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Abstract
Purpose The health-promoting potential of food-derived plant bioactive compounds is evident but not always consistent 
across studies. Large inter-individual variability may originate from differences in digestion, absorption, distribution, metabo-
lism and excretion (ADME). ADME can be modulated by age, sex, dietary habits, microbiome composition, genetic varia-
tion, drug exposure and many other factors. Within the recent COST Action POSITIVe, large-scale literature surveys were 
undertaken to identify the reasons and extent of inter-individual variability in ADME of selected plant bioactive compounds 
of importance to cardiometabolic health. The aim of the present review is to summarize the findings and suggest a framework 
for future studies designed to investigate the etiology of inter-individual variability in plant bioactive ADME and bioefficacy.
Results Few studies have reported individual data on the ADME of bioactive compounds and on determinants such as age, 
diet, lifestyle, health status and medication, thereby limiting a mechanistic understanding of the main drivers of variation 
in ADME processes observed across individuals. Metabolomics represent crucial techniques to decipher inter-individual 
variability and to stratify individuals according to metabotypes reflecting the intrinsic capacity to absorb and metabolize 
bioactive compounds.
Conclusion A methodological framework was developed to decipher how the contribution from genetic variants or micro-
biome variants to ADME of bioactive compounds can be predicted. Future study design should include (1) a larger number 
of study participants, (2) individual and full profiling of all possible determinants of internal exposure, (3) the presentation 
of individual ADME data and (4) incorporation of omics platforms, such as genomics, microbiomics and metabolomics in 
ADME and efficacy studies.

Key messages 

• Human intervention studies are typically too small and do not report data from individuals to allow investigations 
of relevant determinants of inter-individual variability in ADME and bioefficacy.

• For some plant food bioactive compounds (isoflavones and ellagitannins), particular metabolites are produced 
only in a subset of the population, i.e., among individuals with a specific metabotype.
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• Microbiota is an important determinant of the ADME of many bioactive compounds but microbial gene annota-
tion is often lacking and interference with background diet and temporal variability is high: microbial metabolism 
capacity is, therefore, difficult to predict.

• Genetic variability is considered an important determinant of the ADME of some bioactive compounds, but there 
is a large gap in knowledge for many families of plant bioactive compounds regarding biotransformation enzymes 
and transport proteins.

• Information on other determinants such as age, sex, and diet is too incomplete to make firm conclusions about 
their impact on the inter-individual variability for most compounds investigated

• Metabotyping individuals appears as essential to increase our understanding and improve prediction of ADME 
and health effects of plant bioactive compounds. Yet successful stratification examples are scarce and if available 
(e.g., urolithins), validation studies in larger cohorts are still required.

Keywords Plant bioactive compounds · Cardiometabolic · Inter-individual variation · Personalized nutrition

Abbreviations
ADME  Absorption, distribution, metabolism and 

excretion
ABCA1  ATP-binding cassette transporter 1
APOB  Apolipoprotein B
BC01/2  Beta-carotene oxygenase ½
CD36  Cluster of differentiation 36
COMT  Catechol-O-methyltransferase
CRP  C-reactive protein
IMG  Integrated microbial genome
GWAS  Genome-wide association studies
HMP  Human microbiome project
JGI  Joint genome institute
LPL  Lipoprotein lipase
MAF  Minor allele frequency
MTTP  Microsomal triglyceride transfer protein
PNLIP  Pancreatic lipase
WG1  Working group 1
SDG  Secoisolariciresinol diglucoside
SNP  Singe-nucleotide polymorphism
SR-B1  Scavenger receptor class B type 1
UGT   Urine-5’-diphosphate glucuronosyltransferases
TFBS  Transcription factor binding site
TSS  Transcription start sites
TES  Transcription end site
VEP  Variant effect predictor
SIFT  Sorting intolerant from tolerant

Introduction

Cardiometabolic disease, including cardiovascular diseases, 
type 2 diabetes, obesity, and their risk factors is the leading 
cause of morbidity and mortality worldwide [1]. It is esti-
mated that patient care and indirect costs represent more 
than 192 billion euros a year for the EU economy. Popula-
tion studies have shown that up to 80% of cardiometabolic 
disease could be prevented through lifestyle changes [2] 

and that dietary behavior may be most important [3], which 
offers tremendous public health potential. A large number 
of observational and interventional studies have provided 
evidence for the beneficial effects of a diet rich in plant-
based foods on cardiometabolic health [4–6]. Although the 
mechanisms are far from fully understood, bioactive com-
pounds such as polyphenols, carotenoids and phytosterols 
are being investigated for their health-promoting effects in 
the context of cardiometabolic diseases. Establishing opti-
mal dose–effect relationships is hampered by the fact that 
most bioactive compounds have poor to modest bioavail-
ability and there is typically a large inter-individual varia-
tion in absorption, distribution, metabolism and excretion 
(ADME) of such compounds. Moreover, there is also a large 
inter-individual variability in observed health effects due to 
inter-individual variation pharmacodynamics parameters, 
independent from differences in ADME [7]. This clouds the 
associated health effects from consumption of plant foods 
and hampers the identification of the effects of particular 
bioactive compounds in specific subpopulations. Several 
determinants such as genetic variability, gut microbiota com-
position, age or sex may explain this inter-individual vari-
ability but few studies have collected such information in a 
way that facilitates a systematic study and conclusions to be 
drawn. To exemplify, the bioavailability of lutein in healthy 
human subjects relies on variants in genes encoding pro-
teins involved in carotenoid absorption and metabolism [8]. 
Another well-known example of a marked inter-individual 
variation in plant bioactive metabolism is the gut microbial 
conversion of soy isoflavones into equol and its impact on 
host physiology [9]. Only 30% of the western population 
has a microbiota capable of producing equol and these pro-
ducers are known to gain more health benefits (improved 
vasomotricity, lower blood LPL and CRP levels) from soy 
consumption than non-producers [10].

As long as information about determinants of inter-
individual variability is not collected and strategies to take 
them into account are lacking, it is likely that the number of 
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studies with conflicting results will continue to grow. This 
will prevent policy makers to establish evidence-based die-
tary guidelines, consumers will not be convinced to adopt 
the recommended dietary habits and the food and nutraceuti-
cal industry will be hesitant to invest in product innovation 
that gets the highest health benefit from food products and/
or targets specific consumer subpopulations.

The main goal of the COST POSITIVe action was, there-
fore, to build an open European scientific network to tackle 
the question of inter-individual variation in response to con-
sumption of plant bioactive foods and work with industry 
and regulatory bodies to translate findings to product inno-
vation and refined dietary recommendations. Within COST 
POSITIVe, working group 1 (WG1) aimed to improve the 
understanding of factors affecting inter-individual variation 
in bioavailability of bioactive compounds from plant-based 
foods. WG1 brought together scientists from various disci-
plines: nutritionists expert in the bioavailability of different 
classes of bioactive compounds, microbiologists, geneticists, 
epidemiologists, food technologists, and experts in metabo-
lomics [11].

Processes including absorption, distribution, metabo-
lism and excretion (ADME) of selected bioactive com-
pounds were included when mapping determinants of 
inter-individual variability. The WG had three aims: (1) 
to identify the main factors that modulate the ADME of 
plant food bioactive compounds and to improve meth-
ods and tools to assess individual exposure. Bioactive 

compound classes were selected based on their presence 
in plant-based foods and to what extent they have been 
studied and/or have established effects on cardiometa-
bolic risk factors in humans. To address the aim, WG1 
established a joint data input structure that was followed 
for all compound classes and started with a detailed lit-
erature data analysis to collect reported determinants of 
inter-individual variability in ADME after oral intake of 
selected plant bioactive compounds (Fig. 1). Eight work-
ing subgroups were formed to deal with the selected com-
pound classes who processed the literature data accord-
ing to predefined guidelines and generated one review 
or opinion paper per compound class. In parallel to the 
working groups focusing on dissecting factors important 
for interpersonal variation of ADME of specific com-
pounds, separate working groups were formed to address 
aim (2) the compilation of existing knowledge to iden-
tify key genes and enzymes related to human and gut 
microbial biotransformation with major importance for 
interpersonal variability in the ADME of selected bioac-
tive compounds. Finally, aim (3) was to develop a frame-
work for how metabolomics can be applied to analyze 
and assess true internal exposure to bioactive metabo-
lites at the individual level and interpersonal variability 
in ADME. These activities were covered by the creation 
of the metabolomics subgroup.

Fig. 1  Structure of the COST Positive working group 1 focusing on the inter-individual variability in absorption, distribution, metabolism and 
excretion of selected plant food bioactive compounds
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Determinants of interpersonal variability

The first step of WG1 was to select compound classes of 
interest and to set up the criteria for a literature review to 
collect the correct information to allow for the dissection of 
the determinants of inter-individual variability in ADME 
of selected bioactive compounds. Following a question-
naire in which research interests and expertise were probed, 
participants organized themselves into different compound 
subgroups focusing on anthocyanins, carotenoids, lignans 
and phenolic acids, ellagitannins, flavanones, flavonols, 
catechins and phytosterols (Fig. 2). A data entry template 
was established to collate literature information and indicate 
what articles cover determinants such as age, sex, genetics 
and microbiome (Fig. 2a). Over 3000 papers were reviewed, 
from which 511 were eventually selected as the basis to write 
several reviews. So far, this has resulted in six publications 
that have been published, accepted or submitted [12–16].

Lignans

As an example, the literature surveys from lignans resulted in 
443 articles fulfilling the search criteria including 96 human 
studies [15]. The main findings from this extensive literature 
survey were that variability in plasma levels of enterolactone, 
one of the main end-products formed by gut microbiota from 
plant lignans, was large and that gut microbiota and antibiotics 
were found to be the most important determinants for internal 
exposure. In addition, age and sex also appeared to be impor-
tant determinants of plasma enterolactone concentrations 
and variability. Higher plasma concentrations of enterolac-
tone were found for older individuals and female individuals. 
This could be primarily explained by the slower gut transit 
that is typically observed in these aged individuals and the 
higher lignan intake that was noted for female individuals. 
Ethnicity also was a determinant of plasma enterolactone and 
primarily related to altered dietary habits. Finally, a clear link 
between enterolactone plasma concentrations and health sta-
tus and lifestyle was observed, with individuals with a high 
BMI and smoking showing lower circulating plasma levels 
of enterolactone. The mechanisms behind the effects of spe-
cific determinants have not been elucidated in all cases. An 
important finding from the literature review of lignans was the 
involvement of gut microbiota in the biotransformation and 
bioavailability of lignans and its role as a main determinant 
for plasma enterolactone concentrations. For example, the 
metabolism of secoisolariciresinol diglucoside (SDG, a major 
plant lignan) entails subsequent steps of O-deglycosylation, 
demethylation, dehydroxylation and dehydrogenation. Inter-
estingly, not a single microbe is able to completely metabolize 
SDG into enterodiol and enterolactone: SDG metabolism is 
always relying on a joint action from different microorganisms 
[17]. This results in observations that microbiome diversity 

and composition are clearly correlating with the enterolactone 
status of human individuals. As the microbiome is largely 
affected by dietary behavior, it is not surprising that dietary 
fiber intake associates with a higher microbial diversity and 
in turn results in higher plasma levels of enterolactone. Con-
versely, intake of energy and lipids was negatively correlated 
with plasma enterolactone concentrations.

Carotenoids

The focus was on lycopene, β-carotene and lutein, which 
are the three main carotenoid compounds found in 
blood and tissue. From the factors that are most likely 
to impact carotenoid uptake, distribution, metabolism 
and excretion, genetic variations in proteins involved in 
carotenoid metabolism were the most important [12, 14]. 
These involve digestion enzymes (PNLIP), metaboliz-
ing enzymes (BCO1/2), carrier proteins (SR-B1, CD36, 
ABCA1 and more) as well as proteins governing secretion 
into chylomicrons (APOB and MTTP), biotransformation 
enzymes in the blood and liver and proteins involved in 
the distribution to target tissues. Interestingly, although 
gut microbiota are likely not involved in the direct metabo-
lism of carotenoids, they may have an indirect impact on 
carotenoid ADME through their modulation of bile salt 
profiles and excretion [12]. As for many other bioactive 
compounds, determinants such as disease status, body 
weight and BMI, sex and lifestyle habits (smoking, alco-
hol consumption) turned out to additionally contribute to 
inter-individual variability.

Flavonols

Despite the large impact of inter-individual variability in 
ADME of flavonols, only 10 out of 55 articles reported the 
participants’ individual data and none of the studies were 
actually designed to decipher the underlying determinants 
of inter-individual variability [13]. Variability was smaller 
for metabolites resulting from small intestinal digestion 
and absorption than for metabolites that were derived from 
colon microbiota. While dietary habits, genetic polymor-
phisms and microbiota composition are reported to impact 
variability in flavonol ADME, it is difficult to accurately 
assess their individual contribution, given the informa-
tion presented in the publications. As for many bioactive 
compounds, there is a need for more detailed intervention 
studies of larger size, collection of more information about 
the characteristics of the enrolled individuals, such as age, 
diet, sex, diet, lifestyle and health status, and attention for 
obtaining individual pharmacokinetic data of quercetin 
and all of its metabolites.
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Fig. 2  a Scheme of possible 
determinants covered within the 
literature survey. b Molecular 
structures of the compounds 
tackled within the literature 
survey
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Phenolic acids

Phenolic acids are widely present in plant-based foods in 
free or conjugated forms. Their bioavailability depends 
on the free/conjugated form and is affected by food pro-
cessing. Phenolic acids are metabolized both by the host 
and gut microbiota, resulting in conjugations and struc-
tural modifications of the compounds. Only a few studies 
have investigated inter-individual variability in ADME 
and health responses to phenolic acid-rich foods and these 
studies were reviewed and data summarized [18]. As for 
many other bioactive compounds, phenolic acid metabolite 
profiles and health responses of phenolic acids show large 
inter-individual variability, which seems to be related to the 
metabolic status, sex, dietary habits, and genetic polymor-
phisms, but the co-ingestion of other dietary bioactive com-
pounds may also contribute. For phenolic acids, it may be of 
particular interest to design future studies to allow potential 
confounding effects of other food phytochemicals and their 
metabolites present in concomitance with phenolic acids to 
be revealed. Moreover, since phenolic acid metabolites are 
highly dependent on gut microbiota, a better understanding 
of the gut-host interplay and microbiome biochemistry is 
becoming highly relevant in understanding the impact of 
phenolic acids and their response/non-response in health 
outcomes.

Ellagitannins and ellagic acid

These (poly)phenols belong to the family of hydrolys-
able tannins. They are poorly absorbed in the stomach, 
small intestine and colon. However, they are extensively 
metabolized by the gut microbiota to urolithins, which 
are readily absorbed. Urolithin Phase II metabolites reach 
plasma concentrations as high as 10 µM [19]. Urolithins 
show several biological effects on cardiometabolic risk 
biomarkers [20–22], anti-inflammatory effects at differ-
ent organs (gut, vascular tissues and neuronal tissues) 
[23], and some interesting effects recently observed on 
muscular performance and exercise recovery [20]. Inter-
individual variability in the ADME of urolithins has been 
reported, and three different metabotypes A, B and 0, 
have been described [19]. These metabotypes associate 
with the occurrence of specific bacterial strains in the 
gut and show that gut microbiota composition can be 
potentially a relevant determinant in the ADME of ella-
gitannins and ellagic acid, and, therefore, an important 
determinant of their cardiometabolic health effects. In 
fact, it has been shown that individuals of metabotype 
B respond better to the administration of pomegranate 
ellagitannins leading to significant decreases in cardio-
metabolic risk biomarkers, while metabotype A does not 
show the same effects [20]. Specific bacterial strains have 

been associated with the production metabotype A and 
B urolithins [24]. However, no matching of metabotypes 
A, B and 0 with the gut microbiome enterotypes has been 
observed [25].

Flavanones

A large inter-individual variability in the ADME of cit-
rus flavanones has been reported and high, medium, and 
low flavanone metabolites excreters have been identified 
in different studies after the intake of flavanone rutino-
sides, citrus flavanone extracts and citrus juices [26–28]. 
One key factor in this variability is the necessity of gut 
microbiota to convert the un-absorbable flavanone ruti-
nosides (rhamnosyl(1-6)glucosides, hesperidin, nariru-
tin, naringin, neohesperidin and eriocitrin) to the readily 
absorbable aglycones (hesperetin, naringenin and eriodic-
tyol). Human intestinal cells do not have the rhamnosidase 
activity needed, while many gut bacterial species do have 
rhamnosidase activity, including bifidobacteria, lactoba-
cilli and Bacteroides spp. Despite the demonstrated high 
inter-individual variability in flavanone ADME, no cor-
relation with gut microbiota composition has been studied 
so far, and no correlation of flavanone absorption with 
the effects on cardiometabolic health biomarkers has been 
demonstrated.

OMICs‑strategies for assessment 
of interpersonal variability

Metabotypes in the field of plant food bioactives

Individuals that share similar metabolic phenotype, 
i.e., that may have similar pharmacokinetics and/or 
bioavailability of plant bioactive compounds and/or 
similar response patterns of such, may be grouped into 
metabotypes. The general concept of metabotypes was 
already introduced 20 years ago by Gavaghan et al. [29] 
proposing a metabonomic approach to relate metabolic 
balance and metabolite excretion data to host pheno-
type and genotype. In 2008, the metabotype concept was 
expanded with a transgenomic approach to link up micro-
biome profiles with metabolic phenotypes in the host [30] 
followed by the proposal of Bolca et al. [31] to actively 
consider gut microbial metabotyping when elucidat-
ing health effects from plant bioactives. Yet, the general 
metabotype concept suffers from its very broad and often 
subjective definition, given the multitude and variety of 
study types (epidemiological vs. intervention), metabolic 
pathways (host vs. microbiome), study objectives and 
endpoints of interest where it has been considered useful 
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[32]. For plant food bioactives, while most evidence for 
the existence of separate human metabotypes stems from 
differences in microbial metabolic potency, human genetic 
polymorphisms may also significantly contribute to differ-
ent (metabolic) phenotypes. To exemplify, polymorphisms 
in the CYP1A2 encoding genes, responsible for caffeine 
biotransformation, were previously found to lie at the 
basis for a modulated risk of hypertension and myocar-
dial infarction for those individuals that display the low 
caffeine-metabolizing phenotype [33, 33, 34]. Riedl et al. 
[32] made a plea for a stricter metabotype definition, not in 
the broad sense where it is unrealistic to make a fit-for-all 
definition, but rather use sub-definitions that are fit-for-
purpose. In the context of plant bioactives, we propose to 
define metabotypes as the manifestation of human popula-
tion subgroups that have different metabolic phenotypes 
for phytochemicals, which could be captured by differ-
ences in the metabolome profiles in bodily fluids (plasma, 
urine, feces, tissues, etc.) after the intake of specific plant 
food or bioactive compounds. Thus, a metabotype can be 
defined on the basis of a small number of specific metabo-
lites (e.g., equol or urolithin metabotypes) that reflect a 
particular metabolic capacity and are sufficient to distin-
guish meaningful subgroups. Besides, metabotyping can 
be based on wider metabolic profiles, e.g., using untar-
geted metabolomics, showing the potential to classify 
subjects in subgroups with distinct internal exposures to 
bioactive metabolites in fasting state or as a response to a 
nutritional challenge. Identifying consumers with different 
metabotypes can be of major importance to identify those 
that will have particular health benefit from plant food bio-
active compounds as well as risk groups of consumption. 
This could be the starting point for personalized nutri-
tion concepts, and identification of biomarkers of specific 
metabotypes differentially associated with response/non-
response of the intake of bioactive compounds is highly 
warranted [35]. In addition, basic understanding about the 
required optimal dose of plant food bioactive compounds 
that will ensure the best health benefit is currently lack-
ing for most compounds. Phytosterols are an exception as 
it has been shown that a daily intake of 2 g is needed to 
lower total- and LDL cholesterol [36]. However, the opti-
mal dose that brings out the best health benefit most likely 
differs across individuals and metabotypes.

To accelerate the development of personalized nutri-
tion strategies based on metabotyping, simple and high-
throughput methods for the analysis of bioactive com-
pounds and their metabolites at large scale are needed, 
with robust detection, identification and quantification of 
plant bioactive parent compounds and metabolites. Meth-
ods for analytical coverage of representative plant bioactive 
compounds and metabolites in human biological samples 
were worked out and tested in different labs involved in the 

POSITIVe network [37]. Exploration of interpersonal vari-
ation according to variations in microbiome composition 
or gene polymorphisms is two additional fundaments for 
stratification of individuals. This requires a profound under-
standing of the biochemical pathways that include biotrans-
formation enzymes and transport proteins, both from the 
gut microbiome perspective as well as from the human body 
perspective.

MS‑based metabolomics as a methodology of choice 
to address plant bioactives

Assessing exposure to plant food bioactive compounds

The internal exposure to polyphenols, carotenoids and 
other plant food bioactive compounds is largely, but not 
only, dependent on the level of intake of their food sources. 
As already mentioned above, the internal exposure is also 
modulated by food matrix effects as well as by intrinsic 
and environmental factors affecting the ADME capacity 
of individuals for xenobiotics [38]. For example, the gut 
microbiome may confer or not to the host the capacity to 
produce metabolites such as equol or urolithins. Assess-
ing the exposure to plant food bioactive compounds by the 
measurement of food intakes using dietary questionnaires 
followed by conversion into intakes of bioactive compounds 
using food composition tables is thus not reliable enough 
and may mask potentially existing relationships with health 
and diseases. Pioneering studies with isoflavones and ella-
gitannins have shown that in some cases, health benefits 
associated with plant food consumption may be restricted 
to population subgroups with particular metabotypes [20, 
39]. Profiling of metabolites present in biofluids, rather than 
estimating the intake through dietary assessment and food 
composition tables appears as the best approach to reflect the 
true exposure to bioactive compounds and their metabolites, 
and is more closely related with pharmacodynamics at any 
time point. Targeted metabolomics has been used for years 
to study the bioavailability of bioactive compounds from 
plants and more recently to assess kinetics concordance with 
the improvement of health outcomes [40]. Metabolite data 
are a good basis for stratification of subjects according to 
their molecular phenotype reflecting the capacity to produce 
particular metabolites, and, therefore, one defined aspect of 
the metabotype.

Untargeted metabolomics

Untargeted metabolomics offers an even greater potential for 
a comprehensive phenotyping of internal exposure embrac-
ing the diversity of plant food compounds from various 
families. Furthermore, owing to its exploratory nature, it is 
a useful approach to bring new knowledge on still unfamiliar 
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metabolites. Although the number of studies using untar-
geted metabolomics has exploded the last years, it is still 
a young discipline, which requires improvements and har-
monization of its methods and tools. Metabolomics applied 
in the field of plant food bioactive compounds is facing the 
same impediments as in other application domains. Analyti-
cal options for untargeted metabolic profiling are multiple 
and not harmonized, and a large proportion of the signals 
detected cannot be identified. As these are key limitations, 
the WG1 of this COST Action evaluated and improved the 
analytical coverage of untargeted methods for plant food bio-
actives and contributed to the development of databases and 
tools to facilitate the identification of plant food metabolites 
in metabolomics profiles.

Plant food bioactives and their derived human metabolites 
represent a broad variety of chemical structures, with masses 
from 100 to > 1300 Da and a large spectrum of polarity, 
from very polar small microbial metabolites to hydrophobic 
compounds such as carotenoids or phytosterols. Analyzing 
simultaneously such an array of chemicals, even with an 
untargeted approach, represents more than a challenge and 
analytical choices have to be made. Up to now, metabolomics 
platforms developed their own profiling methods indepen-
dently, and no standardization effort has been undertaken as 
yet. Platforms often do not have a precise knowledge of their 
own coverage until they have analyzed thousands of stand-
ards. POSITIVe organized the first international initiative in 
the field of plant food bioactives, in the form of a multiplat-
form test comparing the analytical coverage of 11 LC–MS 
and 2 GC–MS methods currently used by the partners [41]. 
Results provided insights for optimization and harmoniza-
tion of methods. A quality control mixture of 12 inexpensive 
plant food metabolites was proposed to assess the analytical 
coverage and resolution of any untargeted LC–MS method. 
Methods of preparation for plasma, urine and other sample 
types are also key as ranges of metabolites can unintention-
ally be discarded. Optimization of preparation methods for 
plant food bioactive compounds is ongoing. Inter-laboratory 
validated reference methods will be essential to facilitate the 
comparison of findings across studies.

Use of online databases in the identification of plant‑based 
compounds and their metabolites

Untargeted MS profiling methods are widely used but typi-
cally, only 5–20% of the detected signals are identified, 
leaving a vast pool of potential information unresolved. 
Databases are essential tools in the identification process. 
They are queried with experimental spectral data and return 
the chemical structures matching these data, as hypotheses 
of identification to be further confirmed. Many compound-
centered or spectra-centered databases with various contents 
are available online and must be used in a complementary 

manner for a wider chemical coverage. Among the most 
commonly used are HMDB (www.hmdb.ca), Metlin (https 
://metli n.scrip ps.edu/), PubChem (https ://pubch em.ncbi.nlm.
nih.gov/), ChemSpider (www.chems pider .com/), MassBank 
(http://massb ank.eu/), MoNA (http://mona.fiehn lab.ucdav 
is.edu/), NIST, Golm Metabolome database, LipidMaps 
(https ://www.lipid maps.org/), mzCloud (https ://www.mzclo 
ud.org/), GNPS (https ://gnps.ucsd.edu/), ReSpect (http://
spect ra.psc.riken .jp/) and FooDB (http://foodb .ca/). The 
detected signals are not easily identified when the corre-
sponding compounds are not yet present in one of these data-
bases, which is the case for many metabolites of less studied 
food phytochemicals. PhytoHub (http://phyto hub.eu/) is an 
online database conceived to facilitate the identification of 
food phytochemicals and their metabolites in metabolomics 
profiles [42]. It contains > 1700 compounds and is con-
tinuously updated by invited experts. The literature survey 
conducted by WG1 of the COST Action POSITIVe led to 
a major upgrade of PhytoHub. About 200 metabolites of 
polyphenols not yet recorded in any database were added, 
associated with the original literature. PhytoHub can now be 
searched to get the list of metabolites observed or expected 
in biofluids after consumption of a given food. For exam-
ple, when searched for apple, a list of 195 metabolites is 
obtained, along with the information necessary to identify 
them in urine or plasma metabolomic profiles. In addition, 
for compounds whose metabolism has not yet been studied 
in humans, the most likely host and microbial metabolites 
can be predicted by Biotransformer (http://biotr ansfo rmer.
ca/), a new open-access tool that applies prediction rules 
elaborated from machine-learning algorithms and expert 
knowledge including PhytoHub data [43]. Integration of 
more chemical, biological and spectral data for phytochemi-
cal metabolites in metabolomic databases will be key for 
a better understanding of food phytochemical ADME and 
associated inter-individual variation.

Obtaining hypotheses of identification for unknowns 
using databases is one step in the process. Hypotheses 
must be validated by comparison of experimental MS/MS 
spectra or retention time with those of authentic standards. 
Unfortunately, many standards are expensive or not com-
mercially available. A collaborative platform called Food-
ComEx (http://foodc omex.org/) is facilitating the sharing 
of standards, and several chemists from POSITIVe already 
proposed some precious synthesized metabolites of poly-
phenols there [44]. MS/MS fragmentation is widely used 
to support or discard hypotheses of identification, while 
information associated to the retention time has not been 
considered enough. We evaluated the potential of retention 
time prediction by PredRet [45]. This online tool can pre-
dict the retention time of compounds in a chromatographic 
system as soon as they have been experimentally determined 
in other registered chromatographic systems. We compiled 

http://www.hmdb.ca
https://metlin.scripps.edu/
https://metlin.scripps.edu/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/
http://massbank.eu/
http://mona.fiehnlab.ucdavis.edu/
http://mona.fiehnlab.ucdavis.edu/
https://www.lipidmaps.org/
https://www.mzcloud.org/
https://www.mzcloud.org/
https://gnps.ucsd.edu/
http://spectra.psc.riken.jp/
http://spectra.psc.riken.jp/
http://foodb.ca/
http://phytohub.eu/
http://biotransformer.ca/
http://biotransformer.ca/
http://foodcomex.org/
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retention time data for 471 plant food metabolites in 24 chro-
matographic systems used in 19 platforms across Europe. 
Predictions were very accurate, with a median prediction 
error of 0.03–0.76 min depending on the systems. Such level 
of precision represents a great help to accelerate the identi-
fication process, with the possibility to discard hypotheses 
outside the predicted retention time window. PredRet is free 
to use for new contributors, and the number and the accuracy 
of predictions will increase with the number of shared data.

Coordination of efforts and large collaborative initiatives 
are essential to improve and harmonize the assessment of 
individual exposures to plant food bioactive compounds 
using untargeted metabolomics. The COST Action POSI-
TIVe has been instrumental in building a community with 
shared interests, which will hopefully continue to interact 
and expand efforts to collectively address the most important 
remaining challenges.

Genetics

As for other phenotypes [46], it is likely that up to 50% 
of the cardiometabolic response to intake of plant bio-
actives is attributable to genetic variation. Variation in 
genes that modulate plant bioactive ADME and bioavail-
ability as well as the pharmacodynamics of the bioactive 
compounds, are likely to be important. In the general 
population, about 99.4% of DNA is common between 
individuals with the remaining 0.6% defining phenotype 
and response to the environment including dietary expo-
sure. The 2015 output from the 1000 Genome Consor-
tium, indicated that there are typically 88 million vari-
ants in a human genome [47], including gross structural 
alterations affecting > 1000 bases/nucleotides in the 
DNA sequence, such as copy number variation, dele-
tions, insertion and inversion, as well as single-nucle-
otide polymorphisms (SNPs), where a single base in a 
nucleotide is changed. The identification of which vari-
ants are important in modulating human health represents 
an enormous challenge. As SNPs constitute > 90% of all 
genetic variability, and are of high relevance for public 
health, targeted genotyping, where the focus is SNPs in 
key genes involved in the metabolic pathway of inter-
est, is a widely used approach. In addition, genome-wide 
association studies (GWAS) are been conducted (https 
://www.genom e.gov/20019 523/, http://www.ebi.ac.uk/
gwas/), in which genetic information across the genome 
can be related to a particular trait, e.g., plant bioactive 
concentrations.

To date the limited investigations for plant food bioac-
tives have taken a candidate gene approach, focusing on one 
or a small number of variants in a gene encoding for plant 
bioactive phase I or II metabolism proteins, with the justifi-
cation for the selected gene variants rarely provided, and the 

functional consequences of genotype often unknown. Per-
haps the most extensively studied genotype relevant to fla-
vonoid ADME, is a Catechol-O-methyltransferase (COMT) 
missense mutation (rs4680), with a G to A base change 
resulting in a valine to methionine amino acid substitution at 
position 158 of the protein. This polymorphism is thought to 
produce a less-stable protein, with a reduced enzyme activity 
[48]. In human trials, this genotype has been associated with 
flavan-3-ol/metabolite plasma and urinary concentrations, 
breast cancer risk and vascular responses following green 
tea (source of dietary flavan-3-ol) consumption [49–51], 
although in the Minnesota Green Tea Trial, no overall 
impact of 12-month intervention or no genotype*treatment 
interactions on adiposity or cardiometabolic health, was 
observed [52].

Twenty-two isoforms of the Urine-5’-diphosphate glucu-
ronosyltransferases (UGTs) gene superfamily [53] catalyze 
the transfer of a glucuronic acid from UDP glucuronic acid 
to a host of endogenous and exogenous compounds includ-
ing prescribed medications and plant bioactive compounds, 
affecting their metabolism. The impact of UGT genotypes 
on the endogenous concentrations of these compounds, the 
incidence of associated cancers and response to select drugs 
has been reported (for review see [39]). Although the bi-
directional relationship between UGT and plant bioactive 
has been reported [54, 55], the impact of UGT genotype on 
plant bioactive concentrations and efficacy remains to be 
established.

The ongoing COB trial (NCT01922869) is taking a more 
comprehensive approach and is sequencing 112 genes, 
involved in all stages of plant bioactive metabolism from 
digestion to elimination, to establish their impact on flavo-
noid ADME over 48 h. No human GWAS investigation of 
plant bioactive metabolism is available.

Methodological approaches for the identification 
of gene variants of interest with respect to plant 
food bioactives

Once genes of interest are identified, large publicly available 
databases including HapMap and more recently the 1000 
Genome Project (where the genomes of a large number of 
people sequenced and their genotypic data stored) are used 
to select potentially important variants. Their selection 
should be on the basis of their known or predicted impact on 
protein concentration, structure or function, or pathogenic-
ity, or variants which tag and act as genetic biomarkers for 
a particular gene region.

In addition to the gene itself, variants in adjacent regula-
tory regions, for example transcription factor binding site 
(TFBS) and enhancers, which can influence gene expres-
sion, are also likely to be important. Therefore, variants in 
genes regions within 10 Kb from the transcription start sites 

https://www.genome.gov/20019523/
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(TSS) and transcription end site (TES) for each gene should 
be included. The second step is to determine the effect of 
these variants. The Variant Effect Predictor (VEP) [56] tool 
is used to provide information regarding variants’ locations, 
consequences (e.g. ,missense or frameshift), minor allele fre-
quencies (MAFs) and pathogenicity prediction established 
using Sorting Intolerant from Tolerant (SIFT), Polyphen, 
and others. The next step is to search publicly available 
datasets that have records of studies showing associations 
of the selected variants with disease incidence or biomark-
ers. Some of the commonly used datasets include GWAS, 
dbSNP, Humsavar and pharmacogenetic databases.

Using all this gathered information, the final step, is to 
select a tagging SNP for each haplotype block (250 kb max) 
together with SNPs in the inter-block regions, to provide 
a comprehensive list of variants covering the whole gene 
region. Priorities for SNPs’ selection include:

1. SNPs previously published in online databases,
2. SNPs with predicted pathogenicity established using 

SIFT and Polyphen,
3. SNPs in promotor regions, exons, 3’UTR and regulatory 

regions, and
4. SNPs with a MAF ≥ 0.5

Such an approach will result in a list of SNPs which can 
be used to probe human clinical trial and cohort data, for 
genotype*ADME*phenotype associations.

At present, research is at the early stages of identifying 
the main genetic determinants of plant bioactive metabolism 
and efficacy. It is hoped that specific genotypes will emerge 
which could identify subgroups who are likely to most ben-
efit from increased intake of selected plant bioactive com-
pounds. When evidence is sufficient, such information may 
be used in routine health examinations and possibly be used 
for individual dietary recommendations.

The role of gut microbiota in inter‑individual 
variability of plant bioactives

A thorough understanding of the apparent inter-individual 
variability in ADME of plant food bioactive compounds is 
occluded by the lack of insight in the role of gut microbiota 
in these processes. Gut microbiota can be involved in the 
breakdown of the food matrix and thus contribute to the 
bio accessibility of a bioactive which then becomes avail-
able for intestinal absorption. In addition, gut microbiota can 

directly or indirectly (through cleavage of phase-II metabo-
lites) metabolize parent compounds into metabolites with 
modified bioactivity and susceptibility of intestinal uptake. 
Finally, alterations in gut microbiome composition and func-
tionality can modulate gut epithelial barrier function result-
ing in a higher or lower uptake of bioactive molecules of 
interest. WG1 of the COST Action POSITIVe chose to focus 
on the microbiome’s metabolic potency and deemed it essen-
tial to fully exploit currently available “omics” platforms to 
study microbial markers of internal exposure and microbial 
markers of effect. This will enable stratification of human 
individuals into metabotypes and/or responders based on 
their microbial metagenome profile (Fig. 3a).

Knowledge of involvement of gut microbiota in the 
metabolism of plant bioactive compounds requires ana-
lytical coverage of possible metabolites and knowledge of 
metabolic pathways. The groups establishing the reviews of 
specific bioactive compounds (Fig. 1) were asked to—if at 
all possible—pinpoint the most crucial step in the (human 
or microbial) metabolic pathway for the plant bioactive of 
interest. Identification of microbial genes/gene cassettes of 
interest that are encoding specialized and unique metaboliz-
ing enzymes or transport proteins that may differ amongst 
individuals depending on their gut microbiome composition 
was attempted. The search strategy employed was so-called 
“gene-centric microbial genome and metagenome mining”.

The method consists of (1) screening literature for the cru-
cial microbial metabolic steps that were identified by experts 
working on the specific compound classes, (2) if absent, 
screen for microbial enzymes and their encoding genes that 
are known to perform a comparable metabolic step, (3) use 
JGI’s (Joint Genome Institute) integrated microbial genome 
and microbiome (IMG/ER) to filter known HMP (Human 
Microbiome Project) genomes for these genes (https ://img.
jgi.doe.gov/imgm_hmp) and export those and (4) use the 
exported genes to query HMP metagenomes, the 10 mil-
lion gene catalogue from the former MetaHIT FP7 project 
or other metagenome databases and subsequently obtain a 
stratification of human individuals based on their microbi-
ome metagenomic’s information. This approach of stratify-
ing individuals according to their personal microbial (meta)
genomic profiles has rarely been attempted before. Several 
knowledge gaps were identified primarily relate to a lack 
of accurate gene annotation and database implementation.

Since not all plant bioactive compounds could be cov-
ered, a set of model compounds (isoxanthohumol, lignans, 
flavan-3-ols, ellagitannins, isoflavones, rutin, chlorogenic 
acid and anthocyanin) was chosen to evaluate employing the 
gene-centric metagenomic screening strategy. We illustrate 
our approach with the microbial metabolism of lignans and 
isoxanthohumol. As mentioned in the section above, enter-
olactone has been extensively investigated with regard to 
health effects mainly related to hormonal-dependent cancers. 

Fig. 3  a Schematic overview of the workflow to identify genes 
encoding microbial enzymes responsible for specific metabolic steps 
of bioactives. b Krona™ plot of microbial genomes yielding genes 
that encode the methyltransferase I component of the O-demethylase 
enzyme system

◂
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Enterolactone is formed by microbiota-dependent metabo-
lism of plant lignans, in several steps as illustrated by secoi-
solariciresinol (SECO) diglucoside converted to enterodiol 
and to enterolactone in the final step. The O-demethylation 
of SECO is a crucial metabolic step in the bioactivation pro-
cess. O-demethylation is not only crucial for lignan activa-
tion but also for the conversion of hop-derived isoxantho-
humol into its bioactive metabolite 8-prenylnaringenin [57]. 
Interestingly, O-demethylase is a four-component enzyme 
system that has been well described in several microorgan-
isms [58, 59]. It consists of methyltransferase I, corrinoid 
protein, methyltransferase II and an activating enzyme. 
Methyltransferase I typically transfers a methyl group from 
a substrate (SECO) to the cobalamin (vitamin  B12)-corrinoid 
protein while methyltransferase II subsequently transfers the 
methyl group to tetrahydrofolate, yielding methyl-tetrahy-
drofolate. The activating enzyme is required to render the 
corrinoid protein into its appropriate redox status making it 
in turn receptive again for methylation. While Eubacterium 
limosum ZL-II is known to convert SECO into enterodiol, its 
genome is unfortunately not completely available. Chen et al. 
[60], therefore, used the genome of E. limosum KIST612 
as a reference to further characterize the four-component 
O-demethylase. We used the same reference organism’s pro-
teome and genome to screen the IMG database for available 
putative O-demethylase encoding genes. Interestingly, IMG 
database exploration for functional protein-encoding genes 
upstream a metabolic pathway yielded a lower number of 
positive bacterial genomes. To exemplify, screening for the 
more general methyltransferase II resulted in positive hits for 
2010 bacterial genomes, the corrinoid protein gave 272 bac-
terial genomes, while methyltransferase I—which probably 
has higher substrate specificity—only yielded 96 bacterial 
genomes (Fig. 3b).

This reduction in number of bacterial genomes increases 
the feasibility of stratifying individuals based on their phy-
logenetic microbiome composition and making predictions 
on their probability of harboring a SECO-converting micro-
biome. A similar gene-centric mining of metagenomic data-
bases can serve as a basis for stratifying individuals based 
on the presence of functional genes and explore whether 
specific determinants (ethnicity, diet, health status, sex, age, 
etc.) form a confounding factor for this stratification. How-
ever, this proposal to use gene-centric metagenomic mining 
does not suffice to identify metabotypes that group indi-
viduals based on their ability to generate a high plant-based 
bioactive concentration in vivo. In-depth and independent 
validation with separate intervention studies, including the 
incorporation of all metadata from study participants, need 
to further prove the usefulness of this approach and indi-
cate to what extent the microbiome is actually involved in 
a bioactive’s ADME and predict which individuals would 

experience the largest health effects based on their microbial 
metagenome.

The identification of putatively involved microbes is still 
complicated due to some specific issues. The gene-centric 
metagenomic screening relies on available information of 
metabolic pathways, which are for many compounds still 
uncharacterized. Moreover, if functional genes are less well 
conserved across microbial genomes, gene-centric metage-
nome mining could yield false negatives depending on the 
cutoffs that are used. Third, knowledge of gene sequence 
information does not immediately lead to gene annotation. In 
such case, KEGG pathways cannot be explored and database 
screening can only be conducted based on the gene identifier 
(Gene ID). In addition to the fact that it is difficult to connect 
an individual’s metagenome with its metadata, it is clear that 
future research progress in this field will require constantly 
updated databases and proper gene annotations.

Conclusions

Available evidence suggests that ADME and bioefficacy of 
plant food bioactive compounds varies several fold between 
individuals. Although age, sex, BMI, genotype, the gut 
microbiome and background diet have been shown to be 
important for interpersonal variability in selected bioac-
tive compounds, a comprehensive understanding of the 
individual and interactive contribution of these variables to 
plant bioactive ADME, and ultimately their impact on tis-
sue function and overall ‘health’, is in its relative infancy. 
Advancement in current knowledge will require ADME 
studies, with well-characterized plant food bioactive sources 
and doses, sensitive metabolomic analysis of tissues and bio-
fluids, along with detailed phenotyping of trial participants 
for all potentially modulating variables listed above. Such 
trials should have sufficient sample sizes to draw conclu-
sions regarding variable*ADME associations and derived 
publications should make data from each trial participant 
publically available. This would allow integration of data 
from individual investigations, thereby increasing sample 
size, and with appropriate statistical approaches facilitating 
the interactive impact of variables on bioactive ADME to 
be assessed and modeled. Integrated information may be 
used to identify metabotypes not only reflecting formation/
non-formation of specific metabolites from plant-based bio-
active compounds but also of general metabolic phenotype 
associated with response/non-response to specific bioac-
tive compounds. This could contribute to the development 
of meaningful dietary recommendations and food product 
innovation aimed to increase plant food bioactive status and 
efficacy in all individuals, taking into account the different 
metabotypes.
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