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Associations of autozygosity with a broad range
of human phenotypes
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In many species, the offspring of related parents suffer reduced reproductive success, a

phenomenon known as inbreeding depression. In humans, the importance of this effect has

remained unclear, partly because reproduction between close relatives is both rare and

frequently associated with confounding social factors. Here, using genomic inbreeding

coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated

(p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These

changes are associated with runs of homozygosity (ROH), but not with common variant

homozygosity, suggesting that genetic variants associated with inbreeding depression are

predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first

cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children.

Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH
is independent of all environmental confounding.
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G iven the pervasive impact of purifying selection on all
populations, it is expected that genetic variants with large
deleterious effects on evolutionary fitness will be both rare

and recessive1. However, precisely because they are rare, most of
these variants have yet to be identified and their recessive impact
on the global burden of disease is poorly understood. This is of
particular importance for the nearly one billion people living in
populations where consanguineous marriages are common2, and
the burden of genetic disease is thought to be disproportionately
due to increased homozygosity of rare, recessive variants3–5.
Although individual recessive variants are difficult to identify, the
net directional effect of all recessive variants on phenotypes can
be quantified by studying the effect of inbreeding6, which gives
rise to autozygosity (homozygosity due to inheritance of an allele
identical-by-descent).

Levels of autozygosity are low in most of the cohorts with
genome-wide data7,8 and consequently very large samples are
required to study the phenotypic impact of inbreeding9. Here, we
meta-analyse results from 119 independent cohorts to quantify
the effect of inbreeding on 45 commonly measured complex traits
of biomedical or evolutionary importance, and supplement these
with analysis of 55 more rarely measured traits included in UK
Biobank10.

Continuous segments of homozygous alleles, or runs of
homozygosity (ROH), arise when identical-by-descent haplotypes
are inherited down both sides of a family. The fraction of each
autosomal genome in ROH > 1.5Mb (FROH) correlates well with
pedigree-based estimates of inbreeding11.We estimate FROH using
standard methods and software6,12 for a total of 1,401,776 indi-
viduals in 234 uniform sub-cohorts. The traits measured in each
cohort vary according to original study purpose, but together
cover a comprehensive range of human phenotypes (Fig. 1,
Supplementary Data 7). The five most frequently contributed
traits (height, weight, body mass index, systolic and diastolic
blood pressure) are measured in >1,000,000 individuals; a further
16 traits are measured >500,000 times.

We find that FROH is significantly associated with apparently
deleterious changes in 32 out of 100 traits analysed. Increased

FROH is associated with reduced reproductive success (decreased
number and likelihood of having children, older age at first sex
and first birth, decreased number of sexual partners), as well as
reduced risk-taking behaviour (alcohol intake, ever-smoked, self-
reported risk taking) and increased disease risk (self-reported
overall health and risk factors including grip strength and heart
rate). We show that the observed effects are predominantly
associated with rare (not common) variants and, for a subset of
traits, differ between men and women. Finally, we introduce a
within-siblings method, which confirms that social confounding
of FROH is modest for most traits. We therefore conclude that
inbreeding depression influences a broad range of human phe-
notypes through the action of rare, recessive variants.

Results
Cohort characteristics. As expected, cohorts with different
demographic histories varied widely in mean FROH. The within-
cohort standard deviation of FROH is strongly correlated with the
mean (Pearson’s r= 0.82; Supplementary Fig. 3), and the most
homozygous cohorts provide up to 100 times greater per-sample
statistical power than cosmopolitan European-ancestry cohorts
(Supplementary Data 5). To categorise cohorts, we plotted mean
FROH against FIS (Fig. 2). FIS measures inbreeding as reflected by
non-random mating in the most recent generation, and is cal-
culated as the mean individual departure from Hardy–Weinberg
equilibrium (FSNP; see Methods). Cohorts with high rates of
consanguinity lie near the FROH= FIS line, since most excess SNP
homozygosity is caused by ROH. In contrast, cohorts with small
effective population sizes, such as the Amish and Hutterite iso-
lates of North America, have high average FROH, often despite
avoidance of mating with known relatives, since identical-by-
descent haplotypes are carried by many couples, due to a
restricted number of possible ancestors.

Traits affected by FROH. To estimate the effect of inbreeding on
each of the 100 phenotypes studied, trait values were regressed on
FROH within each cohort, taking account of covariates including
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Anthropometry
Blood pressure
Cognition
Haematology
Electrocardiology
Fertility
Blood lipids
Behavioural
Well-being
Lung function
Female reproductive
Renal function
Liver enzymes
Inflammatory
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Ocular

Fig. 1 Census of complex traits. Sample sizes are given for analyses of 57 representative phenotypes, arranged into 16 groups covering major organ
systems and disease risk factors. HDL high-density lipoprotein, LDL low-density lipoprotein, hs-CRP high-sensitivity C-reactive protein, TNF-alpha tumour
necrosis factor alpha, FEV1 forced expiratory volume in one second, FVC forced vital capacity, eGFR estimated glomerular filtration rate
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age, sex, principal components of ancestry and, in family studies,
a genomic relationship matrix (GRM) (Supplementary Data 3).
Cross-cohort effect size estimates were then obtained by fixed-
effect, inverse variance-weighted meta-analysis of the within-
cohort estimates (Supplementary Data 10). Twenty-seven out of
79 quantitative traits and 5 out of 21 binary traits reach
experiment-wise significance (0.05/100 or p < 0.0005; Fig. 3a, b).
Among these are replications of the previously reported effects on
reduction in height13, forced expiratory lung volume in one
second, cognition and education attained6. We find that the 32
phenotypes affected by inbreeding can be grouped into five
broader categories: reproductive success, risky behaviours, cog-
nitive ability, body size, and health.

Despite the greater individual control over reproduction in the
modern era, due to contraception and fertility treatments, we find
that increased FROH has significant negative effects on five traits
closely related to fertility. For example, an increase of 0.0625 in
FROH (equivalent to the difference between the offspring of first
cousins and those of unrelated parents) is associated with having
0.10 fewer children [β0.0625=−0.10 ± 0.03 95% confidence
interval (CI), p= 1.8 × 10−10]. This effect is due to increased
FROH being associated with reduced odds of having any children
(OR0.0625= 0.65 ± 0.04, p= 1.7 × 10−32) as opposed to fewer
children among parents (β0.0625= 0.007 ± 0.03, p= 0.66). Since

autozygosity also decreases the likelihood of having children in
the subset of individuals who are, or have been, married,
(OR0.0625= 0.71 ± 0.09, p= 3.8 × 10−8) it appears that the cause
is a reduced ability or desire to have children, rather than reduced
opportunity. Consistent with this interpretation, we observe no
significant effect on the likelihood of marriage (OR0.0625= 0.94 ±
0.07, p= 0.12) (Fig. 3b). All effect size, odds ratios and 95% CI are
stated as the difference between FROH= 0 and FROH= 0.0625.

The effects on fertility may be partly explained by the effect of
FROH on a second group of traits, which capture risky or addictive
behaviour. Increased FROH is associated with later age at first sex
(β0.0625= 0.83 ± 0.19 years, p= 5.8 × 10−17) and fewer sexual
partners (β0.0625=−1.38 ± 0.38, p= 2.0 × 10−12) but also
reduced alcohol consumption (β0.0625=−0.66 ± 0.12 units per
week, p= 1.3 × 10−22), decreased likelihood of smoking
(OR0.0625= 0.79 ± 0.05, p= 5.9 × 10−13), and a lower probability
of being a self-declared risk-taker (OR0.0625= 0.84 ± 0.06, p=
3.4×10−5) or exceeding the speed limit on a motorway (p= 4.0 ×
10−8). Conservative beliefs are likely to affect these traits, and are
known to be confounded with FROH in some populations14,
however, fitting religious participation as a covariate in UKB
reduces, but does not eliminate the reported effects (Supplemen-
tary Fig. 10b, Supplementary Data 20). Similarly, fitting
educational attainment as an additional covariate reduces 16 of
25 significant effect estimates, but actually increases 9, including
age at first sex and number of children (Supplementary Fig. 10a,
Supplementary Data 20). This is because reduced educational
attainment is associated with earlier age at first sex and increased
number of children, which makes it an unlikely confounder for
the effects of FROH, which are in the opposite directions.

A third group of traits relates to cognitive ability. As previously
reported, increased autozygosity is associated with decreased
general cognitive ability, g6,15 and reduced educational attain-
ment6. Here, we also observe an increase in reaction time
(β0.0625= 11.6 ± 3.9 ms, p= 6.5 × 10−9), a correlate of general
cognitive ability (Fig. 3a, Supplementary Data 10).

A fourth group relates to body size. We replicate previously
reported decreases in height and forced expiratory volume6

(Supplementary Data 21) and we find that increased FROH
is correlated with a reduction in weight (β0.0625= 0.86 ± 0.12 kg,
p= 3.4 × 10−28) and an increase in the waist to hip ratio (β0.0625
= 0.004 ± 0.001, p= 1.4 × 10−11).

The remaining effects are loosely related to health and frailty;
higher FROH individuals report significantly lower overall
health and slower walking pace, have reduced grip strength
(β0.0625=−1.24 ± 0.19 kg, p= 6.9 × 10−24), accelerated self-
reported facial ageing, and poorer eyesight and hearing. Increased
FROH is also associated with faster heart rate (β0.0625= 0.56 ± 0.24
bpm, p= 5.9 × 10−6), lower haemoglobin (β0.0625= 0.81 ± 0.24 gL
−1, p= 1.6 × 10−11), lymphocyte percentage, and total cholesterol
(β0.0625=−0.05 ± 0.015 mmol L−1, p= 5.2 × 10−10).

Sex-specific effects of FROH. Intriguingly, for a minority of traits
(13/100), the effect of FROH differs between men and women
(Fig. 3c, Supplementary Data 12). For example, men who are the
offspring of first cousins have 0.10 mmol L−1 [95% CI 0.08–0.12]
lower total cholesterol on average, while there is no significant
effect in women; LDL shows a similar pattern. More generally, for
these traits, the effect in men is often of greater magnitude than
the effect in women, perhaps reflecting differing relationships
between phenotype and fitness.

Associations most likely caused by rare, recessive variants. The
use of ROH to estimate inbreeding coefficients is relatively new in
inbreeding research11,16–19. Earlier frequency-based estimators
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such as FSNP and FGRM20, made use of excess marker homo-
zygosity21–23 and did not require physical maps. We performed
both univariate and multivariate regressions to evaluate the
effectiveness of FROH against these measures. The correlations
between them range from 0.13 to 0.99 and are strongest in
cohorts with high average inbreeding (Supplementary Data 6,
Supplementary Fig. 6). Significantly, univariate regressions of
traits on both FSNP and FGRM show attenuated effect estimates
relative to FROH (Supplementary Data 13). This attenuation is
greatest in low autozygosity cohorts, suggesting that FROH is a
better estimator of excess homozygosity at the causal loci
(Fig. 4c).

To explore this further, we fit bivariate models with FROH and
FGRM as explanatory variables. For all 32 traits that were
significant in the univariate analysis, we find that bβFROHjFGRM is

of greater magnitude than bβFGRMjFROHin the conditional analysis
(Fig. 4b, Supplementary Data 22). This suggests that inbreeding
depression is predominantly caused by rare, recessive variants
made homozygous in ROH, and not by the chance homozygosity
of variants in strong LD with common SNPs (Fig. 4d,
Supplementary Note 5). We also find that ROH of different

lengths have similar effects per unit length (Fig. 4a, Supplemen-
tary Fig. 11a), consistent with their having a causal effect on traits
and not with confounding by socioeconomic or other factors, as
shorter ROH arise from deep in the pedigree are thus less
correlated with recent consanguinity.

Quantifying the scope of social confounding. Previous studies
have highlighted the potential for FROH to be confounded by non-
genetic factors6,24. We therefore estimated the effect of FROH
within various groups, between which confounding might be
expected either to differ, or not be present at all.

For example, the effect of FROH on height is consistent across
seven major continental ancestry groups (Supplementary Fig. 1,
Supplementary Data 18), despite differing attitudes towards
consanguinity, and consequently different burdens and origins of
ROH. Similarly, grouping cohorts into consanguineous, more
cosmopolitan, admixed and those with homozygosity due to
ancient founder effects also shows consistent effects (Supplemen-
tary Fig. 2, Supplementary Data 19). Equally, categorising samples
into bins of increasing FROH shows a dose-dependent response of
the study traits with increased FROH (Supplementary Data 17 and
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Fig. 5a, b show the response for height and ever having children;
Supplementary Figs 9a–f for all significant traits). The propor-
tionality of these effects is consistent with a genetic cause, while it
is difficult to envisage a confounder proportionally associated
across the entire range of observed FROH. In particular, the
highest FROH group (FROH > 0.18), equivalent to the offspring of
first-degree relatives, are found to be, on average, 3.4 [95% CI
2.5–4.3] cm shorter and 3.1 [95% CI 2.5–3.7] times more likely to
be childless than an FROH= 0 individual.

Next, we estimated βFROH
for 7153 self-declared adopted

individuals in UK Biobank, whose genotype is less likely to be
confounded by cultural factors associated with the relatedness of
their biological parents. For all 26 significant traits measured in
this cohort, effect estimates are directionally consistent with the
meta-analysis and 3 (height, walking pace and hearing acuity)

reach replication significance (p < 0.004). In addition, a meta-
analysis of the ratio bβFROH ADOPTEE

: bβFROH across all traits differs
significantly from zero (Fig. 5c; average= 0.78, 95% CI 0.56–1.00,
p= 2 × 10−12).

Finally, the effect of FROH was estimated in up to 118,773
individuals in sibships (full-sibling pairs, trios, etc.: bβFROH wSibs

).
FROH differences between siblings are caused entirely by
Mendelian segregation, and are thus independent of any reason-
able model of confounding. The variation of FROH among siblings
is a small fraction of the population-wide variation11 (Supple-
mentary Data 5); nevertheless, 23 out of 29 estimates of bβFROH wSibs

are directionally consistent with bβFROH , and two (self-reported
overall health and ever having children) reach replication
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The effects of shorter (<5Mb) and longer (>5Mb) ROH per unit length are similar and strongly negative, whereas the effect of homozygosity outside ROH
is much weaker. The pattern is similar for other traits (Supplementary Fig. 11a; Supplementary Data 14). b FROH is more strongly associated than FGRM in a
bivariate model of height. Meta-analysed effect estimates, and 95% confidence intervals, are shown for a bivariate model of height
(Height � FROH þ FGRM). The reduction in height is more strongly associated with FROH than FGRM, as predicted if the causal variants are in weak LD with
the common SNPs used to calculate FGRM (Supplementary Note 5). The pattern is similar for other traits (Supplementary Fig. 15a, b; Supplementary

Data 22). c FROH is a lower variance estimator of the inbreeding coefficient than FGRM. The ratio of βFGRM : βFROH is plotted against varðFROHÞ
varðFGRMÞ for all traits in all

cohorts. When the variation of FGRM which is independent of FROH has no effect on traits, β̂FGRM is downwardly biased by a factor of varðFROHÞ
varðFGRMÞ (Supplementary

Note 4). A linear maximum likelihood fit, shown in red, has a gradient consistent with unity [1.01; 95% CI 0.84–1.18], as expected when the difference
between FGRM and FROH is not informative about the excess homozygosity at causal variants (Supplementary Note 5). d FROH is a better predictor of rare
variant homozygosity than FGRM. The excess homozygosities of SNPs, extracted from UK Biobank imputed genotypes, were calculated at seven discrete
minor allele frequencies (FMAF), and regressed on two estimators of inbreeding in a bivariate statistical model (see Supplementary Note 5). The
homozygosity of common SNPs is better predicted by FGRM, but rare variant homozygosity is better predicted by FROH. The results from real data (Fig. 4b,
Supplementary Figs 15a, b and Supplementary Data 22) are consistent with those simulated here, if the causal variants are predominantly rare. All errors
bars represent 95% confidence intervals
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Fig. 5 Evidence ROH effects are un-confounded. a Linear decrease in height with increasing FROH. Average heights (in metres) is plotted in bins of
increasing FROH. The limits of each bin are shown by red dotted lines, and correspond to the offspring of increasing degree unions left-to-right. The overall
estimate of βFROH is shown as a solid black line. Subjects with kinship equal to offspring of full-sibling or parent–child unions are significantly shorter than
those of avuncular or half-sibling unions who in turn are significantly shorter than those of first-cousin unions. b Linear decrease in odds of ever having
children with increasing FROH. Linear model approximations of ln(Odds-Ratio) for ever having children (1= parous, 0= childless) are plotted in bins of
increasing FROH. A strong relationship is evident, extending beyond the offspring of first cousins. c ROH effects are consistent in adoptees. The ratios of
effect estimates, βFROH , between adoptees and all individuals are presented by trait. All traits are directionally consistent and overall show a strongly
significant difference from zero (average= 0.78, 95% CI 0.56–1.00, p= 2 × 10−12). FEV1 forced expiratory volume in one second. d ROH effects are
consistent in full siblings. The ratios of effect estimates within full siblings to effects in all individuals (βFROH wSibs

: βFROH ) are presented by trait. Twenty-three
of 29 estimates are directionally consistent and overall show a significant difference from zero (average= 0.78, 95% CI 0.53–1.04, p= 7 × 10−10). BMI
body mass index. All errors bars represent 95% confidence intervals
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significance. A meta-analysis of the ratio bβFROH wSibs
: bβFROH for all

traits is significantly greater than zero (Fig. 5d; average= 0.78,
95% CI 0.53–1.04, p= 7 × 10−10), indicating a substantial fraction
of these effects is genetic in origin. However, for both adoptees
and siblings, the point estimates are less than one, suggesting that
non-genetic factors probably contribute a small, but significant,
fraction of the observed effects.

Discussion
Our results reveal inbreeding depression to be broad in scope,
influencing both complex traits related to evolutionary fitness and
others where the pattern of selection is less clear. While studies of
couples show optimal fertility for those with distant kinship25,26,
fewer have examined reproductive success as a function of indi-
vidual inbreeding. Those that did are orders of magnitude smaller
in size than the present study, suffer the attendant drawbacks of
pedigree analysis, and have found mixed results27–29. Our geno-
mic approach also reveals that in addition to socio-demographic
factors and individual choice, recessive genetic effects have a
significant influence on whether individuals reproduce. The dis-
cordant effects on fertility and education demonstrate that this is
not just a result of genetic correlations between the two
domains30.

The effects we see on fertility might be partially mediated
through a hitherto unknown effect of autozygosity on decreasing
the prevalence of risk-taking behaviours. Significant effects of
autozygosity are observed for self-reported risk taking, speeding
on motorways, alcohol and smoking behaviour, age at first sexual
intercourse and number of sexual partners. Independent evidence
for a shared genetic architecture between risk-taking and fertility
traits comes from analysis of genetic correlations using LD-score
regression in UKB (Supplementary Table 1). The core fertility
traits, ever had children and number of children, are strongly
genetically correlated (rG= 0.93; p < 10−100). Genetic correlations
with ever-smoking and self-reported risk-taking are lower, but
also significant: 0.23–0.27, p < 10−10. Age at first sex is strongly
genetically correlated both with the fertility traits, (rG=
0.53–0.57), and number of sexual partners, ever-smoking and
risk-taking30 (rG= 0.42–0.60).

Reproductive traits are understandable targets of natural
selection, as might be walking speed, grip strength, overall health,
and visual and auditory acuity. While we cannot completely
exclude reverse causality, whereby a less risk-taking, more con-
servative, personality is associated with greater likelihood of
consanguineous marriage, we note that the effects are consistent
for ROH < 5Mb, which are less confounded with mate choice,
due to their more distant pedigree origins (Supplementary
Fig. 11a). This group of traits also shows similar evidence for un-
confounded effects in the analysis of adoptees and full siblings
(Fig. 5c, d; Supplementary Data 16) and the signals remained
after correcting for religious activity or education.

On the other hand, for some traits that we expected to be
influenced by ROH, we observed no effect. For example, birth
weight is considered a key component of evolutionary fitness in
mammals, and is influenced by genomic homozygosity in deer31;
however, no material effect is apparent here (Supplementary
Data 10). Furthermore, in one case, ROH appear to provide a
beneficial effect: increasing FROH significantly decreases total and
LDL-cholesterol in men, and may thus be cardio-protective in
this regard.

Our multivariate models show that homozygosity at common
SNPs outside of ROH has little influence on traits, and that the
effect rather comes from ROH over 1.5 Mb in length. This sug-
gests that genetic variants causing inbreeding depression are
almost entirely rare, consistent with the dominance hypothesis1.

The alternative hypothesis of overdominance, whereby positive
selection on heterozygotes has brought alleles to intermediate
frequencies, would predict that more common homozygous SNPs
outside long ROH would also confer an effect. The differential
provides evidence in humans that rare recessive mutations
underlie the quantitative effects of inbreeding depression.

Previous studies have shown that associations observed
between FROH and traits do not prove a causal relationship14,24.
Traditional Genome-wide Association Studies (GWAS) can infer
causality because, in the absence of population structure, genetic
variants (SNPs) are randomly distributed between, and within,
different social groups. However, this assumption does not hold
in studies of inbreeding depression, where, even within a
genetically homogeneous population, social groups may have
differing attitudes towards consanguinity, and therefore different
average FROH and, potentially, different average trait values. We
therefore present a number of analyses that discount social
confounding as a major factor in our results. Firstly, we show that
the effects are consistent across diverse populations, including
those where ROH burden is driven by founder effects rather than
cultural practices regarding marriage. Effects are also consistent
across a 20-fold range of FROH: from low levels, likely unknown to
the subject, to extremely high levels only seen in the offspring of
first-degree relatives. Secondly, we show that the effects of ROH
are consistent in direction and magnitude among adopted indi-
viduals, and also for short ROH which are not informative about
parental relatedness. Finally, we introduce a within-siblings
method, independent of all confounders, that confirms a
genetic explanation for most of the observed effects. Variation in
FROH between siblings is caused entirely by random Mendelian
segregation; we show that higher FROH siblings experience poorer
overall health and lower reproductive success, as well as other
changes consistent with population-wide estimates. Nevertheless,
average effect sizes from both adoptees and siblings are 20%
smaller than population-wide estimates, confirming the impor-
tance of accounting for social confounding in future studies of
human inbreeding depression.

Our results reveal five large groups of phenotypes sensitive to
inbreeding depression, including some known to be closely linked
to evolutionary fitness, but also others where the connection is,
with current knowledge, more surprising. The effects are medi-
ated by ROH rather than homozygosity of common SNPs, cau-
sally implicating rare recessive variants rather than
overdominance as the most important underlying mechanism.
Identification of these recessive variants will be challenging, but
analysis of regional ROH and in particular using whole-genome
sequences in large cohorts with sufficient variance in autozygosity
will be the first step. Founder populations or those which prefer
consanguineous marriage will provide the most power to
understand this fundamental phenomenon.

see Supplementary Data.

Methods
Overview. Our initial aim was to estimate the effect of FROH on 45 quantitative
traits and to assess whether any of these effects differed significantly from zero.
Previous work7,11 has shown that inbreeding coefficients are low in most human
populations, and that very large samples are required to reliably estimate the
genetic effects of inbreeding13. To maximise sample size, a collaborative con-
sortium (ROHgen6) was established, and research groups administering cohorts
with SNP chip genotyping were invited to participate. To ensure that all partici-
pants performed uniform and repeatable analyses, a semi-automated software
pipeline was developed and executed locally by each research group. This software
pipeline required cohorts to provide only quality-controlled genotypes (in plink
binary format) and standardised phenotypes (in plain-text) and used standard
software (R, PLINK12,32, KING33) to perform the analyses described below. Results
from each cohort were returned to the central ROHgen analysts for meta-analysis.

During the initial meta-analysis, genotypes were released for >500,000 samples
from the richly phenotyped UK Biobank (UKB)10. It was therefore decided to add a
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further 34 quantitative phenotypes and 21 binary traits to the ROHgen analysis.
Many of these additional traits were unique to UKB, although 7 were also available
in a subset of ROHgen cohorts willing to run additional analyses. In total, the effect
of FROH was tested on 100 traits and therefore experiment-wise significance was
defined as 5 × 10−4 (=0.05/100).

Cohort recruitment. In total, 119 independent, genetic epidemiological study
cohorts were contributed to ROHgen. Of these, 118 were studies of adults and
contributed multiple phenotypes, while 1 was a study of children and contributed
only birth weight. To minimise any potential confounding or bias caused by
within-study heterogeneity, studies were split into single-ethnicity sub-cohorts
wherever applicable. Each sub-cohort was required to use only one genotyping
array and be of uniform ancestry and case-status. For example, if a study contained
multiple distinct ethnicities, sub-cohorts of each ancestry were created and ana-
lysed separately. At minimum, ancestry was defined on a sub-continental scale (i.e.
European, African, East Asian, South Asian, West Asian, Japanese, and Hispanic
were always analysed separately) but more precise separation was used when
deemed necessary, for example, in cohorts with large representation of Ashkenazi
Jews. In case-control studies of disease, separate sub-cohorts were created for cases
and controls and phenotypes associated with disease status were not analysed in
the case cohort: for example, fasting plasma glucose was not analysed in Type 2
diabetes case cohorts. Occasionally, cohorts had been genotyped on different SNP
genotyping microarrays and these were also separated into sub-cohorts. There was
one exception (deCODE) to the single microarray rule, where the intersection
between all arrays used exceeded 150,000 SNPs. In this cohort the genotype data
from all arrays was merged since the correspondence between FROH for the indi-
vidual arrays and FROH the intersection dataset was found to be very strong
(βmerged;hap = 0.98, r2= 0.98; βmerged;omni = 0.97, r2=0.97). Dividing studies using
these criteria yielded 234 sub-cohorts. Details of phenotypes contributed by each
cohort are available in Supplementary Data 4.

Ethical approval. Data from 119 independent genetic epidemiology studies were
included. All subjects gave written informed consent for broad-ranging health and
genetic research and all studies were approved by the relevant research ethics
committees or boards. PubMed references are given for each study in Supple-
mentary Data 2.

Genotyping. All samples were genotyped on high-density (minimum 250,000
markers), genome-wide SNP microarrays supplied by Illumina or Affymetrix.
Genotyping arrays with highly variable genomic coverage (such as Exome chip,
Metabochip, or Immunochip) were judged unsuitable for the ROH calling algo-
rithm and were not permitted. Imputed genotypes were also not permitted; only
called genotypes in PLINK binary format were accepted. Each study applied their
own GWAS quality controls before additional checks were made in the common
analysis pipeline: SNPs with >3% missingness or MAF <5% were removed, as were
individuals with >3% missing data. Only autosomal genotypes were used for the
analyses reported here. Additional, cohort-specific, genotyping information is
available in Supplementary Data 2.

Phenotyping. In total, results are reported for 79 quantitative traits and 21 binary
traits. These traits were chosen to represent different domains of health and
reproductive success, with consideration given to presumed data availability. Many
of these traits have been the subject of existing genome-wide association meta-
analyses (GWAMA), and phenotype modelling, such as inclusion of relevant
covariates, was copied from the relevant consortia (GIANT for anthropometry,
EGG for birth weight, ICBP for blood pressures, MAGIC for glycaemic traits,
CHARGE-Cognitive, -Inflammation & -Haemostasis working groups for cognitive
function, CRP, fibrinogen, CHARGE-CKDgen for eGFR, CHARGE-ReproGen for
ages at menarche and menopause, Blood Cell & HaemGen for haematology,
GUGC for urate, RRgen, PRIMA, QRS & QT-IGC for electrocardiography, GLGC
for classical lipids, CREAM for spherical equivalent refraction, Spirometa for lung
function traits, and SSGAC for educational attainment and number of children
ever born). Further information about individual phenotype modelling is available
in Supplementary Note 1 and Supplementary Data 8.

ROH calling. Runs of homozygosity (ROH) of >1.5 Mb in length were identified
using published methods6,11. In summary, SNPs with minor allele frequencies
below 5% were removed, before continuous ROH SNPs were identified using
PLINK with the following parameters: homozyg-window-snp 50; homozyg-snp 50;
homozyg-kb 1500; homozyg-gap 1000; homozyg-density 50; homozyg-window-
missing 5; homozyg-window-het 1. No linkage disequilibrium pruning was per-
formed. These parameters have been previously shown to call ROH that corre-
spond to autozygous segments in which all SNPs (including those not present on
the chip) are homozygous-by-descent, not chance arrangements of independent
homozygous SNPs, and inbreeding coefficient estimates calculated by this method
(FROH) correlate well with pedigree-based estimates (FPED)11. Moreover, they have
also been shown to be robust to array choice6.

Calculating estimators of F. For each sample, two estimates of the inbreeding
coefficient (F) were calculated, FROH and FSNP. We also calculated three additional
measures of homozygosity: FROH<5Mb, FROH>5Mb and FSNP_outsideROH.

FROH is the fraction of each genome in ROH >1.5 Mb. For example, in a sample
for which PLINK had identified n ROH of length li (in Mb), i ϵ {1..n}, then FROH
was then calculated as

FROH ¼
Pn

i¼1
li

3Gb
; ð1Þ

where FROH<5Mb and FROH>5Mb are the genomic fractions in ROH of length >5Mb,
and in ROH of length <5Mb (but >1.5 Mb), respectively, and the length of the
autosomal genome is estimated at 3 gigabases (Gb). It follows from this definition
that

FROH ¼ FROH>5Mb þ FROH<5Mb : ð2Þ
Single-point inbreeding coefficients can also be estimated from individual SNP

homozygosity without any reference to a genetic map. For comparison with FROH,
a method of moments estimate of inbreeding coefficient was calculated34, referred
to here as FSNP, and implemented in PLINK by the command–het.

FSNP ¼ O HOMð Þ�E HOMð Þ
N�E HOMð Þ ; ð3Þ

where O(HOM) is the observed number of homozygous SNPs, E(HOM) is the
expected number of homozygous SNPs, i.e.

PN
i¼1 1� 2piqið Þ, and N is the total

number of non-missing genotyped SNPs.
FROH and FSNP are strongly correlated, especially in cohorts with significant

inbreeding, since both are estimates of F. To clarify the conditional effects of FROH
and FSNP, an additional measure of homozygosity,FSNPoutsideROH, was calculated to
describe the SNP homozygosity observed outside ROH.

FSNPoutsideROH ¼ O′ HOMð Þ�E′ HOMð Þ
N′�E′ HOMð Þ ; ð4Þ

where

O′ HOMð Þ ¼ O HOMð Þ � NSNP ROH ; ð5Þ

E′ HOMð Þ ¼ N�NROH
N

� �
� E HOMð Þ ; ð6Þ

N′ ¼ N � NROH ð7Þ
And NSNP_ROH is the number of homozygous SNPs found in ROH. Note that:

FSNPoutsideROH � FSNP � FROH ð8Þ
A further single point estimator of the inbreeding coefficient, described by Yang

et al.20 as bFIII, is implemented in PLINK by the parameter –ibc (Fhat3) and was
also calculated for all samples.

FGRM ¼ bFIII ¼ 1
N

XN

i¼1

x2i � 1þ 2pið Þxi þ 2p2i
� �

2pi 1� pið Þ ; ð9Þ

where N is the number of SNPs, pi is the reference allele frequency of the ith SNP in
the sample population and xi is the number of copies of the reference allele.

Effect size estimates for quantitative traits. In each cohort of n samples, for
each of the quantitative traits measured in that cohort, trait values were modelled
by

y ¼ βFROH � FROH þ Xbþ ε ; ð10Þ
where y is a vector (n × 1) of measured trait values, βFROH

is the unknown scalar
effect of FROH on the trait, FROH is a known vector (n × 1) of individual FROH, b is a
vector (m × 1) of unknown fixed covariate effects (including a mean, μ), X in a
known design matrix (n ×m) for the fixed effects, and ε is an unknown vector (n ×
1) of residuals.

The m fixed covariates included in each model were chosen with reference to
the leading GWAMA consortium for that trait and are detailed in Supplementary
Data 8. For all traits, these covariates included: age (and/or year of birth), sex, and
at least the first 10 principal components of the genomic relatedness matrix
(GRM). Where necessary, additional adjustments were made for study site,
medications, and other relevant covariates (Supplementary Data 3).

For reasons of computational efficiency, it was decided to solve Eq. (10) in two
steps. In the first step, the trait (y) was regressed on all fixed covariates to obtain the
maximum likelihood solution of the model:

y ¼ Xbþ ε′ : ð11Þ
All subsequent analyses were performed using the vector of trait residuals ε′,

which may be considered as the trait values corrected for all known covariates.
In cohorts with a high degree of relatedness, mixed-modelling was used to

correct for family structure, although, because ROH are not narrow-sense heritable,
this was considered less essential than in Genome-Wide Association Studies.
Equation (11) becomes

y ¼ Xbþ uþ ε′; ð12Þ
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where u is an unknown vector (n × 1) of polygenic effects with multivariate normal
distribution of mean 0 and covariance matrix σg2A, where A is the genomic
relationship matrix (GRM). In these related cohorts, a GRM was calculated using
PLINK v1.9 and Grammar+ residuals of Eq. (12) were estimated using
GenABEL35. These Grammar+ residuals (ε′) were used in subsequent analyses.

To estimate βFROH
for each trait, trait residuals were regressed on FROH to obtain

the maximum likelihood (ML) solution of the model

ε′ ¼ μþ βFROH � FROH þ ε: ð13aÞ
The sex-specific estimates of βFROH

(Supplementary Data 12) were obtained
from Eq. (13) applied to the relevant sex.

For all traits, a corresponding estimates of βFSNP
and βFGRM were obtained from

the models

ε′ ¼ μþ βFSNP � FSNP þ ε; ð13bÞ

ε′ ¼ μþ βFGRM � FGRM þ ε ð14Þ
and the effects of different ROH lengths and of SNP homozygosity (Fig. 4b) were
obtained from the model

ε′ ¼ μþ β1 � FSNPoutsideROH

� �
þ β2 � FROH<5Mb

� �
þ β3 � FROH>5Mb

� �þ ε
: ð15Þ

Effect size estimates for binary traits. Binary traits were analysed by two
methods. The primary estimates of βFROH

(Fig. 3b and Supplementary Data 10)
were obtained from full logistic models:

g E y½ �ð Þ ¼ Xb ; ð16Þ
where g() is the link function (logit), and where FROH and all applicable covariates
(Supplementary Datas 3, 8) were fitted simultaneously. Mixed modelling for family
structure was not attempted in the logistic models since an accepted method was
not apparent.

For all subsequent results, y was scaled by 1=σ2y and analysed by linear models,
as for quantitative traits, including mixed-modelling where appropriate for family
studies. This method of estimating binary traits with simple linear models gives
asymptotically unbiased estimates of βFROH

and se(βFROH
) on the ln(Odds-Ratio)

scale36. For all significant binary traits, a comparison of bβFROH from the full model

with bβFROH from the linear model approximation is presented in Supplementary
Fig. 8.

To give bβFROH a more tangible interpretation, effect estimates are frequently
quoted in the text as β0.0625, i.e. the estimated effect in the offspring of first cousins,
where 6.25% of the genome is expected to be autozygous.

Religiosity and educational attainment as additional covariates. To assess the
importance of potential social confounders, proxy measures of socio-economic
status and religiosity were separately included in Eq. (13) as additional covariates.

The modified effect estimates (bβ′FROH ) were tested for significance (Supplementary
Data 20) and compared to the uncorrected estimates (βFROH

) (Supplementary
Fig. 10a, b).

Since Educational Attainment (EA) was measured in many cohorts, this was
chosen as the most suitable proxy for socio-economic status. However, since FROH
is known to affect EA directly6 any change in βFROH

when conditioning on EA
cannot be assumed to be entirely due to environmental confounding.

The analysis of religiosity was only carried out in UKB, where a rough proxy
was available. Although no direct questions about religious beliefs were included,
participants were asked about their leisure activities. In response to the question
Which of the following do you attend once a week or more often? (You can select
more than one), 15.6% of UKB participants selected Religious Group from one of
the seven options offered. In the models described, religiosity was coded as 1 for
those who selected Religious Group and 0 for those who did not. Although this is
likely to be an imperfect measure of actual religious belief it is currently the best
available in a large dataset.

Assortative mating. Humans are known to mate assortatively for a number of
traits including height and cognition37, and so we sought to investigate if this could
influence our results, for example, by the trait extremes being more genetically
similar and thus the offspring more homozygous. We see no evidence for an effect
of assortative mating on autozygosity, however. Firstly, a polygenic risk score for
height (see Supplementary Note 1), which explains 18.7% of the phenotypic var-
iance in height, was not associated with FROH (p= 0.77; Supplementary Fig. 5).
Secondly, linear relationships between traits and autozygosity extend out to very
high FROH individuals (Supplementary Figs. 9a–f). Samples in the highest FROH
group are offspring of genetically similar parents, very likely first or second degree
relatives and, for example, the height of these samples is on average 3.4 cm [95% CI
2.5–4.3] shorter than the population mean. Assortative mating would suggest this

height deficit has been inherited from genetically shorter parents, but this would
require an implausibly strong relationship between short stature and a propensity
to marry a very close relative. Thirdly, the sex-specific effects we observe could only
be explained by assortative mating if the additive heritability of these traits also
differed by gender.

Average trait values in groups of similar FROH. In each cohort individuals were
allocated to one of ten groups of similar FROH. The bounds of these groups were the
same for all cohorts, specifically {0, 0.002, 0.0041, 0.0067, 0.0108, 0.0186, 0.0333,
0.06, 0.10, 0.18 and 1.0}. Within each group the mean trait residual (ε′) and mean
FROH were calculated, along with their associated standard errors. Within each
cohort the expectation of ε′ is zero at the mean FROH, however as mean FROH varies
between cohorts (Fig. 2, Supplementary Data 5) it was necessary to express ε′
relative to a common FROH before meta-analysis. Hence, for this analysis only, the
trait residuals (ε′) were expressed relative to the FROH= 0 intercept, i.e. by sub-
tracting μ from Eq. (13).

Effect of FROH within adoptees. We compared βFROH ADOPTEE
to cross-cohort

βFROH
, not that from UKB alone, as we consider the latter to be a noisy estimate

of the former; estimates in UKB are consistent with those from meta-analysis.

Effect of FROH within full-sibling families. In a subset of cohorts, with substantial
numbers of related individuals, further analyses were performed to investigate the
effect of FROH within full-sibling families. In each of these cohorts, all second-
degree, or closer, relatives were identified using KING (parameters:–related–degree
2). Full-siblings were then selected as relative pairs with genomic kinship >0.175
and IBS0 >0.001. This definition includes monozygotic twins, who were inten-
tionally considered as part of full-sibling families. Although monozygotic twins are
expected to have identical FROH, they may not have identical trait values, and
including additional trait measurements decreases the sampling error of the within-
family variance estimate, hence increasing statistical power. Dizygotic twins were
also included.

For each individual (j) with identified siblings, the values of FROH and trait
residual (ε′) were calculated relative to their family mean (and called FjROH_wSibs

and εjwSibs, respectively), i.e. for individual j with n full-siblings Sk where k ϵ {1..n}

FROHwSibs
j ¼ FROH

j � 1
nþ1ð Þ

P
iϵ j;Skf g F

ROH
i ; ð17Þ

εwSibsj ¼ ε′j � 1
nþ1ð Þ

P
iϵ j;Skf g ε′i : ð18Þ

The effect of FROH within-full-siblings (βFROH wSibes) was estimated by linear
regression of εwSibs on FROH_wSibs.

Importantly, the variation of FROH within full-siblings is entirely caused by
differences in Mendelian segregation, and is therefore completely independent of
all possible confounders. Hence, the effect estimates obtained by this method are
estimates of the genetic effects of FROH, unbiased by any possible confounder. Since
confounding by social factors is a major concern in this field, methods that can
definitively exclude this possibility are of critical importance.

Between-cohort meta-analysis. As is typical in genome-wide association meta-
analyses (GWAMA), genetic effects were estimated within single-ethnicity sub-
cohorts, and meta-analysis of the within-cohort effect sizes was used to combine
results38. This established method eliminates any potential confounding caused by
between-cohort associations between FROH and traits.

Each cohort returned estimates and standard errors of: βFROH ,

βFSNP ; βFROH>Mb
; βFROH<Mb

; βF outsideROH; βFROH wSibs
, as well as trait means (ε′) and

standard errors within each of 10 FROH bins. The between-cohort mean of each of
these 16 estimates was then determined by fixed-effect, inverse-variance meta-
analysis using the R package metafor39. Results shown in Figs. 3–5 are meta-
analysed averages of the within-cohort effects.

The meta-analysis was also run for various subsets of cohorts, stratified by
ancestry as defined in Supplementary Data 18. Meta-analysis estimates from these
groupings are shown in Supplementary Fig. 1.

Median and 95% CI of a ratio. In the analyses of adoptees (Fig. 5c), siblings
(Fig. 5d) and potential confounders (Supplementary Figs. 10a, b) we wished to
compare the effect estimates (βFROH

) from two different methods across a wide
range of traits. The units of βFROH

differ by trait so, to allow comparison across all
traits, the unitless ratio of effect size estimates was calculated (for example
βFROH wSibs

: βFROH
). Figure 5c, d and Supplementary Figs. 10a, b show the medians

and 95% CI of these ratios. These were determined empirically by bootstrap since,
although formulae exist for the mean and standard error of a ratio40, the
assumption of normality is violated when βFROH

/se(βFROH
) is not large.

Genetic correlations in UK Biobank. Genetic correlations were calculated using
LD-Score Regression41, implemented in LDSC v1.0.0 (https://github.com/bulik/
ldsc). Summary statistics were parsed using default parameters in the LDSC
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‘munge_sumstats.py’ script, extracting only variants present in the HapMap 3
reference panel.

Accuracy of FROH measures of inbreeding effects. A recent paper suggested that
ROH may overestimate inbreeding effects by as much as 162%42; however, this
could only be the case if FROH underestimates excess homozygosity at the causal loci
by at least 162%. We do not believe this to be the case since the maximum FROH
measured in many cohorts is around 0.25 (the expectation in the offspring off first-
degree relatives), and the effect size estimates from these samples are consistent with
the overall estimates (Fig. 5c, d and Supplementary Fig. 9a–f). We note that Yengo
et al. applied the ROH calling parameters used here to imputed data. These para-
meters have been validated for called genotype data6 but not, to our knowledge, for
the higher SNP density and error rate of imputed data (see also Supplementary
Note 4). The simple method for detecting ROH used here was well suited to our
study, since it could be easily implemented on over one million samples, and most
of the variation in FROH is caused by easily-identified long ROH.43–45

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The meta-analysed data which support these findings are available as Supplementary
Data files. Cohort-level summary statistics underlying all figures and tables are available
in a publicly accessible dataset (https://doi.org/10.6084/m9.figshare.9731087). In the
majority of cases we do not have consent to share individual-level data, although for UK
Biobank this is available on request from https://www.ukbiobank.ac.uk/.
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