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Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical

chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the

Schr€odinger equation. Recent years have witnessed a rapid development of Dirac materials such as

graphene and topological insulators, which are described by the Dirac equation in relativistic

quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims

to introduce this field to the scientific community. Topics covered include scarring, chaotic

scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy

level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to

revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay

between chaos and relativistic quantum mechanics may lead to novel design principles and meth-

odologies to enhance device performance. Published by AIP Publishing.
https://doi.org/10.1063/1.5026904

The characteristic difference between nonrelativistic and

relativistic quantum systems lies in the energy-momentum

relation, which is parabolic for the former and linear

(hyperbolic) for the latter, as described by the Schr€odinger

and the massless (massive) Dirac equations, respectively.

The traditional field of quantum chaos deals with the quan-

tum manifestations or fingerprints of classical chaos, but

previous efforts were mostly confined to nonrelativistic

quantum systems. To study the unique physics of classical

chaos in relativistic quantum systems is fundamental with

potentially significant applications. This is so because of a

frontier area of tremendous current interest: Dirac materi-

als, examples of which include graphene, topological insula-

tors, molybdenum disulfide, and topological Dirac

semimetals. A common feature of these materials is that the

low energy excitations obey relativistic quantum mechan-

ics, leading to physical properties that are not usually seen

in conventional semiconductor materials. For example, gra-

phene, a single, one-atom-thick sheet of carbon atoms

arranged in a honeycomb lattice, was experimentally real-

ized in 2004. Due to its peculiar hexagonal lattice structure,

the band structure exhibits a linear dependence of the

energy on the momentum about a Dirac points, signifying

relativistic motion. Devices made of graphene are poten-

tially capable of operating at much higher speed than those

based on conventional semiconductor materials. The pur-

pose of this Tutorial is to introduce the emergent field of

relativistic quantum chaos to the scientific community, cov-

ering a number of topics including scarring, transport,

scattering, resonant tunneling, persistent currents, and

energy level spacing statistics. An emphasis will be on the

behaviors that are uniquely relativistic quantum, such as

chiral scars and phenomena due to Klein tunneling and

peculiar boundary modes, i.e., those that do not occur in

the counterpart, nonrelativistic quantum systems.

I. INTRODUCTION

The development of chaos theory has fundamentally

changed our understanding of a large variety of nonlinear

dynamical phenomena. The question of what chaos can do to

a quantum system led to the field of quantum chaos.

Quantum systems are fundamentally linear and obey the

superposition principle, so, in general, chaos, or sensitive

dependence on initial conditions, cannot be expected. The

field of quantum chaos thus aims to uncover the quantum

manifestations or fingerprints of classical chaotic behaviors

in the semiclassical limit.1,2 (It should be noted that the clas-

sical phase space distributions obey the superposition princi-

ple, because the Liouville equation is linear. The important

difference is that, in quantum mechanics, the “notion of a

phase space trajectory loses its meaning.”2) In the field of

quantum chaos, depending on whether the system under

study is closed or open, different issues have been pursued.

For example, in closed chaotic Hamiltonian systems, the

basic phenomena that have been and continue to be studied

include energy level-spacing statistics3–19 and quantum scar-

ring.20–52 In open Hamiltonian systems, quantum chaotic

scattering has been investigated extensively.53–68 In addition,

the phenomena of quantum diffusion and wavefunction

localization in classically driven chaotic systems have been

studied.69–84a)Electronic mail: Ying-Cheng.Lai@asu.edu
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Pioneers in the traditional field of quantum chaos

include Chirikov, Casati, Shepelyansky, Guarneri, Izrailev,

Bohigas, Kaufman, Berry, Smilansky, Prange, Fishman,

Heller, among others. Especially, Chirikov conceived and

studied the chaotic properties of the standard map,77,85 which

has been a paradigm in the study of Hamiltonian systems

and quantum chaos with ubiquitous applications to a large

variety of physical systems. Bohigas and collaborators

uncovered the phenomenon of level repulsion and attributed

its origin to classical chaos.3 Casati, Chirikov, Guarneri, and

Shepelyansky made significant contributions to our under-

standing of energy level statistics6,9 and quantum behaviors

of classically driven chaotic systems, a representative one

being the ionization of excited hydrogen atoms by micro-

wave fields.70–76,78–82,86,87 Kaufman and Heller discovered

quantum scarring.20,21,23,47,88 Prange and Fishman uncovered

the remarkable phenomenon of quantum localization in

kicked quantum chaotic systems.69,89,90 Smilansky pioneered

the area of quantum chaotic scattering.11,17,53,54,60,61,66,91 Sir

Michael Berry made many seminal contributions to the fun-

damentals of quantum chaos.4,7,26,92

Vast majority of the studies on quantum chaos in the

past were for nonrelativistic quantum systems described by

the Schr€odinger equation, which possesses a parabolic rela-

tion between the energy and momentum. However, there

were early studies on the dynamics of relativistic kicked

rotors (the so-called solvable Maryland model).93–95 Berry

and Mondragon were the first to study (about thirty years

ago) the energy level spacing statistics of a classically cha-

otic system in the relativistic quantum regime—the neutrino

billiard system governed by the massless Dirac equation96

For such a system, the energy is linearly proportional to the

momentum or the wave vector. In a subsequent work by

Antoine et al.,97 a 2D fermion billiard in a curved space cou-

pled with a magnetic field was studied. Results on energy

levels were obtained under a more generalized set of bound-

ary conditions than those treated by Berry and Mondragon.96

The authors verified97 that, under the same boundary condi-

tions, both their work and that of Berry and Mondragon gave

the same results. In Ref. 98, Tomaschitz investigated chaos

in open Robertson-Walker cosmologies and found localized

wave fields, which are solutions of the Klein-Gordon equa-

tion quantized on the bounded trajectories associated with

the classical geodesic motion. Based on the minisuperspace

model described by the Wheeler-DeWitt equation, there

were studies on chaos in quantum cosmology with an empha-

sis on the breakdown of the WKB approximation and relativ-

istic wave packet dynamics.99–101 In addition, there were

general discussions about the spectral statistics of the Dirac

operator on lattices or graphs in terms of the random matrix

theory.102–104 In spite of these studies,97,98,105 not much

effort was devoted to the study of the interplay between

chaos and relativistic quantum mechanics for a long period

of time after the pioneering work of Berry and Mondragon.96

Recent years have witnessed a rapid growth of interest

in Dirac materials106,107 such as graphene,108–114 topological

insulators,115 molybdenum disulfide (MoS2),116,117 HITP

[Ni3(HITP)2] (a combination of nickel and an organic

compound called HITP),118 and topological Dirac

semimetals.119,120 A common feature of these materials is

that their energy bands contain a Dirac cone structure, so

they are described by the Dirac equation, generating phe-

nomena that are not usually seen in conventional metallic or

semiconductor materials. For example, from the standpoint

of quantum transport, the Dirac cone structure and the result-

ing pseudospin characteristics of the underlying quasipar-

ticles can lead to unconventional physical properties/

phenomena such as high carrier mobility, anti-localization,

chiral tunneling, and negative refractive index. This has

important consequences. At the level of basic science, a new

field has emerged: Relativistic Quantum Chaos (RQC),

which aims to uncover, understand, and exploit relativistic

quantum manifestations of classical nonlinear dynamical

behaviors including chaos.121–153 Topics studied so far

include relativistic quantum scarring,121,134,136,153 energy

level spacing statistics in graphene systems,123,125–127,130 rel-

ativistic quantum chaotic scattering and trans-

port,128,131,139,142,145,149,150,154 relativistic quantum

tunneling,133,141,143 effects of chaos on persistent currents in

Dirac fermion systems,146,148 the role of classical dynamics

in confinement of massless Dirac fermions,122,129,135,144 the

interplay between chaos and spin transport in graphene quan-

tum dot systems,151 and the role of many body interactions

in chaotic graphene quantum billiards.143,152 From an

applied point of view, due to the underlying physics being

effectively governed by the Dirac equation, purely relativis-

tic quantum phenomena such as Klein tunneling,

Zitterbewegung, and pair creations can potentially occur in

solid state devices and be exploited for significantly improv-

ing or even revolutionizing conventional electronics and

spintronics. Investigating the manifestations of classical

chaos in relativistic quantum systems is thus important with

both fundamental and applied values.

The purpose of this Tutorial is to provide a succinct and

elementary review of the emergent field of RQC, introducing

it to the scientific community. We focus our discussions on

two types of systems: massless Dirac fermion systems and

graphene. While the main task is to explain the relativistic

quantum manifestations of chaos, in some cases, classically

integrable dynamics will also be discussed as a contrast. The

specific topics to be covered include scarring, chaotic scat-

tering and transport, resonant tunneling, persistent currents,

and energy level spacing statistics—all in the relativistic

quantum realm. It should be noted that the topics covered

here for the 2D massless (pseudo-) Dirac fermion systems

comprise only a small part of the field of relativistic quantum

chaos, as new phenomena are continue to be uncovered.

To give an example of the phenomena to be discussed in

this Tutorial, we briefly describe quantum scarring, a

remarkable phenomenon in quantum systems whose dynam-

ics in the classical limit are chaotic. In general, in the semi-

classical regime, a wavefunction can be regarded locally as a

superposition of many plane waves. Due to classical chaos,

the directions of these plane waves are random. Intuitively,

one may anticipate the wave functions to have a uniform

concentration in the position space. However, signatures of

highly nonuniform distribution of the wavefunction were dis-

covered in 1979 by McDonald and Kaufman,20,23 and Heller

052101-2 Lai et al. Chaos 28, 052101 (2018)



pointed out in 1984 that this is a “scarring” phenomenon21 in

which the wavefunctions tend to concentrate on paths corre-

sponding to unstable periodic orbits in the classical limit and

the eigenfunctions associated with different eigenvalues can

focus on different periodic orbits. In solid state electronic

transport devices, the quantum scarring states are known as

quantum “pointer states,” which can have a significant

impact on the transport properties such as conductance.

Relativistic quantum scars in graphene were uncovered121 in

2009, and a class of uniquely relativistic quantum scars, the

so-called chiral scars,136 were identified in 2013.

While there were previous studies on chaos in classical

relativistic systems,155–159 the emergent field of relativistic

quantum chaos reviewed in this Tutorial is about the relativ-
istic quantum manifestations of classical chaos. In particular,

the study is to uncover how classical chaos manifests itself

in relativistic quantum systems as described or approxi-

mately described by the Dirac equation. This is parallel to

the traditional field of quantum chaos, which is defined as

the study of the (nonrelativistic) quantum manifestations of

classical chaos.

This Tutorial is outlined as follows. For the phenomenon

of scarring, besides demonstrating its occurrence in a closed

chaotic graphene billiard, we place emphasis on a class of

scars that have no counterparts in nonrelativistic quantum

systems—chiral scars, the discovery of which was facilitated

by the development of a conformal mapping method to accu-

rately determine a large number of eigenstates for a class of

chaotic Dirac fermion billiard systems. We then turn to

quantum transport and conductance fluctuations in graphene

systems, pointing out that classical chaos can play a similar

role to that in nonrelativistic quantum systems: suppressing

Fano resonances and smoothing out the fluctuations with

energy. The next topic of discussion is regularization of reso-

nant tunneling by chaos. We present evidence that, as in non-

relativistic quantum systems, chaos can greatly suppress the

spread in the resonant tunneling rate for any small energy

interval in both Dirac fermion and graphene systems.

Specific challenges with calculating the resonant tunneling

rate in such systems and solutions are pointed out and the

effect of a uniquely relativistic quantum phenomenon—

Klein tunneling, on the behavior of the tunneling rate in the

small energy regime is demonstrated. The discussion is then

extended briefly to a graphene point contact system in which

Klein tunneling can lead to an extreme type of conductance

fluctuations. Another topic of discussion is persistent cur-

rents (permanent currents without requiring any external

voltage source)—a quantum phenomenon caused by the

breaking of the time reversal symmetry due to a magnetic

flux through a ring domain. With explicit numerical evidence

and analytic insights, we demonstrate that, for a nonrelativis-

tic quantum ring domain, boundary deformation leading to

classical chaos can diminish the currents but they can sustain

in a Dirac ring domain. In fact, due to the unconventional

boundary conditions in the Dirac system, a distinct set of

whispering gallery modes (WGMs) circulating along the

outer or the inner boundary can arise regardless of the

boundary deformation, which leads to “superpersistent” cur-

rents in chaotic Dirac fermion systems. Potential applications

of this phenomenon are pointed out. Finally, we describe the

energy level spacing statistics in Dirac fermion and graphene

systems in terms of the similarities to and differences from

the nonrelativistic quantum counterparts. We conclude this

Tutorial by offering a general discussion with an emphasis

on the unique interplay between classical chaos and relativis-

tic quantum mechanics and speculating on a number of open

problems.

It is worth pointing out an important difference between

a Dirac fermion system and a graphene system. The energy

band structure of graphene is such that there are two non-

equivalent Dirac points in the first Brillouin zone. While a

quasiparticle in the vicinity of a Dirac point obeys the same

(Dirac) equation as that for a Dirac fermion, in a closed

domain, the abrupt edge termination defining the confine-

ment couples the spinor wavefunctions from the two valleys

in the momentum space, making them inseparable. As a

result, the two-component spinor Dirac equation can

describe graphene but only in an approximate sense.

II. RELATIVISTIC QUANTUM SCARS

Quantum scarring, in which the wavefunctions tend to

concentrate on unstable periodic orbits of a classically cha-

otic Hamiltonian system, is a fundamental phenomenon in

quantum chaos.20,21,23–34,38–43,45–49,51,52,88 This phenomenon

is surprising because, for a closed Hamiltonian system that

exhibits fully developed chaos, typical classical trajectories

are ergodic, generating a uniform distribution in both phase

space and physical space. Naively, one might think that the

corresponding quantum wavefunction distribution should be

uniform as well, but detailed computations by McDonald

and Kaufman20,23 indicated that this is not so. What they

found was that the eigenstates can be highly nonuniform

with a significant density localized in the vicinity of classical

unstable periodic orbits—henceforth the first discovery of

this remarkable phenomenon. Later, it was coined the term

“scarring” by Heller21 with physical insights from a random

wave model. A semiclassical theory was subsequently devel-

oped by Bogomolny24 and Berry,26 providing a theoretical

understanding of the phenomenon.

The first indication that scarring can occur in relativistic

quantum systems was obtained through the study of a chaotic

graphene billiard,121 where it was discovered that the eigen-

states tend to concentrate heavily on classical unstable peri-

odic orbits, as illustrated in Fig. 1. The scars are recurrent

when the energy varies such that the phase accumulation

along the closed orbit gains a change that is the integer mul-

tiple of 2p : dk � L ¼ 2pl, where L is the length of the orbit,

dk is the wavenumber increment, and l is an integer. For a

massless relativistic particle, because of the linear depen-

dence of its energy on the wave vector, the recurring scarring

states occur at equally spaced values of E, which has recently

been observed experimentally in a mesoscopic graphene ring

system.160 This should be contrasted to the case of a nonrela-

tivistic quantum particle, where the energy depends on the

wave vector parabolically so that recurrent scars occur at

equally spaced values of
ffiffiffi
E
p

. Graphene is, however, funda-

mentally a lattice system for which a relativistic quantum

052101-3 Lai et al. Chaos 28, 052101 (2018)



description based on the Dirac equation is only approximate.

A more serious issue is the existence of two nonequivalent

Dirac points (K and K0) in the first Brillouin zone, where the

wavefunctions originated from them can couple due to pro-

cesses such as reflection from the boundary and scattering

from impurities. For these reasons, scars in the graphene sys-

tem are not truly relativistic quantum. Note that, in general,

while some eigenstates show scars, the average over an

energy interval gives a constant density. That is, the non-

scarred states have a somewhat reduced density close to the

periodic orbit. As a result, not most eigenstates are scarred—

only a subset of them are.

To search for “true” relativistic quantum scars, it is neces-

sary to solve the Dirac equation in two dimensions, demand-

ing accurate solutions in arbitrary confinements that exhibit

chaos in the classical limit. (A brief introduction to the Dirac

equation in two dimensions together with the boundary condi-

tions is given in the Appendix.) It is also necessary to calcu-

late high energy levels to resolve the fine structures in the

spinor wavefunctions so that quantum scars can be accurately

identified. Further, a large number of scars are needed so that

their statistical properties can be characterized. A finite ele-

ment method was developed to calculate the eigenstates of

Dirac fermions under arbitrary electrical potential profiles,134

leading to the discovery that relativistic, spinor type of wave-

functions associated with Dirac fermions can be highly non-

uniform in chaotic billiards, and truly relativistic quantum

scars indeed exist. However, due to the computational limita-

tion associated with the finite element method, only a handful

of the eigenstates can be obtained with high accuracy.

A breakthrough in this area occurred with the develop-

ment of a conformal mapping method136 that enables a very

large number (on the order of 104) of eigenstates of the Dirac

equation in a chaotic domain to be calculated with

unprecedentedly high accuracy. Examination of the eigen-

states revealed a new class of relativistic quantum scars that

are characteristically different from those in nonrelativistic

quantum systems: chiral scars.136 To describe a chiral scar in

an intuitive way, we note that, for a conventional quantum

scar to reoccur, when a particle traverses one cycle along a

scarred orbit that corresponds to a classical unstable periodic

orbit, the associated quantum phase change is 2p. However,

for a chiral scar, phenomenologically, it takes two cycles for

the phase accumulation of the spinor to be 2p and for the

scarring state to reappear. This relativistic quantum phenom-

enon has its origin in the chiral nature of the massless Dirac

fermions subject to a massive confinement. More generally,

in a chaotic billiard, for quantum scars with an even number

of bounces off the billiard wall along a closed orbit, the dif-

ference between the total phase accumulation of the wave-

function after one cycle and that of its time-reversed

counterpart is an integer multiple of 2p. However, for rela-

tivistic quantum scars with an odd number of bounces,

besides the integer multiple of 2p phase difference, there

will be an extra p difference in the total phase accumula-

tion.153 As a result, in the semiclassical regime, these orbits

cancel each other and disappear in the length spectra.

The success in uncovering chiral scars in relativistic

quantum systems can be attributed to the “quasi-analytic”

nature of the conformal mapping approach to calculating the

eigenstates. In particular, for a broad class of chaotic domains,

a proper conformal mapping can transform any such domain

to the circular domain for which the solutions of the Dirac

equation can be written down analytically. An inverse trans-

form of the solutions thus leads to eigenstates in the original

billiard. While a semiclassical understanding of the chiral scar

was available,136 a complete understanding of this phenome-

non was obtained only recently153 through a systematic study

FIG. 1. Quantum scars in a stadium-

shaped chaotic graphene billiard. The

billiard domain contains 11 814 carbon

atoms and has zigzag boundaries along

the two straight segments. The energy

values for panels (a)–(h) are E/

t¼ 0.25347, 0.36358, 0.57665,

0.60699, 0.81956, 0.91061, 0.97722,

and 0.99198, respectively. The dashed

lines represent classical periodic orbits.

The nearest neighbor hopping energy

of graphene is t� 2.8 eV and the lattice

constant is a¼ 2.46 Å. The eigenener-

gies and the eigenstates were calcu-

lated using the standard tight-binding

Hamiltonian.121
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of the effects of an Aharonov-Bohm (AB) flux on the eigen-

states of the class of massless Dirac billiards to which the

conformal-mapping method is applicable.

We present an intuitive reasoning that leads to the dis-

covery of chiral scars. An examination of a large number of

relativistic quantum scars for massless Dirac fermion in a

typical chaotic billiard revealed136 that, a certain scarring

pattern, once having appeared, tends to reappear at a differ-

ent energy value. This can be understood by resorting to the

semiclassical theory,161 which states that two repetitive scars

associated with the same classical periodic orbit can occur

when the action difference satisfies

jDSj ¼ 2pn�h ðn ¼ 1; 2;…Þ;

where S ¼
Þ

pdq ¼ �hkL and L is the length of a given peri-

odic orbit. If one scar has already appeared, say, at k0, the

eigenfunctions at the wave number kn¼ k0 6 ndk will most

likely scar, where dk¼ 2p/L. It is thus useful to define

gðnÞ ¼ jkn � k0j
dk

� jkn � k0j
dk

� �
; (1)

where [x] denotes the largest integer less than x. According

to the semiclassical theory for nonrelativistic quantum sys-

tems, the quantity g, by its definition, should exhibit only

two distinct values: either close to 0 or to 1. To calculate the

value of g, some key characteristics of the corresponding

scars are needed. In Ref. 136, some of the key features of the

calculated scars are listed. Using the data of the most typical

types of scars, one can then calculate their values of g(n)

from Eq. (1). Representative chiral scars are shown in Fig. 2,

for which g can take on values about 1/2. From the relation

dk¼ 2p/L, one sees that the orbital length becomes 2L.

A recent work153 has elucidated the physical origin of

chiral scars based on considerations of the time reversal sym-

metry. In particular, in Berry’s seminal paper,96 time-

reversal symmetry breaking was interpreted semiclassically

as a p phase difference between the waves traveling in oppo-

site directions over an orbit with an odd number of reflec-

tions off the domain boundary. The chiral scars are those

with an odd number of reflections, which differ characteristi-

cally from scars with an even number of reflections, as the

former have an effective “doubled” orbital length. The phys-

ical insight is that, for scars of the Dirac billiard, each

bounce at the boundary breaks the time-reversal symmetry,

but for orbits of even number of bounces, after circling the

orbit, the effects of the bounces at the boundary cancel each

other (“even” scars). As noted by Berry and Mondragon,96

for these orbits, the phase difference of a clockwise orbit and

its time-reversal counterpart is an integer multiple of 2p,

thereby preserving the time-reversal symmetry. Only the

orbits with an odd number of bounces have the net effect

that the phase has a p difference in addition to an integer

multiple of 2p, thus breaking the time-reversal symmetry

(“odd” scars). A natural question is whether this additional p
phase difference can be compensated by a magnetic flux. To

address this question, it is necessary to solve the Dirac equa-

tion for the Aharonov-Bohm (AB) chaotic billiard. The con-

formal mapping method can again be employed.146 Let Sþ
be the classical action associated with a counter-clockwise

FIG. 2. Examples of relativistic quantum chiral scars in a chaotic Dirac billiard system. Ten representative scarring patterns are shown from a pear-shaped

Dirac billiard system that is fully chaotic in the classical limit. (a)–(e) The patterns are organized into five pairs in terms of the nearest recurrence, with the cor-

responding wave vectors listed. For example, in (a), the two eigenstates are the 155th and 162th. For this particular chaotic billiard system, we have

dk� 1.2959. The values of the semiclassical indicator g as defined in Eq. (1) for all the pairs are also listed, which are about 0.5, providing evidence for chiral

scars that are not predicted by the conventional semiclassical theory. Chiral scars are thus uniquely a relativistic quantum phenomenon.
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orbit and S– be its time-reversed counterpart. For odd and

even scars, one has DS ¼ 2pðnþ 1=2Þ�h and DS ¼ 2pn�h,

respectively, where n is an integer. When a magnetic flux a
(in units of the magnetic flux quantum U0 � h/e) is present,

the action is given by S ¼
Þ

pdq ¼ �hðk � L þ2pWaÞ, where

W is the winding number enclosing the flux (W> 0 for

counter-clockwise and W< 0 for clockwise motions). The

difference in action then becomes DS ¼ 2pðnþ 1=2

þ2WaÞ�h for odd scars and DS ¼ 2pðnþ 2WaÞ�h for even

scars. The magnetic flux can then be used to compensate the

p phase difference for the odd orbits, which has been verified

numerically and analytically.153

While relativistic quantum scars in graphene systems

have recently been observed experimentally,160 at the pre-

sent, there is no experimental evidence for chiral scars in

massless Dirac fermion systems, which requires the setup of

a material system with a single Dirac cone and a hard wall

confinement of the massive type. The surface states of a 3D

topological insulator can be exploited to fulfill such a

requirement, where the single Dirac cone structure is realiz-

able162 and the massive confinement can be implemented

through spatially dependent magnetic doping163 or a local

exchange coupling with a ferromagnetic insulator cap

layer.164,165 More specifically, for a 3D topological insulator

such as Bi2Se3, the surface states have a topological origin

with a perfect spin-momentum locking, effectively eliminat-

ing backscattering from nonmagnetic impurities and generat-

ing electronic “highways” with highly efficient transport.

The surface states can generally be described by a two-

dimensional Dirac Hamiltonian. A likely candidate for

experimental study of chiral scars is thus 3D topological

insulators.

III. ROLE OF CHAOS IN QUANTUM TRANSPORT

In a typical scenario of electronic transport, one applies

a voltage to a device to drive electrons from one end to

another. The device can be a conductor, a semiconductor

junction, or a quantum dot, or some others. Consider the sim-

ple case of a two-dimensional conductor of length L and

width W. Classically, the transport process is described by

the Ohm’s law, which relates the conductance G (or the

resistance) to the conductivity r and the geometrical parame-

ters of the conductor as G¼ rW/L. In the classical picture,

the movement of an electron can be regarded as that of a

biased random walk, where it collides with various lattice

atomic sites and random impurities but with a drift towards

the higher voltage end. The collisions, which change the

momentum of the electron, are effectively scattering events.

The average distance between two adjacent scattering events

during which the electron momentum is preserved is the

mean free path Lm. (For example, at room temperature, the

values of Lm for copper and silver are 39.9 nm and 53.5 nm,

respectively.166)

The Ohm’s law is valid only if the mean free path is

much shorter than the characteristic length scale of the con-

ductor: Lm� L or W. For a device whose size is on the same

order of magnitude as or smaller than the mean free path, a

quantum mechanical description becomes necessary, where

the conductor can effectively be regarded as a waveguide

with a number of transverse modes. In this case, one enters

the regime of quantum transport, in which the conductance is

given by the Landauer formula167–169

G ¼ 2e2

h
MT; (2)

where –e< 0 is the fundamental electronic charge, h is the

Planck constant, M is the number of transverse modes, and

T ¼ jtj2 is the quantum transmission with t (complex) being

the transmission amplitude. Due to quantum interference, it

is typical for the quantum transmission (and hence the con-

ductance) to depend sensitively on transport parameters such

as the conducting energy of the electron—the Fermi energy,

the strength of the external magnetic field (if there is one),

the confinement potential, or some other parameters, leading

to conductance fluctuations.

Conductance fluctuations are in fact a fundamental phe-

nomenon in open quantum systems. An important result is the

universal conductance fluctuations (UCFs) in mesoscopic sys-

tems.170–174 In recent years, there have been studies of con-

ductance fluctuations in graphene systems.132,137,138,175–181

The seminal work of Jalabert, Baranger, and Stone55 sug-

gested that conductance fluctuations in the ballistic regime

can be a probe of quantum chaos, establishing for the first

time a connection between quantum transport in solid-state

devices and classical chaos. Subsequent studies56–59,62–65

revealed that UCFs are intimately related to quantum chaotic

scattering.53,54,57 An intriguing phenomenon is that classical

chaos can suppress the conductance (or transmission) fluctua-

tions.128,131,139 As shown in Fig. 3, for the two cases where

classically the device geometry generates regular and chaotic

dynamics, respectively, the transmission fluctuations are more

severe in the former than in the latter. The physical origin of

this striking contrast lies in the high probability for Fano reso-

nances182–186 to arise in the case of classically regular dynam-

ics. In particular, there are stable periodic orbits associated

with regular classical dynamics. In the ideal case of a perfect

lattice and zero temperature, a classical stable orbit has an

infinite lifetime. In a realistic system with impurities at finite

temperatures, the lifetime s will not be infinite but can still be

extremely long compared with the typical time scale of the

system (e.g., the average time for an electron to drift through

the device). Such “metastable” states, also called pointer

states,45,187–192 will lead to narrow resonances (Fano resonan-

ces) in the curve of quantum transmission versus Fermi

energy, where the width of the resonance is approximately

�h=s. For a different classically stable orbit, the resonance

energy (or frequency) will differ. A number of classically sta-

ble periodic orbits will then lead to sharp resonances in the

transmission curve. In contrast, for classically chaotic dynam-

ics, there are no stable periodic orbits. While a weaker type of

pointer states, i.e., the remnants of quantum scars, still exist,

their lifetimes are typically not comparable with those associ-

ated with the stable orbits for regular classical dynamics,

broadening the corresponding resonances. As a result, the

transmission fluctuation curve appears smoother, as illustrated

in Fig. 3. Figure 4 shows the contrast between the pointer
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states from a classically chaotic quantum dot structure (the

panels to the left of the vertical green line) and those from a

structure with mixed classical dynamics (on the right side of

the green line), where it can be seen that the pointer states

from the latter structure are more pronounced.128 A similar

contrast exists in the relativistic quantum realm, as illustrated

in Fig. 5 for the same geometries as in Fig. 4, where the quan-

tum dot is made of graphene.128,191 These results established

that, relativistic quantum transport through single-layer gra-

phene systems, for which the quasiparticles are massless

Dirac fermions, obeys the conventional classical-quantum cor-

respondence that integrable or mixed classical dynamics lead

to sharp conductance fluctuations but chaos can smooth out

the fluctuations. However, under the same chaotic geometry, a

relativistic quantum system (e.g., a graphene quantum dot)

tends to exhibit more severe conductance fluctuations than its

nonrelativistic counterpart, as illustrated in the right panel of

Fig. 3. Comparing the left-side panels of Figs. 4 and 5, we see

that the pointer states in the graphene dot are more pro-

nounced even when the classical dynamics are fully chaotic,

pointing to a characteristic difference between relativistic and

nonrelativistic quantum manifestations of the same classical

dynamics.

An open issue concerns about the effect of finite mass

on relativistic quantum transport. This can be addressed by

studying quantum transport in chaotic bilayer graphene

quantum dots for which the quasiparticles have a finite mass.

A recent work181 revealed that such a quasiparticle, when

traveling along the classical ballistic orbit, tends to hop back

and forth between the two layers, exhibiting a

Zitterbewegung-like effect. Signatures of sharp conductance

variations were uncovered, indicating that the effects of the

finite mass in bilayer graphene systems are not significant

enough to eliminate the sharp conductance fluctuations.

FIG. 4. Contrast in pointer states from classically fully chaotic and mixed quantum dot structures. The quantum dot has the structure of a cosine billiard,62

defined by two hard walls at y¼ 0 and yðxÞ ¼ W þ ðM=2Þ½1� 2 cos ð2px=LÞ� > 0, respectively, for 0� x�L, where two semi-infinite leads of width W are

attached to the left and right openings of the billiard. By adjusting the ratios W/L and M/L, the stabilities of the classical periodic orbits can be altered, allowing

the transition from mixed to fully chaotic scattering. The panels to the left of the vertical green line are for the case where the classical scattering dynamics are

fully chaotic (for W/L¼ 0.36 and M/L¼ 0.22) for four different values of the Fermi energy, while the panels on the right side of the green line correspond to

mixed classical dynamics where there are stable periodic orbits (for W/L¼ 0.18 and M/L¼ 0.11) for eight Fermi energy values. The states are nonrelativisti-

cally quantum for which the Schr€odinger equation was used to calculate the density of states through the standard method of nonequilibrium Green’s func-

tion.128 It is apparent that the pointer states for the case of mixed classical dynamics are more pronounced.

FIG. 3. Conductance fluctuations associated with transport through quantum dots: chaotic versus mixed dynamics, and nonrelativistic versus relativistic quan-

tum transport. The left panel is conductance fluctuations for Schr€odinger quantum dots (Fig. 4), while the right panel is for graphene quantum dots (Fig. 5). In

both panels, the upper (red) and lower (blue) curves are for systems with mixed and chaotic classical dynamics, respectively. Chaos makes the fluctuation

curves markedly smoother due to the much smaller probability to form Fano resonances of narrow width. For either mixed or chaotic dynamics, identical quan-

tum dots are used here for the nonrelativistic (Schr€odinger) and relativistic (graphene) quantum cases, so the differences in the conductance fluctuation patterns

are due to the relativistic behavior of the quasiparticles.
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Nevertheless, in cases where the mass contribution to the

total energy is dominant, the system returns to being nonrela-

tivistic quantum, where sharp conductance fluctuations in the

chaotic case are removed. In solid-state electronic devices

made of Dirac materials, sharp conductance fluctuations are

thus expected, regardless of whether the quasiparticles are

massless or have a finite mass.

Quite recently, a remarkable quantum scattering phe-

nomenon in two-dimensional Dirac material systems was

uncovered,193 where the manifestations of both classically

integrable and chaotic dynamics emerge simultaneously and

are electrically controllable. In particular, in analogy to a

dielectric annular cavity, one can consider an electrical gate

potential defined junction system with a ring geometry for

massless Dirac fermions. Classically, this system generates a

spectrum of dynamics (integrable, mixed, or chaotic),

depending on the ring eccentricity and the effective refrac-

tive index configuration. The index can be electrically tuned

to negative values to enable Klein tunneling. Inside the gated

region, one can use ferromagnetism to lift the electron spin

degeneracy through an exchange field. This leads to a class

of spin-resolved, electrically tunable quantum systems of

electron optics with massless Dirac fermions. With a proper

gate potential, the spin-dependent refractive index profile

can be controlled to generate regular ray dynamics for one

spin state but generically irregular behavior with chaos for

the other. A number of highly unusual physical phenomena

arise, such as enhanced spin polarization with chaos, simul-

taneous quasi-scarred and whispering gallery type of reso-

nances, and spin-selective lensing with a starkly near-field

separation between the local density of states for spin up and

down particles, which have application values in the devel-

opment of 2D Dirac materials based electronic and spin-

tronic devices.

IV. REGULARIZATION OF RELATIVISTIC QUANTUM
TUNNELING BY CHAOS

The phenomenon of regularization of quantum resonant

tunneling by classical chaos was first uncovered by Pecora

et al..194,195 Resonant tunneling is the basic physical princi-

ple underlying electronic devices such as resonant diodes.

Such a system is basically a closed, (often) symmetric cavity,

where a finite potential barrier is placed along the line of

symmetry. The barrier separates the whole cavity into two

symmetric domains: one on the left and another on the right

side of the symmetric line. An electron can stay in either

domain for a finite time before tunneling to the other, form-

ing a resonant state, where the tunneling rate is inversely

proportional to the average dwelling time of the electron in

either domain (in the classical sense). For simplicity, we

focus on two dimensions. The shape of the whole cavity can

be as simple as a rectangle, where the classical dynamics

are integrable. Or it can have a bowtie shape where three of

the four boundaries have a constant negative curvature with

the fourth one (the bottom boundary) being a straight line

segment, so the classical dynamics are fully chaotic.

Quantum mechanically, because the whole system is closed,

there are an infinite number of eigenenergies—any eigen-

state can be a resonant state with a tunneling rate. In a perti-

nent energy interval, there can then be a number of

eigenstates with distinct energy values. If the classical

dynamics are integrable, the values of the tunneling rate for

these energy values can be distributed in a wide range or

have a large spread. The remarkable phenomenon is that,

when the classical dynamics are fully chaotic, the spread in

the tunneling rate is greatly suppressed, henceforth the term

regularization of quantum tunneling.194,195

In Refs. 194 and 195, the systems studied were nonrel-

ativistic quantum mechanical. The question of whether

FIG. 5. Contrast in pointer states in classically fully chaotic and mixed graphene quantum dot structures for different values of the Fermi energy. The geomet-

ric structures are identical to those in Fig. 4, but the quantum dots are made of graphene. As in Fig. 4, the dot exhibiting mixed classical dynamics generates

more pronounced quantum pointer states. Comparing the left patterns with those in the left side of Fig. 4, we see that even when the classical dynamics are

fully chaotic, the pointer states in the graphene dot are more pronounced than those in the Schr€odinger dot, leading to more severe conductance fluctuations in

the former. This characteristic has a relativistic quantum origin and is different from the nonrelativistic counterpart under identical classical chaos.
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chaos regularized resonant tunneling can occur in relativis-

tic quantum systems was subsequently addressed133,141

using graphene and Dirac fermion systems. A somewhat

subtle issue is the definition and calculation of the tunneling

rate. In a nonrelativistic quantum system governed by the

Schr€odinger equation, the solution is straightforward as the

tunneling rate can be found by identifying a pair of closely

related eigenstates: one symmetric and another antisymmet-

ric, whose energy difference DE essentially gives the rate.

This can be seen from Fig. 6, where the top two panels

show such a pair of eigenstates, denoted as WS and WA,

respectively. In the domain to the left of the potential bar-

rier, the parts of WS and WA are perfectly identical, whereas

in the right domain, they have opposite signs. The linear

superpositions WS 6 WA thus give a wave packet

completely localized in the left half or right half of the cav-

ity, respectively, as shown in the lower panels of Fig. 6.

The time evolution between the superposition states

WS 6 WA is determined by the exponential factor

exp ðiDEt=�hÞ, so the tunneling rate is simply proportional

to DE.

While the symmetric and antisymmetric eigenstates can

be readily found in the Schr€odinger system due to the

Dirichlet boundary condition where the wavefunctions

assume zero value at the boundary, for the Dirac equation,

the boundary conditions are of the zero normal flux type (see

the Appendix). In this case, it is no longer feasible133,141 to

identify a large number of symmetric pairs of spinors and to

calculate DE. A practical and computationally efficient

method for calculating the resonant tunneling rate was then

proposed,133,141 which is generally applicable to any quan-

tum system, whether it be a lattice system, be governed by

the Dirac or the Schr€odinger equation. As shown in Fig. 7,

for a resonant tunneling system of arbitrary domain shape,

one first removes the tunneling potential barrier and calcu-

lates a large number of eigenstates. For any such state Wn

with a definite energy value, one artificially truncates the

wavefunction (or the spinor) by removing a significant por-

tion of the component in the right half so that most of the

state concentrates on the left half, as shown in Fig. 7(a). One

then imposes the potential barrier along the symmetric line

of the system, evolves the truncated state in time using the

underlying equation (Dirac or Schr€odinger), and calculates

the probability PL that the state is in the left half of the sys-

tem. Figure 7(b) shows an example of the time evolution of

the probability PL for a Dirac fermion system, where initially

about 90% of the magnitude sum of the two spinor compo-

nents is concentrated in the left half. After a time DT, the

probability PL reaches its first minimum, with a reduction

DP in its value. This means that, at t¼DT, the spinor state

initially localized in the left half has largely tunneled through

the barrier and is now mostly localized in the right half. The

tunneling rate can thus be defined as

Resonant Tunneling Rate ¼ p
DP

DT
: (3)

The validity of this empirical but general and practically use-

ful definition of the quantum resonant tunneling rate was

established by the analysis133,141 that, for the nonrelativistic

quantum system, it reduces exactly to one given by the

energy difference DE.

Figures 8(a) and 8(b) demonstrate the remarkable phe-

nomenon of regularization of relativistic quantum resonant

tunneling by classical chaos,133,141 where (a) and (b) are for a

graphene and a Dirac fermion resonant cavity, respectively.

The left columns in (a) and (b) show the tunneling rate versus

the resonant energy for the two types of geometric domains in

which the classical dynamics are integrable (rectangle, upper)

and chaotic (bowtie, lower). For the rectangular domain, there

is a significant spread of the tunneling rate for both the gra-

phene and Dirac fermion systems, whereas this spread is

greatly suppressed for the bowtie domain in which the

FIG. 6. Calculation of the resonant

tunneling rate in nonrelativistic quan-

tum systems. For systems governed by

the Schr€odinger equation, because of

the Dirichlet boundary condition, it is

natural and straightforward to find a

pair of “kin” wavefunctions: one sym-

metric and another antisymmetric, as

in (a) and (b), respectively. The sym-

metric and antisymmetric superposi-

tions of these two wavefunctions then

give a wave packet perfectly localized

in the left or right domain, respec-

tively, as in (c) and (d). The quantum

time evolution of the superposition

states stipulates that the resonant

tunneling rate be proportional to the

energy difference between the original

wavefunction pair in (a) and (b).

052101-9 Lai et al. Chaos 28, 052101 (2018)



classical dynamics are chaotic. That is, chaos effectively regu-

larizes relativistic quantum tunneling, leading to a well

defined tunneling rate for a small energy interval about any

resonant energy value, which is desired from the standpoint of

stable device operation. The right columns in (a) and (b) show

some representative resonant eigenstates (for the energy value

corresponding to the respective red dots in the left columns).

For (a), the two panels show the density distributions on the

two sublattices (A and B) of graphene, which correspond to

the two pseudospin components. For (b), illustrated are the

distributions of the two components of the spinor. For com-

parison, regularization of tunneling in the nonrelativistic coun-

terpart system is shown in Fig. 8(c), where the eigenstate is a

scalar wavefunction with one component.

While regularization of resonant tunneling by classical

chaos is a phenomenon in both nonrelativistic and relativistic

quantum systems, a feature that is uniquely relativistic quan-
tum mechanical is the finite tunneling rate even when the res-

onant energy tends to zero. For nonrelativistic quantum

tunneling systems, in the small energy regime, the potential

barrier is effectively arbitrarily large so that the tunneling

probability decays exponentially to zero, as can be seen from

Fig. 8(c). However, in relativistic quantum systems, Klein

tunneling can arise, where the tunneling probability can be

one even if the potential barrier is wide and its height is

much higher than the particle energy. As a result, in the near

zero energy regime, there can be resonant states where

tunneling occurs with a high probability, leading to an appre-

ciable tunneling rate, which is particularly apparent for the

Dirac fermion system, as shown in Fig. 8(b). For the gra-

phene system, a signature of this manifestation of Klein

tunneling can still be seen, as shown in Fig. 8(a), in spite of

the absence of resonant states associated with near zero

eigenenergies.

In graphene, Klein tunneling was observed quite

early,196 which can have a significant effect on the transport

behaviors. For example, it was predicted theoretically that

Klein tunneling can lead to an extreme type of conductance

FIG. 7. A general and practical method to calculate the resonant tunneling

rate for any quantum system. Given a symmetric resonant tunneling system,

one first calculates a large number of eigenstates in the absence of the poten-

tial barrier. For such an eigenstate Wn associated with a definite eigenenergy

[left side of panel (a)], one truncates its right component to obtain an artifi-

cial initial state W(t¼ 0) [right side of panel (a)]. One then imposes the

potential barrier, calculates the time evolution of the probability PL that the

state is found in the left half of the system, and determines the time DT at

which PL reaches its first minimum [panel (b)]. If the reduction in PL from

t¼ 0 to t¼DT is DP, the tunneling rate is defined as pDP/DT. In actual cal-

culation, it is not necessary to have a truncated state that is localized

completely in the left half [i.e., PL(t¼ 0)¼ 1]. Insofar as most of the trun-

cated state is in the left half and the reduction in its value when it reaches

the first minimum is significant, the tunneling rate so defined is physically

reasonable. In fact, for nonrelativistic quantum systems described by the

Schr€odinger equation, this definition of the tunneling rate reduces exactly to

the one determined by the energy difference between a pair of symmetrically

related eigenstates.133,141

FIG. 8. Regularization of relativistic quantum resonant tunneling by classical chaos. (a) For a graphene device, the tunneling rate versus the resonant energy

for the two cases where the classical dynamics are integrable (rectangular cavity—upper panel) and chaotic (bowtie cavity, lower panel). For the rectangular

cavity, there is a significant spread in the tunneling rate, which is markedly suppressed in the bowtie cavity. The right column in (a) illustrates representative

resonant states (corresponding to the respective red dots in the left column), where “A” and “B” stand for the pseudospin states associated with the two sublatti-

ces of graphene. (b) Results for a Dirac fermion device, with similar legends to those in (a), except that, for the right column, the distributions shown are for

the two spinor components. (c) The corresponding behavior in the nonrelativistic quantum device with a scalar wavefunction (henceforth only one state panel).

A key difference between nonrelativistic and relativistic quantum resonant tunneling lies in the behavior of the tunneling rate near zero energy, where this rate

tends to zero for the former (c) and remains appreciable for the latter (b). This is due to the uniquely relativistic quantum phenomenon of Klein tunneling where

a particle can tunnel through a higher potential barrier with probability one, which absolutely has no counterpart in nonrelativistic quantum mechanics.
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fluctuations for transport through a quantum point contact

(QPC).154 Specifically, a QPC can be modeled as a local gate

potential applied to a graphene stripe. A calculation of the

conductance versus, e.g., the relative potential height, reveals

the existence of backscattering—zero-conductance dips

caused by zero-conductance Fano resonances.197 However,

due to Klein tunneling, interspersed with the dips are param-

eter values for which the conductances are large. As a result,

a fractal-like type of conductance fluctuation pattern arises:

the conductance can exhibit finite and zero values in a highly

intermittent manner154 over distinct scales, as shown in the

inset of Fig. 9. Mapping out representative electronic paths

through a detailed calculation of the local current density

revealed that, corresponding to the high conductance values,

the electron tends to choose paths that pass through potential

barriers of height as large as twice the electron energy—a

clear signature of Klein tunneling, as shown in Fig. 9. The

fractal-like behavior may pose a challenge on the functional

stability of devices of Dirac materials.

V. PERSISTENT CURRENTS IN CHAOTIC DIRAC
FERMION SYSTEMS

A remarkable phenomenon in quantum systems is per-

sistent or permanent currents that require no external volt-

age, which can circulate with zero resistance. The traditional

setting for persistent currents to arise is superconductors.

However, in the early eighties of the last century, it was con-

ceived theoretically198 that the dissipationless currents can

arise from nonrelativistic quantum systems such as a normal

metallic or a semiconductor ring, insofar as there is an

Aharonov-Bohm (AB)199 magnetic flux through the center

of the ring. Intuitively, this can be understood, as follows.

For a metal ring of sufficiently small size, e.g., size less than

the smaller of the phase coherence and elastic scattering

lengths, the electron motions in the ring domain are effec-

tively ballistic without any scattering. In the absence of any

magnetic field, time reversal symmetry renders equal the

magnitude of the currents in the clockwise and counterclock-

wise directions, so they cancel exactly, leading to a zero net

current. However, a magnetic field or even a highly localized

magnetic flux through the ring center breaks the time rever-

sal symmetry. As a result, a net current can arise as soon as

the magnetic flux is turned on, which does not require any

external voltage to drive the current. To observe persistent

currents, not only is it necessary for the ring size to be small,

but the environmental temperature must be low in order for

inelastic scattering from phonon-electron and/or electron-

electron interactions to be insignificant.198,200–202 Another

requirement is that the electron density should be sufficiently

low so that electron-electron interactions can be neglected.

In spite of the low temperature requirement, the metallic or

semiconductor material itself is not superconducting and

remains to be “normal.” Experimental observations of persis-

tent currents have been achieved for a variety of nonrelativis-

tic quantum material systems.203–210

There is a correspondence between elastic scattering

from randomly distributed impurities in the domain and that

from deformed (“chaotic”) boundaries. It is known that ran-

dom impurities in one-dimensional or two-dimensional,

metallic or semiconductor systems, can diminish the persistent

FIG. 9. Manifestation of Klein tunneling in a graphene quantum point contact: a fractal-like type of conductance fluctuations. The quantum point contact was

modeled by a local gate potential of the form Vðx; yÞ ¼ W exp ð�x2=n2Þy2, applied to a graphene nanoribbon, where the parameter W measures the tightness of

the potential and n¼ 10a, with a being the graphene lattice constant. The inset shows the normalized conductance through the point contact versus W/t, where

t is the nearest neighbor hopping energy of graphene, which exhibits an extreme type of, fractal-like behavior. The zero conductance dips correspond to back-

scattering Fano resonances, while the high conductance values are the result of Klein tunneling. The red dashed line represents the smooth conductance varia-

tion in the corresponding nonrelativistic quantum point contact. Some electron paths are shown by the connected red arrows that represent the local current

flows, which go through potential regions of height that can be twice as large as the electron energy. The features here have no counterparts in nonrelativistic

quantum point contacts.
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currents,211–217 where they decay exponentially to zero as the

strength of the disorder is increased.211,217 The physical rea-

son is that random scattering from impurities can drastically

reduce the phase coherent length, rendering persistent currents

realizable only for systems at or below the mesoscopic scale.

Boundary deformation can also hinder the emergence of per-

sistent currents. Especially, when the ring domain is not per-

fectly circular, scattering from the boundary can be irregular.

In terms of classical scattering, even smooth deformation of

the boundary from that of a circle can result in chaos, render-

ing scattering from the boundary effectively random.

Quantum mechanically, breaking from the circular symmetry

can remove the energy degeneracies, induce level repulsion,

and flatten the Aharonov-Bohm oscillations so as to suppress

the circulating currents. Random scattering from a deformed

boundary is thus equivalent to scattering from impurities,

leading to wavefunction localization and zero current.

Studies of persistent currents in graphene218–228 and

other Dirac materials229,230 suggested that the currents are

quite robust in relativistic quantum material systems. An

idea to place this on a firm ground is to take advantage of

chaos to investigate the robustness of persistent currents in a

class of deformed, chaotic Dirac ring domains.146,148 The

domains are chosen so that they can be transformed into a

circular ring region through a conformal mapping.136 This

way the eigenenergies and eigenstates of the Dirac equation

incorporating the vector potential of the external magnetic

flux can be calculated with high accuracy.146 A remarkable

result was that, even with severe deformation so that the cor-

responding classical dynamics in the domain are fully cha-

otic, robust persistent currents can arise, henceforth the term

“superpersistent” currents in Dirac fermion systems.146

Figure 10 demonstrates the sharp contrast between the

behaviors of persistent currents in nonrelativistic quantum

(Schr€odinger) and relativistic quantum (Dirac) domains for

the two cases where the classical dynamics are regular

(integrable) and chaotic, respectively. The upper left panel

shows a general chaotic ring domain with an AB flux

through the center (the small black dot). Two specific

domains, one regular and another chaotic, are shown above

panels (a) and (b), respectively. Figures 10(a) and 10(b)

show the persistent current summing over the five lowest

eigenstates versus the normalized magnetic flux parameter

a, for the Schr€odinger domain, and the corresponding

results for the Dirac domain are shown in Figs. 10(c) and

10(d). It can be seen that, for the circular domain, there is a

persistent current in both cases. However, for the chaotic

domain, the current magnitude diminishes for the

Schr€odinger system but sustains relatively large values for

the Dirac fermion system, indicating that for the latter, the

current is superpersistent.

In the Schr€odinger domain, classical chaos caused by

random reflection from the deformed boundary leads quan-

tum mechanically to localization of the eigenstates, as exem-

plified by Fig. 10(e), which effectively prevents the

occurrence of any appreciable circulating current. In con-

trast, in the Dirac domain, the eigenstates are not localized

so that a circulating current can still form. In fact, physically,

the superpersistent currents146,148 in the Dirac domain is due

to the emergence of the unusually robust whispering gallery

modes (WGMs) near the boundaries of the domain, as shown

in Fig. 10(f). Such modes carry a large angular momentum,

which were usually studied in optical microcavity systems

such as microlasing devices231–234 and were found in nonrel-

ativistic quantum electronic systems235 as well. Here, due to

the zero normal flux boundary conditions required for the

Dirac equation to have nontrivial, physically meaningful sol-

utions, a distinct set of WGMs sticking to the edge can arise

and are insensitive to boundary deformation. Figure 10(g)

shows the maximum persistent current versus the geometri-

cal parameter g of the domain, where g¼ 0, 0< g< 1, and

g¼ 1 correspond to classically integrable, mixed, and fully

chaotic dynamics, respectively. For the Schr€odinger ring, as

the ring becomes increasingly chaotic, persistent currents

vanish for g � 0:6. However, for the Dirac ring, even when

the domain is fully chaotic, there is still a significant persis-

tent current.

Further support for the robustness of the persistent cur-

rents in 2D relativistic quantum systems was obtained

recently through a systematic study of the effects of random

disorders.236 In the study, the same geometric setting of an

infinite mass confined Dirac ring domain with a vertical

magnetic flux through the center was used. Uncorrelated

disorders were assumed to exist throughout the domain,

which were simulated using localized, uniformly distrib-

uted random electric potentials. The total number of disor-

ders in the whole domain was chosen as a control

parameter, and the Dirac equation was solved numerically

to obtain the magnitudes of the persistent currents as a

function of the control parameter. It was found236 that, as

the number of the disorders is systematically increased, the

average current decreases slowly initially and then plateaus

at a finite nonzero value, indicating that the persistent cur-

rents are robust. Whispering gallery modes along the

domain edges were again identified to be the physical

mechanism responsible for the robust currents. In contrast,

in the nonrelativistic counterpart system subject to the same

disorder distribution, these modes are sensitive and fragile,

leading to a rapid and exponential decay of the currents to

zero. A physical theory based on a quasi one-dimensional

approximation was developed to understand the strikingly

contrasting behaviors of the currents in the Dirac and

Schr€odinger rings in the presence of random disorders.

Experimentally, for a given material, neither the strength

nor the density of the disorders can be readily adjusted, but

the sample size can be controlled. Since, classically, under

a vertical magnetic field an electron moves along a circular

trajectory in the domain, for a larger ring sample with con-

stant disorder density, the electron encounters more disor-

ders/scattering events in one complete rotation. An

implication of the extraordinary robustness of the persistent

currents in the Dirac ring system is then that they can occur

in realistic systems of large size.

Studying the effects of classical chaos on relativistic

quantum states can thus lead to insights into the robustness

of remarkable physical phenomena such as persistent cur-

rents in Dirac fermion systems. With respect to potential

applications, recently, it was proposed that the ring structure
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under a magnetic flux can serve as a robust relativistic quan-

tum two-level system with edge-dependent currents and spin

polarization.148

WGMs have sizable contribution to the persistent cur-

rents, which is true for both relativistic and nonrelativistic

quantum systems. However, WGMs are much, much more

robust in the relativistic than in the nonrelativistic quantum

systems! The key result in Fig. 10 is that the WGMs are

destroyed in the Schr€odinger ring [Fig. 10(b)] by chaos, but

they persist in the Dirac counterpart [Fig. 10(d)]. In fact,

drastically contrasting behaviors occur in the values of the

wavefunctions at the ring boundary: for the Schr€odinger sys-

tem, the wavefunctions are zero there, but the spinor wave-

functions can have local maximum values at the boundary

for the Dirac ring system.

VI. ENERGY LEVEL STATISTICS IN RELATIVISTIC
QUANTUM CHAOTIC SYSTEMS

The energy-level spacing statistics in closed

Hamiltonian systems are a classic topic in nonrelativistic

quantum chaos.3–19 What has been known so far is the fol-

lowing. For a classically integrable system, the energy level

spacings obey the Poisson distribution. For a fully chaotic

system with a time reversal symmetry, the level spacing sta-

tistics follow the Wigner distribution, the so-called Gaussian

orthogonal ensemble (GOE) statistics, associated with which

is the phenomenon of level repulsion. When the time rever-

sal symmetry is broken, e.g., by an external magnetic field,

Gaussian unitary ensemble (GUE) statistics for the energy

level spacings arise.

FIG. 10. Superpersistent currents and whispering gallery modes (WGMs) in a chaotic Dirac domain. Upper left panel: a chaotic ring domain with an AB mag-

netic flux through the center of the ring. The boundary of the outer boundary is parametrized by the arc length s. For motion of a massless Dirac fermion inside

the domain, the boundary condition is of the zero-flux type, i.e., no outward current at any point s: j � n ¼ 0. Two geometrical domains are shown in the top

row: one with regular dynamics and another generating chaos in the classical limit. The magnitude of the persistent current from the five lowest eigenstates ver-

sus the normalized magnetic flux: [(a) and (b)] Schr€odinger ring and [(c) and (d)] Dirac ring. For the regular domain, there are persistent currents in both

Schr€odinger and Dirac systems, due partly to WGMs. Chaos diminishes the currents for the Schr€odinger system (b), but they are sustained in the Dirac system

regardless of chaos, giving rise to superpersistent currents (d). Physically, the destructive role of chaos in suppressing persistent currents in the Schr€odinger

system can be attributed to localization of the eigenstates due to random scattering from the deformed boundary (e). In contrast, in the Dirac system, along

both the inner and outer boundaries, unusual WGMs “sneaking” through the deformation arise, leading to superpersistent currents, as exemplified by the pat-

terns in (f). Panel (g) shows the maximum persistent current versus the geometrical parameter g of the domain. In particular, the domain is generated by

deforming the circular ring defined as r1¼ 0.5� r� 1.0¼ r2 in the z plane through the conformal mapping wðzÞ ¼ h½zþ 0:05gz2 þ 0:18g exp ðixÞz5�, where

x¼p/2, 0� g� 1 is the deformation parameter that controls the nature of the classical dynamics, and the normalization coefficient is given by

h ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

200
ð1þ r2

1Þ þ
81g2

500
ð1þ r2

1 þ r4
1 þ r6

1 þ r8
1Þ

q
. When g is increased from zero to one, the classical dynamics in the deformed ring domain will

undergo a transition from being integrable (g¼ 0) to mixed (0< g< 1) and finally to being fully chaotic (g¼ 1). For the Schr€odinger ring, as g is increased

from zero so that the ring becomes increasingly chaotic, persistent currents diminish for g � 0:6. However, for the Dirac ring, even when the domain is fully

chaotic, there are still significant persistent currents.
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For a relativistic chaotic quantum billiard, the smoothed

wave vector staircase function for positive eigenvalues is

given by96

hNðkÞi ¼ Ak2=4pþ C1 þ � � � ; (4)

where A is the area of the billiard and C1¼ –1/12. For a chaotic

graphene billiard, about a Dirac point the energy-momentum

relation is E ¼ �hvFk ¼
ffiffiffi
3
p

tak=2 with vF ¼
ffiffiffi
3
p

ta=2�h being

the Fermi velocity. For the nth energy level En, one has

kn ¼
2ffiffiffi
3
p

a
� En

t
:

Once the eigenenergy En is determined, the corresponding

wave vector kn can be obtained through the above relation.

For the chaotic graphene Africa billiard, one has123,127

hNðkÞi ¼ Ak2=2pþ C01; (5)

where C1 is a fitting constant. Equation (5) differs from Eq.

(4) in the leading “Weyl” term by a factor of 2. The reason is

that, for a single Dirac point, hNðkÞi follows Eq. (4) but gra-

phene has two nonequivalent Dirac points, so hNðkÞi should

be twice of that given by Eq. (4). As a result, the denomina-

tor becomes 2p (instead of 4p). The fitting constant C01 is due

to the edge states on the segments of the zigzag boundaries

of the graphene billiard where their energies are all about

zero. For a zigzag ribbon, the edge states exist for

E < Ec ¼ �hvF=L ¼
ffiffiffi
3
p

ta=ð2LÞ, where L is the width of the

ribbon.239 If the size of the graphene billiard is about 100a,

one has Ec ’ 0.01t. The edge states are localized on seg-

ments of the zigzag boundaries. These states are essentially

degenerate states, contributing to an artificial bias in the

spectral staircase function for small energy values.

Therefore, a minimum value for En, e.g., 2Ec¼ 0.02t, can be

set to remove the influence of the edge states.123,127

Because of the linear energy-momentum relation

E ¼ �hvFk, the smoothed spectral staircase function is given

by

hNðEÞi ¼ AE2

2p�h2v2
F

þ C2 ¼ a0E2 þ C2; (6)

where a0 ¼ A=ð2p�h2v2
FÞ is the unfolding normalization

parameter and C2 is now zero after setting 2Ec for the mini-

mum value of En.

The first contribution to our understanding of the statis-

tics of relativistic quantum energy level spacing was due to

Berry and Mondragon96 who studied the energy level statis-

tics for a class of two-dimensional chaotic (Africa) neutrino

billiard governed by the massless Dirac equation. The time

reversal symmetry of the system is broken due to the

infinite-mass confinement potential. As a result, the level

spacing statistics are GUE, as shown in the first column of

Fig. 11.

Level spacing statistics have been studied using chaotic

graphene billiards.123,127,240,241 A relatively early work240

addressed the role of chaos in the statistics of graphene quan-

tum dots. For large size (e.g.,>100 nm), the dot behaves as a

conventional single-electron transistor, exhibiting periodic

Coulomb blockade peaks. For small size (e.g.,<100 nm), the

peaks become aperiodic, indicating the dominant effect of

quantum confinement. It was found240 that random peak

spacing and its statistics are well described by the theory of

chaotic quantum billiards. Similar features were also

observed in a tunable graphene single electron transistor.241

A systematic study of the effect of chaos on the level

spacing statistics in graphene billiards was subsequently car-

ried out123,127 using the Africa billiard7 and one eighth of the

Sinai billiard, where the nearest neighbor interacting, tight-

binding Hamiltonian was used. The boundary of the gra-

phene Africa billiard is described by xþ iy ¼ 64ðz
þ0:2z2 þ 0:2z3eip=3Þa with a ¼

ffiffiffi
3
p

a0 ¼ 2:46 Å and z denot-

ing the unit circle in the complex plane. To attain the short

wavelength regime, a relatively large billiard size is neces-

sary, e.g., with area larger than 900 nm2 containing over

35 000 atoms.

For a chaotic graphene billiard, since the quasiparticles

with energies close to a Dirac point are massless and have a

pseudospin 1/2, they follow the same Dirac equation used by

Berry and Mondragon.96 An intuitive thinking may be that

the statistics should also be GUE as in Berry and

Mondragon’s neutrino billiard.240,242 However, numerical

calculations revealed a strong signature of GOE statis-

tics,123,127,242 as shown in the second and third columns of

Fig. 11. This unexpected behavior can be understood, as

follows.

For the chaotic neutrino billiard, the time reversal sym-

metry is broken because of chirality.96 Due to the two non-

equivalent Dirac points (valleys) in graphene, the symmetry

corresponds to the symplectic symmetry, which is essentially

the time reversal symmetry for a single valley.243 Thus, the

breaking of the time reversal symmetry in the neutrino bil-

liard does not imply breaking of the symmetry in graphene

billiards. More specifically, in graphene, quasiparticles in the

vicinity of a Dirac point obey the same Dirac equation as

that for neutrino, but the confinement to realize the billiard

plays a different role, where the abrupt edge termination cou-

ples the two valleys in the momentum space. As a result, the

wavefunctions for quasiparticles with wave vectors near the

two Dirac points are not separable, rendering invalid the

description of the two-component spinor Dirac equation for

the whole system. A full set of equations taking into account

the two nonequivalent Dirac points and the boundary condi-

tions are thus necessary to describe the motions of the rela-

tivistic quasiparticle in graphene. Typically, the time

reversal symmetry is preserved,243 suggesting that the level

spacing statistics belong to either the GOE or the GSE

(Gaussian symplectic ensemble) class. The abrupt edge ter-

mination in a graphene billiard can be described by a step

function in the form of an infinite potential at the edge. Since

the range of the potential is short, the two valleys in the

momentum space are coupled, breaking also the sublattice

symmetry. Now that both the pseudospin valley and the sub-

lattice symmetries are broken, Kramer’s degeneracy and

GSE statistics can be ruled out.244 The resulting level-

spacing statistics are then of the GOE type. Similar effects

were noticed by Robnik and Berry92 that, in certain cases,
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although the system possesses neither time-reversal symme-

try nor geometric symmetry (or other dynamical symme-

tries), it can be invariant under the combination of the two

symmetries, and nontrivial representations can be found in

which the Hamiltonian matrix elements are real, leading to

GOE but not to GUE statistics. Experiments using micro-

wave photonic crystals to mimic graphene billiards245–249

have verified the GOE statistics for the chaotic Africa bil-

liard system.248

When a magnetic field is present, the time reversal sym-

metry of graphene243 is broken, causing the level spacing

distribution to exhibit characteristics of GUE statistics. This

was numerically verified123,127 for both the Africa and one-

eighth of the Sinai billiard subject to a uniform, perpendicu-

lar magnetic field.

An intriguing result for graphene billiards is that GOE

statistics emerge even when the classical dynamics are

generically integrable, as shown in the fourth column of

Fig. 11. This is surprising because the Schr€odinger equation

for the sector billiard of any angle is analytically solvable,

where the level spacing statistics are perfectly Poisson. A

systematic investigation revealed that, the unexpected GOE

behavior is due to the edge effects of the graphene sys-

tem.238 In particular, for energies near the Dirac point

where the quasiparticles behave like massless Dirac fer-

mions, Poisson statistics are extremely rare in the sense that

it emerges only under quite strict symmetry constraints on

the straight boundary parts of the sector. An arbitrarily

small amount of imperfection of the boundary will result in

GOE statistics. An implication is that, for circular-sector

confinements with an arbitrary angle, the spectral properties

will generically be GOE, in spite of classical dynamics’

being integrable.

We summarize this section by emphasizing that, in gra-

phene systems, the dynamics are “relativistic quantum” only

in a restricted sense: the Dirac equation applies near the

Fermi level and within a single valley only. Boundary scat-

tering and any other source of intervalley scattering spoil the

analogy with relativistic particles. While topological insula-

tors are a possible alternative platform, a confinement will

necessarily induce time-reversal symmetry breaking. As

pointed out by Berry and Mondragon,96 precisely because of

the time reversal symmetry breaking are the energy level

spacing statistics GUE. There are thus two types of systems

with two characteristically distinct results: (a) the Dirac bil-

liard corresponding to a confined domain of the Dirac equa-

tion or a chaotic confinement of topological insulator in

which the time reversal symmetry is broken, leading to GUE

statistics and (b) chaotic graphene billiards that preserve the

time-reversal symmetry, where GOE statistics arise.

Consequently, the GOE statistics examined in this Tutorial

do not arise in chaotic confinement of topological insulators,

provided that such a confinement does not possess a mirror

symmetry or any other discrete symmetries.

FIG. 11. Energy level spacing statistics of relativistic quantum billiards. The three rows show the geometric shapes of various billiards, the corresponding level

spacing statistics P(S), and the spectral rigidity D3(L), respectively. The first column is for the neutrino billiard of Africa shape (fully chaotic), where the mass-

less Dirac equation was solved using the conformal-mapping method136 with 20 000 basis, and the first 4000 energy levels were used to calculate the level

spacing statistics.96,237 Because of the breaking of the time reversal symmetry by the infinite mass confinement, the statistics are of the GUE type. The second

column is for a graphene billiard of Africa shape (fully chaotic) with 42 505 atoms,123 where 623 energy levels in the range of [0.02, 0.4] were used for the sta-

tistics. In this case, GOE statistics are observed. The third column is for the 1/8 of graphene Sinai billiard (fully chaotic) with 37 401 atoms, and 549 energy

levels in the range of [0.02, 0.4] were used for computing the level statistics.127 Again, the level spacing statistics are of the GOE type. The fourth column is

for the 15	 graphene sector billiard (integrable) of 226 993 atoms, and 837 energy levels in the range of [0.02, 0.2] were used for the statistics. Despite that the

classical dynamics are integrable, the characteristics of GOE statistics emerge.238
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VII. DISCUSSION

The tremendous recent advances in two-dimensional

Dirac materials have raised the fundamental question about

the manifestations of classical chaos in relativistic quantum

systems, giving birth to the field of relativistic quantum

chaos. This field is particularly relevant to developing novel

solid state devices in electronics, spintronics, and even val-

leytronics. In this Tutorial, we discuss a number of topics in

this emergent field. They are: relativistic quantum

scars121,134,136 in Dirac fermion and graphene systems, pecu-

liar features of relativistic quantum chaotic scattering and

quantum transport,128,140,250 chaos based modulation of con-

ductance fluctuations in quantum dot systems,131,139 regulari-

zation of relativistic resonant quantum tunneling by

chaos,133,141 the manifestations of the Klein paradox in gra-

phene or 2D Dirac fermion systems,154 superpersistent cur-

rents in chaotic Dirac rings subject to a magnetic flux,146,148

and energy level statistics in closed graphene and Dirac fer-

mion systems that exhibit chaos in the classical

limit.123,127,238 These results represent only initial, prelimi-

nary, and quite limited efforts in this field.

Research on relativistic quantum chaos so far has

revealed a number of unexpected phenomena that are strik-

ing and counterintuitive with respect to traditional quantum

chaos. These include chiral scars, sharp residual resonance

associated with transport through chaotic graphene quan-

tum dots, unconventional statistics of energy level spacing,

manifestations of Klein tunneling, and an extraordinary

degree of robustness of persistent currents in chaotic Dirac

billiards. In fact, the specific orbital structure associated

with chiral scars is uniquely a relativistic quantum manifes-

tation of certain classical unstable periodic orbits, which

find absolutely no counterparts in nonrelativistic quantum

systems. The persistence of sharp resonances associated

with conductance in chaotic graphene quantum dots is sur-

prising resonances would be largely removed by chaos in

the corresponding nonrelativistic quantum dot. While the

study of energy level statistics is technically standard, that

chaotic graphene billiards exhibits GOE statistics is surpris-

ing as the early work of Berry and Mondragon on chaotic

neutrino billiards established GUE statistics due to breaking

of the time reversal symmetry. Another unusual phenome-

non is the occurrence of GOE statistics in graphene billiards

even when the corresponding classical dynamics are

integrable.

We wish to offer a special discussion of Klein tunneling,

tunneling through a finite potential barrier with probability

one, which is fundamentally a relativistic quantum phenome-

non that is not possible in nonrelativistic quantum systems. It

can occur in systems regardless of the nature of the classical

dynamics, i.e., integrable or chaotic. In Sec. IV, we point out

the signatures of Klein tunneling in Dirac fermion and gra-

phene resonant-tunneling systems, which have been found

for both integrable and chaotic classical dynamics. A previ-

ous work154 on graphene-based quantum point contacts also

demonstrated that abnormal electron paths due to Klein

tunneling can occur and lead to fractal-like conductance fluc-

tuations. Since, in general, the occurrence of Klein tunneling

requires certain specific incident angle of the particle, we

can intuitively expect that chaos, due to the broad angle dis-

tribution associated with it, makes relativistic quantum con-

finement more difficult than integrable dynamics. However,

at the present, the interplay between Klein tunneling and dis-

tinct types of classical dynamics has not been well

understood.

A complete understanding of the various phenomena

arising from the interplay between classical dynamics and

relativistic quantum mechanics requires an analysis of the

quantum-classical correspondence in the context of the Dirac

quantum theory, which remains an outstanding topic. For

example, chiral scars are due to the inherent chirality of the

massless Dirac fermions and the subtle time-reversal symme-

try breaking imposed by a massive type of hard wall confine-

ment in reduced two spatial dimensions (without any

external magnetic field). A broken time-reversal symmetry is

responsible for parity anomaly—a striking phenomenon

implied by the Dirac theory for fermions in (2þ 1)-dimen-

sional space-time. That is, the fundamental parity symmetry

associated with the classical action does not imply the same

symmetry in the corresponding relativistic quantum system.

(The subtle time-reversal anomaly can be due to a sustained

Hall current of anomalous parity.)

At a fundamental level, quantum anomalies are at the

forefront of condensed matter physics and material science

in the pursuit of topological phases of matters (topological

quantum matters) first studied by Semenoff251 and

Haldane252 in lattices and narrow-gap semiconductors. The

emergent anomalies are typically relativistic quantum phe-

nomena and induce intriguing quantum-classical correspon-

dence in terms of the underlying fundamental symmetries,

which are then relevant to relativistic quantum chaos but not

to traditional, nonrelativistic quantum chaos. When taking

into account the intrinsic spin degree of freedom and the

striking symmetry anomalies, the study of relativistic quan-

tum chaos represents a new twist that does not exist in the

study of traditional quantum chaos. Exciting new physics

can be anticipated through the study of the manifestations of

classical chaos in Dirac materials and topological quantum

systems.

Taken together, the approaches to pertinent topics in rel-

ativistic quantum chaos and the various phenomena uncov-

ered so far, as reviewed in this Tutorial, indicate that the field

is not just some standard machinery of quantum chaos

applied to relativistic quantum systems. From a fundamental

point of view, due to uniquely relativistic quantum phenom-

ena such as Klein tunneling, Zitterbewegung, and pair crea-

tions that find no counterparts in nonrelativistic quantum

systems, strikingly new and counterintuitive phenomena can

be uncovered in the pursuit of relativistic quantum chaos.

From an applied perspective, the tremendous recent develop-

ment of Dirac materials such as graphene and topological

insulators provides a reason to investigate the effects of chaos

on the physics of electronic, spintronic, and even valleytronic

systems and to exploit chaos to improve device performance,

further justifying the study of relativistic quantum chaos.

There is potential that novel concepts and cutting-edge devi-

ces would arise from research on the classical-relativistic

052101-16 Lai et al. Chaos 28, 052101 (2018)



quantum correspondence. At the present, the interplay

between classical chaos and fundamentally relativistic quan-

tum entities and phenomena such as the intrinsic spin degree

of freedom, valley degree of freedom, symmetry anomalies,

and Klein tunneling, is largely unknown, demanding atten-

tion from the physics community to the emergent field of rel-

ativistic quantum chaos.

The emergent field of relativistic quantum chaos is not

to be confused with the previous studies of classical nonlin-

ear and chaotic behavior in the context of special or general

relativity.155–159 Even with a focus on relativistic systems,

these studies did not deal with the relativistic quantum
manifestations of classical chaos. In particular, Ref. 155

addresses the chaotic geodesic scattering/motion in radia-

tive plane wave spacetime characterized by a particular

metric form through the deduction of an equivalent classi-

cal H�enon-Heiles Hamiltonian. In Ref. 156, the author stud-

ied the imaginary mass tachyon physics in open hyperbolic

space with constant negative curvature, adopting the field

theory in analogy to classical electrodynamics for photons.

In this system, classical chaos arises due to the open, multi-

connected, and hyperbolic cosmic space, and the quantum

effect is treated by including the induced tachyon potential

into the Schr€odinger equation as a perturbation to the

Coulomb potential in the local Euclidean limit. In Ref. 157,

ideas from nonlinear dynamics were exploited to ascertain

general relativistic dynamics, providing a new class of clas-

sical nonlinear physical systems with nonlinearity arising

from complicated gravitational effects. Reference 158

treats a classical three-body problem, where the classical

motions of a charged particle in a static electric field gener-

ated by two fixed, equal charges in space were studied in

the context of special relativity. For this system, the emerg-

ing nonintegrable dynamics are due to the intrinsic nonlin-

ear form of the relativistic description of the kinematics. In

Ref. 159, the authors investigated classical chaotic scatter-

ing in general relativistic systems in the presence of a

Yang-Mills field.

We emphasize that this Tutorial on relativistic quantum

chaos deals with the relativistic quantum manifestations of
classical chaos, which was stimulated by the vast research

on graphene and the subsequent development of a large vari-

ety of Dirac materials including topological insulators. As

reviewed in this Tutorial, the manifestations of classical

chaos in condensed matter systems governed by relativistic

quantum mechanics can be exploited for potential applica-

tions, e.g., modulating quantum transport in graphene and

topological insulator devices through the pseudospin degree

of freedom. Although relativistic quantum chaos is quite rel-

evant to graphene, topological insulators, or any other 2D

Dirac materials, this Tutorial is not just another review on

graphene or topological insulators—it is on a new and emer-

gent field in physics that treats the fundamental interplay

between chaos and relativistic quantum mechanics.
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APPENDIX: DIRAC EQUATION IN A CLOSED DOMAIN
AND BOUNDARY CONDITIONS

Consider a massless spin-1/2 particle in a finite domain

D in the plane r ¼ ðx; yÞ, as shown in the upper left corner of

Fig. 10. Utilizing an infinite-mass term outside the domain to

model the confinement of the particle motion within D, one

obtains the following Dirac Hamiltonian in the position

representation

Ĥ ¼ �i�hvr̂ � r þ VðrÞr̂z; (A1)

where r̂ ¼ ðr̂x; r̂yÞ and r̂z are Pauli matrices, and v is the

Fermi velocity. The Hamiltonian Ĥ acts on the two-

component spinor wave-function wðrÞ ¼ ½w1;w2�
T

and it has

eigenvalue E, i.e.,

�i�hvr̂ � r þ VðrÞr̂z½ �wðrÞ ¼ EwðrÞ: (A2)

Some basic properties of Eq. (A2) are the following. First,

the confinement condition of imposing an infinite mass out-

side D naturally takes into account the Klein paradox for rel-

ativistic quantum particles. Second, the reduced spatial

dimension and confinement break the time-reversal symme-

try of Ĥ

T̂ ; Ĥ
� �

6¼ 0; (A3)

where T̂ ¼ iryK̂ , and K̂ denotes the complex conjugate.

Third, for V¼ 0 in Eq. (A2), there exist plane-wave solutions

with the positive energy component given by

wkðrÞ ¼
1ffiffiffi
2
p

exp �i
h
2

� �

exp i
h
2

� �

0
BBBB@

1
CCCCAexp ðik � rÞ; (A4)

where k is a wave-vector that makes an angle h with the x
axis.

To obtain solutions of Eq. (A2), a proper treatment of

the boundary condition is necessary. As illustrated in the

upper left corner of Fig. 10, we let the outward unit normal

at s be nðsÞ ¼ ½cos ðhÞ; sin ðhÞ�. Making use of the hermitic-

ity of Ĥ and defining j ¼ vFw
†

r̂w as the local relativistic

current, one gets the vanishing current condition: j � n ¼ 0

for any point s. Requiring the outward current to be zero

cannot fix the boundary condition uniquely but it entails

Reðexp ðihÞw1=w2Þ ¼ 0 for any point s. Using the boundary

potential as in Ref. 96, one obtains the following complete

boundary condition:

w2

w1

¼ i exp ihðsÞ½ �: (A5)
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