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Nutritional science has traditionally used the reductionist approach to understand the roles
of individual nutrients in growth and development. The macronutrient dense but micronu-
trient poor diets consumed by many in the Western world may not result in an overt defic-
iency; however, there may be situations where multiple mild deficiencies combine with excess
energy to alter cellular metabolism. These interactions are especially important in pregnancy
as changes in early development modify the risk of developing non-communicable diseases
later in life. Nutrient interactions affect all stages of fetal development, influencing endocrine
programming, organ development and the epigenetic programming of gene expression. The
rapidly developing field of stem cell metabolism reveals new links between cellular metabol-
ism and differentiation. This review will consider the interactions between nutrients in the
maternal diet and their influence on fetal development, with particular reference to energy
metabolism, amino acids and the vitamins in the B group.

Developmental origins of health and disease: Folic acid: Methionine: Maternal obesity

Classically nutritional science has applied the principles of
reductionism to investigate nutritional deficiencies,
exploring complex systems by reducing them to the inter-
actions of their component parts. This approach has
been highly successful in identifying the roles of individual
nutrients and has given us a clear description of the
mechanisms underlying the major deficiency syndromes.
However, in recent years the consumption of energy-dense
but micronutrient-poor foodstuffs has created a situation
where both over and undernutrition can exist simultan-
eously in a single human population(1). Understanding
the range of nutrient interactions caused by these imbal-
anced diets and the long-term consequences for health is
an ongoing challenge for nutritional science.

The nutrient interactions associated with obesity are
particularly important during pregnancy with nearly
half of the women presenting at maternity clinics in
developed countries such as Scotland classified as

overweight or obese (Births in Scottish Hospitals
(National Statistics Publication for Scotland)
November 2016). Studies from both the developed and
developing world show an inverse relationship between
diet quality and BMI, particularly in pregnant women
in poorer socioeconomic groups(2,3). This is because
cheap and readily available foods tend to comprise
energy-dense, micronutrient-poor products such as
refined carbohydrates and oils(4). Furthermore, an
energy-dense diet increases the demand for micronutrient
cofactors such as the vitamins in the B group, which are
essential for energy metabolism. Imbalanced, energy-
dense, micronutrient-poor diets, therefore, present with
an array of nutrient interactions, all of which require
adaptations in cellular metabolism and gene expression.

These interactions between metabolism and gene
expression are especially important in the 9 months
from conception to birth, as the human fetus grows
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and develops from a single cell to a recognisable infant.
A plethora of changes transforms four totipotent stem
cells in the preimplantation embryo into increasingly
committed cell lineages in mesoderm, endoderm and
ectoderm and finally into the terminally differentiated
cell types in the organs. Growth and differentiation
depend upon a continuous balanced supply of nutrients,
derived in part from the maternal diet but also from
nutrients released by mobilisation of the mother’s tissues.
Indeed this relationship continues into postnatal life, as
the production of milk also depends on mobilisation of
maternal reserves. Because of this interrelationship
between maternal diet and reserves, seemingly, simple
nutritional imbalances invoke surprisingly complex inter-
actions between macro and micro-nutrients. Maternal
metabolism is thus crucial in delivering a stable and
balanced nutrient supply to the developing fetus.

Fetal development and long-term health

Over the past 20 years, it has become accepted that poor
early development can have a profound effect on the risk
of developing non-communicable diseases later in life.
The original studies of the Boyd Orr Cohort(5) and subse-
quent studies by Barker and colleagues(6–8) firmly estab-
lished the relationship between poor growth (and by
implication nutrition) in early life and an increased risk
of non-communicable disease. Subsequently, these obser-
vations have been confirmed and extended in populations
across theworld. Extremes of birthweight, both above and
below the mean, are associated with increased risk of the
offspring developing a range of diseases including
CVD(7,9), metabolic disease(8,10), osteoporosis(11) and psy-
chiatric disorders(12,13). The concept of life-course nutri-
tion encapsulates these ideas in a scheme where early
fetal and neonatal development is plastic and influenced
by environmental factors, principal amongst these being
nutrition. Physiological changes introduced during fetal
and neonatal life modulate the risk of developing the non-
communicable disease later in life. Once an individual is
set on a higher risk trajectory, interventions in adult life
can only partly rescue or ameliorate the impact of early
life insults(14). Indeed, nutritional status may be important
prior to conception as there is evidence that nutritional sta-
tus affects follicle recruitment and oocyte maturation in
the female and spermatogenesis in the male, modifying
the metabolic competence of the gametes and influencing
the subsequent development of the conceptus(15).

Maternal metabolism

Pregnancy can be divided into two periods, an initial
anabolic phase followed by a second catabolic
phase(16). The anabolic phase covers the first two-thirds
of pregnancy. In this period, fetal tissues are a very
small part of the mother’s body and the available nutri-
ents are directed towards the growth of key maternal
organs such as liver and adipose tissue. The nutrient
reserves stored in the anabolic phase can then be

mobilised during the catabolic phase of gestation (from
about 20 weeks onwards in human subjects), supplement-
ing nutrients from the diet. For example, a large increase
in lipolysis in adipose tissue late in gestation provides
fatty acids for the fetus(17) and also for the mammary
gland in readiness for lactation(18). These maternal
reserves of protein and lipids are particularly important
in supporting fetal metabolism in cases where the mater-
nal diet is limited or imbalanced.

Maternal micronutrient reserves are also mobilised to
meet the increased demands of pregnancy and in many
cases are preferentially allocated to the fetus(19,20). If these
stores are exhausted during gestation, the deficit continues
into lactation, affecting the metabolism of both the mother
and her infant. For example, pregnancy has been estimated
to require approximately 740 mg additional iron(21).
However, since an ideal diet only provides approximately
5 mg iron daily, a woman must enter pregnancy with iron
stores of at least 300 mg if she is to have sufficient iron to
avoid becoming deficient by the time the child is born(22).
Many women, and particularly those in developing coun-
tries, have insufficient reserves and become iron deficient
by the time the baby is born. Fetal and postnatal iron defic-
iency results in a range of adverse consequences for mother
and infant including low birth weight, impaired cognitive
development and poor immune function(23). Iron is a key
component of enzymes of oxidative metabolism and as
the electron-carrying capacity of iron-dependent enzymes
is reduced by iron deficiency(24,25), glucose is increasingly
used as a metabolic substrate in place of lipids(26,27). This
is also the case in pregnant animals as an increase in the
incorporation of glucose into polar lipids suggest a shift
from fat to glucose as the preferred substrate for oxidative
metabolism(28). As pregnancy progresses there are more
pronounced changes in lipid metabolism ultimately result-
ing inmarked changes in both amounts and fatty acid com-
position of the milk(29).

A similar pattern is seen with other essential vitamins or
minerals, all of which have important roles as cofactors or
prosthetic groups in enzymes of major metabolic path-
ways. In developing countries, and to a lesser extent in
developed countries, multiple micronutrient deficiencies
are present, creating a complex array of potential nutrient
interactions that are only nowbeginning to be studiedwith
advancedmetabolomics approaches. These complex inter-
actions also make it difficult to evaluate the outcome of
interventions. Frequently supplements with one or two
components prove to be relatively ineffective when com-
pared with multiple micronutrient supplements(30).

Consequences of altered fetal growth and development

Animal models have been extremely important both in
exploring nutrient interactions in pregnancy and in under-
standing the underlying mechanisms. Protein metabolism
during pregnancy provides a good example of the com-
plex interactions between nutrients during the anabolic
and catabolic phases of pregnancy. One of the most
widely studied animal models is the rat low-protein
model(31). In this deceptively simple model, laboratory
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rats are fed a reduced protein diet for the duration of ges-
tation and lactation and the offspring are compared with
animals fed a control diet containing the recommended
amount of protein. In most cases, the low protein diet
contains 8 or 9 % protein (w/w) and is compared with a
control diet containing 18–20 % w/w protein, which is
the amount recommended by the National Research
Council and American Institute for Nutrition for repro-
duction in the rat(32). Because of the bi-phasic nature of
pregnancy, protein restriction has a limited effect on
growth in the early stages of fetal life(33). The effects of
a modest protein restriction on growth only become
more noticeable during the lactation phase(34) when the
mobilisation of maternal reserves is no longer able to
compensate for the reduced protein supply(35,36).

Whilst the requirements for individual amino acids
have not been established in human subjects, estimates
extrapolated from animal studies suggest the demand
for individual amino acids changes with both time and
the availability of other nutrients(37). Plasma amino acid
concentrations in the maternal circulation of the female
rat reflect the two phases of protein metabolism in preg-
nancy; typically, concentrations fall in the first stages of
gestation and then increase between days 19 and 21
(Fig. 1). Dietary protein restriction has very modest
effects on the free amino acid concentrations because
amino acids entering the peripheral circulation are con-
stantly buffered by amino acids released by the degrad-
ation of existing tissue proteins(38) and only a limited
number of amino acids are differentially affected, mostly
decreasing. The only notable exception is threonine, one
of the indispensable amino acids(39). The placenta also
responds to a reduced dietary supply of protein and this
helps to stabilise amino acid concentrations in the fetal
circulation, which are usually higher than in the maternal
circulation; however, the profile tends to follow the pat-
tern in the maternal circulation(33,40).

However, amino acids are more than just the mono-
mers for protein synthesis; they are also important sub-
strates for intermediary metabolism, creating a range of
potential nutrient interactions in the low protein model.
Animal studies suggest that a low protein diet produces
changes in intermediary metabolism, which affect devel-
opment throughout gestation, even in the pre-, and peri-
conception phases of life before the conceptus has
become implanted(41). Changes in intermediary metabol-
ism possibly linked to the oxidation of excess amino acids
alters the available concentrations of other important
metabolic fuels. For example, concentrations of TAG
in the maternal circulation of animals fed a low protein
diet are higher than in animals fed sufficient protein
and this is likely to increase the supply of fatty acids to
fetal tissues and influence their development(42).

Interactions between macro-nutrients in the maternal diet
and the effect on the postnatal phenotype of the

offspring

In adult life, the offspring of female rats fed a low protein
diet exhibit changes in insulin action and in time, these

develop into diabetic-like symptoms(43). This phenotype,
reflected in the area under the insulin release curve when
animals are given a glucose challenge(44), is the result of
reduced growth and development of the pancreatic
β-cells(45) and a decrease in the insulin sensitivity of the
tissues(46). However, the extent of this programming is
dependent on factors other than just the protein content
of the maternal diet(47). The type of lipid and hence the
fatty acid composition of the diet modifies the final out-
come such that the offspring of rats fed a low protein diet
prepared with maize oil, low in n-3 fatty acids, release
less insulin in the glucose tolerance test compared with
the offspring of animals fed a diet prepared with soya
oil(48,49).

This and other similar results suggest that changes in
maternal metabolism, modifying the supply of macronu-
trients to the developing fetal organs, may be an import-
ant part of the programming mechanism. Increases in
maternal plasma TAG concentrations are a feature of a
number of different models of fetal programming in the
rat, including low protein, high fat(50) and folate deficient
diets(51) as well as iron deficiency(28), suggesting an
important role for lipid metabolism in programming. A
proposed mechanism envisages the setting of metabolic
set points during development in response to the avail-
able nutrient supply(52). For example, the regulation of
blood glucose by insulin is a closed loop biological con-
trol system, maintaining plasma concentrations between
the tightly constrained maximum and minimum values.
The set points at which insulin or glucagon are released
in response to changes in the prevailing concentrations
of glucose are learned during development. If the prevail-
ing glucose concentrations are higher than average
during development, then a correspondingly higher set
point may be established during fetal development affect-
ing both insulin release and tissue insulin sensitivity.

Nutrient interactions caused by maternal obesity during
pregnancy

Whilst many prospective studies in human populations
or animal models have focused on fetal growth restric-
tion caused by nutrient deficiency, maternal obesity
caused by the oversupply of energy is now perceived to
be a greater problem. Increasing numbers of women
are now presenting at antenatal clinics with a higher
than normal BMI. Obesity in pregnancy carries a num-
ber of risks for the mother with higher rates of pre-
eclampsia and premature birth, while the child is at
increased risk of macrosomia and gross malformations
such as neural tube defects(53). There is also evidence
for long-term changes in both metabolism and behaviour
in the offspring of obese mothers(54).

Obesity in human populations is not the simple prod-
uct of a high-energy diet, the simultaneous presence of a
double-burden of obesity and malnutrition has been
described in populations worldwide(55). There is an
inverse association between BMI and diet quality(2,56)

and this translates into an inverse association between
BMI and micronutrient status(57,58). Deficiencies in the
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morbidly obese include vitamins B1, B12, folic acid,
Vitamin A, Vitamin D and minerals including iron and
zinc(59). The double burden is a product of socio-
economic factors that promote the consumption of a
diet containing large quantities of refined fat or carbohy-
drate products. Whilst these low-cost foods are plentiful
and have a high-energy content, processing tends to
deplete them of key vitamins. For example, milling
wheat and other grains remove the vitamin-rich aleurone
layer, containing approximately 80 % of total niacin
together with considerable quantities of other B vitamins,
betaine and choline(60,61). At present little is known
about the range of complex nutrient interactions

involving vitamins, minerals and amino acids involved
in the metabolism of excessive amounts of energy.
Incomplete or diverted biochemical reactions could
lead to toxicity such as damage caused by the accumula-
tion of NEFA(62). As the prevalence of obesity increases,
we cannot consider the consequences of excess fat con-
sumption in isolation. The influence of marginal micro-
nutrient deficiency must also be taken into account,
even in wealthy Western countries.

Folic acid, the B vitamins and choline in pregnancy

Central in the metabolism of lipids is the B group of vita-
mins, which include folic acid. There is a direct relationship
between maternal folate status and birthweight, illustrating
the importance of folic acid for fetal development(63,64).
Folate derivatives are also important for specific processes
in development. It is well known that folic acid supple-
ments reduce the risk of neural tube defects in pregnancy,
although questions remain over the precise mechanism.
Recent evidence suggests that an improvement in the for-
mate supply and a corresponding increase in nucleotide
biosynthesis may be an important factor(65). Formate,
produced in the mitochondria is transported into the cyto-
plasm to provide formyl tetrahydrofolate groups necessary
for a range of reactions some of which may be essential for
neural tube development(66).

Fig. 1. The biphasic nature of amino acid metabolism in the rat
during gestation. Concentrations of glycine (top) leucine (middle)
and threonine (bottom) in the maternal plasma of rats fed a diet
containing high (18 % w/w) protein (open circles dotted line) and
low (9 % w/w) protein (closed circles solid line). Adapted from
Rees et al.(33,39).

Fig. 2. The interactions between amino acids, choline, the
methionine cycle and lipid metabolism in the liver. 5-CH3-THF, 5
methyl tetrahydrofolate; 5,10, CH2 THF, 5,10 methylene
tetrahydrofolate; DHF, dihydrofolate; Pcho, phosphocholine; SAM,
S-adenosyl methionine; SAHcy, S-adenosyl homocysteine; THF,
tetrahydrofolate.
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Fetal cell proliferation requires the production of large
quantities of DNA and membrane lipids as well as the
synthesis of new protein. All of these processes are depend-
ent on folate-mediated C1 metabolism and derivatives of
folic acid are important intermediates in the methionine
cycle, which is in turn linked to lipid and nucleotide
metabolism (Fig. 2). The methionine cycle maintains
intracellular pools of S-adenosyl methionine, the donor
of methyl groups in more than hundred essential meta-
bolic reactions. In addition to methionine, the methionine
cycle also depends on a variety of other nutrients, particu-
larly the amino acids glycine-serine and threonine as well
as micronutrients such as the B vitamins(67).

A crucial intermediate in the cycle is the non-protein
amino acid homocysteine, concentrations of which are
increased when the rate of production exceeds the cap-
acity of the reactions that convert it back to methionine
(remethylation) or convert it to cysteine (transulphura-
tion). The importance of C1 metabolism and the
methionine cycle for fetal growth is illustrated by the
inverse relationship between plasma homocysteine con-
centrations and birth weight(68). Nutrient interactions
have a bearing on the rate of homocysteine removal as
both remethylation and transulphuration reactions
depend on the availability of other amino acids and vita-
min cofactors. The converse is also true in that amino
acids and cofactors can become depleted depending on
whether homocysteine is remethylated or removed by
transulphuration. For example, both choline and deriva-
tives of folic acid provide methyl groups that are used to
convert homocysteine back to methionine. The flux
through the remethylation reactions increases when
methionine is limited and is dependent on the availability
of choline, betaine and folic acid in the diet(69). Reducing
the supply of folic acid increases the utilisation of choline
and reduces the use of serine, glycine and threonine. As a
result, the phosphocholine pool is depleted and concen-
trations of serine, glycine and threonine increase in the
maternal plasma(70). Restricting the amount of methio-
nine in the diet also reduces concentrations of taurine,
another non-protein amino acid implicated in fetal pro-
gramming(71,72). If additional methionine is provided in
the diet then these folate and choline dependent changes
in methionine cycling are lost showing that surplus
methionine can be used as a source of methyl groups.
Homocysteine can be converted by the transulphuration
pathway to cysteine, via the intermediate cystathionine in
a reaction dependent upon vitamin B6, pyridoxal phos-
phate and the amino acid serine(73). This pathway is an
important route for the direct use of methionine as a
methyl donor and is essential for reproduction as animals
lacking the gene coding for cystathionine-β-synthase are
infertile as the conceptus fails to implant(74).

Measurements of methionine turnover using stable
isotopes show that in the rat both maternal and fetal
livers have active methionine cycles. There is a gradual
decline in the remethylation of methionine in the mater-
nal liver as gestation progresses. However, at the same
time, methionine is actively produced from homocysteine
in the fetal liver, with homocysteine taken up from the
maternal circulation and converted to methionine by

the fetal tissues(75). When animals are fed a diet low in
folic acid and choline there is a decrease in the remethy-
lation of homocysteine in the maternal liver; however, to
compensate for this there is an increase in the rate of
methionine cycling in the fetal liver. In part, this reflects
the preferential partitioning of the available folic acid to
the fetal tissues but also suggests that there is an increase
in the utilisation of methyl groups in fetal tissues, per-
haps to produce products normally produced in the
maternal compartment.

Impact of limited C1 metabolism on the metabolism
of the mother

One of the most obvious features of pregnant rats fed a
methyl-deficient diet is an accumulation of lipid in the
maternal liver late in gestation(51). The liver has an
important role in this period, processing lipids in the
diet alongside those mobilised from the adipose tissue
in the catabolic phase of pregnancy. Despite the
increased flow of TAG through the hepatocytes, intracel-
lular concentrations are normally low as a lipid is rapidly
exported as VLDL, which consist of a lipid core
surrounded by an outer layer of phospholipids and lipo-
proteins. The predominant phospholipid in VLDL is
phosphatidylcholine (PC) and this must be produced
by the liver to maintain high rates of VLDL secretion.
However, diets low in choline and associated methyl
donors restrict PC synthesis, and lipid that cannot be
exported accumulates as droplets within the hepatocytes.
The liver produces PC (Fig. 2) either through the cytidine
diphosphocholine pathway (also known as the Kennedy
pathway) using choline as a precursor or by the conver-
sion of phosphatidylethanolamine to PC by the enzyme
phosphatidylethanolamine methyl transferase(76,77).
Since the phosphatidylethanolamine methyl transferase
pathway requires three methyl groups from S-adenosyl
methionine for the synthesis of a single PC molecule, it
creates a substantial demand for methyl groups(78). It
becomes apparent from the complex interrelationships
that changes in the supply of amino acids and choline
can interact with maternal micronutrient status to pro-
duce a range of different outcomes. Further complexity
is introduced by increases in the flow of lipids through
the liver, a product of both excess in the mother’s diet
and mobilisation of excess body fat.

Analysis of fetal tissues suggests that methyl deficiency
produces changes in the fetal liver(79,80) heart(81), gut(82)

and brain(83,84). Measurements of methionine flux show
that methyl metabolism is protected in the late gestation
fetus(75) suggesting that it is the deficiency or excess of the
products of folate-dependent metabolism that influences
the regulation of gene expression(81).

Fetal metabolism: the totipotent stem cells of the
preimplantation embryo

The process of tissue differentiation is accompanied
by widespread changes in gene expression. Actively
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transcribed genes are located in euchromatin, which are
loosely packaged areas of chromatin accessible for tran-
scription. Genes not required are tightly packaged into
heterochromatin, which is less accessible. These changes
in chromatin structure require extensive covalent modifi-
cation of both DNA and the proteins that surround it(85).
Prominent changes include the addition of methyl groups
to DNA (DNA methylation) and histone proteins (his-
tone methylation) and the acetylation of histone proteins
(histone acetylation). Euchromatin is characterised by
the presence of low levels of DNA methylation and
hyperacetylated histones whereas heterochromatin has
high levels of DNA methylation and hypoacetylation
of histones.

It is becoming apparent that the metabolic state of the
cell can modify the epigenetic regulation of gene expres-
sion during differentiation through changes in the avail-
ability of cofactors required for the modification of DNA
and histones(86,87). The most widely studied, thanks to
the availability of effective tools to precisely measure
changes in the modification of individual bases, are the
epigenetic marks created by DNA methylation.
Changes in DNA methylation and gene expression in
the offspring of animals fed a methyl-deficient diet were
first shown in the classical studies of the Agouti
mouse(88). Subsequent studies of human populations
have identified a relationship between methyl donors in
the maternal diet and DNA methylation in the off-
spring(89). The advent of high throughput methods for
assessing DNA methylation has made it possible to
explore the relationships between maternal nutrition
and fetal epigenotype and a range of population-wide
studies are currently in progress(90,91).

The methylation of DNA is only part of the process of
cell differentiation; the posttranslational modification of
histones also plays a vital part in maintaining the pluri-
potent state in stem cells. Initially isolated from early
embryos, embryonic stem cells are difficult to maintain
in tissue culture, as they are prone to spontaneous differ-
entiation. In a breakthrough study, threonine was iden-
tified as a critical component of the culture media(92) as
rodent cells grown in low threonine media rapidly lost
the capacity to differentiate. Subsequent studies demon-
strated that the catabolism of threonine produces both
glycine and acetyl CoA; glycine is used to produce C1
folate derivatives and acetyl CoA is used for protein
acetylation(93,94). In a similar way, human stem cells
use methionine as the principal source of methyl groups
for histone methylation(95). The reversal of epigenetic
marking by the removal of methyl groups from histones
and DNA is also sensitive to the availability of specific
metabolites. Histone demethylases and ten-eleven trans-
location methylcytosine dioxygenases, which catalyse
the first step of DNA demethylation require both the
tri-carboxylic acid cycle intermediate α‐ketoglutarate
and ferric iron(94,96).

These changes in intermediary metabolism are linked to
the function of the mitochondria during cell differentiation.
Undifferentiated, or ‘naive’ embryonic stem cells, have
relatively high levels of oxidative phosphorylation. When
differentiation is initiated and cells enter the ‘primed’

state, oxidative phosphorylation becomes uncoupled and
metabolism switches to glycolysis, using glucose for energy
and increasing the production of acetate for the acetylation
of histones(97). Energy production from oxidative phos-
phorylation then increases again as the cells become ter-
minally differentiated. Mitochondria in oocytes and
preimplantation embryos have an immature structure
with underdeveloped cristae and low rates of oxidative
phosphorylation, the classical mitochondrial morphology
with well-developed cristae and an active oxidative phos-
phorylation only appears in terminally differentiated
cells(98). The reprogramming of differentiated somatic
cells into induced pluripotent stem cells reverses these
changes and restores the glycolytic state. Changes in
metabolism occur before changes in gene expression, sug-
gesting that altered metabolism is required for the cell
fate change rather than a consequence of it(96).

Future perspectives

Optimal fetal development is important for long-term
health and there is clear evidence that the supply of
macro and micro-nutrients in the maternal diet interact
to programme fetal development. There are a variety of
potential mechanisms including endocrine programming,
changes in organ development and epigenetic program-
ming of gene expression. The rapidly developing field of
stem cell metabolism is now opening a new window on
the differentiation of cells during development. At pre-
sent, these studies are limited to in vitro analysis of cells
in culture but clearly show that several metabolic path-
ways have the potential to influence stem cell growth
and differentiation through changes in intracellular pools
of intermediary metabolites, such as α‐ketoglutarate,
S-adenosyl methionine, and acetyl-CoA(99). It is possible
that these changes can produce some profound differences
in cellularity of the organs by preventing the premature
differentiation of cells. It remains to be seen how these
findings will translate into the whole body physiology of
the developing fetus, however, it is easy to see potential
links between metabolism and the energy-dense but
micronutrient-poor diets consumed by many human sub-
jects. Whilst it is possible that maternal metabolism is
sufficiently well buffered to protect the developing stem
cells there is good evidence from animal models to show
that imbalanced diets alter the supply of glucose, amino
acids and particularly lipids to the developing fetus. A
number of new analytical methods are now needed to
explore the relationship between metabolism and chroma-
tin structure. By coupling these with insights into metabol-
ism from the developing field of metabolomics, we may be
in a good position to begin to document the complex
nutrient interactions that influence chromatin structure,
fetal development and long-term health.
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