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Introduction:  

The normal pulmonary circulation is a low resistance and high flow circulation, which 

is maintained by locally produced or circulating vasomodulators.  An imbalance in the 

activity of vasoconstrictor/proliferative and vasodilator/anti-proliferative mediators in 

the pulmonary circulation leads to remodelling of the pulmonary artery. Structural 

changes in the pulmonary artery, a key feature of which is the proliferation of 

pulmonary artery smooth muscle cells (PASMC) leads to increased pulmonary 

vascular tone that can manifest as pulmonary arterial hypertension (PAH). PAH is a 

progressive disease that is characterised by pulmonary artery pressure greater than 

25 mmHg (Lau et al., 2017); right ventricular function and hypertrophy are major 

determinants in the prognosis of PAH (Maarman et al., 2017). PAH, includes patients 

with similar pathophysiological, histological and prognostic features; PAH can be 

idiopathic (IPAH), heritable (70% of which are associated with mutations in the bone 

morphogenetic protein receptor 2 (BMPR2) gene), or secondary to drug/toxin 

exposure or to other conditions, such as connective tissue disease (Lau et al., 2017). 

Restoring the imbalance in pulmonary vascular tone is a key end point of drugs used 

clinically to treat PAH. 

Many of the vasoactive mediators in the pulmonary circulation, such as endothelin 

(ET-1), angiotensin II (Ang-II), 5-hydroxytryptamine (5-HT), prostacyclin (PGI2) and 

vasoactive intestinal peptide (VIP), act via G protein coupled receptors (GPCRs) 

expressed on the vasculature, in particular on PASMC and pulmonary artery 

endothelial cells (PAEC) (Barnes and Liu, 1995; Morrell et al., 2009; Murray et al., 

2011). GPCRs are the largest receptor family in the human genome and successful 

therapeutic targets due to their tissue and cell specific distribution and accessibility on 

the plasma membrane (Insel et al., 2012). Altered expression and function of a number 

of GPCRs and circulating levels of their endogenous ligand are associated with the 

progression of PAH, which when taken together, contributes to the increased 

pulmonary vascular tone by tipping the balance of homeostatic signalling in PASMC 

to favour vasoconstriction and proliferation. We will provide an overview of GPCRs, in 

particular those whose expression are altered in PASMC with PAH, and discuss how 

both “old” and “new” GPCRs are relevant targets to restore the imbalance in 

pulmonary vascular tone.  
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GPCRs in the pulmonary circulation:  

GPCRs are guanine nucleotide exchange factors for heterotrimeric G proteins, whose 

α and βγ subunits dissociate upon ligand binding leading to the activation/inactivation 

of signalling pathways that control the production of second messengers, the activity 

of intracellular proteins and the expression of various genes (Rajagopal and Lefkowitz, 

2010; Murray et al., 2011; Insel et al., 2012). Although GPCRs can couple to more 

than one G protein, they are usually classified based on the G protein they 

preferentially activate. G proteins are divided into four main classes according to their 

α subunit: Gαs, Gαi, Gαq/11, and Gα12/13, although Gβγ can also act as a single entity 

to initiate signalling. G protein-independent signalling also occurs on GPCR activation 

via β-arrestin recruitment that contributes to GPCR internalisation and downstream 

signalling such as ERK activation, gene transcription and growth factor receptor 

transactivation (Figure 1). Both G protein and β-arrestin mediated signalling are key 

components in a complex signalling network that controls the pulmonary circulation, 

however for many GPCRs the relative contribution of each of these pathways to the 

overall physiological response of ligands in the pulmonary artery remains to be fully 

explored (Murray et al., 2011).  

In general, activating Gαi-, Gαq/11- and Gα12/13-dependent signalling leads to 

vasoconstriction and proliferation of PASMC, whereas Gαs-dependent signalling, 

leads to vasodilation and decreased proliferation (Figure 1).  Gαs-coupled GPCRs 

increases [cAMP]i, by activating adenylyl cyclases, which increases the activity of 

downstream mediators such as protein kinase A (PKA) and exchange protein directly 

activated by cAMP (Epac). PKA also phosphorylates targets such as myosin light 

chain (MLC) kinase to decrease its activity, whereas Epac increase Rap-1, both 

resulting in vasodilation and decreased proliferation of PASMC. The ability of cAMP 

to also regulate gene transcription, for example via the cAMP response element 

binding protein (CREB), means its physiological effects can persist long after GPCR 

activation. In contrast, activation of Gαi, Gαq/11 and Gα12/13 tend to produce overlapping 

biological responses in PASMC, which leads to increased Ca2+ sensitisation and the 

phosphorylation of myosin light chain (MLC), promoting actin–myosin cross-bridging 

and PASMC contraction. Activation of Gαi-coupled GPCRs oppose the effects of Gαs-

coupled GPCRs by decreasing [cAMP]i by inhibiting adenylyl cyclases. Gαq/11-coupled 

GPCRs activate phospholipase C (PLC) leading to increased inositol-1,4,5-
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triphosphate (IP3) and [Ca2+]i and the phosphorylation of target proteins, such as Ca2+-

calmodulin dependent protein kinase that activates MLC kinase, leading to 

vasoconstriction. In parallel, diacylglycerol (DAG) promotes the association of protein 

kinase C (PKC) to the membrane, which phosphorylates a number of contractile 

proteins. Increased Ca2+ sensitisation and sustained PASMC vasoconstriction can 

also result in stimulation of Gα12/13-coupled GPCRS, which activate Rho GEFs (a low 

molecular weight monomeric G protein) and Rho kinase (ROCK) that phosphorylate 

the MLC phosphatase and inhibits its activity; Gαq/11 also increases ROCK.  The 

expression and activity of GPCRs is an important determinant in the amplitude of 

second messengers and downstream signalling in PASMC. 

An updated list of GPCRs that are known regulators of the pulmonary vascular 

circulation is provided in Table 1. In PASMC at least 33 GPCRs have been 

characterised, some with multiple coupling; Gαs (11 GPCRs), Gαi (8 GPCRs), Gαq/11 

(16 GPCRs), and Gα12/13 (4 GPCRs). In parallel, in PAEC at least 18 GPCRs have 

been characterised, again with multiple coupling; Gαs (2 GPCRs), Gαi (5 GPCRs), 

Gαq/11 (14 GPCRs), and Gα12/13 (11 GPCRs). Taken together these data show that the 

low tone of the pulmonary circulation is, at least in part, the consequence of the relative 

high abundance of Gαq/Gα12/13-coupled GPCRs in PAEC and Gαs-coupled GPCRs in 

PASMC.  GPCR ligands can have differing effects in the pulmonary circulation 

depending on the expression of the predominant receptor subtype, the function of the 

endothelium, the species being investigated and the initial tone of the pulmonary 

circulation; low basal tone in the pulmonary artery means vasodilators have little effect 

(Barnes and Liu, 1995; Murray et al., 2011). ET-1 or 5-HT antagonists do not 

vasodilate the normal pulmonary circulation but can attenuate hypoxia or disease 

induced pulmonary vasoconstriction where tone is increased (Bonvallet et al., 1994; 

Barnes and Liu, 1995; Murray et al.,, 2011). An intact endothelium is vital for 

maintaining the low tone of the pulmonary circulation. Endothelium dysfunction, as 

seen in PAH, can shift the response of circulating mediators to vasoconstriction since 

many of the endogenous mediators that stimulate release of nitric oxide (NO) and PGI2 

via GPCRs on PAEC lead to vasoconstriction if they directly act on PASMC, via 

Gαi/Gαq/11/Gα12/13 (Morrell et al., 2009). Once endothelial dependent relaxation is 

attenuated, the expression and activity of GPCRs on PASMC drive remodelling and 
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increased vasoconstriction of the pulmonary artery; PASMC are an important cellular 

target for PAH. 

PAH-PASMC have decreased cAMP and increased [Ca2+]i compared to control-

PASMC (Zhang et al., 2007; Murray et al., 2011), which can be attributed at least in 

part, to the altered expression and/or activity of GPCRs in PASMC; circulating or tissue 

levels of endogenous GPCR agonists are seen in PAH (Table 2). A number of GPCR 

agonists and antagonists, as reviewed in Table 2, have been shown to reverse or blunt 

PAH both clinically and pre-clinically by restoring the balance of second messengers 

in PASMC; PGI2 (IP) receptor and ET-1 receptors are the targets of drugs currently 

approved to treat PAH (Lau et al., 2017). GPCRs whose altered expression or activity 

contribute to the imbalance of pulmonary vascular tone with PAH are outlined below: 

a Gαi/Gαq/G12/13 vs. Gαs shift is evident with PAH.  

 

GPCRs that contribute to the imbalance of pulmonary vascular tone with PAH 

Prostanoid receptors:  

Prostanoid receptors, which include DP1,2, EP1-4, FP, IP and TP, are activated by 

prostaglandin D2 (PGD2), prostaglandin E1 and E2 (PGE1, PGE2), prostaglandin F2α 

(PGF2α), PGI2, and prostaglandin H2 (PGH2)/thromboxane A2 (TXA2), respectively. IP, 

EP2, EP4 and DP1 are Gαs-coupled and therefore increase cAMP and are vasodilatory 

in PASMC, whereas EP1, EP3, and FP and TXA are Gαq/11 or Gαi-coupled so increase 

[Ca2+]i or decrease cAMP and lead to vasoconstriction of PASMC (Hirata and 

Narumiya, 2011). The main eicosanoids, produced via metabolism of arachidonic acid, 

in the pulmonary circulation are PGI2 and PGE2, which are vasodilators, and PGF2α 

and TXA2, which are vasoconstrictors; PGI2 synthase predominates in PAEC and 

directs metabolism toward PGI2, which acts on PASMC to keep normal pulmonary 

tone low. This homeostatic balance is however dysregulated in PAH, which results in 

decreased levels of PGI2- and increased levels of TXA2- in lungs and urine of PAH 

patients (Christman et al., 1992). Increasing PGI2 production by overexpressing PGI 

synthase in mice prevents the development of PAH (Geraci et al., 1999). Intravenous 

prostacyclin (epoprostenol) and more stable, inhaled and/or orally active prostacyclin 

analogues, such as treprostinil and iloprost, are approved in the UK for PAH and 
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improve haemodynamics and exercise tolerance, long-term survival in patients and 

importantly reduce the need for lung transplantation (McLaughlin et al., 2015).  

All prostanoid receptors are expressed at the level of mRNA in the pulmonary 

circulation, however the extent to which they control vascular tone is not fully 

understood (Hirata and Narumiya, 2011). In the human pulmonary artery the IP 

receptor, a Gαs-coupled GPCR whose activation increases cAMP, is highly expressed 

and functional and the primary therapeutic target of the prostacyclin analogues; the 

severity of hypoxic-induced PAH is greater in IP receptor-deficient mice (Hoshikawa 

et al., 2001; Falcetti et al., 2010). PAH is associated with reduced IP and DP receptor 

expression (both Gαs-coupled) -and increased EP3 receptor expression (Gαi-coupled), 

which taken together could attenuate the vasodilatory effect of endogenous 

eicosanoids in PASMC (Table 2). Since each prostacyclin analogue has a different 

pharmacological profile, altered prostanoid receptor expression may even determine 

their full clinical response. For example, in addition to the IP receptor, iloprost has high 

affinity for EP1 receptors whose activation in PASMC would initiate vasoconstriction, 

whereas treprostinil has high affinity for DP1 and EP2 receptors whose activation would 

enhance PASMC vasodilation (Whittle et al., 2012): reduced IP and DP expression 

could blunt the vasodilatory response of these analogues. Furthermore, prostacyclin 

analogues have also been shown to have prostanoid receptor independent effects, via 

KCNK3, clearing ET-1 and PPAR-γ (Olschewski et al., 2006; Falcetti et al., 2007). 

Highly selective IP receptor agonists, such as selexipag and its active metabolite 

MRE-269/ACT-333679 have been developed and shown to reduce PASMC 

proliferation, inhibit PAH in models of the disease and relax isolated pulmonary artery 

(Morrison et al., 2012; Fuchikami et al., 2017). Selexipag decreases the risk of 

morbidity/mortality of PAH patients alone, or in combination with other therapies 

(McLaughlin et al., 2015). 

A major problem with the use of most GPCR agonists is that their biological response 

can diminish over time, which requires that the dose needs to be increased to maintain 

efficacy (Lefkowitz, 1993). Such desensitisation can be attributed to receptor 

phosphorylation and internalization and reduced receptor expression. Desensitisation 

and internalisation of the IP receptor has been seen both in-vitro and in-vivo, which 

attenuates the vasoreactivity of prostacyclin analogues (Schermuly et al., 2007); 

recent advances in the pharmacology of the IP receptor could help reduce receptor 
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desensitisation and enhance the efficacy of drugs.  Of interest, MRE-269/ACT-333679 

has been shown to act as a full agonist in terms of vasodilation and inhibition of 

PASMC proliferation, but a partial agonist in terms of recruitment of β-arrestin and IP 

receptor internalization.  In-vivo this pharmacological profile translates to sustained 

efficacy in animal models of PAH due to limited IP receptor desensitisation (Morrison 

et al., 2012). Furthermore, an IP positive allosteric modulator (PAM) has been 

developed (IPPAM) (Yamamoto et al., 2017). PAMs are ligands that act at on allosteric 

sites to increase receptor function and potentiate the activity of the orthosteric ligand 

(Lefkowitz, 1993). PAMS have no intrinsic activity, increased selectivity and can also 

reduce receptor desensitisation, therefore could have exciting therapeutic potential for 

PAH. IPPAM has been shown to enhancing the effects of PGI2 in-vitro, however in-

vivo pre-clinical studies in models of PAH have yet to be completed (Yamamoto et al., 

2017). Understanding the mechanism of the reduced expression of IP receptor with 

PAH and advances in drugs design continue to enforce the benefit of targeting this 

receptor in PAH. 

 

Vasoactive intestinal peptide Receptors: 

Vasoactive intestinal peptide (VIP) and the related pituitary adenylate cyclase–

activating polypeptide (PACAP) are potent vasodilators of the pulmonary circulation 

and inhibit PASMC proliferation and platelet activation (Said, 2012). VIP has shown a 

protective role in the presence of pulmonary vasoconstrictors such as ET-1 and 

attenuates or reverses the development of PAH in animal models (Boomsma et al., 

1991; Hamidi, 2005; Hamidi et al., 2011). The effects of VIP and PACAP are mediated 

by VIP receptors (VPAC1 and VPAC2) and PAC1 receptors, which are primarily Gαs- 

coupled and expressed in PASMC (Busto et al., 2000); VPAC2 is highest expressed 

in human PASMC. PAH is associated with increased expression of VPAC1 and 2 

(Petkov et al., 2003; unpublished data), which can be speculated to be a 

compensatory mechanism due to reduced serum VIP levels in PAH patients. One 

interesting observation, that could be important in relation to the increased VPAC 

receptor expression associated with PAH, is that VIP activates PLC and increases 

[Ca2+]i in stable cell lines overexpressing VPAC (MacKenzie et al., 1996). It would be 

interesting to determine if VIP mediated G protein-dependent signalling differs in PAH-

PASMC. 
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Mice lacking the VIP gene develop a moderate form of PAH and right ventricular 

hypertrophy, which is attenuated by VIP treatment (Said et al., 2007). PAC1 KO mice 

develop PAH soon after birth, which suggest this receptor may also be key in the 

regulation of pulmonary vascular tone (Otto, 2004). However, VPAC2 KO mice do not 

develop PAH, and pulmonary remodelling has not been reported in VPAC1 KO mice, 

suggesting these receptors may have redundant roles in PASMC (Asnicar et al., 2002; 

Fabricius et al., 2011). VPAC2, but not VPAC1 selective agonists have been shown 

to improve right ventricular systolic pressure, in animal models of PAH, implying that 

VPAC2 could be a more promising target for PAH (Koga et al., 2014). Although original 

clinical trials with VIP (Aviptadil) showed reduced pulmonary vascular resistance and 

improved stroke volume (Petkov et al., 2003; Leuchte et al., 2008), additional trials 

showed no benefit (Said, 2012).  Future work needs to fully dissect VPAC1, VPAC2 

and PAC1 receptor dependent signalling in the pulmonary circulation and develop 

more specific and stable agonists that can be tested in the clinic: conjugating VIP to 

nanoparticles or co-administering of VIP with a neutral endopeptidases inhibitor has 

been shown to prevent VIP degradation and augment its effects (Leuchte et al., 2015; 

Athari et al., 2016).  

 

Endothelin Receptors 

Endothelin (ET-1), which is produced and released predominantly by PAEC, is crucial 

for regulating pulmonary vascular tone and seen as a key mediator of PAH (Abman, 

2009). ET-1 mediates its action via two ET receptor subtypes: ETA and ETB, which are 

Gαq-coupled. PAEC express both ETA and ETB receptors, whereas PASMC 

predominately express ETA (Table 1). ETB activation in PAEC promotes vasodilation 

by increased production of NO and PGI2 release, inhibits apoptosis and mediates the 

clearance of ET-1 (Hirata et al., 1993). In contrast, ETA and ETB activation in PASMC 

induces vasoconstriction of the pulmonary arteries (MacLean et al., 1994). Elevated 

levels of ET-1 is observed in plasma and lungs of patients with PAH, and there is a 

direct correlation between ET-1 concentrations and increased pulmonary vascular 

resistance (Giaid et al., 1993; Bauer, 2002). The expression and distribution of both 

ETA and ETB receptors are increased in the PAH-PASMC and increased ETA mediated 

vasoconstriction has been shown in both the large and small pulmonary arteries (Li et 
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al., 1994); increased ETA and ETB in PASMC contributes to increased tone of the PAH-

PASMC (MacLean et al., 1994). Dual endothelin receptor antagonists (ERAs), such 

as bosentan, are approved for PAH and shown to improve time to clinical worsening 

(Rubin et al., 2002). Drugs selective to the ETA receptors were developed in order to 

preserve ETB receptor endothelial-dependent vasodilation and ET-1 clearance, while 

inhibiting vasoconstriction and proliferation mediated by the ETA receptors: PAH is 

more severe in ETB deficient rats (Ivy et al., 2002; Wilkins, 2004). Ambrisentan, a 

potent ETA antagonist improves exercise capacity and haemodynamics and is utilised 

for initial combination therapy although longer studies are required to assess effect on 

mortality.  Recent crystal structure identification of the ET receptor may help facilitate 

new rational drug design (Shihoya et al., 2016). Of interest, functional autoantibodies 

for ET-1 have been shown to circulate and contribute to pathophysiology of disease 

by stimulating the receptor and have been associated with scleroderma induced PAH 

(Becker et al., 2014). Neutralisers of these autoantibodies have been implicated as a 

viable treatment, which could be therapeutically relevant for PAH in the future.   

 

5-HT receptors: 

The neurotransmitter 5-HT (serotonin), which is synthesised in PAEC from L-trytophan 

by tryptophan hydroxylase, is a potent pulmonary vasoconstrictor and mitogen that 

increases pulmonary artery remodelling and increases pulmonary vascular resistance 

(MacLean and Dempsie, 2010). PAH patients exhibit elevated levels of serotonin in 

plasma (Hervé et al., 1995) and increased hypoxia-induced vascular tone and 

remodelling can be enhanced by serotonin (Eddahibi et al., 2000). Seven 5-HT 

receptor families, six of which are GPCRs, mediate the response to serotonin; 5-HT1B 

(Gαi), 5-HT2A (Gαq), 5-HT2B (Gαq) and 5-HT7 (Gαs) have shown to be expressed in the 

pulmonary circulation (Ullmer et al., 1995; Morecroft and MacLean, 1998): 5-HT1B and 

5-HT2B, both of which would increase [Ca2+]i are upregulated in biopsies from PAH 

patients and animal models of the disease (Launay et al., 2002). 5-HT1B  receptor is a 

key mediator of serotonin-induced vasoconstriction and proliferation in small and large 

human pulmonary arteries: RhoA activation and subsequent nuclear translocation of 

phosphorylated ERK1/2 and activity of GATA4 are key downstream pathways in 

PASMC activated by serotonin (Hoyer et al., 1994; MacLean et al., 1996). Inhibition of 

the 5-HT1B receptor expression (5-HT1B 
-/- mice) or activity (5-HT1B antagonist- 
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GR127935) attenuated the chronic hypoxia associated vascular remodelling (Keegan 

et al., 2001). 5-HT1B receptor antagonists have begun uncovering novel serotonin 

signalling pathways that elucidate the aberrant redox signalling in PAH remodelling 

(Hood et al., 2017).  5-HT2B KO mice are protected from the development of hypoxia-

induced PAH and antagonists prevent pulmonary remodelling, which highlights this 

receptor as an additional target (Launay et al., 2002; Blanpain et al., 2003; West et al., 

2016). Furthermore, 5-HT2A receptors  mediate contraction and proliferation of PASMC 

via a Gαq-mediated increase [Ca2+]i and PKC activation (MacLean et al., 2000b), 

although only at serotonin concentrations above the normal physiological range; 5-

HT2A inhibits KV and hKV1.5 currents (Morecroft et al., 1999; MacLean et al., 2000b; 

Cogolludo, 2006). Unfortunately, 5-HT receptor antagonists such as PRX-8006 

(5HT2B-anatgonist), ketanserin (5-HT2A-anatagonist) or terguride (dual 5-HT2A/B 

antagonist) have not shown much success clinically, with studies either having to be 

discontinued, due to the lack of specificity of these receptors to the pulmonary 

circulation; 5-HT2A mediates systemic vasoconstriction (McGoon and Vlietstra, 1987; 

Dumitrascu et al., 2011). 

One additional aspect of 5-HT receptors, which still makes them relevant targets for 

PAH, is that their expression or function can regulate or be regulated by known risk 

factors of PAH. Appetite suppressants, a pharmacological risk factor for PAH, can 

increase serotonin and a dexfenfluramine metabolite is an agonist of 5-HT2A and 5-

HT2B (Eddahibi et al., 2001; MacLean et al., 2004). The sex hormone oestrogen, via 

decreasing miR96, upregulates the 5HT1B receptor, which implicates this GPCR in the 

female predominance of PAH (White et al., 2011). A mutation in 5-HT2B receptor itself, 

which reduces nitric oxide synthase activation, has been reported in PAH, however 

more importantly 5-HT receptor mediated signalling has been shown to interact with 

BMPR-2 signalling (mutations in which underlie most cases of heritable PAH) 

(Dempsie and MacLean, 2008). Serotonin-mediated pulmonary remodelling and 

vasoconstriction is enhanced in BMPR2 deficient mice (Long et al., 2006). Serotonin 

inhibits BMPR2 mediated Smad1/5 and Id3 activation to increase pulmonary artery 

remodelling (Long et al., 2006; West et al., 2016). Fully elucidating the role of 5-HT 

receptors in the predisposition to PAH may highlight novel pathways leading to the 

development of the disease. More recently the field has moved onto targeting 

tryptophan hydroxylase (TPH1), or the serotonin transporter (MacLean et al., 2004; 
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Morecroft et al., 2007), however new pharmacological developments such as new 

selective antagonists, multi-receptor antagonists or even negative allosteric 

modulators of the 5-HT receptors could restore their potential clinical utility. 

 

Angiotensin II and MAS receptors: 

The renin angiotensin system (RAS) is a key regulator of vascular endothelial function 

and has been implicated in the remodelling of the pulmonary artery and the right 

ventricle seen with PAH (Morrell et al., 1995). Increased renin, angiotensin converting 

enzyme (ACE) and angiotensin II (Ang II) have all been associated with PAH (Morrell 

et al., 1999; De Man et al., 2012a).  The actions of Ang II is mediated by angiotensin 

receptors 1 (AT1, Gαq/11) and 2 (AT2, Gαi); AT1 expression is increased with PAH, 

whereas AT2 is decreased (Morrell et al., 1999, De Man et al., 2012). AT1 enhances 

the proliferation of PASMC via Gαq/11 dependent activation of MAPK, receptor tyrosine 

kinases, non-receptor tyrosine kinase and increasing reactive oxygen species (Morrell 

et al., 1999; Heeneman et al., 2000; Mehta and Griendling, 2007). Although AT1 

antagonists, such as losartan, has been shown to prevent the progression of MCT-

induced PAH (De Man et al., 2012a), their clinical utility is controversial, due to 

systemic side effects. In contrast AT2 activation, due to their expression in PAEC, 

counteracts this proliferation by increased NO and prostacyclin production. AT2 

agonists have been shown to reduced pulmonary artery pressure, fibrosis, 

inflammation and improve right ventricular function in experimental models of PAH, 

however their response may be blunted due to the decrease in AT2 expression with 

the disease (Bruce et al., 2015).   

ACE-2, a more recently discovered component of the RAS system, has also been 

identified as a novel target in PAH (Shenoy et al., 2010). ACE-2 catalyses ANG-II to 

ANG 1-7, which acts on the MAS1 (class A orphan GPCR). MAS1 is expressed in 

PAEC and similar to AT2 receptors can counter act the proliferative and 

vasoconstrictive of the ACE-ANG-II-AT1 axis (Shenoy et al., 2010); MAS1 is 

downregulated with PAH. Treatment with Ang (1-7) prevented the remodelling of the 

pulmonary artery and right ventricular hypertrophy in a model of PAH, an effect that 

could be blocked by the MAS inhibitor A-779 (Shenoy et al., 2010).  Recently it has 

been shown that the beneficial effects of AT2 receptor agonists, such as C21, may 

also be through ACE2-Ang-(1-7)-Mas axis since it increases ACE2 expression and its 
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beneficial effects in PAH were blocked in part by A-7799.  These data suggests that 

the RAS is worth revisiting as a therapeutic option for PAH.  

 

Apelin receptor  

More recently the Apelin receptor (APJ), a GPCR with a similar sequence to AT1, has 

been identified to be an important in regulator of cardiovascular physiology and play a 

role in the pathophysiology of PAH (Tatemoto et al., 1998; Japp et al., 2008; Kim, 

2014). The endogenous ligands of APJ receptors, which are highly expressed in 

PAEC, are apelin family of peptides and Elabela/Toddler (ELA); both apelin and ELA 

have a comparable cardiovascular profile (Kang et al., 2013; Yang et al., 2017). 

Agonist induced APJ signalling in PAEC activates both a G-protein dependent (Gαq- 

and Gαi-coupled) decrease in cAMP and increase in PKC activity and G-protein 

independent induction of β-arrestin (Yang et al., 2017). Apelin-APJ leads to pulmonary 

vasodilation, at least in part, by increasing endothelial NO via AMPK and Kruppel-like 

factor 2 (KLF2) (Chandra et al., 2011; Yang et al., 2015). PAH-Patients and animal 

models of the disease have lower levels of apelin, ELA and APJ receptors, inhibiting 

their ability to counteract pulmonary vasoconstriction (Yang et al., 2017). Exogenous 

apelin ([Pyr1]Apelin-13) and ELA (ELA-13) peptides have been shown to reverse 

MCT-induced remodelling of the PA and right ventricular hypertrophy, (Falcão-Pires 

et al., 2009). Apelin infusion during right heart catheterisation increases cardiac output 

and decreases pulmonary vascular resistance in patients with PAH, which supports 

further investigation into the therapeutic relevance of the APJ receptor in PAH (Brash 

et al., 2015). Apelin restores BMPR2 signalling and PAEC function, making enhancing 

APJ receptor signalling an attractive target for heritable PAH (Alastalo et al., 2011). 

An interesting aspect of APJ receptor pharmacology, is the availability of biased 

agonists, such as CMF-019. GPCR biased agonists have been used successfully to 

increase the beneficial effects of targeting GPCRs, but blunt side effects. CMF-019 

decreases cAMP (G protein dependent signalling) but does not induce β-arrestin 

mediated internalisation (G protein independent signalling) (Read et al., 2016). Ligand 

dependent trafficking of the APJ receptor, mediated via  β arrestin, also contributes to 

differential signalling pathways and cellular functions, (Lee et al., 2010a; Pope et al., 

2016). Additional APJ ligand dependent signalling and trafficking could prevent 
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receptor downregulation with chronic agonist use and thereby be harnessed to 

increase the responsiveness of PAH patients to APJ targeted drugs. 

 

Additional GPCRs, whose expression is increased in PAH-PASMC  

It is clear that altered GPCR expression associated with PAH, shifts the balance of 

Gαi/Gαq/Gα12/13 vs. Gαs signalling, favouring vasoconstriction and proliferation of 

PASMC. In addition to those GPCRs discussed in detail above, the expression of the 

Calcium sensing receptor (CaS), the Sphingosine 1-phosphate receptor 2 (S1P2), the 

α1-adrenoreceptor (α1-AR) and the protease-activated receptors (PAR1/2/3) are also 

increased with PAH and are important regulators of PASMC vasoconstriction, 

proliferation, migration and pulmonary vascular tone (Eckhart et al., 1996; Hsiao et al., 

2005; Sacks et al., 2008; Szczepaniak et al., 2010; Yamamura et al., 2012; Boe and 

Simonsson, 1980; Garcia et al., 1995; Birker-Robaczewska et al., 2008; Molostvov et 

al., 2008). Upregulation of these Gαq/Gα12/13/Gαi- coupled receptors results in 

[Ca2+]i/PKC or ERK activation and decreased cAMP accumulation (Nakaki et al., 1990; 

Birker-Robaczewska et al., 2008; Sacks et al., 2008; Li et al., 2011). Animal studies 

used to dissect the functional impact of CaSR, SIP2R and PAR2 show that inhibiting 

the expression or function of the receptors attenuates or blocks the development of 

experimental PAH (Kwapiszewska et al., 2012; Chen et al., 2014b; Tang et al., 2016). 

Advances in pharmacology have allowed for the rational design of modulators (see 

Table 2) for these receptors, which by shifting the balance away from vasoconstriction 

and proliferation, could one day have clinical utility in PAH.   

 

Summary: The future of GPCRs in PAH  

GPCRs by modulating second messengers, are important regulators of basal 

pulmonary vascular tone. Altered expression GPCRs and endothelial dysfunction 

shifts the balance of Gαi/Gαq/G12/13 vs. Gαs-dependent signalling, favouring 

vasoconstriction and proliferation of PASMC. Decreased Gαq-coupled GPCRs in the 

endothelium and increased Gαi/Gαq/G12/13- coupled GPCRs in PASMC is clearly 

associated with PAH (Figure 2), highlighting that altered expression of GPCRs is 

functionally relevant.  
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In addition to contributing to the imbalance in pulmonary vascular tone, GPCRs are 

also associated with risk factors of PAH (sex, drug/toxin exposure and crosstalk with 

signalling pathways responsible for the genetic predisposition), which further enforces 

their importance in the progression of the disease.  Interestingly, sex differences have 

been shown in the responsiveness of PAH-patients to GPCR agonists; females 

respond better to ET-1 receptor antagonists and prostacyclin analogues, however the 

reason for this is not fully understood (Marra et al., 2016). Recently there has been 

extensive research into the role of the female sex hormone, oestrogen, and its 

metabolites in the progression of PAH; GPER (GPCR that mediates the non-genomic 

effects of oestrogen) is a novel target for PAH. The expression of GPER has been 

confirmed in PAEC and PASMC and a GPER agonist has been shown to prevent 

pulmonary artery remodelling and right ventricular dysfunction in MCT-induced PAH, 

however the mechanism and site of action is still unclear (Alencar et al., 2017). 

Investigating the impact of sex on GPCR expression and function in cells, such as 

PASMC, could be important in uncovering additional targets in the female bias of the 

disease and differential response to drugs. Sex-specific transcriptional profiles are 

evident in cultured cells and tissue (Shah et al., 2014). Our preliminary studies in 

isolated PASMC have shown female bias of a number of previously unrecognised 

GPCRs, which together could differentiate the control of pulmonary vascular tone 

between the sexes. 

Although we have focused this review on GPCR targets that mediate PASMC-

dependent remodelling of the pulmonary artery with PAH, inflammation, adventitial 

thickening and right ventricular hypertrophy also characterise the disease. Right 

ventricular function is a key determinant of PAH severity and prognosis (Sandoval et 

al., 1994; van de Veerdonk et al., 2011). Altered adrenergic receptor expression has 

been shown in the right ventricle of animal models of PAH: α1, β1 and β2-

adrenoreceptors are decreased. Low-dose noradrenaline, via β1-adrenoreceptors, 

increases right ventricular contractility, right ventricle-pulmonary artery coupling and 

cardiac output (Packer and Leier, 1987; Kerbaul et al., 2004). However, the 

effectiveness of these drugs could be blunted in the right ventricle due to 

downregulation of these receptors (Maron and Leopold, 2015). More recently 

improvement in right ventricular function and remodelling by blockade of the 

adrenergic receptors is gaining support (Bogaard et al., 2010). β-blockers such as 
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bisprolol and carvedilol have also successfully improved and reversed right ventricular 

function and remodelling in MCT-induced PAH (De Man et al., 2012; Perros et al., 

2017), although these are still currently contraindicated for clinical use (Galiè et al., 

2016).  Since the structural changes in the pulmonary artery with PAH can also be 

attributed to proliferative, apoptosis-resistant and migratory myofibroblasts in the 

adventitia, the GPCRs expressed and functional in these cells could also be useful 

pharmacological targets for the disease. To date a number of GPCRs, including APJ, 

P2Y2, A2A, LTB4, 5-HT2A and ETRs have been shown to regulate pulmonary fibroblast 

phenotype and fibrosis (Chen et al., 2014a; Kim, 2014; Qian et al., 2015).  In addition, 

altered expression and function of a number of GPCRs have also been documented 

in a number of the inflammatory cells that infiltrate the pulmonary artery in PAH; CCR1, 

CCR5, CCR7, CX3CR1 and CXCR4 are targets for to inhibit the inflammation 

associated with the disease (Balabanian et al., 2002; Bull et al., 2004; Montani et al., 

2011; Rabinovitch et al., 2014). Uncovering GPCRs, which also modulate right 

ventricular function, inflammation and fibroblast activation is an important direction for 

future therapeutic targets.  

Changes in GPCR activity and expression at the cellular level associated with PAH, 

as outlined above and through work undertaken by our lab, correlates with altered 

signalling and the progression of the disease. However, it is important to acknowledge 

that a number of aspects of GPCR pharmacology may increase the complexity of their 

physiological role; constitutive activity of GPCRs, receptor desensitisation, the 

significance of their ability to modulate more than one signalling pathway, the 

stoichiometry of the pathway and their localisation in membrane microdomains need 

to be explored to understand their true therapeutic potential in the setting of PAH. The 

relative importance of G protein–dependent vs. G protein–independent pathways on 

GPCR activation in PASMC needs to be fully dissected. GPCRs can couple to multiple 

Gα proteins and can also signal via MAPK, src and β arrestin.  For example, several 

GPCRs expressed in PASMC, such as AT1, ETA and P2Y2, have all been shown 

initiate cell migration and proliferation via β arrestin, independent of their respective G 

protein, however such data is not available in PASMC (Morris et al., 2012; Kendall et 

al., 2014): highlighting the signalling pathways downstream of GPCR activation that 

are necessary and sufficient for their beneficial effects could provide a number of 

additional targets for PAH. Furthermore, we have previously shown that the cellular 
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localisation of GPCRs and their signalling components, for example in lipid rich 

microdomains such as caveolae, is important for their physiological response (Ostrom 

and Insel, 2004). Since a number of these microdomains are increased in PAH-

PASMC (Patel et al., 2007), this could alter the response of GPCR agonists in 

diseased cells. For example, increased caveolae in PASMC could bring specific 

channels and GPCRs closer together and thereby contribute to heightened tone in the 

pulmonary artery; co-localisation of Kv1.5 and 5-HT2A in caveolae leads to 5-HT-

dependent inhibition of Kv current  (Cogolludo et al., 2006). Altered GPCR localisation 

with PAH remains to be fully explored.  

Since the intracellular level, duration and function of second messengers is governed 

by an array of mediators downstream of GPCRs, it may be that in order to see the full 

beneficial effect of a GPCR these components also need to be targeted. This is likely 

true for PAH, where the activity and expression of a number of phosphodiesterases 

(PDEs), the main enzymes responsible for the degradation of cAMP, are increased 

(Maclean et al., 1997; Murray et al., 2007): PDE inhibitors could additively or 

synergistically increase the duration and degree of response to GPCR drugs that raise 

cAMP. Other components of the cAMP pathway such as adenylyl cyclases, multi-drug 

resistant protein 4 and 5, A-kinase anchor proteins and cAMP downstream targets are 

also dysregulated with PAH (Jourdan et al., 2001; Ostrom et al., 2002; Hara et al., 

2011). A comprehensive analysis of the expression and activity of the various 

components of GPCR signalling pathways could uncover a series of diagnostic 

markers and/or targets for PAH. A pathway dependent approach to restore second 

messenger signalling in a pulmonary specific manner is the way forward to developing 

a successful therapeutic approach for the disease. 

In summary, research into GPCRs in PAH have led to a better understanding of the 

complexity and multi-faceted nature of the disease. Advances in GPCR pharmacology, 

such as allosteric modulators, biased agonists or neutralisers of autoantibodies, may 

offer a fresh approach to the therapeutic utility of the GPCRs shown to be successful 

pre-clinically (Table 2).  Although major therapeutic advances have been made in the 

past 20 years with regard to PAH treatment, in part due to the approved drugs outlined 

above, new pulmonary specific targets are still required. As the field of GPCRs in PAH 

moves forward it is important to remember that although a number have already been 

identified, since individual cells can express greater than a 100 different GPCRs, it is 
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likely that many more associated with PAH are yet to be uncovered. New techniques 

identifying previously uncharacterised or even orphan GPCRs in cells have proven 

successful in providing insights into the pathophysiology of disease and identify vast 

array of new therapeutic targets (Insel et al., 2015). We have used a GPCR real-time-

PCR array to profile GPCR expression in male and female control-PASMC and PAH-

PASMC, which has uncovered “novel” (normally expressed but not previously 

recognized) GPCRs in PASMC, including orphan GPCRs (Insel et al., 2015; 

unpublished data). Given this caveat, we believe that key GPCRs involved in “tipping 

the balance of pulmonary vascular tone” have not yet been investigated and could 

offer promising new therapeutic targets for PAH.    
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FIGURES AND GRAPHS 

Table 1- GPCR expression and function in pulmonary vascular cells [pulmonary artery 

smooth muscle cells (PASMC) and endothelial cells (PAEC)] 

Table 2- GPCRs targeted clinically/ pre-clinically in PAH 

Figure 1- G-protein-coupled-receptor (GPCR)-mediated signalling in pulmonary 

artery smooth muscle cells (PASMC). Gα and βγ subunits dissociate upon receptor 

activation and initiate signalling. Additionally, recruitment of β-arrestins can also 

initiate G-protein independent signalling and trafficking. Gαs stimulates the production 

of cyclic AMP (cAMP) via adenylyl cyclase (AC), leading to the activation of protein 

kinase A (PKA) and Exchange protein directly activated by cAMP (Epac), thus 

vasodilating PASMCs and decreasing proliferation. Gαi activation inhibits AC activity 

thereby reducing cAMP, which in turn leads to PASMC vasoconstriction and 

proliferation. Gαq activation promotes the hydrolysis of phosphatidylinositol 4,5-

bisphosphate (PIP2) generating intracellular messengers 1,2-diacylglycerol (DAG) and 

inositol 1,4,5-trisphosphate (IP3). DAG activates Protein Kinase C (PKC) while IP3 

stimulates intracellular release of Ca2+ which then form a complex with a Ca2+ binding 

protein- calmodulin. Gα12/13 activation increases RhoGEF and Rho kinase (ROCK) 

further promoting vasoconstriction. 

Figure 2- GPCRs that are dysregulated in pulmonary arterial smooth muscle cells 

(PASMC) in patients or animal models of PAH. (Red)- Gαi/Gαq/Gα12/13-coupled GPCRs 

that have been implicated in PASMC vasoconstriction and proliferation through. (Blue) 

Gαs-coupled GPCRs that have been implicated in PASMC vasodilation and reduced 

proliferation. Note- MAS and APJ receptors have also been reportedly downregulated 

in PAH, however in PAEC. 
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Endogenous 
ligand 

GPCR Cell type G-protein 
Cell specific 

response 
Refs 

Angiotensin-II 

AT1 PASMC Gαq/11 
Proliferation/ 

Vasoconstriction/ 
Anti-apoptosis  

(Yamada et al., 
1996; Morrell et 

al., 1999) 

AT2 PAEC Gαi 
Vasodilation/ anti-

proliferation/ 
Apoptosis 

(Lee et al., 2010; 
Bruce et al., 

2015) 

ANG 1-7 MAS PAEC Gαq Vasodilation 
(Shenoy et al., 

2010) 

Endothelin-1 

ETA PASMC Gαq 
Proliferation/ 

Vasoconstriction 
(MacLean et al., 
1994; Mcculloch 

et al.,1998; 
Shichiri et al., 
1997; Sakai et 

al., 2016) 

ETB PASMC Gαq 
Proliferation/ 

Vasoconstriction/  
Anti-apoptosis 

ETB PAEC Gαq 
Vasodilation/  

Anti-apoptosis 

Noroepinepherine
/ Epinepherine 

β2-AR PASMC Gαs Vasodilation (Boe and 
Simonsson, 

1980; Leblais et 
al., 2008) 

α1-AR PASMC 
Gαq / 

Gα12/13 
Vasoconstriction 

α2-AR PAEC Gαq Vasodilation 

Acetylcholine 

M1 PAEC Gαq Vasodilation 
(Norel et al., 

1996) 
M3 PAEC Gαq Vasodilation 

M3 PASMC Gαq Vasoconstriction 

Bradykinin B2 PAEC Gαq 
Vasodilation/ 

Apoptosis 

(Taraseviciene-
Stewart et al., 

2005) 

Vasopressin V1 PAEC Gαq Vasodilation 
(Smith et al., 

2006) 

Adrenomedullin 
CRLR/RAM

P 

PASMC Gαs Vasodilation (Upton et al., 
2001) PAEC Gαq Vasodilation 

Vasoactive 
Intestinal Peptide 

VPAC-1 PASMC Gαs Vasodilation (Busto et al., 
2000) VPAC-2 PASMC Gαs Vasodilation 

Ca2+, Mg2+, 
spermine 

CaS PASMC Gαq, Gαi 
Proliferation/ 

Vasoconstriction 
(Li et al., 2011) 

Calcitonin gene-
related peptide 

CGRP PASMC Gαs Vasodilation/ anti-
proliferation 

(Chattergoon et 
al., 2005) CGRP PAEC Gαq 

Substance P 
NK1 PAEC Gαq Vasodilation (Pedersen et al., 

2000) NK2 PASMC Gαq Vasoconstriction 

Histamine H1 PASMC Gαq Vasoconstriction 
(Ortiz et al., 

1992) 

Urotensin II UT PASMC Gαq Vasoconstriction 
(MacLean et al., 

2000) 

Adenosine 
A2A PASMC Gαs 

Vasodilation/ 
Apoptosis 

(Morgan et al., 
1991; Xu et al., 
2011; Huang et 

al., 2015) 
A2B PASMC Gαs Vasodilation 

Oxytocin, 
Vasopressin 

OT PASMC Gαi,  Gαq Vasoconstriction 

(Roberts et al., 
1992; 

unpublished 
data) 

ATP, ADP, UTP, 
UDP 

P2Y2, P2Y4, 

P2Y6 

PASMC Gαq Vasoconstriction 
(McCormack et 

al., 1989; Chootip 
et al., 2002) PAEC Gαq Vasodilation 



 

 

5-Hydroxytrypt 
amine 

5-HT1B PASMC Gαi 
Proliferation/ 

Vasoconstriction/  
Anti-apoptosis (Morecroft and 

MacLean, 1998; 
Hoyer et al., 

2002; Liu et al., 
2013) 

5-HT2A PASMC 
Gαq / 

Gα12/13 

Proliferation/ 
Vasoconstriction/  

Anti-apoptosis 

5-HT2B PASMC Gαq 
Proliferation/ 

Vasoconstriction/ 
Anti-apoptosis 

Prostacyclin IP PASMC Gαs 
Vasodilation/ anti-

proliferation 
(Shaul et al., 

1991) 

PGE1/2 

EP1 PASMC Gαq Vasoconstriction 

Hirata and 
Narumiya, 2011 

EP2 PASMC Gαs Vasodilation 

EP3 PASMC Gαi Vasoconstriction 

EP4 PASMC Gαs Vasodilation 

PGD2 DP1 PASMC Gαs Vasodilation 

Thromboxane FP and TP PASMC Gαq 
Proliferation/ 

Vasoconstriction 
(Cogolludo, 

2003) 

Sphingosine 

SIP1 PAEC Gαi 
PAEC barrier 

protection 
(Ancellin and Hla, 
1999; Garcia et 
al., 2001; Birker-
Robaczewska et 

al., 2008) 

SIP2 PASMC 
Gαq / 

Gα12/13 
Proliferation 

SIP3 PAEC 
Gαq / Gαi 
/ Gα12/13 

PAEC barrier 
dysfunction 

Thrombin 

PAR1 PAEC 
Gαq / 

Gα12/13 
PAEC barrier 
dysfunction (Sacks et al., 

2008) PAR1/PAR2/
PAR3 

PASMC 
Gαq / 

Gα12/13 
Proliferation/ 

Vasoconstriction 

Apelin; 
Elabela/Toddler 

APJ PAEC Gαq /Gαi/o Vasodilation 
(Japp et al., 

2008; Yang et al., 
2015) 

Neuropeptide Y 

NPY1   PASMC Gαi/o 
Proliferation/ 

Vasoconstriction (Crnkovic et al., 
2014) NPY2 PASMC Gαi/o Vasoconstriction 

NPY4 PASMC Gαi/o Vasoconstriction 

Oestradiol GPER 

PAEC Gαi / Gαs Vasodilation 
(Alencar et al., 

2017) PASMC Gαi / Gαs 
Vasodilation/ Anti-

proliferative 
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Bosentan 
Antagonist 

(clinical) 
(Rubin et al., 2002) 

ETA 

Ambrisentan 
Antagonist 

(clinical) 

(Galie et al., 2008) 

Macitentan (Pulido et al., 2013) 

*Sitaxsentan (Barst et al., 2004) 

VPAC-
2 ↑ ↓ Aviptadil 

Agonist 
(clinical, in-vivo) 

(Petkov et al., 2003; 
Leuchte et al., 2008) 

IP ↓ ↓ 

Epoprostenol 

Analogue 
(clinical) 

(Barst et al., 1996) 

Iloprost (Olschewski et al., 2002) 

Treprostinil (Simonneau et al., 2002) 

Beraprost (Galiè et al., 2002) 

Selexipag 
Agonist 
(clinical) 

(Simonneau et al., 2012) 

P
re

-c
li
n

ic
a
l 

Im
p
ro

v
e
d

 P
u

lm
o
n
a
ry

 a
rt

e
ry

 r
e
m

o
d

e
lli

n
g
 &

 R
ig

h
t 

h
e

a
rt

 f
u
n
c
ti
o

n
 

   
MRE-269 

Agonist 
(in-vitro, in-vivo) 

(Fuchikami et al., 2017) 

UT - - Urantide 
Antagonist 

(in-vivo, in-vitro) 
(Mei et al., 2011) 

CaS ↑ - NPS 2143 
NAM 

(in-vivo, in-vitro) 
(Tang et al., 2016) 

APJ ↓ ↓ 

Apelin 
Agonist 
(clinical) 

(Brash et al., 2015) 

Apelin/ ELA 
Agonist 

(in-vitro, in-vivo) 
(Yang et al., 2017) 

A2B - 
- 

Adenosine 
Agonist 
(clinical) 

(Morgan et al., 1991; Rossi 
et al., 2017) 

A2A - LASSBio-1359 
Agonist 

(in-vitro, in-vivo) 
(Alencar et al., 2013) 

AT1 ↑ 
↑ 

Losartan 
Antagonist 

(in-vitro, in-vivo) 
(Morrell et al., 1999; De 

Man et al., 2012) 

AT2 ↓ C-21 
Agonist 

(in-vitro, in-vivo) 
(Bruce et al., 2015) 

5-HT1B ↑ 

↑ 

GR127935 
Antagonist 

(in-vitro, in-vivo) 

(Keegan et al., 2001) 

SB216641 (Hood et al., 2017) 

5-HT2A 

↑ 

Ketanserin 
Antagonist 

(in-vitro) 

(McGoon and Vlietstra, 
1987; Frishman et al., 

1995) 

5-
HT2A/B 

Terguride 
Antagonist 

(in-vitro, in-vivo) 
(Launay et al., 2002; 

Dumitrascu et al., 2011) 

5-HT2B PRX-08066 
Antagonist 

(in-vitro, in-vivo) 
(Porvasnik et al., 2010) 

S1P2 ↑ ↑ JTE013 
Antagonist 

(in-vitro, in-vivo) 
(Chen et al., 2014) 

β2-AR - - 

Bisoprolol/ 
Carvedilol 

Antagonist 
(in-vivo, in-vitro) 

(Perros et al., 2017) 

Nebivolol 
Agonist 

(in-vivo, in-vitro) 
(Perros et al., 2015) 

B2 - - B9972 
Agonist 

(in-vitro, in-vivo) 
(Taraseviciene-Stewart et 

al., 2005) 

M3 - - C1213 
Agonist 

(in-vivo, in-vitro) 
(Ahmed et al., 2016) 

GPER - - G1 
Agonist 

(in-vitro, in-vivo) 
(Alencar et al., 2017) 

Mas ↓ - 
ACE-2 and 

Ang 1-7 
Agonists 

(in-vitro, in-vivo) 
(Shenoy et al., 2010) 

 (-) No reported data; (↑) Upregulated; (↓) Downregulated; (*) Withdrawn from clinical use; 
(6MWD) 6 minute walking distance; (PA) pulmonary artery; (RH) right heart. 
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