour weight (Cs�aki

2011). Blended with other emulsifiers, such as natural
and synthesised sources of mono- and diglycerides,

polysorbates aid the formation of stable oil-in-water

emulsions needed for margarines, sauces and dress-
ings, to hold the fat in ice creams and to retard fat

bloom (separation of cocoa butter) in chocolate prod-

ucts. In many cases, the same synthetic emulsifiers are
used in pharmaceutical products as absorption enhan-

cers (Hasenhuettl & Hartel 2008). Data on the gas-

trointestinal fate of many emulsifiers are not readily
available, although a recent review has highlighted the

likely metabolic process for some key surfactants and

thickening agents (Halmos et al. 2019). Natural emul-
sifiers such as lecithin (phosphatidylcholine) are bro-

ken down to choline-rich nutrients on passage through

the small intestine by intestinal lipases (Szuhaj 1989;
JECFA 1974a) and then acted upon by bacteria to

produce triethylamine (Tang et al. 2013). There is a

greater resistance to breakdown by digestion of syn-
thetic emulsifiers, such as the polysorbate series of sur-

factants, as seen for polysorbate 80 where the fatty

acid moieties are effectively metabolised but the sor-
bitol part of the molecule is seen to be highly resistant

to digestion in the intestine (JECFA 1974b; Singh

et al. 2009). Likewise, carboxymethylcellulose is a
non-digestible polysaccharide polymer, hence its com-

mon use as a thickening agent and stabilizer in food

emulsions (Halmos et al. 2019). Citric acid esters of

mono- and diglycerides used to stabilise emulsions in

food and infant formulas were thought be completely
hydrolysed in the gut into constituent free fatty acids,

glycerol and citric acid, and however, recent evidence

suggests that the ester bond between citric acid and
glycerol is likely not fully hydrolysable (Amara et al.
2014). More work needs to be undertaken in this

area.

Potential concerns regarding the use of emulsifiers in
the Western diet

Emerging evidence suggests that permitted dietary
emulsifiers may impact on gut health through impair-

ing intestinal barrier function, thus increasing antigen

exposure, and/or by modulating the microbiota, thus
potentially increasing the incidence of inflammatory

bowel disease (IBD) and metabolic syndrome (Roberts

et al. 2010; Cs�aki 2011; Chassaing et al. 2015; Cani
& Everard 2015). We have highlighted significant cor-

relations between emulsifier consumption per capita

and Crohn’s disease incidence across countries/conti-
nents, particularly in Japan, where there has been a

particularly marked recent increase in Crohn’s disease

(Roberts et al. 2013). Other key food stabilisers and
additives, including maltodextrin, have been associ-

ated with increased early life intestinal stress, damage

and inflammation in animal studies (Arnold & Chas-
saing 2019). For example, mice consuming a mal-

todextrin-rich diet (5% w/v in drinking water over a

period of 45 days) displayed an increased susceptibil-
ity to intestinal damage and endoplasmic reticulum

stress (where improper folding and secretion of intesti-

nal epithelial cell proteins leads to impairment of the
intestinal barrier and activation of inflammatory

responses in the host) (Laudisi et al. 2019). Likewise,

in mice, ingestion of drinking water containing the
emulsifier/thickener carboxymethylcellulose (a 2% w/v

solution for 3 weeks) induced changes to their intesti-

nal structure and promoted leukocyte migration to the
intestinal lumen (Swidsinski et al. 2009). Exposure to

carboxymethylcellulose in this study though

[� 66 mg/kg bodyweight/day based on a 30g mouse
(Vo et al. 2019)] is 2-3 times higher than the esti-

mated mean daily exposure seen in the US population

(Shah et al. 2017). Potential effects of food additives
on the gut microbiome have generally been over-

looked; however, emerging evidence, mainly from ani-

mal studies, suggests that several common food
additives, not just emulsifiers, can induce microbiota-

mediated adverse effects (see Table 3). Taken together,
the emerging effects on intestinal inflammation and
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gut microbiota are consistent with those observed in

IBD. Food exclusion diets for Crohn’s disease, which
encourage the avoidance of additive-rich ‘processed

foods’, have been observed to induce remission,

although lots of other dietary factors may be involved
(Sigall-Boneh et al. 2014; Lee et al. 2018).

Importance of intestinal microbiota in the
pathogenesis of human disease

Recent advances in next-generation sequencing tech-

nology have allowed for a greater expansion in our

knowledge of the gut microbiota (Simpson & Camp-
bell 2015; Malla et al. 2018). The human gut micro-

biota, established early in life and becoming stable by

around 2-3 years of age, is influenced by numerous
factors including diet, exposure to antibiotics, inflam-

mation and exercise throughout the life course

(Arrieta et al. 2014). Perturbations in microbiota com-
position and activity have been associated with inflam-

mation and with various other conditions including

obesity, metabolic syndrome (associated with the risk
of developing cardiovascular disease and type 2 dia-

betes), IBD and colorectal cancer (CRC) (Arrieta et al.
2014; Simpson & Campbell 2015).

Broadly, similar differences in microbiota composi-

tion are commonly observed in the faeces, and more

importantly, in the mucosa-associated intestinal micro-
biota which promotes low-grade inflammation in both

IBD and metabolic syndrome (Everard & Cani 2013;

Schaubeck & Haller 2015; Michalak et al. 2016). In
IBD, common changes include a reduction in key

Gram-positive bacteria from within the phylum Firmi-
cutes and an increase in Gram-negative Proteobacte-
ria, especially Enterobacteriaceae such as Escherichia
coli pathovars associated with patient bowel lesions

and which have been demonstrated to induce intesti-
nal inflammation and inflammation-associated CRC in

mice (Arthur et al. 2012; Merga et al. 2014). In a

mouse model of metabolic syndrome, high-fat diet-in-
duced diabetes is preceded by an increase in mucosa-

associated Enterobacteriaceae, including E. coli that

are actively translocated into mesenteric fat and to the
blood (Amar et al. 2011). Human studies have since

confirmed that faecal transplantation from lean donors

can improve the insulin sensitivity of the recipients,
supporting the role of intestinal microbiota composi-

tion as a contributor to the development of metabolic

syndrome (Vrieze et al. 2012; Nieuwdorp et al. 2014).
We, and others, have reported an increase in mucos-

ally associated E. coli in both Crohn’s disease and
CRC (Swidsinski et al. 1998; Darfeuille-Michaud

et al. 2004; Martin et al. 2004). M (microfold) cells

overlying ileal Peyer’s patches and smaller lymphoid
follicles in the colon are the likely portal of entry for

Crohn’s disease E. coli (Chassaing et al. 2011; Dogan

et al. 2014; Prorok-Hamon et al. 2014).

What are the potential mechanisms behind the
effects of synthetic food emulsifiers on health and are
they generalisable to all emulsifiers?

Remarkably, there has been little study of the poten-

tial harmful effects of ingested detergents or emulsi-

fiers in humans. Whilst investigating the impact of
dietary components on bacterial–epithelial interactions
relevant to IBD and CRC, we explored the hypothesis

that increases in intestinal epithelial barrier permeabil-
ity to bacteria might result from ingestion of emulsi-

fiers or detergents (Roberts et al. 2010). We showed

that the presence of permitted food emulsifier polysor-
bate 80, at low concentrations (0.01-0.1% v/v) that

might plausibly be present in the distal ileum of some-

one consuming a Western-style diet, markedly
increased translocation of mucosa-associated E. coli
across epithelial cell monolayers and across human

ileal mucosa explants cultured in Ussing chambers
(Roberts et al. 2010). This occurred across both M

cells and across villous epithelium which would not

normally allow entry of bacteria in healthy individuals
(Fig. 1). At these low concentrations, bacterial translo-

cation was transcellular (i.e. through cells) and not via

the paracellular route (i.e. through increased ‘leaki-
ness’ of intercellular tight junctions).

Benoit Chassaing and colleagues undertook in vivo
animal studies where ingestion by mice of polysorbate
80 at higher concentrations [up to 1% v/v in their

drinking water for 13 weeks; about equivalent to

2500 mg/kg bodyweight/day (see Vo et al. 2019)]
caused depletion of the mucus barrier, allowing for

closer apposition between luminal bacteria and the

intestinal epithelium. More severe inflammation was
observed in colitis-susceptible interleukin-10 knockout

(Il10-/-) mice (Chassaing et al. 2015). Although inges-

tion of emulsifiers did not alter the total bacterial load
in the faeces, it did significantly increase the number

of bacteria adherent to the colon in both wild-type

and Il10-/- mice and altered the overall composition of
the microbiota, including increasing the predominance

of potentially inflammation-promoting Proteobacteria.
Intriguingly, they also found that mice fed polysorbate
80 developed low-level inflammation and metabolic

syndrome (Fig. 2). These changes, including a weak-
ened mucus layer, were not seen in germ-free mice
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rû
le
et

al
.

(2
0
1
6
)

S
w
e
e
te
n
e
r

S
u
cr
al
o
se

(b
y
o
ra
l
ga
va
ge

1
0
0
,
3
0
0
,
5
0
0
,
o
r

1
0
0
0
m
g/
kg
/d
ay

fo
r
1
2
w
e
e
ks
)

R
at
s
(S
p
ra
gu
e
D
aw

le
y)

A
lt
e
re
d
m
ic
ro
b
io
ta

co
m
p
o
si
ti
o
n

N
o
t
d
e
te
rm

in
e
d

A
b
o
u
-D

o
n
ia
et

al
.

(2
0
0
8
)

S
w
e
e
te
n
e
r

S
u
cr
al
o
se

(0
.1

m
g/
m
l
w
it
h
in

d
ri
n
ki
n
g
w
at
e
r
fo
r

6
m
o
n
th
s)

M
ic
e
(C
5
7
B
L
/6
J)

A
lt
e
re
d
m
ic
ro
b
io
ta

co
m
p
o
si
ti
o
n

A
lt
e
re
d
b
ile

ac
id
s,
e
le
va
te
d
p
ro
-

in
fl
am

m
at
o
ry

ge
n
e
e
x
p
re
ss
io
n

in
th
e
liv
e
r

B
ia
n
et

al
.(
2
0
1
7
b
)

S
w
e
e
te
n
e
r

S
u
cr
al
o
se

(1
.0
8
,
3
.5

an
d
3
5
m
g/
m
l
w
it
h
in

d
ri
n
ki
n
g

w
at
e
r
fo
r
6
w
e
e
ks
)

M
ic
e
(S
A
M
P
,
A
K
R
,
an
d

C
5
7
B
L
/6
J)

A
lt
e
re
d
m
ic
ro
b
io
ta

co
m
p
o
si
ti
o
n

In
cr
e
as
e
d
ile
al
ti
ss
u
e

m
ye
lo
p
e
ro
x
id
as
e
ac
ti
vi
ty

R
o
d
ri
gu
e
z-
P
al
ac
io
s,

et
al
.(
2
0
1
8
)

S
w
e
e
te
n
e
r

S
ac
ch
ar
in

(0
.1

m
g/
m
l
w
it
h
in

d
ri
n
ki
n
g
w
at
e
r
fo
r

5
w
e
e
ks
)

M
ic
e
(C
5
7
B
L
/6
)
an
d
h
u
m
an
s

A
lt
e
re
d
m
ic
ro
b
io
ta

co
m
p
o
si
ti
o
n

(m
ic
e
o
n
ly
,
h
u
m
an
s
n
o
t
st
u
d
ie
d
)

G
lu
co
se

in
to
le
ra
n
ce

(m
ic
e
an
d

h
u
m
an
s)

S
u
e
z
et

al
.(
2
0
1
4
)

S
w
e
e
te
n
e
r

S
ac
ch
ar
in

(0
.3

m
g/
m
l
w
it
h
in

d
ri
n
ki
n
g
w
at
e
r
fo
r

6
m
o
n
th
s)

M
ic
e
(C
5
7
B
L
/6
J)

A
lt
e
re
d
m
ic
ro
b
io
ta

co
m
p
o
si
ti
o
n

L
iv
e
r
in
fl
am

m
at
io
n

B
ia
n
et

al
.(
2
0
1
7
c)

S
w
e
e
te
n
e
r

A
sp
ar
ta
m
e
(5
–7

m
g/
kg
/d
ay

fo
r
1
0
w
e
e
ks
)

R
at
s
(W

T
)

A
lt
e
re
d
m
ic
ro
b
io
ta

co
m
p
o
si
ti
o
n

G
lu
co
se

in
to
le
ra
n
ce

P
al
m
n€ a
s
et

al
.(
2
0
1
4
)

S
w
e
e
te
n
e
r

A
ce
su
lfa
m
e
K
(3
7
.5

m
g/
kg
/d
ay

fo
r
4
w
e
e
ks
)

M
ic
e
(C
D
-1
)

A
lt
e
re
d
m
ic
ro
b
io
ta

co
m
p
o
si
ti
o
n

W
e
ig
h
t
ga
in

(m
al
e
m
ic
e
o
n
ly
)

B
ia
n
et

al
.(
2
0
1
7
a)

T
h
ic
ke
n
e
r

M
al
to
d
e
x
tr
in

(1
to

5
%

w
/v

w
it
h
in

d
ri
n
ki
n
g
w
at
e
r

o
ve
r
a
p
e
ri
o
d
o
f
4
5
d
ay
s)

M
ic
e
(B
al
b
/c
)

N
o
e
ff
e
ct

o
n
m
ic
ro
b
io
ta

co
m
p
o
si
ti
o
n

A
lt
e
re
d
m
u
cu
s
b
ar
ri
e
r,
in
cr
e
as
e
d

in
te
st
in
al
in
fl
am

m
at
io
n

L
au
d
is
i
et

al
.(
2
0
1
9
)

A
d
ap
te
d
fr
o
m

Z
in
€ o
ck
e
r
an
d
L
in
d
se
th

(2
0
1
8
).
A
g
N
P
,
si
lv
e
r
n
an
o
p
ar
ti
cl
e
s.

© 2019 The Authors. Nutrition Bulletin published by John Wiley & Sons Ltd on behalf of British Nutrition Foundation Nutrition Bulletin, 44, 329–349

Emulsifiers and human health 335



lacking a microbiota and but were observed upon

transfer of faeces from emulsifier-fed mice to germ-free
recipients. Similar effects were seen in mice consuming

diets containing carboxymethylcellulose (Chassaing

et al. 2015), arguably a food thickener rather than a
true emulsifier, but which has been shown previously

in other mouse studies to induce inflammation in the

small intestine (Swidsinski et al. 2009). Subsequent
mouse studies showed that both polysorbate 80 and

carboxymethylcellulose also potentiated intestinal

inflammation associated with CRC (Viennois et al.
2017).

Chassaing and colleagues also recently showed that

emulsifiers can cause striking changes in the micro-
biota. When added to a dynamic in vitro slurry that

mimicked a human colonic microbial culture, both

polysorbate 80 and carboxymethylcellulose induced
gene expression profile changes in the bacterial slurry,

including an increase in bacterial flagellin expression.

When administered to mice by gavage, these slurries
with emulsifier-altered expression profiles induced

low-grade inflammation and metabolic syndrome,

whereas a similar slurry not treated with emulsifiers
did not (Chassaing et al. 2017). However, to date

these effects have not been confirmed in humans.
Comparison with estimated dietary exposure to

polysorbate 80 and carboxymethylcellulose suggests

that researchers conducting these animal studies have
used far higher levels of exposure than would typically

be seen for the US population (Shah et al. 2017; Vo
et al. 2019). Using maximum-use levels obtained from
publicly available sources, it has been estimated that

lecithin and mono- and diglycerides have the highest

mean exposures among consumers (between 60 and
80 mg/kg bodyweight/day), whereas the exposure to

carboxymethylcellulose is half to one-third less, and

the exposure to polysorbate 80 is approximately half
that of carboxymethylcellulose, with no additional evi-

dence available to suggest that levels have increased

since 2010 (Shah et al. 2017).
Emulsifiers, or surfactants/detergents, are also useful

in reducing surface tension between two different sub-

stances and hence are commonly used as dishwashing
detergents. It is highly plausible that contamination of

food by washing detergents that have not been fully

rinsed from cutlery and crockery could also be harm-
ful if ingested (Roberts et al. 2013; Rhodes 2018).

These detergents are often used in shampoos and

toothpaste, including sodium dodecyl (lauryl) sulphate.
The potential harm of washing detergents is seen in

one early study which reported that dogs given regular

intravenous injections of the non-ionic detergent

Triton WR-1339 over 4-5 months all died, with evi-

dence of early atheroma (Scanu et al. 1961). A less
drastic study showed that rodents ingesting washing

detergent, at low levels that could plausibly be

ingested by human infants, had increased permeability
and irreversible atrophy of the intestinal villi (Mer-

curius-Taylor et al. 1984).
The most extensively consumed emulsifier is the

phospholipid lecithin, a natural zwitterionic surfactant

present in all plant and animal cell walls (Kinyanjui

et al. 2003). It is typically commercially sourced from
soybeans and sunflowers (an alternative source

increasingly used in industry as it does not need to be

avoided by people with a soya allergy), but perhaps
best known as a key component of egg yolks, account-

ing for their emulsifier properties used to make food-

stuffs such as mayonnaise. Daily intake of lecithin
from food sources in a typical Western diet averages

about 3.6 g/day but can be up to 7 g/day, with a sin-

gle egg yolk typically containing around 1.8 g of
lecithin (Canty & Zeisel 1994; Palacios & Wang

2005). In contrast, total polysorbate intake is only

around 10-100 mg/day, although synthetic detergents
are more resistant to breakdown by digestion (Singh

et al. 2009). Lecithin contains varying amounts of
phospholipids: phosphatidylcholine (egg lecithin 80%

w/w; soy lecithin 20-30%); phosphatidylethanolamine

(egg lecithin 12%; soy lecithin 20-30%); and phos-
phatidylinositol (egg lecithin 5%; soy lecithin 20%)

(Palacios & Wang 2005; American Lecithin Company

2009). There are, as yet, no published studies of the
impact of lecithin on either the bacterial translocation

or the microbiota. Also, a considerable quantity of

lecithin enters the human intestine in bile (1.4-8.1 g/l),
which, with bile secretion at around 0.75 l/day,

amounts to ~ 1-6 g/day of phosphatidylcholine enter-

ing the human intestine daily (Boyer 2013). The pres-
ence of phosphatidylcholine in bile is beneficial,

helping to prevent cholesterol gallstone formation and

reduce toxicity of bile acid micelles (Tompkins et al.
1970).

Ingestion of lecithin at high dosage in healthy

human volunteers (22-83 g/day for 2-4 months) has
shown no obvious ill effects, though a lowering of

plasma triglyceride levels has been reported (Cobb

et al. 1980). Therefore, it may have been considered
unnecessary to define a safe limit, although the Euro-

pean Food Safety Authority (EFSA) does propose an

‘adequate intake’ of dietary choline (a quaternary
amine, mainly present in lecithin as phosphatidyl-

choline and released during digestion by intestinal

lipases) as 400 mg/day for adults (JECFA 1974a;
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EFSA NDA Panel 2016). Indeed, egg yolk, soy lecithin
and lecithin components such as phosphatidylinositol

have been shown in short-term dietary supplementa-

tion studies to induce potentially beneficial elevations
in high-density lipoprotein (HDL)-cholesterol (Burgess

et al. 2005; Blesso et al. 2013) and a reduction in

serum low-density lipoprotein (LDL)-cholesterol
(Mourad et al. 2010), and encapsulated phosphatidyl-

choline designed for colonic delivery has shown pro-

mise in treatment of ulcerative colitis (Karner et al.
2014). However, dietary lecithin, or more specifically

phosphatidylcholine, has been indicated as a possible

risk factor for coronary artery disease, likely a conse-
quence of its conversion of choline by the intestinal

microbiota to the pro-atherogenic metabolite trimethy-

lamine-N-oxide (Tang et al. 2013).
The other widely consumed group of food emulsi-

fiers is the mono- and diglycerides of free fatty acids

(Moonen & Bas 2004). Commercially, these are semi-
synthetic, largely manufactured by enzymatic hydroly-

sis of triglycerides although they are also thought to

occur naturally by the hydrolysis of triglycerides by
lipase. There are no published data yet on their inter-

actions with the mammalian microbiota or intestinal

epithelium.
The health effects of conjugated bile acids, which

are another variety of powerful detergents/emulsifiers

that our intestines are continuously exposed to on a
daily basis, should also be considered. We have spec-

ulated that detergents, such as bile acids, may cause

harm only if they co-exist with bacteria particularly
in the terminal small intestine where, unlike the

colon, there is no continuous mucus barrier (Johans-

son et al. 2014) and where, even in healthy individu-
als, there is substantial backwash of bacteria through

the ileocaecal valve (Vince et al. 1972; Simon &

Gorbach 1984), with a consequent mucosal colonisa-
tion that is more marked in Crohn’s disease (Gevers

et al. 2014). The highly effective ileal reabsorption of
bile acids under healthy conditions, which starts to

occur at least 100 cm proximal to the ileocaecal

valve (Ung et al. 2002), may mean that relatively lit-
tle conjugated bile acid remains in the gut lumen by

the distal 20 cm or so of the ileum. Conjugated bile

acids, like other detergents and emulsifiers, can form
micelles and thus facilitate fat absorption but also

like other detergents, have a potential for cell toxicity

(Raimondi et al. 2008). Dihydroxy bile acids (e.g.
chenodeoxycholic and deoxycholic acid), formed by

microbial dehydroxylation (i.e. loss of the 7a-hy-
droxyl group on the bile salt nucleus), are known to
enhance permeability and uptake of bacteria across

the human colonic mucosa (M€unch et al. 2007;

M€unch et al. 2011).
It has long been known that bacterial translocation

from the intestine into the blood occurs in very sick

individuals (e.g. sepsis patients in intensive care)
(Quigley 2011), but it is becoming apparent that this

may be much more common and particularly relevant

to the pathogenesis of a number of diseases. For
example, significant increases in circulating bacterial

DNA have been reported in venous samples from

patients with cardiovascular disease (Dinakaran et al.
2014), type 2 diabetes (Sato et al. 2014) and Crohn’s

disease (Guti�errez et al. 2014). In Crohn’s disease, the

presence of circulating bacterial DNA has also been

Figure 1 Dietary emulsifier polysorbate 80 increases translocation of E. coli
across intestinal epithelial cell cultures (a and c) and intestinal ileum epithe-

lium mounted in Ussing chambers (b and d). M (microfold)-cell (Caco2-cl1/

Raji B cell co-culture) model (a), Caco2-cl1 intestinal cell monolayers (c),

human ileal villous epithelium (VE) (d) or follicle-associated epithelium

(FAE) overlying Peyer’s patches (b). *, p < 0.05; **, p < 0.01; Kruskal–Wallis

analysis of variance (ANOVA) corrected for multiple comparisons; n = 4-

8). Reproduced from Roberts et al. (2010) with permission from BMJ Pub-

lishing Group Ltd – Copyright clearance center Licence number

4638800129868. CFU, colony-forming unit
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shown to be highly predictive of subsequent relapse
(Guti�errez et al. 2016). The mouse studies examining

the effect of ingestion of emulsifiers polysorbate 80

and carboxymethylcellulose (Chassaing et al. 2015),
although not directly assessing bacterial translocation

across the intestine into the circulation, did report an

increase in circulating anti-lipopolysaccharide and
anti-flagellin antibody in mice consuming emulsifiers,

suggesting an altered intestinal permeability and an

increased exposure to bacteria-derived molecules. Fur-
ther studies by the same group showed that these

emulsifiers did affect the microbiota (Chassaing et al.
2017), and changes in the composition of the micro-
biota can lead to increased bacterial translocation, as

has been shown dramatically with antibiotics (Knoop

et al. 2016). Dietary exposure to the natural emulsifier
lecithin in the human diet is far higher than that seen

for either polysorbate 80 or carboxymethylcellulose

(Shah et al. 2017). Our own preliminary study in mice
has suggested that ingestion of 0.1% w/v egg lecithin

for 4 days in their drinking water can enhance bacte-
rial translocation to the systemic circulation and dis-

tant organs, with levels of total bacteria measured

being much greater than those we observed in mice
ingesting 0.1% v/v polysorbate 80 (unpublished obser-

vations). Further evidence in mice suggests that dietary

soya lecithin can enhance acute fatty acid absorption
across the intestine (Couedelo et al. 2015) and induce

inflammation and hypertrophy of white adipose tissue

(Lecomte et al. 2016). Adipose tissue inflammation
can occur as a result of enhanced lipopolysaccharide

translocation across the intestine (Kim et al. 2012).

Whether lecithin consumption in humans increases

systemic levels of bacterial DNA is yet to be deter-
mined.

Objectives of the MECNUT Emulsifier
project and the FADiets study

The Mechanistic Nutrition in Health (MECNUT)
Emulsifier project, incorporating the human Food
Additives – do processed Diets impact on gut and
metabolic health (FADiets) study, is funded by the

Medical Research Council (MRC) (from November

2018 to October 2020) to answer two main questions:

• What impact do different emulsifiers have on the

mucosal barrier, particularly in respect to bacterial

translocation and inflammation?

• Does ingestion of the dietary emulsifier lecithin in

controlled diets induce bacterial translocation and

affect selected biomarkers of gut and metabolic
health in healthy volunteers?

An overview of the proposed approach is presented
in Figure 3.

Objective 1: To assess the impact of a wide range of
commercially-used food emulsifiers, dihydroxyl bile
salts (as a source of natural detergents) and synthetic
dish washing detergents on the mucosal barrier,
particularly in respect of bacterial translocation and
inflammation

The MECNUT Emulsifier study will implement a

three-step model approach, examining the effect of
treatment or ingestion of a wide range of permitted

Figure 2 Emulsifiers polysorbate 80 (P80) and carboxymethylcellulose (CMC) administered to drinking water (1.0% v/v for 12 weeks) promote colitis (inci-

dence of epithelial damage and inflammatory infiltrate, as determined by histology, in colonic tissues over time) (a) and increase colonic tissue myeloperoxidase

(MPO) (b) in Il10-/- mice, and low-grade intestinal inflammation in wild-type mice (not shown). Points are from individual mice. *p < 0.05 compared to water-

treated group, using one-way ANOVA corrected for multiple comparisons. Reproduced from Chassaing et al. (2015) with permission from Springer Nature –

Copyright clearance center Licence number 4638801338133. [Colour figure can be viewed at wileyonlinelibrary.com]
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food emulsifiers, bile salts and household dishwashing

detergents (see Table 2), using the following:

• in vitro human cell lines of the intestinal epithelium,

an M-cell model of the follicle-associated epithelium
and intestinal crypt stem-cell derived 3-dimensional

(3-D) ‘mini-gut’ organoid cultures;

• ex vivo human distal ileum tissue explants mounted
in Ussing chambers; and

• in vivo mouse studies.

In vitro cell-line studies

Expanding on our previous research (Roberts et al.
2010), to explore how a wide range of emulsifiers
influence bacterial translocation across the intestinal

epithelium, we will use three well-characterised human

intestinal epithelial cell-line cultures: fully differenti-
ated Caco2 (modelling small intestinal enterocytes),

HT29 (colonocytes) (Martin et al. 2004) and Caco2-

Raji B lymphocyte co-cultures [an M-cell model of the
follicle-associated epithelium (Roberts et al. 2010)].

These will be grown as monolayers on MillicellTM

membrane culture plate inserts to allow treatment and
sampling of the apical and basolateral aspects. As a

primary endpoint, the ability of emulsifiers to affect

transcellular movement of bacteria (i.e. entry through
cells within the monolayer) will be monitored over

4 hours. Emulsifiers will be added apically to cell

monolayers for 30 minutes prior to addition of E. coli

or Salmonella, along with low molecular weight

(3 kDa) dextran to monitor paracellular permeability
(i.e. ‘leakiness’ of cell–cell tight junctions). Transep-

ithelial electrical resistance will also be monitored to

provide additional information about the integrity of
the tight junctions formed between the polarised cells

of the monolayers throughout all treatment stages.

Emulsifiers and detergents will be used at concentra-
tion ranges found within a typical Western diet, as

well as below and up to those that would start to dis-

rupt cell–cell tight junctions (M€unch et al. 2007;
Roberts et al. 2010; M€unch et al. 2011). For polysor-

bates, such as polysorbate 80, known to show resis-

tance to digestion (Singh et al. 2009), we previously
calculated that 0.01% v/v would be realistic (Roberts

et al. 2010). Based on the acceptable daily intake of

25 mg/kg bodyweight (JECFA 1974b), a level of
0.01% would represent a persistence of 6.7% into the

terminal ileum of a typical 60 kg human, assuming 1l

of intestinal contents per day passing to the caecum.
Assuming 1 g/ml [approximately correct for lecithin

based on daily output of biliary phosphatidyl choline

plus daily dietary intake of lecithin (JECFA 1974a;
Boyer 2013)] then for lecithin, this would be ~ 6% v/

v entering the caecum assuming 1 l/day of intestinal
contents entering caecum – but this would of course

allow for no breakdown of lecithin during digestion

(Szuhaj 1989), so study levels up to 5% w/v likely
would be appropriate. For dishwashing detergents,

Figure 3 Overview of the approach to study the effects of emulsifiers on bacterial translocation, intestinal inflammation and metabolic health. We propose to

use human intestinal cell cultures, 3-D ‘mini-gut’ organoid cultures and human ileal tissue explants, and mouse models to investigate Question (Q) 1: ‘What

impact do different food emulsifiers have on the mucosal barrier particularly in respect to bacterial translocation and inflammation?’ A human volunteer study

has been designed to answer Q2: ‘Does ingestion of the dietary emulsifier lecithin in controlled diets induce bacterial translocation and affect selected biomark-

ers of gut and metabolic health in healthy volunteers?’
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Mercurius-Taylor and colleagues calculated intake in

adults of ~ 1 mg/kg/day arising from residue left on
detergent washed (5 ml detergent in 2 l tap water),

unrinsed crockery and glassware (Mercurius-Taylor

et al. 1984) – again assuming 1 l/day entering caecum
and no breakdown or absorption proximally, this

would amount to 7 mg/100 ml (i.e. 0.007% v/v). For

bile salts, levels to be tested are as defined by M€unch
et al. (2007, 2011).

Study of some of the most commercially used non-

ionic series of emulsifiers [such as the 6 fatty acid ester
series of sorbitan (Span 20 to 85) and their ethoxy-

lated derivatives (polysorbates 20 to 85)] may enable

us to correlate the effect of the head group and
hydrophobic tail of the surfactants with their func-

tional behaviour (Tadros 2005). We have already

shown differences in the ability of polysorbate 60 and
polysorbate 80 to promote bacterial translocation

through intestinal epithelial cells and M cells in cul-

ture without impacting on membrane paracellular per-
meability (i.e. a transcytotic effect), with polysorbate

60 showing less marked ability to effect translocation

(Roberts et al. 2010).
Key emulsifiers/detergents identified as enhancing

epithelial transcytosis of bacteria in the human cell-
line studies will be further studied using ‘mini-gut’

organoid cultures. Generated from intestinal crypt tis-

sue stem cells, organoids (both those from the small
and large intestine) mimic the complex 3D architec-

ture of the epithelium, with all differentiated cell types

being present (Nigro et al. 2016). Emulsifiers will be
microinjected along with enhanced green fluorescent

protein (EGFP)-expressing E. coli and a paracellular

permeability dye to monitor organoid epithelium
integrity. These ‘mini-gut’ models will serve to bridge

the in vitro and in vivo work. Experiments will be car-

ried out using emulsifiers both in solution (where pos-
sible) and as emulsions, in combination with low and

high-fat levels, to resemble more closely food struc-

tures as influenced by process and ingredient interac-
tions, and interactions taking place within the

intestinal lumen.

Ex vivo human tissue studies

Emulsifiers/detergents identified as affecting transloca-
tion of bacteria in the in vitro and ex vivo models,

also including egg and soy lecithin, and polysorbate

80 as comparators (Roberts et al. 2010), will be
assayed for their ability to enhance translocation of

EGFP-expressing E. coli and/or Salmonella across vil-
lous epithelium isolated from fresh, macro/

microscopically normal, human distal ileum tissue

removed during routine surgery (e.g. for colon cancer)
and mounted in Ussing chambers as previously

described (Roberts et al. 2010; Chassaing et al. 2011).
Again, transepithelial electrical resistance will be mon-
itored to assess any changes in paracellular permeabil-

ity.

In vivo mouse studies

Impact of ingestion (either in drinking water or incor-

porated within the diet, short- and long-term) of five

emulsifiers [polysorbate 80, lecithin and sodium dode-
cyl (lauryl) sulphate plus two selected from the

in vitro studies] will be studied in wild-type C57BL/6J

and Il-10-/- mice (a colitis-susceptible model relevant
to human IBD). The primary endpoint will be detec-

tion of venous blood bacterial DNA as a marker of

microbiota translocation from the intestinal lumen to
the circulation and also to the systemic organs such as

the liver, spleen and kidneys. Evidence of altered

intestinal barrier function (Williams et al. 2013), his-
tological intestinal inflammation, bacterial DNA in

venous blood, systemic organs and community alter-

ations in the intestinal microbiota [using total bacte-
ria, phyla- and class-specific qPCR (Bacchetti De

Gregoris et al. 2011)] will also be evaluated.

Objective 2: To assess whether ingestion of the dietary

emulsifier lecithin in controlled diets induces bacterial

translocation and affects selected biomarkers of gut

and metabolic health in healthy volunteers

The FADiets study primarily aims to determine

whether short-term (2 week), high intake of lecithin

alters gut function, as indicated by the increased pres-
ence of bacterial DNA in the circulation (venous

blood sampling), increased gut inflammation (faecal

sampling for white blood cell components such as cal-
protectin), gut microbiota and metabolic activity [bac-

terial diversity, faecal short-chain fatty acids (SCFAs)

and volatile organic compounds] and altered glucose
metabolism (assessed by oral glucose tolerance test).

The study will implement a 5-week randomised

crossover dietary intervention trial (ClinicalTrials.gov
Identifier: NCT03842514), in overweight or obese

(but otherwise healthy) adults (BMI ranging from 27

to 40 kg/m2), comparing a ‘low-calorie, low-emulsi-
fier’ diet, with a ‘low-calorie, high-emulsifier’ diet

(Fig. 4). This population was chosen to increase

recruitment and retainment of subjects throughout the
study by offering the opportunity to lose weight
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should they follow our diets. Both diets are weight

loss (low-calorie) diets, fed to basal energy require-
ments with below average amounts of red meat, fish

and eggs [compared with amounts consumed by the

UK population according to National Diet and Nutri-
tion Survey data (Bates et al. 2014)] to ensure a rela-

tively low lecithin intake, so participants are likely

therefore to be more compliant and consume all the
food provided. Low-calorie diets provided are identi-

cal in all aspects (energy, macronutrients and foods)

so as to counter any possible microbiota effects driven
by the energy content of the diet, except for the addi-

tion of 15 g (2 x 7.5 g/day) soya lecithin to the high-

emulsifier diet. The low-emulsifier diet consisting of
commercially available foods (of verified ingredient

composition) will provide ~ 0.3 g/day choline [which

is below the EFSA adequate daily intake (ADI) and US
Department of Agriculture (USDA) guidance minimum

for adults of 0.4 g/day (EFSA NDA Panel 2016;

USDA 2019)] from food, and the emulsifier supple-
mented diet will provide 3.7 g/day choline (1.73 g

choline twice daily in the form of the soya lecithin

granules – which is 3.46 g/day), giving 3.7 g in total
from food and the supplement (Table 4).

The dietary intervention will consist of two 14-day
diet periods, with either no added emulsifier or 15 g

soya lecithin per day, with a 7-day baseline habitual

diet (‘free-living’) period [i.e. to reflect normal eating
patterns of participants] and a 7-day mid-study wash-

out [i.e. a return to normal (habitual) diet], so that

both periods prior to intervention are the same (habit-
ual food intake will be recorded using food diaries). A

high-profile human dietary intervention study (David

et al. 2014) used a similar period of washout to ensure
recovery of microbial diversity following each study

arm examined, and we have also previously shown

that the microbiota responds quickly to changes in
diet and that these changes are rapidly reversed by

intervention with a subsequent diet (Walker et al.
2011). All food and drinks for the intervention diets
will be prepared by the Human Nutrition Unit at the

Rowett Institute for volunteers to collect, reheat and

consume at home. Volunteers will undergo initial
health screening and confirmation of eligibility to par-

ticipate and will be randomised for treatment order,

to be conducted by computer generation by our statis-
tical support at Biomathematics and Statistics

Scotland. All volunteers will be matched to the closest

calorie to their resting metabolic rate (assessed at
baseline by indirect calorimetry). The study will

be conducted in a non-blinded method with diets

colour-coded.

The lecithin supplement to be used is a commercial

source of soya lecithin granules [Lamberts� – a food-
grade product, manufactured to the stringent pharma-

ceutical standards of Good Manufacturing Practice

(GMP); composition summarised in Table 5]. It will be
ingested twice daily (at a dose of 7.5 g), incorporated

into a fruit smoothie matrix for stability, consistency of

preparation and consumer acceptability. The total dose
(15 g/day) is substantially greater than the typical diet-

ary intake of up to 7 g/day, so is expected to be enough

to test for possible effects in what is a relatively short-
term study. Previous work has reported that 7.5 g of

lecithin, ingested three times daily for 4 weeks and had

no adverse effects in human volunteers (Cobb et al.
1980), but this study did not measure bacterial translo-

cation or changes to the gut microbiota.

All study participants will keep a daily weighed food
intake diary during the 7-day baseline and 7-day wash-

out periods, and complete a gastrointestinal discomfort

questionnaire (Storey et al. 2007). Stool samples will be
collected during both arms and during the washout per-

iod, with faecal 16S rRNA gene sequencing and volatile

organic compound analysis (measuring alterations in
microbiota genes and metabolic activity, respectively)

performed on all available samples.
The primary objective will be to assess bacterial

translocation in response to a diet containing soya

lecithin emulsifier, in comparison with the control per-
iod of a low-emulsifier diet. Bacterial DNA in venous

blood sampled at the start and end of each diet period

will be measured by qPCR (Bacchetti De Gregoris
et al. 2011). In support, serum lipopolysaccharide-

binding protein and soluble CD14 will also be mea-

sured as secondary markers of bacterial translocation
to the circulation (Landmann et al. 1995; Blairon

et al. 2003; Knapp et al. 2003; Uhde et al. 2016).
Secondary endpoints of the FADiets study include

changes in bacterial diversity and metabolic activity,

gut inflammation and glucose metabolism. Alterations

to the composition of the gut microbiota have been
observed in animal models following exposure to

emulsifiers (Table 3), with some reporting increased

Proteobacteria (Chassaing et al. 2015; Furuhashi et al.
2019). We will monitor for any differences in faecal

bacterial community structure between habitual diet,

and the high- and low-emulsifier diets by Illumina
MiSeq sequencing of the V1–V2 regions of bacterial

16S rRNA genes isolated from participant faecal sam-

ples. Taxonomic profiles as well as microbiota diver-
sity measures such as Shannon and inverse Simpson

indices will be made as previously described (Chung

et al. 2016; Reichardt et al. 2018). Short-chain fatty
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acids, such as acetate, butyrate and propionate, gener-

ated by the majority of bacteria in the intestine, are a

major fuel source for epithelial cells lining the bowel
(Reichardt et al. 2018), and some, such as butyrate,

may have anti-inflammatory and anti-carcinogenic

effects (Hamer et al. 2008). Levels of SCFAs are there-
fore indicative of bowel health, and participant faecal

samples will be analysed for key SCFAs by gas chro-

matography profiling (Richardson et al. 1989). Vola-
tile organic compounds present in faeces, resulting

from the combined metabolism of the gut mucosa and

microbiota, can be indicative of intestinal infection
and inflammation, so participant sample volatile

organic compounds will be measured using optimised

methods for analysis of faecal headspace gases by gas
chromatography-mass spectrometry (Ahmed et al.
2016). Faecal calprotectin levels will also be moni-

tored as these have been found to be significantly
increased in stools of patients with IBD, whereas they

are not elevated in patients with non-inflammatory

functional diseases such as irritable bowel syndrome
(Burri & Beglinger 2014). Plasma trimethylamine-N-

oxide, as a measure of cardiovascular risk (Tang et al.
2013), will also be monitored. Plasma fasting glucose
and glucose tolerance will be assessed in study partici-

pants using a standard 75 g 2-hour oral glucose toler-

ance test at the start and end of each dietary

intervention period. In addition, circulating lipids and

levels of insulin will be measured, with appropriate

calculations performed to estimate insulin sensitivity
(Blesso et al. 2013).

Proposed mechanism of action

Our proposed mechanism of action for some com-

monly used dietary emulsifiers, consumed daily at low
levels, on gut and metabolic health is that they may

(1) cause alterations to the gut microbiota and (2) dis-

rupt the intestinal mucosal barrier. Together, these (3)
contribute to increased permeability of the intestinal

layer and (4) promote the increased translocation of

bacteria from the gut to the bloodstream. This results
in (5) a state of low-grade inflammation, (6) glucose

intolerance and (7) increased risk of IBD (Fig. 5).

Within the series of experiments proposed above, we
will study all the proposed constituents, apart from

the end result of (7) increased risk of IBD, due to the

chronic nature of this outcome.

Beneficiaries and public health message

The expectation is that the results of these proposed

studies will lead to greater public awareness and
reduction where need is identified, in the use of certain
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Figure 4 The FADiets study protocol summary. The research question: ‘Does dietary intake of soy lecithin alter the intestinal lining and the microbes that nor-

mally exist in the intestinal lumen, in healthy subjects, consumed over a 2-week period (in comparison to a low-emulsifier diet)?’. [Colour figure can be viewed

at wileyonlinelibrary.com]
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emulsifiers in the food chain that have potential to

cause harm. The academic nutrition and public health

communities, with the scientific advice of key indepen-
dent food safety authorities (e.g. EFSA and JECFA,

the Joint Food and Agriculture Organization/World

Health Organization Expert Committee on Food
Additives) examining food additives, food processing

and changing consumption patterns across popula-

tions, may then be better placed to support informed
choice for healthier diet planning, not only to better

develop during infancy and enjoy a healthy old age,

but also including support towards dietary strategies
for combating IBD, cardiovascular risk and metabolic

disorders, such as metabolic syndrome, type 2 diabetes

and obesity.
The data obtained would be of interest to those

working in basic scientific fields of nutrition and

intestinal biology, and those working in the fields of
gut ‘omics’ and gut health. Outcomes would also be

of significant interest to formulation scientists working

in and around the food industry (e.g. in food composi-
tion, surfactant and natural biopolymer formulation

science), at leading companies supplying the food,

nutrition and pharmaceutical (drug formulation and

delivery) emulsifier market, and to key providers of
further education in agri-food science, food industry

Table 4 Low-calorie intervention diets provided to volunteers on the FADiets study

Low calorie, high emulsifier diet*

Day Energy† (kcal) Fat (%) Protein (%) Carbohydrates/fibre (%)
Choline‡ (from diet &
lecithin supplement) (mg)

1 2000 30 15 55 3717.4

2 2000 30 15 55 3698.2

3 2000 30 15 55 3810.1

4 2000 30 15 55 3707.7

5 2000 30 15 55 3783.2

6 2000 30 15 55 3722.7

7 2000 30 15 55 3725.7

Average 3737.9

Low calorie, low emulsifier diet

Day Energy† (kcal) Fat (%) Protein (%) Carbohydrates/fibre (%) Choline‡ (from diet only) (mg)
1 2000 30 15 55 270.4

2 2000 30 15 55 263.1

3 2000 30 15 55 367.1

4 2000 30 15 55 261.6

5 2000 30 15 55 339.9

6 2000 30 15 55 273.1

7 2000 30 15 55 265.6

Average 291.5

*Low-calorie test diet supplemented with 2 daily servings of 7.5 g Lamberts� soya lecithin granules in fruit smoothies (total 15 g/day).
†Energy intakes matched to the closest calorie to each volunteer resting metabolic rate assessed at baseline by indirect calorimetry (range 1500 to 3000 kcal).

Example 2000 kcal matched diets are shown.
‡Choline values from USDA food composition tables (USDA, 2019). EFSA Adequate Daily Intake (ADI) of choline, 400 mg/day for adults (EFSA NDA

Panel 2016) and USDA ADI, male 550 mg/day and female 425mg/day (USDA 2019).

Table 5 Fat and phospholipid composition of Lamberts� soya

lecithin granules used to supplement the FADiets study low-calorie,

high-emulsifier test diet

Component Amount (g) per 7.5 g serving*

Phosphatidyl choline 1.7

Phosphatidyl ethanolamine 1.5

Phosphatidyl inositol 1.1

Phosphatidic acid 0.6

Phosphatidyl serine 0.075

Fatty acids 3.8

of which:– saturated 0.9

– monounsaturated 0.3

– polyunsaturated 2.5

Full composition can be found at www.lambertshealthcare.co.uk

*Participants on low-calorie, high-emulsifier diet will ingest within food a

7.5 g serving twice daily.
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development, technologies and practice. As an exam-

ple, the Food Additives and Ingredients Association
works with both the food industry and consumers, to

promote a better understanding of the role of food

additives and functional food ingredients in a healthy
and safe diet.

Dissemination

Overall, the outcomes of this research proposal will

add to the literature on whether excessive exposure to
emulsifiers in the food chain could be harmful to

health; data relevant to the key international health
and food safety regulatory authorities, the scientific

food research community and the food industry (both

processing and additive formulation).

Conclusions

Emerging in vitro and animal evidence suggests that

food additives such as emulsifiers may contribute to

gut and metabolic disease development through

alterations to the gut microbiota, intestinal mucus

layer, increased bacterial translocation and associated
inflammatory response. The MECNUT Emulsifier pro-
ject aims to further explore the mechanistic basis for

these relationships across a wide range of permitted
dietary emulsifiers and detergents in vitro. As part of

this work package, the FADiets study aims to deter-

mine the impact of soy lecithin on gut and metabolic
health in vivo using a controlled dietary intervention.

This growing area of nutritional science may lead to

innovative knowledge, which could pave new ways of
addressing gut and metabolic health via implementing

dietary guidelines directed at food additives.
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