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The Forest Observation System, 
building a global reference dataset 
for remote sensing of forest 
biomass
Dmitry Schepaschenko et al.#

Forest biomass is an essential indicator for monitoring the Earth’s ecosystems and climate. 
It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest 
degradation, assessment of renewable energy potential, and for developing climate change 
mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground 
biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods 
require extant, up-to-date, reliable, representative and comparable in situ data for 
calibration and validation. Here, we present the Forest Observation System (FOS) initiative, 
an international cooperation to establish and maintain a global in situ forest biomass 
database. AGB and canopy height estimates with their associated uncertainties are derived at 
a 0.25 ha scale from field measurements made in permanent research plots across the world’s 
forests. All plot estimates are geolocated and have a size that allows for direct comparison 
with many RS measurements. The FOS offers the potential to improve the accuracy of RS-
based biomass products while developing new synergies between the RS and ground-based 
ecosystem research communities.

Background & Summary
Global estimates of forest height, aboveground biomass (AGB) and changes over space and time are needed as 
both essential climate variables1 and essential biodiversity variables2, and to support international policy ini-
tiatives such as REDD+ 3. Several space-borne missions to assess forest structure and functioning, including 
BIOMASS (ESA), ALOS PALSAR (JAXA), GEDI (NASA) and NISAR (NASA-ISRO), will be operational in the 
coming years. These missions require ground-based estimates for algorithm calibration and product validation. 
For instance, high-quality, standardized measurements of forest biomass and height are critical for improving the 
accuracy of products derived from space-borne instruments. Furthermore, ensuring that different missions have 
access to the same set of high-quality standardized measurements for calibration and validation should vastly 
help improve comparability and confidence in future remote sensing (RS) products.

Remote Sensing users typically have different product requirements compared to those of the ecological and 
forestry communities. Namely, RS users often (1) need access to AGB estimates at the pixel level, while ecologists 
and foresters produce area-based estimates derived from individual trees measurements. RS users typically (2) 
need products at a consistent spatial resolution, while a variety of plot sizes and shapes have been adopted by 
ecologists and foresters. Finally, RS users (3) require AGB to be computed via globally and regionally consistent 
routines, while various approaches have been developed to derive AGB estimates from tree measurements. These 
communities also operate differently from a funding perspective. Most notably, recurrent investments are needed 
to maintain permanent forest plots – including censuses that temporally match RS data collection – and to ensure 
field and botanical staff are paid and trained, without whom the data would not be collected. In contrast, RS users 
typically access data provided by space-borne missions that have already been funded. Despite these differences, 
there is a clear need to share existing data sets for the benefit of both communities.
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The Forest Observation System – FOS (http://forest-observation-system.net/) – is an international, collab-
orative initiative that aims to establish a global in situ forest AGB database to support Earth Observation (EO) 
and to encourage investment in relevant field-based measurements and research4. The FOS enables access to 
high-quality field data by partnering with some of the most well-established teams and networks responsible 
for managing permanent forest plots globally. In doing so, FOS is benefiting both the RS and ecological/forestry 
communities while facilitating positive interactions between them.

To this end, the FOS project has established a data sharing policy and framework that seeks to overcome 
existing barriers between data providers and users. For example, data made available on the FOS website are 
plot-aggregated (i.e., stand AGB, canopy height, etc.), while the underlying original tree-by-tree data are managed 
by participating ecological networks. To ensure that estimates added to the FOS are robust and consistent, a freely 
downloadable BIOMASS R-package5 has been upgraded, which makes the procedure for computing plot AGB 
estimates from tropical forest inventories transparent, standardized and reproducible. There are developments 
underway to make the package usable for any forest type, including boreal and temperate ecosystems. This work 
has been complemented by the definition of a set of technical requirements and standards aimed at ensuring data 
comparability4.

The FOS currently hosts aggregate data from plots contributed by several existing networks, including: the 
network of the Center for Tropical Forest Science – Forest Global Earth Observatory (CTFS-ForestGEO)6, the 
RAINFOR7, AfriTRON8 and T-FORCES9 (curated on the ForestPlots.net platform)10, the IIASA network11,12, the 
Tropical Managed Forests Observatory (TmFO)13 and AusCover14. These international collaborations have already 
(i) invested in establishing permanent sampling plots; (ii) proposed robust protocols for accurate tree mapping and 
measurement, which are largely standardized across networks; (iii) monitored existing plots repeatedly; and (iv) 
established databases with particular emphasis on data quality control10,15. As the FOS is an open initiative, additional 
networks (e.g., GFBI16) and teams that comply with the aforementioned criteria are welcome to join in the future.

The data presented here have been partly published before17–21, but never in such a unified and comprehen-
sive manner. Results based on some of the plots presented here have impacted a wide range of scientific fields, 
including tropical forest ecology22–26, drought sensitivity of forests19,27–29, tree allometry30–33, carbon cycles21,34–36, 
remote sensing18,37–39, climate change8,40–43, biodiversity44–47, diversity-carbon relationships48,49 and historical for-
est use50,51, among others.

The online database (http://forest-observation-system.net/) provides open access to the canopy height and 
biomass estimates as well as information about the plot PIs who have granted access to the data (see Fig. 1 below).

Methods
Within the sample plots, every stem above a defined threshold in diameter at breast height (DBH, usually 1, 5, 7 
or 10 cm) was taxonomically identified and the DBH measured, avoiding any buttresses or deformities. In most 
plots, tree height was measured for a subset of trees that are representative of different diameter classes and tree 
species in order to develop site-specific height-diameter regression equations. Based on an analysis using the 

Fig. 1  The Forest-Observation-System.net web portal.
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tropical forest plot data, as few as 40 tree height observations are sufficient for characterizing this relationship if 
stratified by diameter22.

All the data presented here were collected from permanent forest sample plots with known locations; accu-
rate coordinates (with an error of less than 30 meters) have been either delivered to the FOS or will be recorded 
during the next census. Plot sizes are typically 1 ha in area (i.e., the median), but they can vary from 0.25 ha to 
50 ha. Large plots are subdivided into 0.25 ha, i.e., 50 × 50 m sub-plots. The FOS consortium made the decision 
to consider only relatively large and permanent plots in order to reduce errors in georeferencing and to decrease 
the variability in the measured parameters. Recent research has quantified the effect of spatial resolution on the 
uncertainties in the AGB estimates, with sampling error dropping from 46.3% for 0.1 ha plots, to 26% and 16.5% 
for 0.25 ha and 1 ha plots, respectively52. Scaling up from the plot to the landscape level using lidar-derived met-
rics, studies have shown decreases in the RMSE for the AGB-lidar models, from 70–90 to 36–51 Mg AGB per ha, 
when increasing the plot size from 0.25 ha to 1 ha17,53. Clearly there are always size-effort tradeoffs, e.g., smaller 
plots would permit greater replication, but by focusing on larger plots that are also permanent, FOS has chosen 
to focus its efforts on a smaller but high-quality set of plots. Our approach, therefore, excludes the possibility of 
using databases of smaller plots such as those found in national forest inventories.

AGB and associated uncertainties were obtained using a standardized procedure implemented in the 
BIOMASS R-package5. For the sake of standardization, we systematically considered only trees having a diameter 
≥10 cm (or a 5 cm threshold in the case where these trees contribute substantially (>5%) to the total AGB, e.g., 
in savannas). Taxonomy was first checked using the Taxonomic Name Resolution Service, which in turn served 
to assign a wood density value to each tree using the Global Wood Density Database (GWDD) as a reference54,55. 
Species- or genus-level averages were assigned when possible and, if not, the plot-level mean wood density was 
assigned to each tree species with no known wood density. Tree height was estimated in three different ways. 
First, when available, subsets of tree height measurements were used to build plot-specific height-diameter rela-
tionships, assuming a three-parameter Weibull model5 or a two-parameter Michaelis-Menten model, whichever 
provided the lowest prediction error. Secondly, the regional height-diameter models proposed by Feldpausch et 
al.31 were used to infer tree height. Finally, height was implicitly taken into consideration in the AGB calculation 
through the use of the bioclimatic predictor E proposed by Chave et al.30. Equation 7 of Chave et al.30 was used in 
this case while the generalized allometric model equation 4 was used otherwise (where heights were derived from 
local or Feldpausch height-diameter relationships). Among the three approaches, the use of a local HD model is 
the most accurate. However, local height measurements are not systematically available for all plots. The Chave 
et al. (2014) and Feldpausch et al. (2012) approaches are both an alternative to the use of a local HD model but 
independent validation (e.g., Fig. 2) has shown that their relative performance varies among locations. Thus, 
the most conservative approach is to provide the three estimates so that the uncertainty associated with the HD 
relationship can be assessed.

Errors associated with each of these steps (i.e., DBH measurement, wood density, tree height) were propagated 
through a Monte Carlo scheme to provide mean AGB estimates with associated credibility intervals (Fig. 2).

Boreal and temperate plots (representing 11% of the total number of sub-plots) were processed manually 
using similar steps. Species-specific allometric equations56 allowed the stem volume to be estimated based on the 
height and DBH measurements. Biomass conversion and expansion factors57 were used to estimate AGB from 
the stem volume taking the tree age, site index and stocking into account. The next version of the BIOMASS 
R-package will be capable of processing boreal and temperate data in addition to tropical.

Data Records
The data in FOS58 are organized in a hierarchical structure (Fig. 3). The Plot description includes a link to the 
institution and network. The central part of the database is the Sub-plot table, where geolocation, the date of the 
census, the people who manage the specific plots, the AGB and the canopy height are stored.

The FOS does not store individual tree-level information, only plot-level aggregates. Users interested in tree-level 
information can contact the contributing networks or the plot PIs using the links provided in the Plot table.

Fig. 2  An example of the AGB estimation with the BIOMASS R-package. MDJ-02, CAP-10 and other indexes 
on the horizontal axis are Plot IDs. The vertical axis is AGB in Mg ha−1 and the error bar represents the 
credibility interval at 95% of the stand AGB value following error propagation.
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The details of the fields found in the two linked tables of Fig. 3 are provided below.
Plot description

•	 Plot_ID – unique plot ID
•	 Country_Name – Name of the country
•	 Network – the name of the network (e.g., RAINFOR)
•	 Institution – the institution that carried out the measurements
•	 Link – web link to the data provider
•	 Year_established – the year when the plot was established
•	 Reference – a reference to the publications
•	 Other_measurements – list of parameters measured on the plot
•	 Biomass_processing_protocol – file name of the biomass processing protocol (available at Data Package 1), 

which contains the R code, the variables assigned and the intermediate results.

Sub-plot description

•	 Sub-plot_ID – unique sub-plot ID
•	 Plot_ID – link to the Plot description table
•	 Year_census – year of the census
•	 PI_team – List of Principal Investigator(s)
•	 Lat_cnt – Latitude of the center of the plot
•	 Long_cnt – Longitude of the center of the plot
•	 Altitude (m a.s.l.)
•	 Slope (degree)
•	 Plot_area (ha)
•	 Plot_shape (e.g., rectangle, circle, plus dimensions)
•	 Forest_status – forest description, including age, successional stage, disturbances, etc.
•	 Min_DBH – Minimum diameter of trees at breast height included in the census (cm)
•	 H_Lorey – Lorey’s height, DBH-weighted mean tree height (m)

•	 Hlor local – mean height estimated from local H = f(DBH) curve (m)
•	 Hlor Chave – mean height estimated from the curve by Chave30 (m)
•	 Hlor Feldpausch – mean height estimated from the curve by Feldpausch31 (m)

•	 H_max – height of the tallest tree (m)

•	 Hmax local – tallest tree measured or estimated from local H = f(DBH) curve (m)
•	 Hmax Chave – maximum height estimated from the curve by Chave (m)
•	 Hmax Feldpausch – maximum height estimated from the curve by Feldpausch (m)

•	 AGB – Above ground biomass (Mg ha−1)

•	 AGB_local – aboveground biomass (Mg ha−1) estimated using local equations or equation 4 in Chave30 with 
wood density, DBH and H derived from local height-diameter relationships.

•	 Cred_2.5 – lower bound of 95% credibility interval (Mg ha−1)
•	 Cred_97.5– upper bound of 95% credibility interval (Mg ha−1)

•	 AGB_Feldpausch – AGB (Mg ha−1) using equation 4 in Chave30 with wood density, DBH and H derived from 
Feldpausch31 height-diameter relationship.

Fig. 3  The database structure of the plot information.
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•	 Cred_2.5 – lower bound of 95% credibility interval (Mg ha−1)
•	 Cred_97.5 – upper bound of 95% credibility interval (Mg ha−1)

•	 AGB_Chave – aboveground biomass (in Mg ha−1) estimated using equation 7 in Chave30 with wood density, 
DBH and H implicitly taken into consideration through the use of the bioclimatic predictor E

•	 Cred_2.5 – lower bound of 95% credibility interval (Mg ha−1)
•	 Cred_97.5 – upper bound of 95% credibility interval (Mg ha−1)

•	 Wood_density - mean wood density of the trees (g cm−3)
•	 GSV – growing stock volume (m3 ha−1)
•	 BA – basal area (m2 ha−1)
•	 Ndens – number of trees per hectare

Note that we have merged the Plot and Sub-plot tables in the data package associated with this paper58 for the 
user’s convenience.

Technical Validation
The key predictive variables of AGB are tree dimensions (primarily diameter and height) and taxonomic identity, 
which is responsible for explaining most tree-to-tree variations through interspecific wood density variations59. 
The procedures for ensuring the quality of the data collected are as follows:

	(1)	 On-site measurement accuracy. To ensure diameter accuracy and consistency among and within censuses, 
field teams follow standard forest inventory protocols for the correct choice of the Point of measurement 
(POM). For example, the RAINFOR protocol for tropical forests60 records each POM by painting the 
location on each tree to ensure that subsequent measurements can be performed at the same point. For tree 
height, the consistency of the height measurement is ensured by having a designated, trained operator who 
works at multiple sites using the same instrument. At some sites, double measurements of height (from 
different positions) have been carried out, and mean values have been used as the height of the individual 
trees. For species identification, the reliability in highly diverse tropical plots is important; hence, the tree 
and plot AGB is estimated by taking the species-level variability in wood density into account61. This is 
supported by collecting botanical vouchers from every taxon (or potential taxon) in the field. In many 
cases, these vouchers have been deposited in recognized regional herbaria, identified by botanical experts, 
and where possible, made available electronically (e.g., via ForestPlots.net). However, voucher collection is 
not currently a standard protocol for every plot in the FOS.

	(2)	 Multiple censusing. By working primarily with re-censused permanent plots rather than single census plots, 
we have ensured that the uncertainties are reduced because almost every tree has been measured at least 
twice by the time of the focal census, thus providing the opportunity to correct any errors that may have 
been made previously, through the identification of spurious values. Repeat censuses also provide more 
opportunities to improve species identification by increasing the chance of encountering fertile material 
(see the next step).

	(3)	 Post fieldwork data processing, e.g., by identifying trees to species level. Species identification can be 
extremely challenging in tropical forests due to their diversity and the fact that most trees lack flowers or 
fruits when inventoried. Botanical identity is a key control on the AGB through its effect on wood density. 
To explore the reliability of identification in some of the most diverse RAINFOR sites in western Amazo-
nia, PIs have separated the tree species assemblages into several larger taxonomic groups. As reported by 
Baker et al.62, taxonomic specialists for each group have then assessed the accuracy of the species identi-
fications of the herbarium collections using 18 different botanists across 60 plots during the past 30 years. 
Overall, even in taxonomically difficult groups where species are often very rare, 75% of tree species were 
correctly identified.

	(4)	 Common protocols for potential error detection. These protocols have been developed by contributing net-
works, e.g., by flagging trees for attention that have declined by more than 5 mm in diameter. This allows 
trees to be detected that have shrunk between two censuses, and whether that individual is dead/rotten. 
Potential issues are flagged in order to be checked against existing field notes, and during the following 
census. Thus, as mentioned previously, repeat censuses provide more opportunities to improve data quality 
as compared to single-census plots.

	(5)	 Within-network collaboration. Data quality is further enhanced through the exchange of ideas between 
experts at different sites and between nations, through the use of common data analysis protocols (i.e., 
allometric equations, R packages, etc.), and by promoting shared publications.

	(6)	 Cross-network collaboration. In the FOS, by applying a uniform R script for data aggregation and AGB 
estimation, potential biases from using different height-diameter, wood density and allometric relations are 
strongly reduced.

The distribution of FOS plots by continent is presented in Table 1. Africa, Europe and South America are rep-
resented by similar numbers of locations (i.e., 62–80 plots) and contribute more than 80% of the plots at the time 
of publication, but in terms of coverage, South America alone comprises 49% of the forest area covered.
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The IIASA network provides the highest number of plot locations to FOS (Table 2), while the TmFO network 
contributes the most in terms of areal coverage.

The range of values of major forest parameters represented in the FOS database is shown in Table 3. The max-
imum AGB value (918 Mg ha−1) and canopy height (41.7 m) at a 0.25 ha sub-plot were recorded in Lopé, Gabon. 
Some savannah sub-plots (e.g., in Gabon) have a few or no trees >5 cm dbh, which leads to low or no biomass 
estimation. The tallest trees (60.1 m) was found in Costa Rica and the maximum basal area (85.6 m2 ha−1) was 
found in the Caucasus, Russia.

Table 4 contains information about the AGB for different biomes and globally. As expected, the average AGB 
increases from boreal to temperate and then from temperate to tropical forests.

Usage Notes
This data set will be essential for validating and calibrating satellite observations and forest biometric models. The 
focus is to provide ground support for current and planned space-borne missions, such as NASA GEDI (https://
gedi.umd.edu/), NASA-ISRO NISAR (https://nisar.jpl.nasa.gov/), JAXA ALOS PALSAR (http://global.jaxa.jp/
projects/sat/alos/) and ESA BIOMASS (https://earth.esa.int/web/guest/missions/esa-future-missions/biomass), 
which are aimed at retrieving forest structure parameters such as forest height and biomass.

Continent/regions
Number of 
plots

Number of sub-
plots

Area 
(ha)

Africa 62 338 85

Asia 29 46 20

Australia 4 4 3

Central America 21 278 69

Europe 80 146 42

South America 78 833 209

Total 274 1645 428

Table 1.  Distribution of records by continents (as of December 2018).

Network
Number of 
plots

Number of 
sub-plots Area, ha

AfriTRON 46 178 45

AusCover 4 4 3

CTFS-ForestGEO 2 300 75

IIASA 126 258 78

RAINFOR 52 288 72

T-Forces 3 12 3

TmFO 17 500 125

Unaffiliated to network 24 105 27

Total 274 1645 428

Table 2.  The distribution of records by participating networks (as of December 2018).

Parameters min Max Median

Latitude −36.52 64.51 5.26

Longitude −83.58 148.92 −52.92

Plot area 0.25 50 1.0

Sub-plot area 0.0625 2.89 0.25

Year established 1955 2017 2012

Year of census 1999 2018 2012

Min DBH, cm 1 10 10

Height Lorey’s, m 2.3 41.7 26.8

Height max, m 3.6 60.1 39.3

AGB, t ha−1 0.3 933 258

Basal area, m−2 ha−1 0.05 85.58 28.32

Tree density, trees ha−1 4 1800 452

Table 3.  The range of major forest parameters in the FOS database (as of December 2018).
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At this stage, we are making no claims regarding the statistical robustness of the FOS data set for global or 
regional biomass estimations. Instead our aim is to present uniformly processed data on forest biomass from 
available locations (see Table 1). One of the main goals of the FOS is to highlight gaps in the observations.

Using sub-plot data for validation of RS data might lead to spatial autocorrelation problems so possi-
ble solutions would be to use a plot average, use only values from the plot or test for the presence of spatial 
autocorrelation.

This data package contains geographical coordinates rounded to 2 digits after decimal point (up to 1 km at 
equator). The most up-to-date extended data set with accurate geolocation is available in the FOS portal: https://
forest-observation-system.net/

The FOS initiative depends on the contributions of high-quality forest plot data from participating networks. 
The fair use of the data presented here requires respecting the efforts and rights of the partners and supporting 
the long-term future of these observational efforts. The data set will be licensed under a Creative Commons 
Attribution 4.0 International License (CC-BY 4.0), which means that it will be fully open even for commercial 
use but requires acknowledgment of the PIs and plot owners. We would also appreciate that all users of the FOS 
data either share their own data via the FOS, and/or commit to collaboratively funding new censuses and the 
expansion of existing plot networks.

Code Availability
The BIOMASS R-package is an open source library available from the CRAN R repository. The development 
version is publicly available and can be found on the GitHub platform at: https://github.com/AMAP-dev/
BIOMASS. Furthermore, the BIOMASS R-package is accompanied by an open access paper describing the 
functionality in more detail5.
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