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Abstract 15 

The drastic growth of population in highly industrialized urban areas, as well as fossil fuel use, are 16 

increasing levels of airborne pollutants and enhancing acid rain. In rapidly developing countries 17 

such as Iran, the occurrence of acid rain has also increased. Acid rain is a driving factor of soil 18 

erosion due to the destructive effects on biota and aggregate stability; however, little is known 19 

about its impact on specific rates of erosion at the pedon scale. Thus, the present study aimed to 20 

investigate the effect of acid rain at pH levels of 5.25, 4.25 and 3.75 for rainfall intensities of 40, 21 

60 and 80 mm h-1 on initial soil erosion processes under dry and saturated soil conditions using 22 

rainfall simulations. The results were compared using a two-way ANOVA and Duncan tests and 23 

showed that initial soil erosion rates with acidic rain and non-acidic rain under dry soil conditions 24 

were significantly different. The highest levels of soil particle loss due to splash effects in all 25 

rainfall intensities were observed with the most acidic rain (pH= 3.75), reaching maximum values 26 

of 16 g m-2 min-1. The lowest levels of particle losses were observed in the control plot where non-27 

acidic rain was used, with values ranging from 3.8 to 8.1 g m-2 min-1. Similarly, under saturated 28 

soil conditions, the lowest level of soil particle loss was observed in the control plot and the highest 29 

peaks of soil loss was observed for the most acidic rains (pH= 3.75 and pH= 4.25), reaching 30 
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maximum average values of 40 g m-2 min-1. However, for saturated soils with acidic water, but 31 

with non-acidic rain, the highest soil particle loss was observed for the control plot for all the 32 

rainfall intensities. In conclusion, acidic rain has a negative impact on soils, which can be more 33 

intense with a concomitant increase in rainfall intensity. Rapid solutions, therefore, need to be 34 

found to reduce emission of pollutants into the air, otherwise, rainfall erosivity may drastically 35 

increase. 36 
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 38 

1. Introduction 39 

The increasing use of fossil fuels in industry, manufacture and transport, especially in rapidly 40 

developing countries such as Iran, is emitting a large quantity of pollutants into the atmosphere 41 

and causing damage to human health and to ecosystems (Ashtari et al., 2018; Bahrami Asl et al., 42 

2018; Mohammadiha et al., 2018). Moreover, due to the rapid growth of urbanization and the 43 

concentration of population close to industrial areas such as Tehran, Isfahan, Arak, Ahvaz and 44 

Mashhad, the development of old and worn transportation vehicles, factories, and power plants 45 

that use fossil fuels, air pollution has increased (Fanni, 2006; Hafeznia et al., 2017; Yousefi et al., 46 

2017). However, in polluted cities in developing countries, Atash (2007) highlighted that the 47 

implementation of 10-year strategic plans has been delayed. In recent years, air pollution rates 48 

have exceeded dangerous levels which forced the authorities to enforce traffic constraints and 49 

school closures. In a study performed by Lelieveld et al. (2015), Tehran was ranked among the 50 

cities with a high mortality rate due to human exposure to long-term air pollution. According to 51 

Shahbazi et al. (2016), annual pollution from fixed sources such as factories, and mobile industries 52 



including the transportation agency in Tehran for 2013, amounted to 37.4 kg, 85.5, 506.7, 83.6 and 53 

8.5 kg for SOX, NOX, CO, VOCs and PM emissions, respectively. Also, Alizadeh Choobari et al. 54 

(2016) investigated PM10 and PM2.5 levels in the north of Tehran, which were found to be 55 

significantly higher than the national average on a per m2 basis. The excessive emission of 56 

pollutants and acidifying compounds such as nitrous oxides and sulphuric acid into the atmosphere 57 

favours conditions for acid rain in the form of fog, snow and rain (Uchiyama et al., 2017; Zheng 58 

and Yu Hong, 1994). Acid rain is defined as a rain characterized by pH values lower than 5.6 59 

(Mirhosseini et al., 2009; Purohit, and Kakrani, 2002; Neill, 1993; Welburn, 1990). Acid rain 60 

adversely affects ecological and environmental processes (Wang et al., 2018; Wei et al., 2017). 61 

Over the last 50 years, several researchers have highlighted the negative environmental impacts of 62 

acid rain, including destruction of buildings and tools (Yokom and Beer, 1983), forest and 63 

geological formation degradation (Ulrich, 1980, Driscoll et al., 2001), and adverse effects on crops 64 

and soil fertility (Ferenbaugh, 1976; Pell et al., 1987; Irving, 1987).  65 

Evidence is gathering that this acid rain is increasing close to highly populated and industrial areas 66 

in Iran. For example, Moarref et al. (2011) recorded pH values of about 2.4 by evaluating the 67 

chemical composition of rain in Ahwaz city. Mirhosseini et al. (2009) investigated the occurrence 68 

of acid rain in Sarcheshmeh area, located in the Kerman province, and determined that that 69 

occurrence is an inevitable phenomenon close to highly industrial and populated regions. 70 

However, these authors remarked that there is a lack of quantification of the effects of acid rain on 71 

soil processes such as water soil erosion (Mirhosseini et al., 2009; Moarref et al., 2011). As acid 72 

rain impairs soil fertility and vegetation development, the areas with bare soil surfaces will increase 73 

(Driscoll et al., 2001). Lack of vegetation is one of the most important driving factors of soil 74 

erosion processes in watersheds and hillslopes (Cerdà et al., 2018; Saleh et al., 2017; Parsakhoo et 75 



al., 2012a).  Water soil erosion is initiated by the collision of rain drops with the soil surface 76 

(Ellison, 1944; Ellison, 1947; Free 1952). Rain drops can separate and move soil particles and 77 

aggregates (Fernández-Raga et al., 2017; Marzen et al., 2015).  78 

The splash effect on soils is the first stage in the erosion process, which is the result of 79 

bombardment of the soil surface by rain droplets (Qinjuan et al., 2008, Wuddivira et al., 2009). 80 

The splash effect, by crushing soil particles and reducing their diameter, leads to a reduction of 81 

soil particle resistance against transport, and also a decrease in water penetration in soil surface 82 

layers, which in turn can increase runoff, erosion and sediment transport (Barry et al., 2010; 83 

Sadeghi et al., 2017).  84 

However, there is a lack of information about the degree of disintegration of soil aggregates due 85 

to splash erosion at different levels of rain acidity (Xu et al., 2002; Manahan, 2005). A number of 86 

negative effects of acid rain and soil erosion can occur, such as leaching of nutrient cations, release 87 

the toxic elements and soil acidification (Mirhosseini et al., 2009). Also, the sedimentation of the 88 

elements in the form of insoluble hydroxides and carbonates and organic complexes can increase. 89 

Moreover, when soil acidification occurs, heavy metals such as zinc and cadmium are mobilized, 90 

potentially leading to toxic concentrations (Smith, 1994).  91 

Analysis of initial soil erosion processes in combination with acid rain is time-consuming and the 92 

intra-plot variation is high. Therefore, one of the most direct measurement methods of initial soil 93 

erosion, where rainfall conditions can be controlled, is the rainfall simulator (Iserloh et al., 2013), 94 

which has been widely used in Iran (Parsakhoo et al. 2012b; Kavian et al. 2014; Safari et al. 2016; 95 

Sadeghi et al., 2017; Ayoubi et al., 2018). 96 

The main aim of this study was to assess the impact of acidic rain at different pH levels and 97 

intensities on initial soil erosion processes under distinct soil conditions using a small portable 98 



rainfall simulator. The experiments were conducted under laboratory conditions to avoid any 99 

external factors such as wind, soil property changes or inclinations. We hypothesize that this first 100 

approach will allow us to show if acidic rain per se directly affects initial soil erosion processes, 101 

as a basis for future research under natural conditions and in different environments. 102 

2. Materials and methods 103 

2.1. Soil sampling 104 

The altitudinal range of the case study region is between 150 and 300 m above sea level with a 105 

mean annual precipitation of 600 mm. Most events occurs are during the winter and spring seasons 106 

(November–May), with a means annual temperature of 18.5 °C. Two hundred and fifty kg of soil 107 

was collected from a typical cultivated field where the main tillage practice is wheat dry farming 108 

in Miandorood region, in the range of 36° 33′ to 36°35′ latitude and 53° 10′ to 53°13′ longitude 109 

close to Sari (the capital of Mazandaran province) from a surface soil to a depth of 0-20 cm, 110 

following the recommendations of Angulo-Martinez et al. (2012) for laboratory experiments. 111 

Samples were transported to the laboratory and sieved using a 2 mm sieve. They were then dried 112 

in an oven at 105°C for 24 hours before rainfall simulations (Mohammadi and Kavian et al. 2015), 113 

in order conserve the same moisture conditions in all samples. 114 

Pedogenesis was generated on marl and unconsolidated sand deposits of the Pliocene. In general 115 

slopes are gentle; lower than 10%. The soil is characterized by a loam texture (with silt, sand and 116 

clay components as 48.6%, 33.8% and 17.6%, respectively), a low organic matter content of 1.2%, 117 

electrical conductivity of 0.499 dsm-1, calcium carbonate content of 29.3% and a pH value of 7.36. 118 

After simulating the acid rain, organic matter and calcium carbonate of the soil were evaluated in 119 

some samples. 120 



 121 

 122 

2.2. Rainfall simulator characteristics 123 

The rainfall simulator was mounted on a metal A- frame structure. The height can range from 2 to 124 

2.7 m depending on the purpose. The telescopic legs allow the height of the nozzles to be changed, 125 

which regulates the rainfall intensity and kinetic energy. The rainfall simulator can be used on 126 

rugged terrain as the telescopic legs allow levelling at any slope angle from 0 to 45º. Simulated 127 

rainfall is produced with two movable Veejet 80100 nozzles (Pall et al., 1983; Blanquies et al., 128 

2003; Chouksey et al., 2017) with a diameter of 4.5 mm. Each nozzle is installed in a metal deposit 129 

to collect and reuse the excess of rainfall (that is not sprayed on the plot), and then returned to the 130 

pumping system. The rainfall simulator was used in the laboratory of the Sari Agricultural Sciences 131 

and Natural Resources University. The distilled water is pumped to the nozzles by means of a 132 

flexible hose with 15-mm diameter connected to an electric pump. The water pressure is monitored 133 

by a barometer installed in the transfer hose that allows the pressure to be regulated between 0 and 134 

160 KPa (Fig. 1). A control board was designed with a programming capability of ten precipitation 135 

programs, to perform experiments with different rainfall characteristics. The control board can be 136 

used to set the velocity fluctuation nozzles, the oscillation angle of nozzles from 0° to 60°, and the 137 

duration of each rainfall event from 1 min to 1 hour. The plot size is 0.5 * 1 m2 and 3 splash cups 138 

are located in the plot (figure 2). Splash cups were adapted from Morgan's original design (Morgan, 139 

1978). 140 



Soil splash rates in eleven different treatments of rainfall acidity with dry and saturated soils, at 141 

three intensities of 40, 60 and 80 mmh-1, based on the average rainfall in three replicates, were 142 

recorded (Table 1). A total of 99 samples were tested.  143 

Figure 2 shows the schematic representation of splash cups considering Morgan's original design 144 

to calibrate kinetic energy and rainfall intensity (Morgan, 1978). The rainfall simulator is able to 145 

generate drops with a diameter from 0.2 to 9.9 mm. The fall velocity varied from 0.8 to 9.2 m s-1 146 

for different diameter classes in the height of 0.5 m above the soil surface. The minimum and 147 

maximum droplet sizes decreased by increasing the operating pressures from 20 to 80 kPa. The 148 

drop diameter of the simulated rainfall is close to natural precipitation in the region of Miandorood 149 

(Kavian et al., 2018). 150 

Simulated acid rainfall contained sulfuric acid and nitric acid with a ratio of 2:1 using the volume-151 

concentration formula, which was simulated at three pH levels: 3.75, 4.25 and 5.25. These levels 152 

were selected because they are to the most representative ranges found in several recent studies 153 

with negative effects in agricultural or natural fields and buildings (Livingston, 2016; Du et al., 154 

2017; Mahdikhani et al., 2018; Zeng et al., 2018). Moreover, rainfall simulations with non-acidic 155 

rain (pH= 7.53) was also conducted in order to compare acid rain with a control situation. 156 

 157 

2.3. Experimental procedure 158 

Soil samples were located in the splash cups under dry and saturated conditions, using firstly non-159 

acidic water and then acidic water with pH values of 3.75, 4.25 and 5.25. After 10 minutes of 160 

simulated rainfall, the splashed soil particles inside the splash cups after each treatment and 161 

intensity were separated in different containers at the end of the experiments. The yielded particles 162 



were air-dried for 24 hours (Kavian et al., 2014). After the extra water was drained, the remaining 163 

sediment was transferred into suitable containers of specified weight and were dried in an oven at 164 

105 ̊C for 24 hours, then weighted using a scale (Sutherland & Zieglers, 1998).  165 

Finally, the splash erosion rate was calculated using equation 1 (Qinjuan et al., 2008). 166 

   s =
Dt2−Dt1

(t2−t1)A
                                                                               (Eq. 1) 167 

S = splash rate during the specified rainfall (gm-2minute)  168 

Dt1 = Soil weight before splash experiment (g) 169 

Dt2 = Soil weight after splash test (g) 170 

Δt = (t2-t1) rainfall duration (min)  171 

A = area of splash cup (m2) 172 

 173 

2.4. Statistical Analysis 174 

The normality of data was assessed using by Kolmogorov-Smirnov test at a significance level of 175 

0.05. Comparison of means was carried out by one-way ANOVA and the interactive effects of the 176 

factors were analysed using two-way ANOVA. Duncan's multiple range test was applied for 177 

multiple mean comparisons at a significance level of 0.05. All statistical analyses were conducted 178 

using SPSS 23.0 (IBM, USA). 179 

 180 

3. RESULTS AND DISCUSSION 181 



3.1 Comparison of drop splash effects on soil loss under dry conditions 182 

Table 2 shows the results of one-way ANOVA of the different treatments at intensities of 40, 60 183 

and 80 mmh-1 for the dry soil. Significant differences for the different treatments for an intensity 184 

of 40 mmh-1 at a confidence interval of 95% and an intensity of 60 mmh-1 at a confidence level of 185 

99% are obtained. However, no significant differences are found for splash results with an intensity 186 

of 80 mmh-1. Considering the significant difference between the treatments at 40 mmh-1, Duncan's 187 

multiple range test was performed to show the difference among treatments. Figure 3 shows total 188 

initial soil erosion results and Duncan's multiple range test for control plot and acidic rain 189 

simulation under dry soil conditions. The highest particle loss due to splash effect in all degrees of 190 

rainfall intensities are observed with the most acidic rain (pH= 3.75), reaching maximum values 191 

of 16 g m-2 min-1. On the contrary, the lowest particle losses are obtained in the control plot, where 192 

non-acidic rain is used with values ranging from 3.8 to 8.1 g m-2 min-1.  The results show for 40 193 

mm h-1 that the AR1DS treatment is different (a) from the other three treatments, classified in 194 

group b. For a rainfall intensity of 60 mmh-1, the treatments are classified into three groups. The 195 

most acidic rain (AR1DS treatment) is in the first group (a) again. AR2DS and AR3DS appear in 196 

the same group (b) giving similar particle loss results, and the control plot (NARDS) is in group 197 

c. Finally, for 80 mm h-1 of rainfall intensity, the highest and the lowest values for splash were 198 

observed in the most acidic rain (AR1DS). The results are very similar with no significant 199 

difference among treatments at this high rainfall intensity, which even without acid rainfall, is able 200 

to contribute in bare soils to a high soil particle loss values (Beguería et al., 2015; Eldridge and 201 

Greene, 1994). Therefore, under dry conditions, we demonstrated that a higher concentration of 202 

acid rain is able to increase soil erosion rates. The low rates observed for the control plot and the 203 

lowest acidic rain (pH<5.25) could be due to the presence of calcium carbonate in our soil samples 204 



(25.3%), which was functioning as a stabilizing factor for aggregate stability (Bakhshipour et al., 205 

2016). Therefore, parent material such as limestones or marls can act as a driving factor if 206 

carbonates are correctly transferred to soil horizons, as Cerdà (2002) showed in Mediterranean 207 

areas. However, when acid rain occurs, the lime present into the soils is neutralized; subsequently, 208 

soil particles can be more easily separated (Gratchev and Towhata, 2016).  209 

 210 

3.2 Comparison of drop splash effects on soil loss under saturated conditions 211 

Table 2 also shows the results of the ANOVA test for soils under saturated conditions for the 212 

intensities of 40, 60 and 80 mmh-1. For 40 mmh-1, there were no significant differences, despite 213 

the increasing trend in soil particle loss values of acid rainfall compared to non-acidic rain, though 214 

an increasing trend with more acidic rainfall was recorded. A significant difference in soil particle 215 

loss is found for treatments with rainfall intensities of 60 and 80 mmh-1. 216 

Average values of total soil particle losses are shown in figure 4. Under saturated soil conditions, 217 

the smallest amount of soil particle loss was registered in the control plot, as also seen under dry 218 

soil conditions. The highest peaks of soil loss were obtained for the most acidic rains (pH= 3.75 219 

and pH= 4.25), reaching maximum average values of 40 g m-2 min-1. However, for the Duncan 220 

test, the differences are not significant at 40 mm h-1, and only for 60 mm h-1 the most acidic rainfall 221 

shows a significant difference (AR3SS3). However, for 80 mm h-1, a significant difference was 222 

clearly seen among treatments, with the AR1SS1 treatment showing only slightly lower levels of 223 

soil particle loss than the AR2SS2 treatment. These findings confirm the importance of previous 224 

soil moisture in the plot. As other authors have found, saturated soils respond according to a 225 

Hortonian model, where runoff is able to activate soil loss when soil is saturated (Gabarrón-226 



Galeote et al., 2013; Imeson and Lavee, 1998). Therefore, it is very important to pay attention to 227 

soil water content prior to performing the rainfall experiments, because this can impact loss rates 228 

(Hébrard et al., 2006; Wei et al., 2007). Kanga (1999) argued that when rainfall droplets hit the 229 

ground the soil particles are disintegrated, and then, due to the water content and their reduced 230 

adhesion force, particles are returned from the surface by droplets and soil particle loss increases. 231 

Our results confirm the contention that in arid and semiarid areas, soil water content is able to 232 

determine initial soil erosion rates, and an increase in acidification of the rainfall may also enhance 233 

these rates. This is an important finding which will affect many regions, particularly for calcareous 234 

soils in Iran. The rapid growth of urbanization and the increase in population close to large and 235 

industrial Iranian cities are increasing emissions of pollutants to the air (Fanni, 2006; Hafeznia et 236 

al., 2017; Yousefi et al., 2017), therefore, rapid solutions need to be found in order to stop this 237 

confirmed problem. As other researchers in Iran have found, there are other driving factors that 238 

also enhance soil erosion such as wind, bare soils and extreme rainfall events (Samani et al., 2016). 239 

This new factor, acidic rain, needs to be added to the list of potential drivers of soil erosion (Tarolli, 240 

2016). Therefore, solutions or regulations to limit air pollution should be implemented in order to 241 

minimize, or stop, this confirmed land degradation process (Hansen et al., 2013; Smith et al., 242 

2008).  243 

 244 

3. 3. Evaluation of the effects of non-acidic rainfall on acidified saturated soil at different 245 

rainfall intensities  246 

The negative effects of acidic rain in calcareous soils are clear; however, in order to observe an 247 

inverse effect, the influence of non-acidic rain on acidic soils, we also conducted rainfall 248 

simulations on saturated soils at three different pH values, 3.75, 4.25, 5.25, with three different 249 



rainfall intensities (40, 60 and 80 mm h-1) but with non-acidic rain. Table 2 shows the results of 250 

one-way ANOVA for each treatment. There is no significant difference between the mean splash 251 

rate of NARSS, NARSS1, NARSS2, NARSS3 at intensities of 40 and 60 mmh-1, but there is for 252 

80 mmh-1 at the 99% confidence level. Figure 5 shows the comparison among each treatment at 253 

three rainfall intensities (40, 60 and 80 mmh-1) and pH levels using the Duncan's test at confidence 254 

interval of 95%. For a rainfall intensity of 40 mm h-1 and 60 mm h-1, there were no significant 255 

differences among treatments, registering the highest soil particle loss (17.1 g m-2 min-1) in the 256 

control plot and the lowest one (10 g m-2 min-1) for pH values of 5.25. With a rainfall intensity of 257 

80 mmh-1, the control plot (NARSS) shows significant differences from the other treatments. The 258 

lowest soil particle loss was found for the pH value of 5.25 (18.7 g m-2 min-1) with maximum rates 259 

in the control plot (32.9 g m-2 min-1). This study shows the impact of soil saturation on increasing 260 

soil particle loss.  261 

According to the comparison of means, the results showed that the lowest splash rate was attributed 262 

to the NARDS treatment. When comparing the average splash rate at the intensities of 40, 60 and 263 

80 mmh-1, it was observed that splash rate increases with increasing intensity, confirming the 264 

findings of other studies (Gholami et al., 2016; Sadeghi et al., 2015); this means that with 265 

increasing rainfall intensity, the erosion rate increases, which can be due to the fact that with 266 

increasing rainfall intensity, the number of droplets that can hit the soil increases, and raindrops 267 

can increase in size and as a result their mass and falling velocity increase, which leads to more 268 

kinetic energy (Mohammadi and Kavian., 2015). The energy of the raindrops is a major factor in 269 

the disintegration of soil aggregates (Valettea et al., 2006; Barry et al., 2010; Brodowski et al., 270 

2013), which can have a great influence on the separation of soil aggregates and results in splash 271 

erosion (Liu et al., 2016).  272 



Also, changes in soil organic matter under short term acidic rainfall are plausible. As we observed 273 

in table 3, on dry and saturated soils, organic matter decreased after acidic rain from 1.24% to 274 

0.97% and from 1.28% to 0.99%, respectively. Thus, further research is needed to investigate the 275 

loss of soil we are registering because of the dissolution of organic matter, but now over long-term 276 

periods. 277 

 278 

3.4. Challenges and further investigations 279 

Over long-time periods, acid rain might degrade vegetation and modify microbial communities 280 

(Ling et al., 2010; Wu et al., 2016), both of which could conceivably change erosivity over time 281 

(Xiao et al., 2017). However, we acknowledge that in this research using rainfall simulations, this 282 

plausible mechanism for long term changes in erosivity cannot explain the findings presented here. 283 

Splash erosivity is largely a physical process (Jomaa et al., 2012) and all of the studied soils are 284 

similar, so the only difference can be in the way acidity affects the characteristics of the rain, for 285 

example, by greater density or lower surface tension generating larger drops. It is widely accepted 286 

that the mechanism cannot operate through impacts of acidity on the soil, as splash erosion is 287 

caused when the water hits the soil, before any effect of the greater acidity can take place. 288 

Therefore, future research lines must be conducted in order to develop a plausible and empirically-289 

verifiable mechanism to assess: why acid in the rain would increase erosivity instantaneously when 290 

applied to the same soils, and, the specific pedological mechanism; or, ii) density, surface tension, 291 

droplet size (and any other physical characteristic that might be relevant) for the acid amended 292 

waters. 293 

 294 



4. CONCLUSIONS 295 

In this research, we tested the possible negative impact of acidic rain on initial soil erosion rates 296 

in carbonate soils. Our research confirmed that the highest soil particle loss due to splash effect 297 

across all rainfall intensities tested was observed with the most acidic rain (pH= 3.75) with the 298 

lowest particle loss rates in the control plot, where non-acidic rain was used. A similar pattern was 299 

seen for saturated soils. However, for acidic saturated soils, but with non-acidic rain, the highest 300 

soil particle loss was seen in the control plot for all rainfall intensities. We demonstrated the 301 

negative impact of acidic rain on soils, which could be exacerbated by a concomitant increase in 302 

rainfall intensity. The development of rapid solutions and regulation by governments and land 303 

planners in necessary to reduce emissions of pollutants to the air, because rainfall erosivity may 304 

drastically increase. 305 

 We propose that further research must be conducted in order to develop a plausible and 306 

empirically-verifiable mechanism to assess why acid in the rain would increase erosivity 307 

instantaneously when applied to the same soils, or which rainfall characteristic is modified and is 308 

able to destroy soil aggregates.  309 

 310 

 311 
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