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A B S T R A C T   

We applied two approaches to model grassland yield and nitrogen (N) content. The first was a series of regression 
equations; the second was the Century dynamic model. The regression model was generated from data from 
eighty-nine experimental sites across Europe, distinguishing between five climatic regions. The Century model 
was applied to six sites across these regions. Both approaches estimated mean grassland yields and N content 
reasonably well, though the root mean squared error tended to be lower for the dynamic model. The regression 
model achieved better correlations between observed and predicted values. Both models were more sensitive to 
uncertainties in weather than in soil properties, with precipitation often accounting for the majority of model 
uncertainty. The regression approach is applicable over large spatial scales but lacks precision, making it suitable 
for considering general trends. Century is better applied at a local level where more detailed and specific analysis 
is required.   

1. Introduction 

Effective grassland models allow researchers to evaluate different 
management strategies, predict how the productivity and quality of 
grassland will change over time, anticipate the consequences of climate 
change and generally gain a better understanding of grassland ecosys-
tems. Different types of models have different ranges of applicability and 
effectiveness. Some are applicable over wide spatial scales while others 
are site-specific. Some work well in certain regions but are less useful in 
other areas. Our research considers two very different approaches to 
modelling. The first is an empirical model generated through stepwise 
regression on climatic, locational and managerial variables, and the 
second is a process-based dynamic model, namely Century, described by 
Parton et al. (1987). 

Empirical pasture models may be site-specific or they can be applied 
at a larger (e.g. regional or national) scale (Armstrong et al., 1997; 
Hurtado-Uria et al., 2014; Trnka et al., 2006). These are simpler and 

therefore faster and less computationally demanding than process-based 
models and require less input data. Qi et al. (2017) compared the out-
puts of a process-based model for the productivity of several grassland 
sites in the UK with those of an empirical meta-model derived from the 
outputs of the same process-based model. While the empirical model 
accounted for less variation (as would be expected), it still produced 
‘sufficiently precise’ estimations of pasture yield. There are disadvan-
tages of empirical models. Unlike dynamic models, they are restricted to 
a single output (Qi et al., 2017). They are subject to issues with 
co-linearity between predictor variables and they assume that past re-
lationships will hold in the future (Lobell and Burke, 2010). They are 
also only applicable within the confines of the experiments which 
contributed to their development, i.e. they cannot be used to predict 
grassland yield or quality under climate or management conditions 
different from those original experiments. Despite the drawbacks of this 
method, it is still useful in determining trends in grassland responses to 
weather and management variation. 
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Dynamic models simulate the different processes in a system, looking 
at how the system changes over time. They can be seen as being more 
biologically realistic than empirical models. They are usually applied to 
a single site (or several homogeneous sites) and require a large number 
of inputs. Korhonen et al. (2018) applied several different dynamic 
models to timothy grass swards in northern Europe and Canada and 
found that the more detailed the model, the more accurate the results. 
However, highly detailed models require large amounts of input data, 
making it difficult to apply more complex models to sites where only 
limited data is available. The wide variety of grassland ecosystems also 
makes it difficult to develop a one-size-fits-all model. While models can 
be parametrised to individual sites, there will always be areas where 
they function less well (Trnka et al., 2006). A broad range of dynamic 
models exists for modelling grasslands, as summarised by Bellocchi et al. 
(2013) and Chang et al. (2013). We chose to use the Century model; this 
is a tool for ecosystem analysis and can be applied to croplands, forests 
and grasslands. It has a focus on carbon, nitrogen and water fluxes in the 
plant-soil system and runs on a monthly time-step; it also allows for 
complex agricultural management practices (Metherell et al., 1993). It 
was selected because the grassland part of the model is relatively simple 
and requires fewer inputs than many other dynamic grassland models, it 
can be applied to a diverse range of grasslands, and also because it has a 
relatively fast run-time. A daily version of Century exists (DailyDay-
Cent), but this takes considerably longer to run and requires more input 
information. Having a (relatively) small number of inputs makes it 
easier to implement the model on a range of sites, particularly as some 
sites have only very limited information available. The main relevant 
inputs are grassland type, temperature, precipitation, grassland man-
agement and soil properties. Century has predominantly been used to 
model soil carbon (C) and nitrogen (N) dynamics, though Parton et al. 
(1993) used it to model plant production at several grassland sites 
around the world. They found that the predictions were within 25% of 
the observations 60% of the time and that Century produced slightly 
higher R2 values than empirical models. Century is designed to work on 
a wide range of ecosystems, meaning that it can be applied throughout 
Europe. 

Other modelling approaches, such as ensemble modelling (S�andor 
et al., 2017) and integrated assessment modelling (Rose, 2014), were 
also considered. However we wished to prioritise fast run-times in order 
to be able to perform a detailed sensitivity analysis. We also wanted to 
minimise the input information required so that we could apply the 
models to as many sites as possible. The other approaches considered 
were not compatible with these goals. 

In the present study we aim to evaluate the two modelling ap-
proaches (one statistical and one dynamic) in different climatic zones 
across Europe for both permanent and temporary grasslands, consid-
ering both yield (dry matter) production and N content. These outputs 
were chosen due to their importance to grassland-based livestock sys-
tems and also because while yield has been widely modelled with these 
methodologies, N content has not. No attempt has been made to develop 
regression equations to model grassland N content over large spatial 
scales. Similarly, Century has not generally been used to consider plant 
N content and so little is known about its effectiveness. This research will 
address these gaps and determine if regression and/or Century are 
effective ways of modelling grassland N content. We will also investigate 
the sensitivity of each model to input uncertainties and the circum-
stances under which each of the models performs best. This will inform 
future grassland modelling work by enabling researchers to better 
evaluate their results when using similar models for predictive purposes, 
such as looking at the effects of climate change or considering alternate 
management practices. 

2. Methods 

2.1. Data 

Both approaches required data from grassland experiments across 
Europe. To be included, these experiments had to have recorded har-
vested plant dry matter and/or N content over a period of at least three 
years. The experimental data was assembled from published literature 
and through contacting experts and relevant institutions. The locations 
of these experiments are shown in Fig. 1. The sites were divided into five 
geographic regions (Alpine, Atlantic, continental, northern and south-
ern). This regional classification is consistent with the climatic zones 
used by the Intergovernmental Panel on Climate Change (IPCC). Sites 
were also divided into permanent and temporary grasslands. Permanent 
grasslands are dominated by one or more species of grass, though may 
include many different plant types. They have been used continuously as 
grassland for at least five years. Temporary grasslands are usually 100% 
grass or else a grass/legume mixture and produce high yields. They have 
been used as grassland for less than five years. In making these divisions 
by region and grassland type, we aimed to account for as much of the 
existing variation in grasslands as possible, while still being able to 
group them in a manageable way. Furthermore, more data was usually 
available for the temporary sites than the permanent ones (in particular 
data on species composition), so by separating the two types we were 
able to do a more detailed analysis of temporary grasslands than would 
otherwise have been possible. The full list of sites can be found in ap-
pendix A. Monthly temperature and precipitation data for all sites was 
taken from the Climatic Research Unit gridded dataset (UEA CRU et al., 
2017). 

Fig. 1. Locations of sites used, by geographic region and grassland type. Re-
gions are Alpine (■), Atlantic (●), Continental (◆), Northern (▴) and Southern 
(▾). Open shapes denote temporary grasslands, while solid shapes denote per-
manent grasslands. 
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2.2. Regression model 

To ensure that no single site dominated the analysis, data from each 
experimental site was edited so that all those for a given region and 
grassland type contributed approximately the same number of data 
points. Each dataset was then divided into four quarters. Three quarters 
of the data from all datasets were used as input to a stepwise regression 
process in R (R Core Team, 2017). This was done separately for each 
grassland type and for both yield and N content, resulting in the 
following equations: 

Yield, permanent grassland:  

Yield (t DM/ha) ¼ α0 þ αREGION þ α1RainJFM þ α2RainAMJ þ α3RainJA þ

α4TempFM þ α5TempAMJ þ α6TempJA þ α7RainJFM
2 þ α8RainAMJ

2 þ α9RainJA
2 

þ α10TempJA
2 þ α11Altitude þ α12Cuts þ α13NF þ α14Cuts2 þ α15NF2 þ

α16NF*RainJFM þ α17NF*TempJA                                                            

Applicable to the Alpine, Atlantic, continental and northern regions. 
Yield, temporary grassland:  

Yield (tDM/ha) ¼ β0 þ βREGION þ β1RainJFM þ β2RainAMJ þ β3RainJA þ

β4TempJF þ β5TempMA þ β6TempMJ þ β7TempJA þ β8RainJFM
2 þ β9RainAMJ

2 

þ β10RainJA
2 þ β11TempMJ

2 þ β12TempJA
2 þ β13Altitude þ β14Cuts þ

β15Legume þ β16NF þ β17Altitude2 þ β18Cuts2 þ β19Legume2 þ β20NF2 þ

β21NF*RainJA þ β22NF*Cuts                                                                   

Applicable to the Atlantic, continental, northern and southern regions. 
N content, permanent grassland:  

N content (kg/ha) ¼ γ0 þ γ1RainMarch þ γ2RainAM þ γ3RainJJA þ γ4Temp-
January þ γ5TempAugust þ γ6RainMarch

2 þ γ7RainJJA
2 þ γ8Altitude þ γ9Cuts þ

γ10Cuts2 þ γ11NF þ γ12NF*RainMarch þ γ13NF*TempJanuary þ γ14NF*Tem-
pAugust þ γ15NF*Cuts                                                                             

Applicable to the continental region. 
N content, temporary grassland:  

N content (kg/ha) ¼ δ0 þ δREGION þ δ1RainAMþ δ2RainJJA þ δ3TempJF þ

δ4TempMA þ δ5TempJJA þ δ6RainAM
2 þ δ7RainJJA

2 þ δ8TempJF
2 þ δ9TempMA

2 

þ δ10TempJJA
2 þ δ11Altitude þ δ12Cuts þ δ13Legume þ δ14NF þ δ15Altitude2 

þ δ16Cuts2 þ δ17Legume2 þ δ18NF2 þ δ19NF *TempMA þ δ20NF*Cuts      

Applicable to the Atlantic, continental and northern regions. 
Coefficients for these equations are listed in appendix B. 
Subscripts indicate months of the year, for example RainAM is total 

rainfall in April and May, TempJJA is average temperature in June, July 
and August. 

Altitude is measured in metres. 
‘Cuts’ indicates the number of harvests per year. 
‘Legume’ is the percentage of nitrogen-fixing plants at seeding, for 

example 5% would be taken as 5.0 in the equation. 
‘NF’ is the amount of nitrogen fertiliser used per year (kg N/ha). 
These equations are only applicable to certain regions due to the 

availability of data for developing the equations. 
The remaining quarter of the data was used for validation. The 

process was then repeated a further three times, with a different quarter 
being used for validation each time. This permutational approach helps 
to prevent over-fitting and allows standard errors of the resulting root 

mean squared errors (RMSEs) and correlations to be calculated. 

2.3. Century model 

While the Century model requires relatively little input information 
compared with many other dynamic ecosystem models, it still requires 
certain site-specific information and sufficient data for model parame-
terisation. Very few sites met all the necessary requirements. Six sites 
were eventually selected based on the availability of necessary infor-
mation and also to ensure a range of sites from different regions and of 
different grassland types. The selected sites are listed in Table 1. The 
model was only applied to one temporary grassland site; this was 
because temporary grassland experiments tended to be of much shorter 
duration and there was insufficient data to parameterise the model. At 
the selected site (Hurley, UK), data from each of seven annual harvests 
was available, rather than just an annual total. Harvested yield was 
measured at all sites, but N content was only measured in four of the six 
experiments. 

In order to optimally parameterise the Century model, the input 
parameters having the greatest effect on plant yield and N content were 
first identified. This was done through a review of relevant literature 
(Necp�alov�a et al., 2015; Rafique et al., 2015; Wang et al., 2013; Wu 
et al., 2014), expert consultation and preliminary data analysis. The 
sensitivity of the model to each suggested parameter was tested by 
checking how much the predicted yield and N content changed when the 
parameter was varied within a reasonable range. The identified relevant 
parameters are shown in Table 2. 

Parameters representing the effects of temperature on growth (PPDF 
(1–4)) were often cited in the literature as being particularly relevant. 
However it was found that including them in the optimisation process 
often led to over-fitting and produced unrealistic predictions when the 
model was applied to anything other than the original experimental 
conditions. Instead, reasonable values for these parameters were chosen 
based on preliminary model runs on the available data and Century 
documentation. 

Table 1 
Sites to which the Century model has been applied.  

Site, Country Geographic region Grassland type Fertiliser treatments (kg N ha� 1 a� 1) Plant N content available? Experiment duration (years) 

Eschikon, Switzerland Alpine Permanent 140/560 Yes 10 
Hurley, UK Atlantic Temporary 0/150 Yes 4 
Rothamsted, UK Atlantic Permanent 0/144 No 58 
G€ottingen, Germany Continental Permanent 0/equal to that removed the previous year Yes 40 
Hvanneyri, Iceland Northern Permanent 0/100 Yes 25 
Larzac Causse, France Southern Permanent 0/65 No 25  

Table 2 
Century model parameters for optimisation.  

Parameter Description 

PRDX(1) Coefficient for calculating potential aboveground monthly 
production 

PRAMN(1,1), 
PRAMX(1,1) 

Minimum and maximum C/N ratio with zero biomass 

PRAMN(1,2), 
PRAMX(1,2) 

Minimum and maximum C/N ratio when biomass exceeds a 
given threshold 

TEFF(1–4) Temperature effect on soil decomposition 
FWLOSS(4) Scaling factor for interception and evaporation of 

precipitation by live and standing dead biomass 
EPNFA(1–2) Intercept and slope for determining the effect of annual 

precipitation on atmospheric N fixation 
EPNFS(1–2) Values for determining the effect of annual 

evapotranspiration on non-symbiotic soil N fixation 
CFRTCN(1–2) Maximum fraction of C allocated to roots under maximum 

and no nutrient stress 
CFRTCW(1–2) Maximum fraction of C allocated to roots under maximum 

and no water stress 
SNFXMX(1) Symbiotic N fixation  
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For each site, optimal values for the parameters were attained 
through Markov Chain Monte Carlo (MCMC) optimisation using the L- 
BFGS-B algorithm within the Python SciPy module (Jones et al., 2001). 
The optimisation routine minimised the total error X where: 

X¼ SoilC þ
X

i
ðYiþNiÞ

Yi¼RMSEðPY ;OYÞ =OY for  fertiliser  treatment i:

Ni ¼RMSEðPN ;ONÞ =ON for  fertiliser  treatment i:

RMSE(a,b) is the root mean squared error between a and b. 
PY and PN are the model predictions for yield and plant N content. 
OY and ON are the experimental observations for yield and plant N 

content. 
OY and ON are the mean experimental observations for yield and 

plant N content.  

SoilC ¼ (100 * gradient of total soil carbon at end of spin-up period)3.           

A Century simulation begins with a long spin-up period which allows 
the system to stabilise before the experimental period begins. By 
including the gradient of total soil carbon at the end of the spin-up 
period as part of the error term, we ensured that the parameter values 
chosen enable this stabilisation to be achieved. This precise choice of 
gradient term was achieved through trial-and-error and is designed not 
to dominate the error term (X) while still achieving a sufficiently stable 
state. 

The optimisation procedure was run for multiple management re-
gimes (e.g. varying fertiliser treatments, mowing frequency, grazing 
intensity, etc., depending on the availability of measured data) simul-
taneously in order to obtain a single set of optimal parameters for each 
site, applicable to all situations. 

2.4. Model fit 

To assess the goodness-of-fit of the Century model, predicted and 
observed values for average yield and N content were compared, and 
corresponding standard errors were evaluated. In addition, the RMSE 
and correlation between predicted and observed yields and N content 
were calculated for both models and the RMSE were divided into bias 
and variance terms. 

2.5. Sensitivity analysis 

We looked at the sensitivity of the model predictions to uncertainty 
in different input parameters. These are shown in Table 3, along with 
ranges for their potential uncertainty (based on Fitton et al. (2014) and 
Gottschalk et al. (2007)). 

These parameters are prone to measurement errors, or else were 
estimated from other sources rather than being measured on-site, and 
could lead to inaccuracies. Such errors have the potential to propagate 
through the models and influence the results. By conducting a sensitivity 

analysis, we determine how uncertainties in each input affect uncer-
tainty in our modelled estimates. 

For both models, we calculated the contribution of each parameter as 
a percentage of the total uncertainty. To do this, we first calculated the 
standard deviation in the total uncertainty (σg) when varying all pa-
rameters simultaneously within their uncertainty ranges. This was done 
by running the model until σg converged (approximately 5000 runs), 
with different combinations of parameters in each run. The choice of 
parameter values was determined using Latin hypercube sampling for 
reasons of computational efficiency, which was implemented in Python. 
We repeated this process multiple times, now keeping one parameter at 
its original value while allowing the others to vary. This allowed us to 
calculate the standard deviation in the simulations with parameter i set 
to its original value (σi). These values were used to calculate the 
contribution index (ci) for each parameter i as follows: 

ci¼
σg � σi

Pimax
i¼1 σg � σi

� 100  

where imax is the number of input parameters varied. The higher the ci, 
the greater the contribution of that parameter to the total uncertainty. 
This methodology is based on that of Gottschalk et al. (2007). For the 
regression model we performed this process twice for each regression 
equation and each region, once with the average fertiliser level from the 
experiments conducted in that region and once with no fertiliser. The 
weather inputs were the monthly averages from the original experi-
ments for the given region. For Century we performed this process for 
each fertiliser level used in the original experiments (Table 1). 

For the Century model we also investigated the linearity of the un-
certainty propagation for each parameter. This was not necessary for the 
regression models since the linearity is obvious from the equations. For 
each parameter we ran the model ten times, setting the parameter to ten 
equally-spaced steps within the uncertainty range, while leaving the 
other parameters at their original values. We then found the best-fit 
regression (using R) between the change in yield or N content from 
the original prediction and the parameter value (with terms of different 
orders). For example, for soil pH: 

Change in model prediction¼ α0 þ α1*pH þ α2*pH2 þ α3*pH3 þ α4*pH4 

By comparing the R2 values of this regression equation with an 
equivalent linear equation and by seeing which of the αi were statisti-
cally significant (p < 0.05), we could determine the linearity (or non- 
linearity) of the model’s response to uncertainty in a given parameter. 
This was done for each of the five parameters and the analysis was 
performed separately for each site and fertiliser treatment. This meth-
odology is based on that of Fitton et al. (2014) and Hastings et al. (2010). 

3. Results 

3.1. Regression model 

Looking at the coefficients of the regression equations (Appendix B), 
some trends become apparent. For both yield and N content, rainfall 
usually has a positive effect, but when these terms are squared they are 
usually negative, suggesting that exceptionally high rainfall decreases 
yield and N content. Higher spring temperatures lead to higher yields, 
while higher winter temperatures lead to reduced N content and higher 
summer temperatures increase it. More cuts per year implies high yields 
and N content, but only up to a certain point, with the cuts2 term always 
being negative, indicating that excessive harvests reduce yield and N 
content. A similar effect was seen for legume percentage in temporary 
grasslands, with both yield and N content increasing up to a certain 
threshold, beyond which they begin to decrease. 

The goodness-of-fit of the equations is evaluated in Table 4. In all 
cases, the fit was reasonably good, with high correlations but also 
relatively high RMSEs, though the latter were due entirely to variation 

Table 3 
Parameters tested as part of the sensitivity analysis and corresponding uncer-
tainly ranges.  

Parameter Uncertainty 
range 

Model in which the sensitivity of the 
parameter is tested 

Precipitation �30 mm per 
month 

Regression and Century 

Temperature �1 �C Regression and Century 
Legume 

percentage 
�25% Regression 

Soil pH �1.5 pH unit Century 
Soil clay content �30% Century 
Soil bulk density �0.3 g/cm3 Century  

M. Dellar et al.                                                                                                                                                                                                                                  



Environmental Modelling and Software 122 (2019) 104562

5

rather than bias. The equations for N content had better fit than those for 
yield, having higher R2 values and correlations. The models were usually 
similarly good for permanent and temporary grasslands, though the 
RMSEs for permanent grasslands were slightly higher than those for 
temporary. 

3.2. Century model 

The goodness-of-fit of the parameterised models is shown in Table 5. 
The observed and predicted means were usually very close to one 
another, as such the RMSE tended to be dominated by variance rather 
than bias. The correlations between predictions and observations 
showed more variation, ranging from no correlation (Iceland) to quite 
high correlation (Hurley). It should also be noted that the standard er-
rors of the predicted means were always less than those of the observed 
means (for both yield and N content). The predictions showed consid-
erably less inter-annual variation than there was in reality. 

For yield, the greatest discrepancies between observed and predicted 
means were in the Atlantic region when fertiliser was used. This region 
also had some of the highest RMSEs (for permanent grasslands), though 
many of the RMSEs were quite high. Two sites exhibited no correlation 
between observed and predicted yields, these being the Alpine site with 
fertiliser and the northern site without fertiliser. For N content, the 
model performed very well for the Atlantic site, though it is not clear if 
this is due to the region or due to it being the only temporary grassland 
in the analysis. The model also performed well for the Alpine site under 
the low fertiliser treatment. The model was less successful at predicting 
N content in the continental and northern regions and was particularly 
poor in the northern region when no fertiliser was used, where there was 
a large discrepancy between the predicted and observed means, a high 
RMSE and no correlation. 

Overall the dynamic model performed best in the Atlantic region 
(especially for the temporary grassland site) and particularly poorly in 

the Alpine region with high fertiliser use and the northern region with 
no fertiliser use. 

3.3. Sensitivity analysis 

3.3.1. Regression model 
The sensitivity analysis results for the regression model are shown in 

Table 6. There was no apparent difference in the variation of yield and N 
content between the fertiliser treatments when the input parameters 
were varied. There was a much higher level of variation for southern 
temporary grasslands than in other regions. While it appears that tem-
porary grasslands exhibit more variation than permanent ones, these are 
not comparable as the regression equations for permanent grasslands do 
not account for legume percentage and so this could not be varied. 

Uncertainty associated with precipitation measurements was by far 
the largest contributor to total uncertainty, often accounting for more 
than 80%. The exception was for yields of permanent grasslands in the 
continental region, where temperature uncertainties had much more of 
an influence. The contribution indices show that there was generally 
very little difference between the distribution of uncertainty in the fer-
tilised and unfertilised cases, though there were large differences in 
these distributions for yields of permanent grasslands in the Atlantic and 
continental regions. 

3.3.2. Century model 
The standard deviations of the total uncertainty (σg) for each site are 

shown in Fig. 2. There was considerably more variation at the Atlantic 
permanent site than at any of the others, while for the Atlantic tempo-
rary site the variation was very small. The contribution indices for each 
site are shown in Fig. 3. Overall, the weather parameters made the 
greatest contribution to the total uncertainty, with the soil parameters 
often contributing a negligible amount. Uncertainty in the yield results 
was usually due to the same input parameters as uncertainty in the N 

Table 4 
Goodness-of-fit of regression model equations.   

Grassland type R2 (SE) Correlation (SE) Root mean squared error as a percentage of mean observed value (percentage of which is due to bias) 

Yield Permanent 0.59 (0.00) 0.76 (0.01) 40.5 (0.0) 
Temporary 0.59 (0.00) 0.76 (0.01) 34.6 (0.0) 

N content Permanent 0.72 (0.04) 0.80 (0.03) 37.6 (0.2) 
Temporary 0.80 (0.00) 1.89 (0.00) 28.1 (0.0)  

Table 5 
Goodness-of-fit of the Century model, parameterised for different sites. OY and PY are observed and predicted yields, ON and PN and observed and predicted plant N 
content, �OY and �ON are mean observed yield and N content. All results are based on total annual harvested dry weight, except for the root mean square error and 
correlation for Hurley, which were calculated from individual harvests.  

Site Fertiliser 
treatment 
(kg N ha� 1 

a� 1) 

Mean (SE) 
observed 
yield (t DM 
ha� 1 a� 1) 

Mean (SE) 
predicted 
yield (t DM 
ha� 1 a� 1) 

Root mean squared 
error between OY 

and PY as 
percentage of �OY 

(Percentage of 
which is due to bias) 

Correlation 
between OY 

and PY 

Mean (SE) 
observed N 
content (kg 
ha� 1 a� 1) 

Mean (SE) 
predicted N 
content (kg 
ha� 1 a� 1) 

Root mean squared 
error between ON 

and PN as 
percentage of �ON 

(Percentage of which 
is due to bias) 

Correlation 
between ON 

and PN 

Eschikon, 
Switzerland 

140 6.85 (0.38) 6.93 (0.10) 14.8 (0.6) 0.53 141.2 (8.9) 148.0 (2.9) 18.9 (6.6) 0.28 
560 12.16 (0.95) 12.15 (0.13) 23.5 (0.0) 0.06 381.4 (41.5) 346.9 (9.3) 33.2 (7.5) 0.21 

Hurley, UK 0 1.82 (0.56) 1.62 (0.39) 13.8 (1.4) 0.74 34.6 (9.1) 28.1 (6.5) 13.6 (5.9) 0.77 
150 4.76 (0.88) 6.37 (0.29) 14.8 (10.7) 0.57 99.7 (18.0) 81.3 (5.1) 15.1 (4.6) 0.54 

Rothamsted, 
UK 

0 2.72 (0.16) 2.93 (0.04) 41.7 (3.5) 0.36 NA 42.7 (0.8) NA NA 
144 6.86 (0.25) 5.76 (0.07) 30.6 (27.2) 0.33 NA 155.3 (1.8) NA NA 

G€ottingen, 
Germany 

0 3.56 (0.21) 3.53 (0.03) 35.0 (0.1) 0.20 34.1 (2.3) 35.1 (0.5) 41.7 (0.58) 0.12 
Equal to 
previous 
year’s N 
removal 

6.33 (0.31) 6.37 (0.10) 25.5 (0.1) 0.61 135.0 (6.7) 107.6 (3.4) 31.1 (42.7) 0.68 

Hvanneyri, 
Iceland 

0 5.73 (0.40) 6.29 (0.06) 35.9 (7.2) � 0.04 82.5 (6.8) 66.4 (1.3) 45.3 (18.7) 0.04 
100 7.64 (0.23) 7.30 (0.04) 14.8 (9.3) 0.23 126.3 (4.5) 124.2 (1.3) 19.2 (0.8) � 0.23 

Larzac 
Causse, 
France 

0 1.57 (0.11) 1.55 (0.04) 21.6 (0.2) 0.63 NA 10.0 (0.4) NA NA 
65 5.25 (0.29) 5.31 (0.07) 25.7 (0.2) 0.36 NA 47.1 (0.8) NA NA  
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content results, though the Alpine site was a notable exception to this. 
Here the yield uncertainty was almost exclusively due to temperature 
variations (93–98%), while for N content it was almost exclusively due 
to uncertainties in the precipitation amount (94–96%). For the Atlantic 
permanent and continental sites, most of the uncertainty was due to 
potential precipitation errors (66–99%), while for the northern region it 
was primarily due to potential temperature errors (51–88%). Results for 
the Atlantic temporary and southern sites were more mixed, with no one 
parameter dominating the uncertainty and with very different combi-
nations of parameters making up the uncertainty for yield and N content 
and for the different fertiliser treatments, though neither site was sen-
sitive to variations in soil pH. 

When each parameter was varied individually, the results for yield 
and N content were very similar. Changing soil pH generally had very 
little effect on either yield or N content, except at the Atlantic permanent 
site where reducing soil pH led to large increases in both yield and N 
content (þ26% and þ44% respectively). Varying the soil clay content 
also had little influence, except at the southern European site where it 
did have an effect, particularly for yield when no fertiliser was used 
(ranging from a 7% increase with decreasing clay content to an 8% 
decrease with increasing clay content). Here the uncertainty propaga-
tion was linear when fertiliser was used, but non-linear without fertil-
iser. Varying soil bulk density led to some small changes in plant yield 
and N content, again this was most noticeable at the southern site with 
no fertiliser (9% yield increase and 12% N content increase when bulk 
density is increased). Plant responses to uncertainty in bulk density were 
usually linear. Changing precipitation amounts had an effect at all sites 

and the uncertainty propagation was always non-linear (except for N 
content at the Alpine site). Reductions in precipitation nearly always led 
to decreases in both yield and N content, while increasing precipitation 
generally led to either increasing yields and N content or else very little 
change. The strongest responses were at the Atlantic permanent, conti-
nental and southern sites (the largest being a 42% decrease in N content 
at the Atlantic permanent site with decreasing precipitation). For tem-
perature, the results were very mixed. There tended to be a greater 
response to changes in temperature under the no/low fertiliser treat-
ments, though the direction of the response varied between the sites. 
The uncertainty propagation was always linear at the northern site and 
always non-linear at the continental and Atlantic temporary sites, but 
varied for the other locations. Full results can be found in the supple-
mentary materials. 

4. Discussion 

The present study set out to model the yield and N content of Eu-
ropean grasslands using both a statistical (regression) and a dynamic 
model approach. The models’ goodness of fit and sensitivity to input 
uncertainties were considered. The results presented above address 
these objectives. 

4.1. Regression model 

Looking at the R2 values and the correlations for the regression 
equations, there was a very good fit with the observed data. Also the 

Table 6 
Standard deviation of the total uncertainty (σg, units are t/ha for yield and kg/ha for N content) and contribution indices (ci) for temperature, precipitation and legume 
percentage, indicating the contribution of each parameter to the total uncertainty in the regression equations.   

Average fertiliser No fertiliser 

Grassland type Region σg cTemp cPrec cLeg σg cTemp cPrec cLeg 

Yield 
Temporary Atlantic 0.70 3% 96% 1% 0.38 10% 89% 1% 

Continental 0.48 1% 89% 10% 0.41 0% 85% 15% 
Northern 0.83 0% 97% 3% 0.74 1% 94% 4% 
Southern 1.25 1% 98% 1% 1.19 0% 99% 1% 

Permanent Alpine 0.34 7% 93% NA 0.18 1% 99% NA 
Atlantic 0.24 36% 64% NA 0.36 2% 98% NA 
Continental 0.21 97% 3% NA 0.18 51% 49% NA 
Northern 0.37 0% 100% NA 0.49 1% 99% NA 

N content 
Temporary Atlantic 27.6 0% 100% 0% 29.9 11% 88% 0% 

Continental 19.9 5% 84% 11% 20.8 11% 78% 11% 
Northern 32.5 0% 98% 1% 32.6 0% 98% 2% 

Permanent Continental 7.9 1% 99% NA 7.0 6% 94% NA  

Fig. 2. Standard deviations of the total uncertainty in (a) yield and (b) N content predictions in the Century model when precipitation, temperature, soil pH, soil clay 
content and soil bulk density are allowed to vary. Light grey bars denote the no/low fertiliser treatment, dark grey bars denote the with/high fertiliser treatment. 
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standard errors of these measures were very low, suggesting that the 
models were not over-fitted. However the RMSEs were relatively high, 
likely due to the considerable amount of variation amongst the experi-
mental sites and the large geographical regions involved. It is not sur-
prising that the equations for permanent grasslands produce higher 
RMSEs than those for temporary grasslands, since permanent grasslands 
tend to be more variable and have a higher degree of plant species 

diversity and are therefore less predictable. Several previous studies 
have found difficulties with using a linear regression methodology to 
relate plant yields with weather conditions, such as low signal-to-noise 
ratios (Lobell and Burke, 2010), large numbers of relevant variables 
and interactions of variables, many of which were correlated with one 
another or were non-linear, and extreme climatic events having an in-
fluence lasting multiple years (Jenkinson et al., 1994). These factors 

Fig. 3. Contribution indices, representing the contribution of each parameter to the total uncertainty, for the six sites to which the Century model has been applied. 
Black lines indicate results for yield and grey lines results for N content. Solid lines indicate the no/low fertiliser treatment and dashed lines indicate the with/high 
fertiliser treatment. 
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may also partly explain the high RMSEs, though it is encouraging that 
there was no evidence of bias in the results, suggesting that these 
regression equations can be a useful predictive tool, albeit one which 
produces relatively large confidence intervals. 

4.2. Century model 

For the Century model, there was more variance in the correlation 
coefficients than the error terms, as the optimisation process minimised 
the RMSE but did not look at correlation. The Hurley site had the largest 
discrepancies between predicted and observed annual totals. This is 
likely because this experiment took place over a much shorter duration 
than the others, so there were only four years of data to use for model 
parameterisation. It is also the only temporary grassland site, though 
without more temporary sites for comparison it is not clear if this has an 
influence on the fit of the model. It is encouraging that the observed and 
predicted means were usually quite similar, suggesting that while the 
model may struggle to capture inter-annual variation, it is producing the 
right value on average. The instances where there was little to no cor-
relation between predictions and observations (sites in Iceland, 
Switzerland with high fertiliser and Germany with no fertiliser) are more 
concerning. While it is expected that the modelled results will not 
display the full range of inter-annual variation, because the model used 
monthly weather data rather than daily values, it is hoped that they 
should pick up the general trends. An absence of any correlation sug-
gests that the model is not sufficiently capturing the effects of temper-
ature and precipitation and these results should be treated with caution. 
For the Swiss site, the high fertiliser treatment is very high (560 kg N 
ha� 1a� 1) and it may be that this is causing the model to allow grass 
growth to reach its maximum potential every year, meaning it becomes 
relatively insensitive to weather. Parton et al. (1993) found a similar 
result (i.e. a lack of inter-annual variation) for some sites in Ukraine and 
Russia when using Century to model grassland live biomass, though for 
other sites the model was more effective. The use of a model with a 
monthly time-step rather than daily also means that the effect of rainfall 
distribution is not captured. A plant will respond differently to excep-
tionally heavy rain on one day than it will to the same amount of rain 
over a longer period. The use of a daily model would account for this and 
it would likely have a better fit than Century, though it would have a 
considerably longer run-time. While we considered using DailyDayCent 
(the daily version of Century) for this study, the time it takes to run 
would have meant that such in-depth parameterisation and sensitivity 
analysis would not have been possible. 

The effectiveness of the Century model varied considerably between 
the sites, grassland types and fertiliser levels. There are indications that 
it performed less well in the Alpine and northern sites (two of the more 
climatically extreme locations) and better in the Atlantic region (where 
it is more temperate), but it is difficult to draw a firm conclusion from 
such a small number of sites. There is some evidence that dynamic crop 
models perform less well in mountainous areas or under stress condi-
tions (Timsina and Humphreys, 2003; Xiong et al., 2008), so it may be 
that such models are generally more reliable in temperate regions. 

4.3. Sensitivity analysis 

Some general trends were apparent across the different sensitivity 
tests. The level and distribution of the uncertainty was usually about the 
same for different fertiliser treatments. This is consistent with the 
findings of Fitton et al. (2014) and suggests that there is no significant 
interaction between fertiliser use and the sensitivity of yield and N 
content to measurement uncertainties. 

In terms of the linearity of the models’ responses, the main causes of 
variation were uncertainties in precipitation and temperature mea-
surements. For both models, the responses to these uncertainties were 
usually non-linear (for the regression model this is apparent from the 
equations). This is logical since plants’ response to precipitation and 

temperature is non-linear in general, there being optimal values for 
growth beyond which plant performance will decrease. 

The large effect of uncertainty in precipitation measurements is 
likely because errors in precipitation are cumulative. If the measure-
ments are wrong by 1 mm a day then they can be wrong by up to 30 mm 
a month. For the regression equations, multiple months are grouped 
together, further multiplying the error. This is not the case for errors in 
temperature measurements, where an error of 1 �C in daily measure-
ments will lead to the same error in average monthly measurements. 

For the regression model, yield predictions for the southern region 
displayed a particularly high amount of variability when the inputs were 
varied and this was due almost exclusively to variations in the amount of 
precipitation. This region had by far the lowest amount of rainfall, 
suggesting that drier regions are more sensitive to uncertainties in 
rainfall measurements than wetter regions. This is likely because soil 
water reserves are lower in such areas and thus a reduction in rainfall 
has more effect on plant growth than it would in wetter regions. 
Southern Europe is predicted to become drier as a result of climate 
change (IPCC, 2013), suggesting that irrigation may become increasing 
necessary as these results suggest that water-limitation is already an 
issue. 

For the Century model, when looking at the parameters individually 
the largest changes occurred when precipitation was varied and pre-
cipitation also often dominated the total uncertainty when the param-
eters were allowed to fluctuate simultaneously, the other major 
contributor to the uncertainty being temperature. When we identified 
the parameters having the greatest influence on plant yield and N con-
tent for the purposes of model parameterisation (Table 2), many of these 
related to temperature and precipitation effects. It is therefore consistent 
that the sensitivity analysis has shown that the model is more sensitive 
to weather parameters than soil properties. Plant production in the 
Century model is constrained by temperature and moisture (Metherell 
et al., 1993), which is likely why grass yields were so sensitive to vari-
ations in these parameters. Necp�alov�a et al. (2015) found a similar 
sensitivity of crop productivity to temperature and soil moisture when 
applying DailyDayCent to a corn-soybean cropping system. This fits with 
areas where growth is typically limited by short growing seasons due to 
low temperatures, i.e. Alpine and northern regions, having most of their 
sensitivity being due to uncertainties in temperature measurements, 
while areas where growth is not temperature limited, e.g. Atlantic and 
continental regions, were more affected by uncertainties in precipitation 
measures. It is not clear why the Atlantic permanent site exhibited such a 
large degree of uncertainty compared with the other sites, though it is 
consistent with this site also having the largest RMSEs in its yield pre-
dictions (Table 5). This site does not experience such extreme climatic 
conditions as some of the others, suggesting that this uncertainty may be 
due to some local property, possibly relating to soil characteristics, 
management practices or species composition. It is possible that legumes 
in the plot are generating cyclical dynamics for which the model is not 
accounting. 

A possible reason for the Century model’s lack of sensitivity to soil 
properties is that the soil pools are stabilised during the spin-up period. 
A shorter spin-up time may lead to more uncertainty. In contrast, Fitton 
et al. (2014) found that crop yields are mostly sensitive to soil pH and 
not at all to uncertainties in precipitation or temperature. However they 
use a variation on the contribution index formula which will tend to give 
opposite results, suggesting that our findings are in agreement. 

The results emphasise the need to ensure that weather measurements 
are as precise as possible, especially for precipitation. If at all possible, 
data from on-site weather stations should be used, rather than larger- 
scale estimates. On the other hand, estimations of soil parameters 
rather than direct measurements are acceptable, as small errors have 
little effect on the results. 
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4.4. Model comparison 

Overall, there was a greater amount of uncertainty in the regression 
model predictions than those from the Century model (i.e. the standard 
deviation when the inputs were varied was higher for the regression 
model). This is likely because the Century model applies to a single site, 
whereas the regression models are valid over a large geographic region, 
meaning that they are considerably less precise. Similarly the RMSEs 
from the regression model were at the high end of the range of those 
produced by Century. On the other hand, the correlations between 
observed and predicted values from the regression results were higher 
than those from Century. This suggests that the regression approach is 
better at modelling trends in the annual response of grassland yields and 
N content to temperature and precipitation (since the correlations are so 
high), but it is less precise at predicting absolute values (due to the high 
sensitivity and large RMSEs). 

In terms of the models’ utility, the regression model is applicable 
over very large spatial scales, making it particularly useful for consid-
ering general trends, for example the impacts of climate change. How-
ever, because this model is purely statistical it cannot be used to 
extrapolate beyond the bounds of the experiments which were used in its 
development. Century is usually applied to a single site (or multiple 
homogeneous sites), which makes it more useful for local consider-
ations, such as alterations to management practices. Because it is 
process-based, extrapolation to consider alternative scenarios is possible 
(to some extent). Applying the regression model to a single site would be 
problematic due to its imprecision, while applying Century to large 
spatial scales would require a huge amount of input data. Century and 
DailyDayCent have been applied over large scales using a gridded 
approach (e.g. Del Grosso et al. (2009)), but this leads to very approx-
imate results and requires considerable effort to determine suitable 
input parameters. 

The relative performance of the two models suggests that they each 

have their benefits and limitations and that users should carefully 
consider which approach is more appropriate for their needs. 
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Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envsoft.2019.104562. 

Appendix A. Sites used for regression modelling  

Permanent grasslands 

Dataset/Location Climatic region Data available Source 

South Tyrol, Italy Alpine Yield Peratoner et al. (2010) 
Pojorata - Suceava County, Romania Alpine Yield Samuil et al. (2011) 
K€arkevagge valley, Sweden Alpine Yield Olofsson and Shams (2007) 
Negrentino and Pree, Switzerland Alpine Yield Stampfli (2001) 
Eschikon, Switzerland Alpine Yield Schneider et al. (2004) 
Rothamsted, England Atlantic Yield Private communication 
Cockle Park, England Atlantic Yield Kidd et al. (2017) 
Lelystad, the Netherlands Atlantic Yield Schils and Snijders (2004) 
Aberystwyth, Wales Atlantic Yield Williams et al. (2003) 
Vienna, Austria Continental Yield Karrer (2011) 
Auvergne, France Continental Yield Klumpp et al. (2011) 
G€ottingen, Germany Continental Yield, N Private communication 
Stuttgart, Germany Continental Yield Thumm and Tonn (2010) 
Eifel Mountains, Germany Continental Yield Schellberg et al. (1999) 
Eifel Mountains, Germany Continental Yield Hejcman et al. (2010) 
Czarny Potok, Poland Continental Yield, N Kope�c and Gondek (2014) 
Iasi County, Romania Continental Yield Samuil et al. (2009) 
North-western Switzerland Continental Yield Niklaus et al. (2001) 
Hvanneyri, Iceland Northern Yield Brynj�olfsson (2008) 
V _e�zai�ciai, Lithuania Northern Yield Butkut _e and Daug _elien _e (2008) 
Nåntuna, Sweden Northern Yield Marissink et al. (2002) 
Temporary grasslands 
The Agrodiversity Experiment, 24 sites used Atlantic, Continental, Northern, Southern Yield, N Kirwan et al. (2014) 
BIODEPTH, 5 sites used Continental, Northern, Southern Yield Hector et al. (1999) 

(continued on next page) 
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(continued ) 

Permanent grasslands 

Dataset/Location Climatic region Data available Source 

FAO sub-network for lowland grasslands, 10 sites used Atlantic Yield Private communication 
GM20, 21 sites across England and Wales Atlantic Yield, N Morrison et al. (1980) 
Novi Sad, Serbia 

Banja Luka, Bosnia & Hercegovina 
Pristina, Kosovo 

Continental Yield, N �Cupina et al. (2017) 

Pleven, Bulgaria Continental Yield Vasilev (2012) 
Tomaszkowo, Poland Continental N Bałuch-Małecka and Olszewska (2007) 
Central Latvia Northern Yield Rancane et al. (2016) 
V _e�zai�ciai, Lithuania Northern Yield Skuodien _e and Rep�sien _e (2008)  

Appendix B. Coefficients of regression equations  

i αi βi γi δi 

0 15.1128199 � 19.9492871 � 171.2297218 � 379.6930803 
REGION Alpine:0 Atlantic:0 NA Atlantic:0 

Atlantic: 3.2947027 Continental: 1.0002833 Continental:5.2174092 
Continental: 2.0093908 Northern: 2.3116753 Northern: 70.2426315 
Northern: 2.8885051 Southern: 1.2554504  

1 � 0.0067281 0.0160201 0.2110533 0.5719420 
2 0.0069159 0.0131461 0.1571394 1.2061140 
3 0.0169409 0.0245117 0.5471275 � 0.7157295 
4 0.3917243 � 0.2989545 � 2.7136310 4.2274162 
5 0.1889399 0.3006537 6.2716467 22.1656249 
6 � 1.3063298 � 1.0667277 � 0.0039319 � 0.0021845 
7 0.0000187 2.2108232 � 0.0008956 � 0.0017167 
8 � 0.0000175 � 0.0000149 � 0.0983881 0.6348516 
9 � 0.0000347 � 0.0000487 16.5380800 1.2036786 
10 0.0262419 � 0.0000639 � 1.2203143 � 0.8367894 
11 � 0.0042733 0.0340660 1.4488548 0.0309453 
12 1.3375788 � 0.0556828 0.0010329 79.2531653 
13 � 0.0014676 � 0.0133913 0.0217244 5.0620701 
14 � 0.1259848 3.7554609 � 0.0436554 � 0.0260712 
15 � 0.0000182 0.1696452 � 0.0481049 0.0001132 
16 � 0.0000355 0.0075429  � 11.4084793 
17 0.0017150 0.0000353  � 0.0657122 
18  � 0.4353109  � 0.0004892 
19  � 0.0026230  � 0.0538573 
20  � 0.0000339  0.1806854 
21  0.0000369   
22  0.0033288    
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