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a cMOS supplemented diet is associated with upregulation of a discrete set of immune genes 2 

in mucosal tissues. 3 
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 16 

Abstract   17 

The main objective of this study was to determine the effect of two forms of mannan 18 

oligosaccharides (MOS: Bio-Mos® and cMOS: Actigen®, Alltech Inc, USA) and their combination 19 

on greater amberjack (Seriola dumerili) growth performance and feed efficiency, immune 20 

parameters and resistance against ectoparasite (Neobenedenia girellae) infection. Fish were 21 

fed for 90 days with 5 g kg-1 MOS, 2 g kg-1 cMOS or a combination of both prebiotics, in a 22 

Seriola commercial base diet (Skretting, Norway). At the end of the feeding period, no 23 

differences were found in growth performance or feed efficiency. Inclusion of MOS also had no 24 

effect on lysozyme activity in skin mucus and serum, but the supplementation of diets with 25 

cMOS induced a significant increase of serum bactericidal activity. Dietary cMOS also reduced 26 

significantly greater amberjack skin parasite levels, parasite total length and the number of 27 

parasites detected per unit of fish surface following a cohabitation challenge with N. girellae, 28 

whereas no effect of MOS was detected on these parameters. Of 17 immune genes studied 29 

cMOS dietary inclusion up-regulated hepcidin, defensin, Mx protein, interferon-γ (IFNγ), 30 

mucin-2 (MUC-2), interleukin-1β (IL-1B), IL-10 and immunoglobulin-T (IgT) gene expression in 31 

gills and/or skin. MOS supplementation had a larger impact on spleen and head kidney gene 32 

expression, where piscidin, defensin, iNOS, Mx protein, interferons, IL-1β, IL-10, IL-17 and IL-22 33 

were all upregulated. In posterior gut dietary MOS and cMOS both induced IL-10, IgM and IgT, 34 

but with MOS also increasing piscidin, MUC-2, and IL-1β whilst cMOS induced hepcidin, 35 

defensin and IFNγ. In general, the combination of MOS and cMOS resulted in fewer or lower 36 

increases in all tissues, possibly due to an overstimulation effect. The utilization of cMOS at the 37 

dose used here has clear benefits on parasite resistance in greater amberjack, linked to 38 

upregulation of a discrete set of immune genes in mucosal tissues. 39 

 40 
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1.Introduction 46 

Seriola aquaculture has traditionally been focused on yellowtail kingfish (S. lalandi) and 47 

Japanese amberjack (S. quinqueradiata) [1]. In Europe, greater amberjack (Seriola dumerili, 48 

Risso 1810) is considered an emerging aquaculture species due to its high commercial value 49 

and fast-growth [2], where under appropriate culture conditions they can reach 6 kg in 2.5 50 

years [3]. Nevertheless, greater amberjack production in sea cages is limited by several 51 

bottlenecks, with monogenean ectoparasite outbreaks a key concern [4, 5, 6].  52 

Neobenedenia girellae is a monogenean ectoparasite that has become one of the main causes 53 

of greater amberjack parasitic infections. It is characterised by a broad host range and wide 54 

distribution in warm waters, with an important prevalence in aquaculture farms [4, 7]. Its 55 

lifecycle is highly dependent of seasonal temperature [8, 9, 10, 11] which promotes the 56 

parasite attachment to the host. Furthermore, parasite attachment to fish skin produces 57 

important alterations [5, 12] such as wounds and ulcers, promoting secondary infections [13], 58 

thereby increasing mortality. To fight secondary infections, especially those caused by fungi 59 

and bacteria, several different strategies have been adopted, mainly based on the use of 60 

antibiotics and topical treatments that have some risks [14]. Nowadays, one of the most 61 

common strategies to avoid the use of antibiotics is to boost the immune system to enable fish 62 

to overcome pathogen infections [15, 16]. These strategies include dietary inclusion of 63 

prebiotics and use of functional feeds, some of which have been shown to affect ectoparasite 64 

prevalence [17, 18]. 65 

Prebiotics are commonly used in the animal production industry due to their effects on the 66 

immune system leading to pathogen protection [19]. It has been well established that the by-67 

products produced when beneficial commensal bacteria ferment prebiotics play a key role in 68 

improving host health [20]. New prebiotics have been showing successful results [21], 69 

including mannan oligosaccharide (MOS) by-products [22, 23, 24, 25]. Studies of MOS 70 

beneficial effects have focused on growth performance and health, especially the modulation 71 

of intestinal microbiota and promotion of gut integrity in adult and juvenile fish [23, 26]. 72 

However, MOS effects are known to be highly dependent upon the biotic parameters of the 73 

cultured fish, including the species, culture conditions, duration of the supplementation, age 74 

and size [27], [21]. 75 

Previous studies have shown that an inclusion level of 4g MOS kg-1 in diets increases growth 76 

performance, feed efficiency and feed intake in salmonids and seabass after 67 days of 77 

supplementation [28, 22]. In contrast, in gilthead seabream and channel catfish no effect was 78 

observed on these parameters using this inclusion level during 63 and 42 days respectively [29, 79 

30], but changes of the immune system were found. Similarly, in rainbow trout [31] fed a 80 

functional diet with 2 g MOS kg-1 during 42 and 90 days improved antibody production and 81 

lysozyme activity were found, and in Japanese flounder, after 56 days of dietary inclusion of 5 82 

g MOS kg-1 gave higher lysozyme activity, although no differences were observed in the 83 

numbers of cells undergoing phagocytosis or the phagocytic index [32]. However, in Atlantic 84 
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salmon (200g) fed a diet supplemented with 10 g MOS kg-1 for 4 months no effects on the 85 

innate immune system were seen [33]. Such studies suggest that the effects are not consistent 86 

between species or that there is a limited duration of the MOS effect on the host immune 87 

response. Recently the study of key regulatory cytokines as markers has also become a useful 88 

indicator of the immune system status in fish. For instance, previous studies with Atlantic cod 89 

showed that MOS dietary inclusion produces changes in gut cytokine expression levels after 35 90 

days of supplementation [34]. Clearly future studies on cytokines are warranted to shed light 91 

on MOS effects. 92 

 93 

Little information is available about the immune system of greater amberjack [10, 35] and few 94 

studies have investigated the use of immunostimulants with this species [36, 37, 38], with 95 

none using MOS or concentrated MOS (cMOS) inclusion. For this reason, the objective of the 96 

present work was to determine the effect of MOS and cMOS (Bio-Mos® and Actigen®) and 97 

their combination on greater amberjack juveniles, focusing on immune parameters, protective 98 

effects against a N. girellae and any impact on growth/feed efficiency. 99 

 100 

2. Materials and methods 101 

The present study was conducted at the Scientific and Technologic Park of the University of Las 102 

Palmas de Gran Canaria (Las Palmas, Canary Islands, Spain). The animal experiments described 103 

comply with the guidelines of the European Union Council (2010/63/EU) for the use of 104 

experimental animals and were approved by the Bioethical Committee of the University of Las 105 

Palmas de Gran Canaria. For the whole trial, a tank is considered as an experimental unit. 106 

2.1. Experimental fish and conditions 107 

Two hundred and sixteen fish (mean weight 331.4 ± 30 g) were distributed in twelve 108 

cylindroconical 1,000 L tanks with an open circulation (18 fish/tank). Water conditions were 109 

monitored daily, maintaining salinity at 37 mg L-1, oxygen values at 6.0 ± 1 ppm O2 and 110 

temperature at 23°C ± 0.3 during July, August and September. Fish were fed by hand 3 times 111 

per day to apparent satiety. Uneaten pellets were recovered, dried and weighed. 112 

2.2. Diets  113 

The diets used combined a Seriola base diet designed by Skretting (Stavanger, Norway) and 114 

containing 55% protein, 55% fish meal and 10% fish oil, with two different prebiotics, namely 115 

MOS and cMOS (Bio-Mos® and Actigen® developed by Alltech, Inc.). Diet C (control) was 116 

composed exclusively of the Seriola base diet, the MOS diet included 5 g Bio-Mos® kg-1, the 117 

cMOS diet 2 g Actigen ® kg-1, and the MOS + cMOS diet had 5 g Bio-Mos ® kg-1 and 2 g Actigen 118 

® kg-1. Each diet was randomly assigned to triplicate groups of fish (n=3x3).  119 

 120 

2.3. Sampling procedures 121 

Sampling was conducted after 0, 30 days, 60 days and 90 days of feeding, where growth and 122 

feed utilization parameters were evaluated. Additionally, at the end of the feeding trial head 123 

kidney, spleen, gills, posterior gut and skin of 3 fish per tank were sampled for immune gene 124 
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expression analysis. Skin mucus and blood (serum) were also collected from 3 fish per tank. 125 

Finally, a parasite challenge against N. girellae was performed (as outlined below).  126 

 127 

2.4. Fish performance parameters 128 

Specific growth rate (SGR) and feed efficiency were calculated as follows:  129 

SGR = (Ln (final weight) – Ln (initial weight))*100/feeding time (days)  130 

Feed efficiency= (feed intake/ weight gain) 131 

 132 

2.5. Gene expression analyses  133 

Samples for gene expression analyses were collected in RNAlater and stored for 48 h at 6oC. 134 

Total RNA was subsequently extracted using the Trizol reagent method (Invitrogen) according 135 

to the manufacturer’s instructions. RNA concentration and purity were determined by 136 

spectrophotometry measuring the absorbance at 260 and 280 nm (NanoDrop2000, Thermo 137 

Fisher Scientific, Madrid, Spain). Electrophoresis in agarose gels was conducted to check 138 

extracted RNA quality by visualization of RNA bands. DNase treatment was applied to the 139 

extracted RNA, according to the manufacturer’s instructions, to remove possible 140 

contaminating genomic DNA (AMPD1–1KT, Sigma–Aldrich, Broendby, Denmark). Total RNA 141 

was reverse transcribed in a 20 µL reaction volume containing 2 µg total RNA, using a 142 

ThermoScript ™ Reverse Transcriptase (Invitrogen) kit, until cDNA was obtained in a 143 

thermocycler (Mastercycle ® nexus GSX1, Eppendorf AG, Hamburg, Germany) run according to 144 

the manufacturer’s instructions. The samples were then diluted 1:20 in miliQ water and stored 145 

at -20oC.  146 

Specific primers were designed to target genes found in genbank from species phylogenetically 147 

related with S. dumerili (Table 1), following the methodology described in [39]. The primers 148 

were used to amplify products using amberjack cDNA obtained from a pool of gill, posterior-149 

gut, head kidney and spleen tissue, and the products cloned and sequenced. At least a partial 150 

sequence was obtained for all the target genes and these partials were sufficient in length to 151 

determine gene identity and develop qPCR primers. qPCR was conducted with SYBRgreen and 152 

truestar taq following a programme of: 1 cycle of 6 min denaturalization at 95°C, 45 cycles of 153 

amplification (25 s at 95°C, 30 s at the annealing temperature, 25 s at 70°C for the extension, 154 

and 5 s at 82°C), 1 cycle for the melting curve of 5 s at 95°C and 1 min at 75°C, ending with 1 155 

cycle of cooling for 1 min at 40°C. MUC-2 was only analysed in the mucosal tissues and not 156 

head kidney and spleen. 157 

 158 

2.6. Blood and mucus immunological parameters 159 

Serum was obtained by centrifuging the collected blood after clotting overnight at 4°C. Skin 160 

mucus was obtained following the methodology described by Guardiola et al [40] with some 161 

modifications. Skin mucus was collected by gently scrapping the surface of the fish skin with 162 

autoclaved microscopy slides and diluted 1:1 with filtered and autoclaved salt water. Lysozyme 163 

activity was determined as described by Ellis [41]. Lysozyme activity was expressed in units ml-164 
1, were one unit of lysozyme was considered as the quantity of enzyme needed for reducing 165 
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absorbance by 0.001 per millilitre of serum and mucus per minute. Bactericidal activity was 166 

measured with a modification of the method described by Sunyer and Tort [42], using 167 

Photobacterium damselae. 168 

2.7. Parasite infection  169 

The parasite source was a tank (10,000 L) of S. dumerili naturally infested with Neobenedenia 170 

girellae at high parasite density. Nets (0.14 mm pore diameter) were placed into the tank to 171 

entangle the eggs and collect them. After 24 h eggs were introduced into a 1,000 L tank with 172 

200 uninfected S. dumerili juveniles. After 10 days, all the fish were infected to the same 173 

degree. Then, 96 infected animals from the source tank were placed into twelve 0.03m3 cages 174 

(8 infected fish per cage and one cage per experimental tank) for 15 days, to enable a 175 

cohabitation challenge after 100 days of prebiotic inclusion. After 15 days of cohabitation, the 176 

remaining one hundred eighty experimental fish were sampled, and a visual evaluation of 177 

infection level for each fish was carried out by 3 different trained researchers. The levels were 178 

scored between 0 (no parasites observed), 1 (between 1 and 5 parasites), 2 (between 6 and 179 

15) and 3 (more than 15). After that, the fish were introduced into freshwater to release all of 180 

the attached parasites, and the parasites counted and measured. The number of parasites per 181 

fish was converted into the number of parasites per square centimetre of fish surface area, 182 

calculated following the method described in Ohno et al [43]. Total length of 50 adult parasites 183 

per tank was recorded using a profile projector (Mitutoyo, PJ-A3000). 184 

2.8. Statistical analyses 185 

The statistical analyses followed the methods outlined by Sokal and Rolf [44], with means and 186 

standard deviations (SD) calculated for each parameter measured. All data were tested for 187 

normality and homogeneity of variance. Data were subjected to one-way ANOVA and 188 

differences were considered significant when P < 0.05. Two-way ANOVA was conducted for 189 

MOS, cMOS and the interaction among treatments. If the variances were not normally 190 

distributed, data were transformed (log10) and the Kruskall-Wallis non-parametric test applied. 191 

Kruskall-Wallis analysis was also used for range-comparison statistical analyses. Analyses were 192 

performed using SPSS software (SPSS for windows 10). 193 

Multivariant analyses and their plots were performed using PRIMER 7 and PERMANOVA. The 194 

number of permutations was established at 999. PERMANOVA analysis considered differences 195 

significant when the permutation p-value (p perm.) was below 0.05. 196 

 197 

3. Results 198 

 199 

3.1. Growth performance 200 

No effect of MOS, cMOS or their combination was observed in final weight, SGR or feed 201 

efficiency among fish fed the different dietary treatments (p>0.05), although fish fed the cMOS 202 

diet tended to perform better (+4% SGR) (Table 2).  203 

 204 

3.2. Serum and skin mucus immunological parameters 205 
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After 90 days of feeding, two way-ANOVA analysis revealed a significant increase in serum 206 

bactericidal activity in fish fed MOS (F=6.68, P=0.04) and cMOS (F=17.56, P=0.02), whereas no 207 

effect was detected when measured in mucus (Table 2). Lysozyme activity in mucus and serum 208 

was not affected by MOS or cMOS dietary supplementation. No interaction between MOS and 209 

cMOS was detected for the mucus and serum immune parameters evaluated (Table 2). 210 

 211 

3.3. Parasite challenge 212 

Greater amberjack given dietary supplementation of cMOS for 90 days had significantly 213 

reduced skin parasite levels (F=6.17, P=0.01), parasite total length (F=15.47, P=0.01) and the 214 

number of parasites by unit of fish surface (F=52.36, P=0.01) following challenge with N. 215 

girellae. No specific effect of MOS was found on these parameters (Table 2) and no interaction 216 

between MOS and cMOS was detected. 217 

 218 

3.4. Gene expression 219 

At the end of the feeding trial (90 days), two way-ANOVA analyses showed that dietary cMOS 220 

up-regulated skin hepcidin, MUC-2, IL-1ß, IL-10 and IgT (Table 3). On the other hand, a down-221 

regulation of skin iNOS gene expression was detected after dietary MOS supplementation, and 222 

supplementation with both products resulted in a down-regulation of skin IL-10, IL-17D and IgT 223 

and a reduced impact on IFN expression vs the single supplements (Table 3). 224 

In gills, dietary cMOS up-regulated hepcidin, defensin, Mx protein and IFNγ transcript levels 225 

(Table 4). No effects of dietary MOS were found. However, supplementation with both 226 

products resulted in down-regulation of gill IgT and reduced the cMOS effect on defensin and 227 

Mx protein gene expression in gills (Table 4). 228 

Regarding fish posterior gut, two way-ANOVA analysis showed that dietary cMOS up-regulated 229 

expression of hepcidin, defensin, IFNγ, IL-10, IgM and IgT.  Additionally, dietary MOS up-230 

regulated piscidin, MUC-2, IL-1β, IL-10, IgM and IgT gene expression. However, 231 

supplementation with both products down-regulated IFNγ (F= 1.09, P= 0.02) and IgM (F=2.41, 232 

P= 0.02) gene expression and lost the effects on IL-10 and IgT (Table 5). 233 

Head kidney gene expression analyses showed that dietary cMOS up-regulated hepcidin, IFNd, 234 

IL-10 and IL-22, while MOS up-regulated iNOS, Mx protein, IFNd, IL-10, IL-17D and IL-22. 235 

Supplementation with both products resulted in up-regulation of defensin and Mx protein but 236 

down-regulated IL-10 transcript levels relative to single supplementation (Table 6). In addition, 237 

the effects on IFNd and IL-22 were lost. 238 

Lastly, cMOS down-regulated spleen hepcidin gene expression whilst dietary MOS induced 239 

expression of piscidin, defensin, IFNγ, IL-1β and IL-17D in this tissue. Supplementation with 240 

both products further increased defensin expression (Table 7).  241 

Multivariant analyses comparing gene expression data presented different responses for each 242 

tissue and are presented in Annex 1 (supplementary files). Principal coordinates analysis (PCO) 243 

of skin clearly separated responses in fish fed the cMOS diet from fish fed the other dietary 244 

treatments, with the main sources of variation due to anti-microbial peptides (AMPs) (piscidin 245 

and defensin), MUC-2, iNOS, TNFα, Mx Protein, IL-8, IL-10, IL-17 and IFN genes.  PERMANOVA 246 
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analysis indicated differences in gene expression between MOS and cMOS, with an interaction 247 

effect more related to PC1 (p-perm. <0.05).  248 

PCO analysis in gill partially separated the MOS and cMOS effects due to AMPs and IFNs. 249 

Nonetheless, PERMANOVA analysis showed no difference between MOS and cMOS in this 250 

tissue (p-perm. >0.05).  251 

PCO analysis of posterior gut clearly separated dietary treatments into three different groups: 252 

control, MOS and cMOS, and MOS+cMOS. This variation was due to the effect on AMPs, IL-10, 253 

IFNs and iNOS gene expression. Hence, the posterior gut PCO PERMANOVA analysis found 254 

differences between MOS, cMOS and an interaction effect more related to PC2 (p-perm. 255 

<0.05).  256 

PCO analysis of head kidney discriminated cMOS from the other treatments due to the effect 257 

of this prebiotic on Igs and AMP gene expression. MOS treatment was also differentiated from 258 

the other treatments in the spatial distribution by PCO analysis due to effects on IFNs, ILs, 259 

defensin and TNFα gene expression. PERMANOVA comparisons showed differences in the 260 

MOS and cMOS dietary effects and also on interaction (p-perm. <0.05).  261 

In spleen PCO analysis discriminated MOS from the other treatments mainly due to its effect 262 

on piscidin and IgM gene expression. PERMANOVA analysis only showed a difference for the 263 

MOS treatment (p-perm. <0.05).  264 

Fish fed cMOS were differentiated from other groups in skin and posterior gut, together with 265 

MOS in this last tissue, with differences found using PERMANOVA (p-perm. <0.05) in terms of 266 

increasing immune parameters compared with control fish. Fish fed dietary MOS showed an 267 

up-regulation in immune parameters in spleen and head kidney (p-perm. <0.05), with cMOS 268 

responsible for increased Ig levels. 269 

4. Discussion 270 

The present study examined the effects of dietary supplementation with MOS and cMOS on 271 

greater amberjack growth, immunity and disease resistance. No effects on growth 272 

performance were found, in agreement with previous studies on hybrid tilapia (Oreochromis 273 

niloticus x O. aureus) or channel catfish (Ictalurus punctatus) [45, 30]. In contrast, in studies 274 

conducted with European sea bass (Dicentrarchus labrax), MOS and cMOS enhanced fish 275 

growth performance and improved FCR [22, 23]. Similarly, in fresh water species such as 276 

rainbow trout (Oncorhynchus mykiss), MOS dietary inclusion increases growth performance 277 

and reduces FCR [31]. These effects are likely related with the enhanced nutrient availability 278 

due to changes in digestive enzyme activity or in gut morphology, that subsequently increase 279 

absorption efficiency [46]. However, such differences in the impact of MOS on growth 280 

parameters among species suggest that these effects are highly dependent on the 281 

supplementation level, fish species and age, rearing conditions and diet composition [27]. 282 

An increase in mucus production has been shown to be a key factor for reducing ectoparasite 283 

adhesion in fish species such as Atlantic salmon (Salmo salar)[47]. MOS promotes both the 284 

enhancement of the innate immune system and mucus production (for reviews see [27, 46, 285 

16]), reducing bacterial and parasite adherence to the host. In the present study, cMOS 286 

induced an up-regulation of skin MUC-2 compared with fish fed the other dietary treatments, 287 

suggesting it promotes mucus production. Dietary MOS showed a similar effect on the gut, in 288 

agreement with previous results in European sea bass [23]. Whilst the impact of prebiotics on 289 
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ectoparasite resistance is poorly studied [18], cMOS showed a clear effect on parasite 290 

adhesion in the present work. cMOS not only prevented parasite attachment but also reduced 291 

the growth and development of the parasites concomitant with increased immune responses 292 

(see below). A mobilization of fish defences to the skin mucus has been described as an effect 293 

of prebiotics [48], and could prevent the correct development of parasites as they attempt to 294 

overcome the first physical and chemical barriers of the host. In line with this, red drum 295 

(Sciaenops ocellatus) show a reduced mortality and parasite level after challenge with 296 

Amyloodinium ocellatum, when receiving a diet supplemented with MOS at 10 g kg-1 for 30 297 

days [17]. Similarly, Atlantic salmon fed for 98 days with 4 g MOS kg-1 had a significantly 298 

reduced parasite load [18]. 299 

MOS has shown a more consistent effect on the immune system, improving parameters such 300 

as lysozyme activity in fish species including channel catfish, Japanese flounder (Paralichthys 301 

olivaceus), rainbow trout or European sea bass when supplemented at similar doses [46]. 302 

Whilst skin mucus and serum lysozyme activity were unaffected by dietary MOS in the present 303 

study, serum bactericidal activity was increased in fish fed the supplemented diets. This 304 

indicates that other molecules within the innate immune system that effect antimicrobial 305 

responses are affected by these prebiotics [49]. Indeed, the results of the present study show 306 

there is upregulation of antimicrobial peptide (AMP) gene expression in all of the tissue 307 

studied, and these molecules are an important part of the innate immune system in fish. AMPs 308 

are stored in cells so that they are readily available after an infection [50, 51]. That MOS mainly 309 

increased piscidin whilst cMOS mainly increased hepcidin and defensin is curious. It is known 310 

that different cytokines can have unique specificity regarding AMP gene induction [53, 54, 55] 311 

and may be a factor here. The kinetics of AMP induction can also vary, as seen in rainbow trout 312 

after dietary inclusion of peptidoglycans [56]. 313 

Adaptive immunity also plays a key role in the host response against ectoparasites [52, 47]. IgT 314 

is considered a mucosal associated immunoglobulin in fish [57, 58, 59]. The increase of IgT 315 

transcript levels in skin after feeding cMOS in the present study supports the key role of this 316 

immunoglobulin at mucosal surfaces, and could be related with the reduction of the parasite 317 

load induced by cMOS. The mode of action of this immunoglobulin is not completely 318 

understood, although an up-regulation in IgT expression in skin has been observed as a 319 

response to sea lice infection in Atlantic salmon [60], as well as to parasites in the gills and gut 320 

[57], [61]. 321 

Key genes of the immune system have traditionally been selected as markers of immune 322 

system activation by prebiotics, including TNFα, IL-1β, IL-8, IL-10, iNOS, IFNs, IgM, TLRs and 323 

MHC [62]. As discussed above, there is a direct linkage between MOS administration and 324 

innate immune system modulation [26, 15], with the skin a key point of entry of potential 325 

pathogens in fish [63]. In humans an increase of TNFα expression with no IL-10 response is 326 

associated with an increase of mucosal IL-17 [64, 65, 46], similar to the results obtained in the 327 

present study. A balanced pro and anti-inflammatory response in the skin is linked to an 328 

increased inflammatory response at the moment of parasite attachment, and gives lower 329 

parasite levels in Atlantic salmon infected with sea lice [66]. Indeed, our PCO analysis showed a 330 

higher effect of cMOS in skin, relative to MOS, mainly due to upregulation of AMPs (hepcidin, 331 

defensin, piscidin), MUC-2, TNFα, Mx Protein, IL-8, IL-10, IL-17 and IFNs as revealed by 332 

PERMANOVA.  333 

In studies of prebiotics, especially MOS, the gut is the main tissue where the effects of the 334 

prebiotic take place. Although cMOS induced higher hepcidin, defensin, IFNγ, IL-10, IgM and 335 
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IgT, the stimulatory effect of MOS was equal to or even higher for IL-10, IgM and IgT and also 336 

impacted piscidin, MUC-2 and IL-1β unlike cMOS. This modulation of the expression of these 337 

selected genes reveals an increased cytokine response and enhanced mucus production [67, 338 

26, 46]. Hence both MOS and cMOS could potentially have positive effects on resistance to gut 339 

parasites and this should be explored in future studies.  340 

The impact of dietary MOS was also assessed in head kidney and spleen, two important 341 

systemic immune tissues in fish that play a key role in the maturation of B-cells and phagocytic 342 

cells [68]. The importance of the head kidney and spleen response during parasite infections 343 

has been described in many studies where systemic responses help coordinate the fight 344 

against secondary infections and participate in the wound healing process [47]. Furthermore, 345 

upregulation of proinflammatory cytokines such as IL-1β, IL-17 and TNFα in head kidney and 346 

spleen has been associated with reductions in sea lice load in pink salmon [69, 70], akin to the 347 

results found in spleen in the present study where IL-1β, IFNγ and IL-17D were increased. 348 

cMOS is a more purified product than MOS, and some components of the outer cell wall of 349 

Saccharomyces cerevisiae strains (probably β-glucans) could have been removed during the 350 

production process, as suggested by Torrecillas et al [71]. Since β-glucans are potent PAMPs 351 

able to trigger innate immunity [72], this would explain the higher stimulation of innate 352 

immune parameters with MOS but not cMOS.  On the other hand, B-cell stimulation will lead 353 

to increased adaptive immunity, with Ig transcripts notably increased by dietary cMOS in the 354 

present study. Indeed, the dispersion patterns seen in the head kidney PCO analysis in the 355 

cMOS dietary group were explained by the increased number of Ig transcripts, which 356 

separated cMOS from the other dietary groups. Tadiso et al [60] found that immunological 357 

changes in spleen affected the skin response, strengthening the relationship between systemic 358 

and mucosal immune responses. 359 

The combination of MOS and cMOS showed similar results to the control diet group for most 360 

of the genes analysed. PCO and PERMANOVA analyses typically showed an interaction 361 

between MOS and cMOS, probably related to a loss of effect by overstimulation. It has been 362 

reported previously that the combination of two different prebiotics, like MOS and 363 

peptidoglycans, can have positive synergic effects in the immune system when suitable doses 364 

are used [73]. In the case of cMOS, it is a second generation MOS, therefore the pathways of 365 

action of these two prebiotics should be similar. Thus, the combination of both prebiotics likely 366 

induces effects similar to using a high dietary inclusion of these prebiotics alone, and may 367 

result in receptor overload or immune fatigue related to a high energy cost of continued 368 

immunostimulation [74, 75, 76].  369 

In conclusion, the utilization of dietary cMOS at 2 g kg-1 increased protection against N. girellae 370 

after 90 days of feeding, by reducing the parasite level and parasite total length. This 371 

protection was associated with up-regulation of several proinflammatory cytokines, AMPs, 372 

MUC- 2 and IgT genes in skin and enhanced serum bactericidal activity. In contrast, dietary 373 

MOS at 5 g kg-1 stimulated AMPs, IFNs and proinflammatory cytokines in head kidney and 374 

spleen, but had little effect in skin and these fish had a higher parasite level compared with 375 

fish fed the cMOS diet. The posterior gut also showed immune stimulation with dietary MOS 376 

and cMOS, in terms of effects on expression of AMPs, proinflammatory cytokines, IgM and IgT. 377 

However, the combination of MOS and cMOS appears to have delivered an over stimulation of 378 

the immune system, resulting in a lack of effect. 379 
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Table 1. Primers used for gene expression analysis by RT-qPCR in skin, gill, posterior gut, head kidney and spleen of greater amberjack juveniles (Seriola 

dumerili) fed MOS and cMOS (t = 90 days). 

*Ann. temp: anneling temperature 

Gene Name Ann. temp. (°C)* Product size (bp) Forward Sequence Reverse Sequence 

Hep Hepcidin 61 99 GATGATGCCGAATCCCGTCAGG CAGAAACCGCAGCCCTTGTTGGC 

Pis Piscidin 58 112 ATC GTC CTG TTT CTT GTG TTG TCA C CGC TGT GGA TCA TTT TTC CAA TGT GAA A 

Def Defensin 60 133 ATGAGGCTGCATCCTTTCCATG AGAAAATGAGATACGCAACACAAGAAGCC 

iNOS Inducible Nitric oxyde synthase 60 151 TGTTTGGCCTTGGCTCCAGGG GCCCAAGTTCTGAATGACTCCTCCTG 

TNFα Tumor necrosis factor α 62 212 GAAAACGCTTCATGCCTCTC GTTGGTTTCCGTCCACAGTT 

MX Prot Interferon-inducible Mx protein 61 211 GGCTACATGATTGTGAAGTGCAGGG CTTCCAGTCGAGGCAGAGATTTCTCAATGT 

IFN ɣ Interferon γ 59 163 AACTTGGTTTCACGGTGCAG TCACAACACCGAGAAAGTCCT 

IFN d Interferon type I 59 111 GTCAGGGTGCAGCTGAGTTA ACAGAAACGGCAGCTCAAAC 

MUC-2 Mucin-2 62 342 ATT GAG TTT GGC AAC AAA CAG AAA GCC C TAC AGC ACA GAA CTG AGG TGT CCT C 

IL-1β Interleukin 1β 62 205 TGATGGAGAACATGGTGGAA GTCGACATGGTCAGATGCAC 

IL-8 Interleukin 8 58 164 GAAGCCTGGGAGTAGAGCTG GGGGTCTAGGCAGACCTCTT 

IL-10 Interleukin 10 58 134 CTC AAG AGT GAT GTC ACC AAA TGT AGA AAC T AGC AAA TCC AGC TCG CCC ATT 

IL-17F Interleukin 17F 62 120 GGTGGCCCCAGAGGATCTCC GGAGGACCAAAACCTGGTAGTAGATGG 

IL-17D Interleukin 17D 62 111 CGGTCTACGCTCCCTCCGTG GCGGCACACAGGTGCATCCC 

IL-22 Interleukin 22 61 146 GCC AAC ATC CTC GAC TTC TAC CTG AAC TGG TCG TGG TAG TGA GTC ACA TTG C 

IgM Immunoglobulin M 58 148 CTCTTTGATAGGAATACCGGAGGAGAG CAACTAGCCAAGACACGAAAACCC 

IgT Immunoglobulin T 59 196 TGGACCAGTCGCCATCTGAG GGGAAACGGCTTTGAAAGGA 

β-Actin β-Actin 61 212 TCT GGT GGG GCA ATG ATC TTG ATC TT CCT TCC TTC CTC GGT ATG GAG TCC 

EF1 α Elongation factor 1α 60 194 TGC CAT ACT GCT CAC ATC GCC TG ATT ACA GCG AAA CGA CCA AGA GGA G 
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Table 2. Growth performance, serum and skin mucus immunological parameters (lysozyme activity and bactericidal activity) and parasite data of greater 

amberjack  juveniles (Seriola dumerili) after 90 days on the feeding trial. 

 
 

 DIETARY TREATMENTS TWO WAY ANOVA 

 C MOS cMOS MOS + cMOS MOS cMOS MOS*CMOS 

Growth performance       

Final Weight (g) 1046.75 ±129.61 1024 ±161.17 1090.37 ±135.49 1036.55 ±126.88 NS NS NS 

SGR (%) 1.09 ±0.04            1.09 ±0.06 1.13 ±0.09 1.08 ±0.07             NS NS NS 

Feed efficiency 0.654 ±0.06 0.656 ±0.01 0.698 ±0.04 0.704 ±0.08 NS NS NS 

Skin mucus       

Lysozyme activity (U/ml) 103.92 ±17.64 114.25 ±28.1 124.55 ±31.64 121.9 ±11.97 NS NS NS 

Bactericidal activity (%) 3.72 ±1.86   5.03 ±1.21 6.54 ±0.89 5.22 ±2.61            NS NS NS 

Serum       

Lysozyme activity (U/ml) 301.61 ±42             348.76 ±52.1 253.88 ±25.86 287.69 ±39.04          NS NS NS 

Bactericidal activity (%) 4.89 ±1.06          5.91 ±1.70 8.27 ±1.05 9.51 ±1.27   P=0.04 

F=6.68 

P=0.02 

F=17.56 

NS 

Parasite challenge        

Parasitation level (range) 2-3          2 1-2 1-2 NS P=0.01 

            F=6.17 

NS 

Parasite total length (mm) 4.44 ±0.31            3.9 ±0.43 3.32 ±0.40 3.56 ±0.43 NS P=0.01 

F=15.47 

NS 

Nº parasites / fish surface (cm2) 0.101 ±0.01 0.087 ±0.02 0.015 ±0.01 0.042 ±0.01 NS P=0.01 

F=52.36 

NS 

 

Diet C (control diet, non-supplemented), MOS (MOS supplemented diet), cMOS (cMOS supplemented diet), MOS + cMOS (combined MOS and cMOS supplemented diet). Values expressed in mean ± SD 
(n = 3 tanks/diet). Two-way ANOVA comparation (P<0.05). SGR: Specific growth rate; parasitation level: ranged among 1 (lower) to 3 (higher). 
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Table 3. RT-qPCR gene expression in skin of Seriola dumerili juveniles after 90 days on the feeding trial. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Diets: C (control diet), MOS (5 g kg-1), cMOS (2 g kg-1), MOS+cMOS (5 g kg-1 of MOS and 2 g kg-1of cMOS). Data are presented as means ± SD. N=3 tanks/diet. Two-
way ANOVA analyses are presented when P<0.05. NS= Not significant. 

 

 
 

 Dietary treatments Two-way ANOVA 
Gene Diet C MOS cMOS MOS+cMOS MOS cMOS MOS*cMOS 

Hep 3.05 ±1.16 3.67 ±1.26 6.11 ±2.25 2.01 ±0.34 NS   P= 0.04, F= 2.13 NS 

Pis 507.47 ±184.49 1825.94 ± 992.81 2961.56 ±969.37 3448.44 ±657.29  NS NS NS 

Def 181.69 ±85.59 422.65 ±179.34 472.89 ±215.85 285.93 ±79.93 NS NS NS 

iNOS 354.02±132.51 56.34±15.48 514.35±208.57 83.7±31.8 P=0.01, F=9.34 NS NS 

TNFα 10.78±2.50 10.88±0.97 18.65±4.72 8.21±2.67 NS NS NS 

MX prot 571.15±279.59 362±272.29 805.57±460.93 112.64±38.44 NS NS NS 

IFN ɣ 31.25 ±5.57 100.13 ±46.91 130.18 ±66.74 41.97 ±16.39 NS   NS   P= 0.01, F= 3.89 

IFN d 9.83 ±2.01 29.20 ±10.77 44.04 ±21.61 12.71 ±3.11 NS NS   P= 0.01,  F= 2.35 

MUC-2 9.96 ±4.18 8.48 ±2.85 24.74 ±6.08 8.94 ±5.51 NS   P= 0.04, F= 3.27 NS 

IL-1β 4.32 ±0.87 4.48 ±1.34 9.52 ±5.36 2.08 ±0.39 NS   P= 0.02,  F= 5.52 NS 

IL-8 10.50 ±2.73 9.85 ±3.16 21.04 ±2.50 11.99 ±4.48 NS NS NS 

IL-10 1468.17 ±398.19 1521.55 ±364.18 2724.73 ±812.56 231.37 ±167.44 NS    P= 0.01.  F=9.52   P= 0.01, F= 4.81 

IL-17F 25.37 ±7.1 13.36 ±2.58 29.66 ±9.83 10.69 ±2.78 NS NS NS 

IL-17D 6.19 ±1.52 10.65 ±3.77 65.30 ±36.34 4.63 ±1.50 NS NS   P= 0.01, F= 5.23 

IL-22 2.26 ±0.9 4.72 ±3.98 3.29 ±2.57 1.56 ±0.75 NS NS NS 

IgM 1008.43 ±246.86 1074.15 ±502.02 921.66 ±545.95 2155.97 ±835.60 NS   NS   NS 

IgT 5.25 ±0.97 6.32 ±1.40 12.14 ±3.51 3.05 ±0.87 NS   P= 0.04,  F= 3.27  P= 0.01, F= 2.23 
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Table 4. RT-qPCR gene expression in gills of Seriola dumerili juveniles after 90 days on the feeding trial. 

 

 

Diets: C (control diet), MOS (5 g kg-1), cMOS (2 g kg-1), MOS+cMOS (5 g kg-1 of MOS and 2 g kg-1of cMOS). Data are presented as means ± SD. N=3tanks/diet. Two-way ANOVA 
analyses are presented when  P<0.05. NS= Not significant. 

 

 

 

 Dietary treatments Two-way ANOVA 

Gene Diet C MOS cMOS MOS+cMOS MOS cMOS MOS*cMOS 

Hep 3.83 ±1.09  8.07 ±3.58  20.74 ±6.40  3.05 ±0.63  NS P= 0.01, F= 3.22 NS 

Pis 123559.34 ±57885.09 49101.56 ±20481.84 145655.85 ±39802.15 220796.87 ±115335.48 NS NS NS 

Def 154.83 ±57.91  269.99 ±117.38  1538.51 ±560.83  352.82 ±181.47  NS P= 0.01, F=7.48 P= 0.03, F= 2.59 

iNOS 22.57 ±13.59 287.96 ±200.29 591.18 ±261.70 41.52 ±26.58 NS NS NS 

TNFα 30.65 ±12.60 68.12 ±20.59 91.23 ±32.13 32.95 ±4.90 NS NS NS 

MX prot 24.50 ±5.55  366.77 ±244.42  1125.22 ±336.94  49.10 ±33.21  NS P= 0.02, F= 2.27 P= 0.03, F= 4.37 

IFN ɣ 57.11 ±9.1 118.43 ±54.38 220.41 ±52.02 69.04 ±18.96 NS P= 0.03, F= 3.86 NS 

IFN d 18.63 ±8.95  43.70 ±19.93 102.95 ±21.84  20.83 ±3.73  NS NS NS 

MUC-2 1138.31 ±250.05 1149.28 ±633.21 522.40 ±212.30 592.53 ±226.38 NS NS NS 

IL-1β 12.90 ±6.21 16.20 ±6.23 15.92 ±4.82 5.92 ±1.79 NS NS NS 

IL-8 17 ±2.92 27.21 ±5.20 74.62 ±28.04 31.26 ±12.15 NS NS NS 

IL-10 2347.06 ±824.85 2373.74 ±203.84 5078.92 ±2726 4073.95 ±2180.10 NS NS NS 

IL-17F 7.47 ±3.96 11.69 ±4.62 21.20 ±8.31 4.78 ±1.64 NS NS NS 

IL-17D 18.19 ±4.07  69.54 ±28.57  63.85 ±15.36  16.28 ±5.56  NS NS NS 

IL-22 15.51 ±5.79 19.75 ±6.01 21.95 ±4.96 10.18 ±2.65 NS NS NS 

IgM 65941.75 ±43329.10 16665.56 ±5287.38 1575.48 ±1071.64 144185.46 ±56001.67 NS NS NS 

IgT 8.72 ±2.17 14.04 ±4.26 20.80 ±5.31 7.98 ±2.12 NS NS     P= 0.01, F= 9.88 
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Table 5. RT-qPCR gene expression in posterior gut of Seriola dumerili juveniles after 90 days on the feeding trial. 

 

 

Diets: C (control diet), MOS (5 g kg-1), cMOS (2 g kg-1), MOS+cMOS (5 g kg-1 of MOS and 2 g kg-1of cMOS). Data are presented as means ± SD. N=3tanks/diet. Two-way ANOVA 
analyses are presented when P<0.05. NS= Not significant. 

 

 

 

 

 Dietary treatments Two-way ANOVA 
Gene Diet C MOS cMOS MOS+cMOS MOS cMOS MOS*cMOS 

Hep 3.77 ±1.05 9.43 ±0.86 103.78 ±44.61 12.18 ±2.88 NS P= 0.02, F= 6.23 NS 

Pis 18159.99 ±6184.25 70552.71 ±20631.15 16733.78 ±2690.02 100257.10 ±47228.58 P= 0.03, F= 7.35 NS NS 

Def 103.35 ±60.43 526.85 ±272.52 5909.07 ±2592.71 1721.73 ±483.36 NS P= 0.03, F=2.98 NS 

iNOS 352.72 ±56.94 699.99 ±361.29 615.43 ±278.11 1183.26 ±418.29 NS NS NS 

TNFα 32.27 ±12.53 64.93 ±19.44 108.79 ±43.23 71.82 ±17.04 NS NS NS 

MX prot 410.19 ±47.28 831.96 ±175.50 955.28 ±867.09 1962.94 ±909.99 NS NS NS 

IFN ɣ 34.21 ±16.26 427.99 ±193.55 1241.66 ±542.39 284.67 ±41.87 NS P= 0.04, F= 3.32 P= 0.02, F= 1.09 

IFN d 7.49 ±3.48 57.75 ±19.91 81.64 ±30.78 38.93 ±9.07 NS NS NS 

MUC-2 2800.02 ±511.50 6819 ±1350.56 3375.84 ±993.78 2701.72 ±810.98 P= 0.04, F= 17.72 NS NS 

IL-1β 6.73 ±1.08 66.97 ±28.67 14.06 ±8.09 18.65 ±6.65 P= 0.02, F= 3.52 NS NS 

IL-8 20.75 ±6.67 53.22 ±12.95 191.49 ±99.69 75.67 ±14.98 NS NS NS 

IL-10 1578.98 ±194.29 9495.37 ±4244.02 107128.07 ±45885.12 17241.35 ±6641.88 P=0.03, F=9.48 P= 0.02, F=2.79 NS 

IL-17F 8.53 ±5.53 21.20 ±8.05 11.73 ±4.99 7.20 ±1.49 NS NS NS 

IL-17D 31.43 ±10.75 71.53 ±15.36 74.54 ±28.76 64.69 ±23.07 NS NS P= 0.01, F= 5.23 

IL-22 19.61 ±7.73 22.75 ±9.25 13.19 ±3.38 13.42 ±3.26 NS NS NS 

IgM 73788.21 ±41586.91 29.2x105 ±14.2x105 22.3x105 ±80.3x104 573173.42 ±319410.84 P= 0.01, F=8.24 P= 0.02, F= 6.14 P= 0.02, F=2.41 

IgT 18.47 ±13.64 70.28 ±16.82 56.15 ±19.18 34.52 ±13.48 P= 0.01, F=2.78 P= 0.02, F= 3.11 NS 
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Table 6. RT-qPCR gene expression in head kidney of Seriola dumerili juveniles after 90 days on the feeding trial. 

 

 

Diets: C (control diet), MOS (5 g kg-1), cMOS (2 g kg-1), MOS+cMOS (5 g kg-1 of MOS and 2 g kg-1of cMOS). Data are presented as means ± SD. N=3 tanks/diet. Two-way ANOVA analyses are presented 
when P<0.05. NS= Not significant. 

 

 Dietary treatments Two-way ANOVA 
Gene Diet C MOS cMOS MOS+cMOS MOS cMOS MOS*cMOS 

Hep 8.38 ±3.65 11.90 ±3.86 23.23 ±5.85 31.40 ±6.99 NS P= 0.01, F= 10.96 NS 

Pis 113233.81 ±40305.31 107678.83 ±50906.83 224992.61 ±92470.72 102237.60 ±19950.65 NS NS NS 

Def 187.37 ±71.37 3198.20 ±1666.94 2407.93 ±1279.35 1518.66 ±793.53 NS NS P= 0.03, F= 2.19 

iNOS 1809.69 ±689.22 12437.49 ±2634.66 1164.43 ±150.86 4101.22 ±791.51 P= 0.02, F= 8.32 NS NS 

TNFα 57.46 ±30.26 84.34 ±22.70 115.74 ±60 45.05 ±8.84 NS NS NS 

MX prot 727.39 ±183.65 10088.19 ±1439.72 1252.17 ±62.92 4399.24 ±1623.50 P= 0.01, F= 8.48 NS P= 0.03, F= 3.65 

IFN ɣ 216.77 ±108.53 355.11 ±101.34 294.81 ±213.67 352.18 ±102.91 NS NS NS 

IFN d 29.62 ±6.46 71.28 ±10.82 62.30 ±15.11 55.16 ±18.84 P= 0.02, F= 4.23 P= 0.02, F= 7.15 NS 

IL-1β 52.81 ±29.24 262.49 ±117.76 121.57 ±63.93 62.41 ±9.84 NS NS NS 

IL-8 8.05 ±1.99 32.80 ±9.16 22.41 ±9.72 105.56 ±48.61 NS NS NS 

IL-10 852.98 ±203.37 5077.33 ±2249.74 3090.39 ±1025.95 577.80 ±117.01 P=0.02, F=5.28 P= 0.02, F=7.68 P= 0.01, F= 9.51 

IL-17F 7.22 ±2.41 21.74 ±2.96 25.56 ±8.95 14.47 ±3.03 NS NS NS 

IL-17D 36 ±18.68 139.82 ±32.31 15.47 ±2.31 58.98 ±16.09 P=0.04, F=1.67 NS NS 

IL-22 4.79 ±0.79 43.93 ±9.44 36.33 ±10.45 24.68 ±8.25 P=0.03, F=4.89 P=0.02, F=9.93 NS 

IgM 18166.59 ±386.67 44482.19 ±18652.10 298249.40 ±112084.40 99464.83 ±24438.90 NS NS NS 

IgT 48.93 ±27.35 60.15 ±32.54 80.64 ±38.20 62.13 ±15.32 NS NS NS 
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Table 7. RT-qPCR gene expression in spleen of Seriola dumerili juveniles after 90 days on the feeding trial. 

 

 Dietary treatments Two-way ANOVA 
Gene Diet C MOS cMOS MOS+cMOS MOS cMOS MOS*cMOS 

Hep 61.72 ±19.67  64.87 ±13.07  33.35 ±6.53  147.64 ±48.89  NS P= 0.01, F= 7.39 NS 

Pis 165899.47 ±86928.35 326203.01 ±92385.94 68108.33 ±27208.51 313455 ±159603.02 P= 0.01, F= 9.95 NS NS 

Def 276.29 ±82.03  1416.65 ±289.94  450.51 ±207.30  2815.82 ±1277.64  P= 0.01, F=8.61 NS P= 0.01, F=7.35 

iNOS 1830.64 ±504.84 2494.56 ±945.27 1089.47 ±407.30 778.71 ±279.99 NS NS NS 

TNFα 411.98 ±82.99  925.46 ±257.80  203.52 ±63.54  429.05 ±146.70  NS NS NS 

MX prot 1021.71 ±307.35 2182.75 ±821.69 860.82 ±350.61 439.08 ±155.54 NS NS NS 

IFN ɣ 405.34 ±107.19  870 ±130.56  300.82 ±62.79  434.63 ±140.21  P= 0.02, F=3.29 NS NS 

IFN d 30.54 ±3.73 75.70 ±21.16 27.95 ±6.56 84.80 ±27.22 NS NS NS 
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Diets: C (control diet), MOS (5 g kg-1), cMOS (2 g kg-1), MOS+cMOS (5 g kg-1 of MOS and 2 g kg-1of cMOS). Data are presented as means ± SD. N=3tanks/diet. Two-way ANOVA analyses are presented 
when P<0.05. NS= Not significant. 

 

 

 

IL-1β 18.91 ±5.84  43.14 ±7.19  12 ±1.45  19.54 ±2.35  P= 0.01, F=14.36 NS NS 

IL-8 23.68 ±5.68 61.37 ±23.18 19.51 ±7.61 44.89 ±16.51 NS NS NS 

IL-10 2268.78 ±944.39 5478.43 ±2040.92 2305.29 ±1080.20 6791.58 ±2267.62 NS NS NS 

IL-17F 9.75 ±2.30 15.45 ±4.67 3.76 ±0.88 11.38 ±6.08 NS NS NS 

IL-17D 14.42 ±4.08 40.39 ±12.23 14.12 ±3.22 43.94 ±22.28 P= 0.04, F=1.36 NS NS 

IL-22 6.15 ±1.53 26.11 ±10.74 6.46 ±1.91 19.35 ±7.50 NS NS NS 

IgM 152198.50 ±42526.77 28665.69 ±6833.63 104560.74 ±35002.44 51173.12 ±15474.28 NS NS NS 

IgT 26.17 ±10.84  63.59 ±14.76  16.13 ±3.46  38.16 ±10.21  NS NS NS 
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Highlights 

 

-Dietary cMOS utilization during 90 days increased protection against Neobenedenia 

girellae in greater amberjack juveniles 

-Dietary cMOS focused the immune stimulation in mucosal tissues, meanwhile MOS 

focused in systemic immune tissues. 

-The combination of both prebiotics showed a lack of effect for 90 days of dietary use. 


