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The paleoclimatic footprint in the soil carbon stock
of the Tibetan permafrost region
Jinzhi Ding 1, Tao Wang1,2,3, Shilong Piao 1,2,4,5, Pete Smith 6, Ganlin Zhang7, Zhengjie Yan3, Shuai Ren8,

Dan Liu1, Shiping Wang1, Shengyun Chen9, Fuqiang Dai10, Jinsheng He 11, Yingnian Li12, Yongwen Liu 1,2,

Jiafu Mao 13, Altaf Arain14, Hanqin Tian 15, Xiaoying Shi13, Yuanhe Yang 16, Ning Zeng 17 & Lin Zhao18

Tibetan permafrost largely formed during the late Pleistocene glacial period and shrank in the

Holocene Thermal Maximum period. Quantifying the impacts of paleoclimatic extremes on

soil carbon stock can shed light on the vulnerability of permafrost carbon in the future. Here,

we synthesize data from 1114 sites across the Tibetan permafrost region to report that

paleoclimate is more important than modern climate in shaping current permafrost carbon

distribution, and its importance increases with soil depth, mainly through forming the soilʼs

physiochemical properties. We derive a new estimate of modern soil carbon stock to 3 m

depth by including the paleoclimate effects, and find that the stock (36:6þ2:3
�2:4 PgC) is triple that

predicted by ecosystem models (11.5 ± 4.2 s.e.m PgC), which use pre-industrial climate to

initialize the soil carbon pool. The discrepancy highlights the urgent need to incorporate

paleoclimate information into model initialization for simulating permafrost soil carbon

stocks.
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There is evidence that the paleoclimate has influenced the
cycling of soil carbon through shifting biomes1–3 and by
altering soil physiochemical properties4. If such influences

were common, then the current distribution of soil carbon stocks
should contain footprints of the paleoclimate at timescales ran-
ging from centuries to millennia3. Such paleoclimate signals
would be expected to be strongest in permafrost soils, where
much of the soil carbon is locked in a frozen state5–7, and,
therefore, only susceptible to change from the most extreme
paleoclimate events. Only the warmest and coldest periods are
likely to leave recognizable changes on the soil carbon in these
soils.

Land regions of permafrost constitute the largest soil carbon pool
in terrestrial ecosystems8,9 and, with an area of 1.06 million km2,
the Tibetan Plateau is the largest alpine permafrost area outside the
polar regions10. Permafrost carbon cycling in the Tibetan Plateau
has, therefore, come under intense scrutiny11. Currently, the region
is characterized by a semiarid climate12,13, and has a rate of
warming of twice the global average14. Evidence from preserved
relict permafrost and periglacial phenomena, indicate that the main
body of the existing Tibetan permafrost was formed during the last
glaciation period, at the end of the late Pleistocene15,16, which was
characterised by cold and arid periglacial environments. Subse-
quently, the Tibetan permafrost experienced intensive and exten-
sive degradation in the middle Holocene, during which time the
temperature increase was greater than that during any of the fol-
lowing warming periods, and the total permafrost area was reduced
to ~50–60% of the current area16. To date, it has not been
demonstrated whether these extreme paleoclimate signals are
retained in the Tibetan permafrost soil carbon, or if they have
already been erased by subsequent smaller climate oscillations.
Understanding the influence of past climate extremes on Tibetan
soil carbon could shed light on the vulnerability of the permafrost
soil carbon pool to future climate change. This is especially so for

the case of the mid-Holocene, which could provide a geological
analogue for future climate over the Tibetan Plateau17.

Here, we compile data from 1114 sites collected during 11 field
campaigns across the Tibetan permafrost region, and use multiple
statistical techniques to assess the relative importance of climates
from the last glacial maximum (LGM), an extremely cold period
22,000 years ago; the mid-Holocene (MidH), a hypsithermal
period about 6000 years ago; and the modern climate
(1975–2015) in driving the current spatial pattern of permafrost
soil carbon. Our results show that paleoclimate is more important
than the modern climate in determining current soil carbon
stocks, and its importance increases progressively with soil depth.
Direct physical explanations for this pattern are offered. When
we include paleoclimate as an additional predictor in a machine
learning algorithm to re-assess Tibetan soil carbon stocks in the
top three metres of the soil, we find that the present generation of
terrestrial ecosystem models are biased towards low soil carbon
stocks, highlighting the need to include paleoclimate information
in soil carbon model initialization.

Results
Paleoclimate controls on permafrost soil carbon distribution.
Based on the compiled soil carbon data set for the Tibetan per-
mafrost region (Fig. 1), we used random forest modelling to rank
the relative importance of paleoclimate (LGM and MidH) and
modern climate in driving the spatial pattern of permafrost car-
bon in the top 30 cm of the soil. According to the increase in the
residual sum of squares (see Methods), the random forest models
indicated that paleo-temperature in LGM and MidH was almost
as important as modern precipitation (Fig. 2a). Furthermore,
variation partitioning modelling showed a larger contribution
from paleoclimate alone (12%) than from modern climate alone
(4%) in predicting soil carbon distribution. Paleoclimate and

Permafrost

Continuous

Discontinuous

Isolated

Sporadic

SOCD (kg C m–2)

0.3–2

Elevation (m)

20
00

30
00

40
00

50
00

2–4

4–8

8–16

16–34

Fig. 1 The locations and soil organic carbon density (SOCD) of the top 30 cm layer for the 1114 sampling sites over the permafrost regions on the Tibetan
Plateau. The deep soil carbon measurements (at a depth of more than 2m) are indicated by black outlines for the coloured dots. The modern permafrost
map was obtained from the National Snow & Ice Data Center65
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modern climate jointly explained an additional 25% of the total
variance (Fig. 2b). These results suggest that paleoclimate has a
strong influence on soil carbon distribution, even in the top 30 cm
soil layer. Paleo-temperature was found to be the most important
paleoclimate variable for the formation of the current permafrost
soil carbon distribution (Fig. 2a). This finding is as expected,
because the areal extent of permafrost was mainly shaped by low
temperatures during cold periods such as the LGM (Supple-
mentary Fig. 1). The compartmentation of soil carbon in the
remnants of ancient buried permafrost formed during paleocli-
mates may greatly influence current soil carbon stocks. This
finding, however, differs from the results for arid and semiarid
regions, where paleo-precipitation was found to be the main
driver among all the investigated factors, including both paleo
and modern climates3.

There are two mechanisms by which paleoclimate could
influence current soil carbon (Supplementary Fig. 2). In the first
mechanism, the organic carbon in modern soils is directly derived
from the vegetation formed under paleoclimate conditions3. In
the second mechanism, the paleoclimate exercises a degree of
control over the formation of soil physiochemical properties,
which subsequently, indirectly, determine the degree of stabiliza-
tion of the organic carbon4. We have used structural equation
modelling to evaluate these direct and indirect effects of
paleoclimate on the current distribution of soil carbon in the

top 30 cm of the soil (Fig. 2c; Supplementary Fig. 3, Supplemen-
tary Table 1). Direct effects on permafrost soil carbon distribution
were observed for both temperature (standardized path coeffi-
cient= 0.17, P < 0.001) and precipitation (standardized path
coefficient= 0.13, P < 0.001) in the LGM (Supplementary Fig. 3).
This observation is in agreement with the results of soil
radiocarbon (14C) dating studies in the relict permafrost, where
the carbon age can be dated to 20~40 thousand years BP16,18.

The structural equation modelling results also reveal a distinct
and indirect impact of paleoclimate on soil carbon through
changing soil physiochemical properties (Fig. 2c, Supplementary
Fig. 3). The soil physiochemical characteristics (i.e., soil texture,
cation exchange capacity, total phosphorus and potassium),
determining the capacity to stabilize soil carbon inputs19–21, have
evolved slowly under the influence of past climate regimes, and
there is increasing evidence showing the importance of
physiochemical properties in controlling soil carbon stock over
the Tibetan Plateau22,23. This is supported by other studies, which
have found that considering a diversity of soil evolution processes
was a key factor in assessing soil carbon or nitrogen patterns24,25.

Our results further show that the indirect effect (standardized
effect= 0.39) is larger than the direct effect (standardized
effect= 0.30; Fig. 2c), suggesting that the influence of paleocli-
mate on Tibetan permafrost soil carbon distribution operated
primarily through modifying soil physiochemical properties, with
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the direct effect taking a secondary role. If the preservation of
paleo-vegetation signals in the upper soil layers predominantly
explained the current soil carbon distribution, the legacy impacts
of the LGM should be significantly concealed by those of the
MidH. During the Holocene Thermal Maximum (HTM),
intensive permafrost thawing occurred down to a depth of
~15–25 m on the Tibetan Plateau16,26, and the areal extent of
permafrost represented by the freezing index (see Methods) also
decreased substantially, with the magnitude of the mean decline
being nearly 22% over the Tibetan Plateau (Supplementary
Fig. 4). Such thawing would be expected to have greatly increased
soil carbon decomposition. However, the fact that we can detect
the LGM legacies on the upper-layer soil carbon, means that the
influence of paleoclimate on soil properties is the most likely
explanation of paleoclimate legacies on current soil carbon
stocks4. The indirect mechanism is further supported by radio-
carbon dating of soil organic carbon in the soils over the Tibetan
Plateau (Supplementary Table 2). The relatively young age
obtained by this method suggests that the current top soil layers
are not likely to originate from LGM-vegetation. The results of
correlation analysis between soil carbon and modern climate
variables, with and without controlling for the effect of soil
physiochemical properties, gives further robustness to the above
findings derived from the structural equation modelling.
Specifically, the correlations significantly decreased, or even
became insignificant, after removing the effects of soil properties
(Fig. 2d), confirming that the paleoclimate effect mainly operated
through changing soil properties.

To quantify the relative contributions of paleoclimate and
modern climate to current soil carbon distributions at different
soil depths, the Lindeman–Merenda–Gold method was used (see
Methods). The results suggested an increasingly important role of
paleoclimate with increasing soil depth (Fig. 3). Specifically, in the
top 10 cm of the soil, the variances explained by paleoclimate
(LGM and MidH) and modern climate were 58% (25 and 33%)
and 42%, respectively, and at 50 cm were 72% (38 and 34%) and
28%, respectively. At soil depths greater than 200 cm, the current

soil carbon distribution is predominantly regulated by paleocli-
mate (more than 80% of the relative variance) (Fig. 3). This
vertical pattern was not found when a global data set, mainly
from non-permafrost regions, was analysed, although paleocli-
mate did explain a large proportion of the variation of carbon
distribution in the top soil layer3. This result is expected, since
organic carbon in surface soil layers is much more vulnerable to
microbial decomposition in response to warming-induced top-
down thawing, than in deeper layers of permafrost9. In addition,
the stronger effect of physical protection and chemical sorption in
deeper soils should also play a role20,27.

A new estimate of Tibetan permafrost soil carbon stocks.
Previous assessments of the Tibetan soil carbon pools have relied
on a collection of predictors based only on modern climate and
remote sensing-based vegetation features28–31. Here, we have
merged modern climate and remote sensing-based methods
common in previous estimates, with paleoclimate, landform and
soil geochemical properties (Supplementary Fig. 5) in multiple
machine learning algorithms, to make a new estimate of the
permafrost soil carbon pool over the Tibetan Plateau (see
Methods).

According to the results from the best predictive model,
Support Vector Machine (Supplementary Fig. 6), the Tibetan soil
organic carbon pool to a depth of 3 m (see Methods) was
estimated to be 36.6 PgC (95% confidence range: 34.2–38.9 PgC),
and the mean soil organic carbon density (SOCD) was estimated
to be 15.4 kg Cm−2 (95% confidence range: 14.4–16.4 kg Cm−2)
(Supplementary Fig. 7). It is noteworthy that the actual soil layer
thickness could be highly variable over the Tibetan Plateau, but
has been assumed to be uniform in previous estimates28–31. We
included the soil layer thickness in the machine learning-based
model, and found that lack of information on the spatial variation
of soil layer thickness could have led to an overestimation of the
3 m soil carbon stock by 3.6 PgC ( ~10%).

Model-observation comparison of Tibetan soil carbon stock.
The comparison of our new estimate of permafrost soil carbon
stock with estimates from state-of-the-art terrestrial ecosystem
models suggests that, generally, the models have underestimated
soil carbon stock over the Tibetan Plateau (Fig. 4a). The LPJ-wsl
and TEM6 models are exceptions to this general rule. The sig-
nificant variability in the performance of the ecosystem models
could be related to differences in the models’ representation of
soil carbon input and output (see Supplementary Discussion).
Here, we used the Bayesian model averaging method (BMA),
which is conditional on an independent observation data32, to
tone down the role of models that have notable deficiencies in
representing major physiological processes. Given the availability
of satellite-derived net primary productivity (NPP) product33, we
adopted NPP, as an indicator of vegetation carbon input, to rank
the model performance. Larger weights were assigned to models
that have a better performance in simulating NPP with respect to
satellite-derived observations. We found that the pool size of the
weighted ensemble mean of the 11 models is 11.5 ± 4.2 s.e.m PgC,
which is less than one-third of our new estimate. In addition, the
models fail to describe the spatial pattern of soil carbon stock.
The best spatial correlation between the modelled stock and our
estimate was found for ISAM (r= 0.55, P < 0.001), and GTEC
(r= 0.45, P < 0.001), while the correlations for CLASS_CTEM,
LPJ_wsl, TEM6 and VEGAS2.1 are less than 0.3 (Fig. 4b).
We further calculated the spatially explicit indices relative dis-
tance (RD) and cross correlation (CC) at multiple scales to
examine spatial similarities between the models and our estimate
using the Comparison Map Profile (CMP) method34. We found
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that eight out of eleven models, particularly CLASS_TEM,
CLAM4VIC, GTEC and SiBCASA, clearly underestimated the
Tibetan soil carbon stock (Supplementary Fig. 8). We also
observed a large spatial inconsistency between simulated soil
carbon stock and our estimates, with a low correlation in most
parts of the study area (Supplementary Fig. 9). Even the models
such as LPJ-WSL and TEM6, which simulated a total soil carbon
stock of comparable size to our estimate, still fail to capture the
spatial distribution of soil carbon stock, as indicated by the
generally low values of correlation (Supplementary Fig. 9). For
these two models, the overestimation in the western Tibetan
Plateau effectively compensates for the underestimation in the
east, leading to an apparent model-observation match in terms of
the total soil carbon stock (Supplementary Fig. 8).

There was a nearly perfect relationship between the initial soil
carbon stock after model spin-up and the present-day
(1980–2010) stock across the models (r2= 0.99, P < 0.001;
Supplementary Fig. 10), highlighting the critical role of model
spin-up in the estimation of soil carbon stock. The present-day
soil carbon stock was derived from the transient simulation that
started from steady-state initial conditions after spin-up and was
run forward in time through the historical period until 2010,
using observed time-varying climate and CO2

35. In these models,
the soil carbon pools were initialized by the early 1900’s climate
rather than the paleoclimate. The fact that paleoclimate
information is not used for soil carbon initialization may have
led to significant errors in the model estimates of soil carbon

stocks. To test whether the lack of paleoclimate information led to
the biased simulation of modern carbon stock by the ecosystem
models, we correlated the paleoclimates to the difference between
the ensemble model simulations (paleoclimate not considered)
and our estimation (paleoclimate considered). The results reveal
significant and strong correlations with paleo-temperature (r=
−0.21, P < 0.001 for LGM; r=−0.22, P < 0.001 for MidH) and
weak correlations with paleo-precipitation (r=−0.03, P < 0.001
for LGM; r=−0.09, P < 0.001 for MidH). These results are
consistent with the relative importance analysis that shows
greater importance of paleo-temperature in regulating the current
soil carbon stock (Fig. 2a). This result is expected because the
formation of the permafrost due to low temperature may lead to
the inhibition of both respiration in frozen soils and vertical
mixing of soil carbon between the surface and permafrost layers.
These processes are generally lacking in the current generation of
ecosystem models36. This study provides evidence that illustrates,
for the first time, the bias caused by the lack of paleoclimate
information in ecosystem models.

In addition to paleoclimates, other processes that are not well
resolved in current ecosystem models, such as soil carbon
turnover time, may also account for some of the model
underestimation. Firstly, poor model representation of the long
turnover time of deep soil carbon, especially in permafrost-
affected regions, may lead to significant underestimation of soil
carbon stock37,38. The current soil carbon models adopt a single
vertically integrated soil carbon pool, without considering the
vertical gradients in soil carbon stability and decomposability37.
In reality, the part of the organic carbon stored in deep layers,
many thousands of years older than the surface organic carbon, is
generally considered to be stable due to low decomposition rates,
especially in permafrost-affected regions7,9. Therefore, it’s
possible that the omission of this vertical dimension in the
modelling of soil carbon cycling may contribute to the models’
underestimation. This hypothesis is in agreement with our
model-observation comparison analysis, which showed that there
was a higher degree of underestimation in permafrost-affected
soils than in non-permafrost affected soils (Supplementary
Fig. 11). Secondly, several typical alpine vegetation types, such
as marsh meadow and alpine meadow, which are characterized by
relatively high organic carbon density and slow soil carbon
turnover rates, were not well represented in the models of the
MsTMIP protocol39. To test whether this limitation contributes
to the model underestimation, we compared the relative distance
between the observed and modelled soil carbon stock for different
vegetation types. We found that the soil carbon stock was severely
underestimated in marsh meadow (mean relative distance=
−88%) and alpine meadow (mean relative distance=−64%)
(Supplementary Fig. 11). Since these two types of alpine
vegetation cover about one-third of the total area of the plateau,
accounting for 41% of the total soil carbon stock, these
underestimates represent a major contribution to the overall
model underestimation.

Discussion
We compiled a unique soil carbon data set to show that extreme
paleoclimatic signals from the LGM and MidH can be detected in
the current soil carbon stock across the Tibetan permafrost
regions. The paleoclimatic legacies are retained mainly through
impacts on soil physiochemical properties, particularly in the
upper soil horizons. We also found a clear increasing trend of
paleoclimate effects on current soil carbon stock with soil depth.
These findings emphasize the necessity of considering paleocli-
mate legacies, especially paleo-temperature conditions, when
estimating contemporary alpine permafrost carbon stocks. This is
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of critical importance for improving assessments of permafrost
carbon stocks, particularly in deep layers, where a greater influ-
ence of paleoclimate was observed. Our new estimate of the
carbon pool, obtained by including paleoclimate as an additional
predictor, is triple the size of current modelled values. Future
modelling of soil carbon cycling should include paleoclimate as
well as its interaction with soil properties during the model spin-
up period so as to accurately represent the impacts of paleocli-
mate on soil properties. In addition, the methodology introduced
in this paper could be used to quantitatively assess the paleocli-
matic footprint on the permafrost soil carbon stock in other
permafrost regions such as the pan-arctic region. Such assess-
ments could provide a more complete understanding of paleo-
climate effects on permafrost soil carbon stock that in turn can
help with the understanding of permafrost soil carbon dynamics
in a warmer future.

However, we should caveat our findings regarding the impact
of paleoclimate on soil carbon distribution, because the paleo-
climate parameters are model-derived and not validated from
proxy data. There is a growing discipline of reconstructing past
climate records based on a variety of paleoclimatic proxies such as
lake sediments, pollen and glaciers over some regions of the
Tibetan Plateau40–42. Further studies which blend paleoclimatic
model simulations with such multiproxy data, along with their
reasonable climatic interpretation, are required so as to provide
spatial reconstructions of observationally-constrained paleocli-
mate over the Tibetan Plateau. Additionally, to enable future land
surface models to fully account for paleoclimatic impacts on
permafrost soil carbon stock, other paleoclimatic variables such as
humidity, pressure and radiation, not just temperature and pre-
cipitation, should be prepared and downscaled to the relatively
high temporal resolution (e.g., sub-daily) required by the models.

Methods
Study area and soil carbon data collection. The Tibetan Plateau, the highest and
largest plateau in the mid-latitudes, has the world’s largest area (1.06 × 106 km2) of
alpine permafrost, accounting for 8% of the Northern Hemisphere’s permafrost,
and 75% of its alpine permafrost10,23. Due to strong orographic effects, there is a
great spatial variability of many environmental conditions, such as altitude, volu-
metric soil water content and soil layer thickness, over the Tibetan Plateau13,43.

In addition to low temperature, the Tibetan climate is characterized by aridity
in the main body of the plateau13, and so, due to limited water content in the soil,
the periglacial landforms and processes typical of the polar regions, such as ground
heave, subsidence and ice wedges, are less developed here12. According to in situ
observations, the ice content in Tibetan permafrost is 12%44 and the active layer
thickness ranges from 0.6 to 3.5 m45. The Tibetan Plateau is mainly covered by
cold- and drought-adapted vegetation, including alpine steppe and alpine meadow
communities, accounting for 63% of the total area of the plateau, with the
remaining parts covered by forests, shrubs, alpine deserts, marsh meadows and
cultivated lands. Cambisols and leptosols are the two main soil types on the
plateau, together covering about 77% of the whole area30.

We have synthesized soil data collected from 1114 sites during 11 field
campaigns conducted by multiple research teams over the past three decades. The
data sources include China’s second national soil survey (National Earth System
Science Data Sharing Infrastructure, National Science & Technology Infrastructure
of China (http://www.geodata.cn), published work23,29–31,46–49 and some
unpublished data. This data set represents the state-of-the-art soil carbon data set
for the Tibetan Plateau (Fig. 1). The spatial representativeness of the sampling sites,
in terms of both sample size and spatial coverage, is unprecedented in the region.

Soil organic carbon density (SOCD, kg Cm−2) was estimated based on soil
organic carbon concentration (SOCC, g kg−1), bulk density (BD, g cm−3), soil layer
depth (T, cm) and rock (diameter larger than 2 mm) content (C, %) in layer i, using
the following formulation:30

SOCD¼
Xn
i¼1

T i ´BDi ´ SOCCi ´
1 � Cið Þ
100

ð1Þ

Since all sites have data for the top 30 cm soil layer, we first assessed the relative
contributions of paleo- and modern climate using 30 cm SOCD. The missing
values of BD (21%) were estimated using pedotransfer functions between SOCC
and BD, while missing rock content values (29%) were estimated by using the mean
values for the same soil type.

The full data set includes 325 sites with deep soil data (extending to more than
200 cm in depth) (Fig. 1), with SOCD data for seven different layers: 0–10, 10–20,
20–30, 30–50, 50–100, 100–200 and 200–300 cm. These data substantially
improved the spatial coverage, especially in the western half of the permafrost
regions, where the number of deep soil data per unit area was less than half of that
in the eastern half in a previous study30. These deep soil carbon data enabled us to
develop a function of SOCD changes with soil depth, which was subsequently used
to extrapolate deep soil carbon stock values for the sites without deep soil carbon
records.

Climate data. We compiled a climate data set composed of climate over the period
1975–2015 (modern climate), and paleoclimates in the mid-Holocene (MidH) and
the Last Glacial Maximum (LGM). The data consists of nine temperature-related
variables and eight precipitation-related variables for each period. Specifically, the
temperature-related variables are: annual mean temperature; temperature season-
ality; maximum temperature of the warmest month; minimum temperature of the
coldest month; annual temperature range; mean temperature of the wettest quarter;
mean temperature of the driest quarter; mean temperature of the warmest quarter;
and the mean temperature of the coldest quarter. The precipitation-related vari-
ables are: annual precipitation; precipitation of the wettest month; precipitation of
the driest month; precipitation seasonality; precipitation of the wettest quarter;
precipitation of the driest quarter; precipitation of the warmest quarter; and pre-
cipitation of the coldest quarter. These climate data were retrieved from multiple
sources. The modern climate data were obtained from WorldClim (www.
worldclim.org), while the paleoclimate data in the MidH and the LGM were
retrieved from the Community Climate System Model (CCSM4; www.cesm.ucar.
edu/models/ccsm4.0/)50, with a spatial resolution of 2.5 arc minutes.

Principle component analysis was used for the climate variables in each period
to eliminate multicollinearity. The scores in the first principle component,
explaining between 70 and 85% of the variance, were used to represent the
integrative climate conditions for each epoch.

Soil property data. Both physical29,30 and chemical properties21,51 of soil may
affect the spatial pattern of soil carbon stock. For example, a positive relationship
between cation exchange capacity (CEC) and SOCC has been widely reported52,53.
Therefore, we synthesized data with multiple key soil physical (i.e., soil moisture
and texture), and geochemical factors, such as CEC, K, P and pH.

The spatially explicit soil property data were sourced from publicly available
databases or were derived from spatial interpolation of site observations as
described below. The root-zone soil moisture data were obtained from version 3.0a
of the GLEAM data set54, while soil texture data was taken from the National Earth
System Science Data Sharing Infrastructure, National Science & Technology
Infrastructure of China (http://www.geodata.cn). Total K and P were extrapolated
using Kriging interpolations to cover the missing values. The interpolation analyses
were performed using the Geostatistical Toolbox of ArcMap 10.0 (Environmental
Systems Research Institute, Inc., Redlands, CA, USA). Soil pH and CEC data were
extracted from the SoilGrids data set (http://data.isric.org/geonetwork/srv/chi/
catalog.search#/metadata/5333b1af-7620-407f-8bca-2303fc5c7288) with a spatial
resolution of 250 m.

The climate (both modern and paleoclimate) and soil properties data were used
to assess the relative importance of modern and paleoclimate in affecting modern
soil carbon stock using a variety of statistical methods, and then subjected to the
SVM model to predict the modern carbon stock over the entire study region. Note
that the modern climate and soil property data are based on observation data sets,
while paleoclimate data were retrieved from the Community Climate System
Model as described above.

Vegetation and topography data. Both vegetation type and vegetation coverage
were considered. The vegetation type information for each observational site was
obtained from Vegetation Atlas of China maps with a scale of 1: 1 000 00055. To
determine vegetation coverage, the remotely sensed Normalized Difference Vege-
tation Index (NDVI) was used. NDVI is designed to represent vegetation biomass
and subsequent carbon input for soil carbon stock. The NDVI data were derived
from the GIMMS NDVI3g data set (https://ecocast.arc.nasa.gov) with a horizontal
resolution of 0.083° and a 15-day interval.

In addition to the factors described above, we also included some basic site
information such as altitude, slope and relief intensity, as well as geomorphological
information, by categorizing the observational sites into the following four
landforms: plain; medium-gradient hill; high-gradient hill; and high-gradient
mountain. The landform, slope and relief intensity were derived from the Soil and
Terrain Database (SOTER) for China (http://data.isric.org/geonetwork).

Quantifying the relative importance of the paleoclimates. We used a combined
approach involving multiple statistical models to analyse the relative importance of
paleo- and modern climate. Specifically, random forest analysis was used to rank
the relative importance of the predictors. In this method, the importance of each
predictor is determined by evaluating the decrease in prediction accuracy, that is,
increase in the node purity, as measured by the decrease in sum of squares between
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observations and predictions when it was removed from the model3. These ana-
lyses were conducted using the RandomForest package in the R statistical software.

Variation partitioning modelling was used to identify the relative importance of
paleoclimate and modern climate on soil carbon stock. Variation partitioning is an
invaluable tool, as it can identify the individual contributions of a group of
predictors of interest and joint contributions between predictors to a given
response variable56. Hence, it allows an independent portion of the variance to be
attributed to the climate variables from mid-Holocene and Last Glacial Maximum
periods that cannot be ascribed to the current climate. Variation partitioning
analyses were conducted with the R package vegan.

Structural equation modelling (SEM) was used to identify the direct and
indirect (via soil properties) effects of paleoclimate on soil carbon stock, and to
evaluate the contributions of these factors by assessing the degree of the
standardized total effect (direct effect plus indirect effect)57. SEM is characterised
by its utility for partitioning direct and indirect effects of many predicted variables
on the response variable using covariance58, to help understand complex natural
systems. All the SEM analyses were conducted using AMOS 21.0.

In addition, we used partial correlation analysis between the soil carbon stock
and the current climate with soil variables controlled separately, and with all soil
properties controlled, to identify the effect of the current climate on the soil carbon
stock. Changes in the relative importance of paleoclimate with soil depth were
investigated using deep soil profiles and the R package relaimpo59. We quantified
the relative contributions of the regressors using the Lindeman–Merenda–Gold
method. This method decomposes R2 into non-negative contributions that
automatically sum to the total R2, with bootstrap confidence intervals to assess the
stability of the ranking60.

Freezing index changes from LGM to MidH. To understand whether there was
intensive permafrost thawing at the mid-Holocene, we calculated the freezing index
(FI, Eqs. 2–3) for LGM and MidH periods using paleoclimate simulations from the
CCSM model, and analysed the relative change of the freezing index from LGM to
MidH to infer the change of permafrost extent. The freezing index was calculated
by accumulating the average daily temperatures below 0 °C61.

FI¼
XN
i¼1

jTij;T i<0
�C ð2Þ

FI change %ð Þ ¼ FILGM � FIMidHð Þ=FILGM � 100 ð3Þ

Prediction and modelled simulations of soil carbon stock. Machine learning
techniques have been proved to be a powerful tool for soil carbon
predictions30,62,63. Here, we used several different machine learning algorithms to
estimate SOCD over the permafrost regions of the Tibetan Plateau. These were:
Support Vector Machine (SVM); Random Forest; Artificial Neural Network;
Classification and Regression Trees; and Multivariate Adaptive Regression Splines.
The results of the leave-one-out cross-validation suggested that SVM showed the
best performance in the prediction of the top 30 cm SOCD (r2= 0.65, P < 0.001)
(Supplementary Fig. 6).

We, therefore, used SVM and a high resolution (250 m) soil depth data set
(http://data.isric.org/geonetwork/srv/chi/catalog.search#/metadata/f36117ea-9be5-
4afd-bb7d-7a3e77bf392a) to estimate the top 30 cm soil carbon stock in a spatially
explicit manner over the permafrost regions of the Tibetan Plateau. Three-metre
soil carbon stock was then derived by extrapolation from the 30 cm soil carbon
stock based on the SOCD-soil depth relationship function (Supplementary Fig. 12).
Note that for the regions with a soil depth of less than 3 m, the soil carbon stock
was adjusted by actual soil depth data. According to the limited existing evidence
on the plateau, soils deeper than 3 m in depth may also store a certain amount of
soil carbon23. However, the small number of deep sample sites on the plateau (only
11 cores are available), and their severely biased spatial distribution, means that it’s
currently impossible to make a reliable soil carbon estimate for the whole plateau
for depths greater than 3 m.

An uncertainty estimate that originated from sampling sites and vertical
interpolation of soil carbon stock was provided for the estimation of soil carbon
stock on the Tibetan Plateau. To account for the uncertainty introduced by
sampling sites, we adopted a bootstrap method (random sampling with
replacement) to generate 1000 pseudo replicates, which were used to establish the
SVM model in estimating the 30 cm soil carbon stock. Here, we relied on a
regression model for vertical extrapolation of deeper-layer soil carbon stock from
the top 30 cm layer. The regression model was derived from the relationship
between soil organic carbon density and soil depth across 325 sites with deep soil
profile data. To estimate the uncertainty due to the vertical extrapolation, we
adopted the Monte Carlo sampling technique to draw 1000 random sets of
predicted values from their normal distributions with the estimated mean and
standard deviations obtained from the regression model for each grid. These two
types of uncertainty were merged to yield an estimate of the uncertainty in Tibetan
soil carbon stock.

The modelled simulations of soil carbon stock were derived from global gridded
(at a 0.5° spatial resolution) outputs (version 1) of 11 terrestrial biosphere models
which took part in the Multi-scale Synthesis and Terrestrial Model Intercomparison

Project (MsTMIP)64. The models used were: CLASS_CTEM, CLM4, CLM4VIC,
DLEM, GTEC, ISAM, LPJ_wsl, ORCHIDEE-LSCE, SiBCASA, TEM6, and
VEGAS2.1. All the global model simulations were conducted with similar forcing
data, spin-up procedures, and boundary condition39. The simulated carbon pools
came to the equilibrium after the model spin-up in MsTMIP experimental design
(https://nacp.ornl.gov/MsTMIP_variables.shtml). The steady-state criterion for
carbon fluxes is that the 100-year mean change in total ecosystem carbon stock must
be below 1 gm−2 yr−1 during the model spin-up35. The soil depth layer across
models ranges from 1 to 36m (Supplementary Fig. 13, Supplementary Table 3). We
used soil carbon simulations from the SG3 scenario, with time-varying forcing of
climate, land use history and atmospheric CO2 concentration39, for the period 1975-
2010, and resampled the output to 0.1o resolution to facilitate comparison with the
observation-based predictions.

Model-observation similarity analysis of soil carbon stock. We used the
Comparison Map Profile (CMP) method34 to examine spatial similarity between
the output of the models and our estimate. Specifically, we calculated the relative
distance (RD) and cross correlation (CC) at scales from 1 to 20 (scale 1, 5 and 10
representative of 3 × 3 pixel, 11 × 11 pixel and 21 × 21 pixel moving windows,
respectively). The arithmetically averaged values of all mono-scale RD and CC
maps were used to examine spatial similarity between the observations and the
model simulations (Eqs. 4–6).

RD ¼ �x � �yð Þ=�y � 100 ð4Þ

CC ¼ 1

N2

XN
i¼1

XN
j¼1

xij � �x
� �

´ yij � �y
� �

σx ´ σy
ð5Þ

σ2x ¼
1

N2 � 1

XN
i¼1

XN
j¼1

xij � �x
� �2

ð6Þ

where �x and �y represent averaged values of modelled and observational SOCD over
moving windows, respectively; xij and yij are the pixel value at row i and column j
of the two moving windows for the compared soil carbon stock maps. σx and σy are
the standard deviations calculated within the two moving windows.

Data availability
The authors declare that the majority of the data supporting the findings of this study are
available through the links given in the paper. The unpublished data are available from
the corresponding author upon request.

Code availability
The new estimate of Tibetan soil carbon stock and R code are available in a persistent
repository (https://figshare.com/s/4374f28d880f366eff6d).
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