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Abstract

A direct numerical simulation approach is utilized to understand the oscillatory shear rheology

of a confined suspension of magnetic chains formed by paramagnetic circular cylinders under the

influence of an external magnetic field. The common assumption of gap-spanning chains made in

the literature is relaxed in this work, so that a fully suspended (periodic) array of magnetic chains

is formed. In this sense, the effective rheological parameters are only influenced through a layer of

fluid adjacent to the walls. All tests are conducted at very low but finite particle Reynolds numbers,

and typical inertial effects are discussed. The main aim of the present study is to investigate the

apparent viscoelasticity of the system as a function of the external magnetic field and frequency

of the input strain. This work concentrates on cases with large blockage ratio in order to have

pronounced viscoelastic behaviours.
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1. Introduction

A magnetorheological (MR) fluid is a suspension of micron-sized magnetizable solid particles

in a non-magnetic fluid, usually used in dampers and actuators with a fast response to a feedback
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signal [1, 2]. In recent years, MR fluids have received considerable attention due to their controllable

rheology by adjusting the external magnetic field [3, 4]. At the onset of applying an external

magnetic field, suspended solid particles are actuated to be arranged in chain-like structures [5]

which resist flow of the suspending fluid, and typically result in a solid-like behaviour [6]. By

increasing the driving force, solid-like structures [7] are stretched more and eventually break up at

a certain yield stress [8]. It is clear that the evolution of micro-structures significantly affects the

rheological behaviour of such systems.

In practice, the Bingham plastic model is usually used to represent the rheology of a commercial

MR fluid [1]. In the pre-yield state, a solid-like behaviour is expected with a shear modulus

proportional to the magnetic field intensity [9]. The yield stress is determined as a function of the

Mason number defined as the ratio of hydrodynamic to magnetic forces [10]. The concentration [11]

and dispersion in the size [12] of solid particles can also affect the yield stress. Multiple yield

stresses [11] and a thixotropic rheology [13] are also possible due to the progressive changes in the

chain-like structures. In the post-yield state, a MR fluid is generally modeled as a purely viscous

Newtonian medium [14]. However, for a more accurate result, the Herschel-Bulkley model can be

used for MR fluids based on observation of shear thinning/thickening behaviour in the post-yield

state [15].

Nevertheless, MR fluids exhibit a viscoelastic behaviour; the storage modulus is associated with

the magnetostatic energy stored in chain-like structures, while the loss modulus is related to the

viscous dissipation [16]. These moduli are functions of the frequency of the exerted strain [17] and

increase by increasing the magnetic field intensity [18]. This has been thoroughly investigated using

oscillatory shear rheometry. There is a rich literature addressing the viscoelasticity of MR fluids

in the pre-yield state [19, 20]. In practice, the most reliable means to determine the rheological

behavior of a MR fluid is to conduct an experimental rheometry.

Beyond experimental analyses, numerical simulation [21] is a feasible means to study the rhe-

ological behaviour of a MR fluids as a function of its micro-structure. The very first assumption
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commonly made in the modeling of MR fluids is that magnetic chains span the whole width of the

test domain. In this sense, deformation of the chains would be affine [22, 23, 24] and the ending solid

particles are the means of exerting force on the walls of a test domain [25]. Therefore, the stress

response is a measure of the magnetic bonds in the chain-like structures [3] while the hydrodynamic

interactions are negligible [21]. However, this assumption is justifiable only for the pre-yield state.

In the post-yield state, the large solid structures break down [26, 27] into smaller magnetic chains

that do not necessarily span the whole width of the flow domain [28, 29, 30]. These chains affect

the rheology of MR fluids greatly by interacting with the suspending fluid flow which determines

the hydrodynamic stresses exerted on the walls [31]. Generally, the size and concentration of solid

particles as well as the intensity of magnetic field and hydrodynamic forces determine the length of

structures formed in a MR fluid [32]. Under the influence of a rather low strength magnetic field,

there is a better chance for “non-gap-spanning” chain-like structures, which are detached from

walls, to be formed [33]. In the literature [11], it is discussed that carbonyl iron particles (with a

relative permeability of about 103) are expected to form non-gap-spanning magnetic clusters when

intensity of the external magnetic field is significantly lower than 104 A/m. The number of such

structures also increases by decreasing the concentration of suspended particles [16]. Despite the

essential role of non-gap-spanning chains in determining the post-yield rheology of MR fluids, they

are scarcely addressed in the literature. Numerical simulation is a convenient tool for this purpose.

Different variants of the conventional particle dynamics method have been used for numerical

simulation of MR fluids [34, 35, 36] especially in the pre-yield state. To reliably simulate the

suspension of non-gap-spanning magnetic chains where the coupled hydrodynamic and magnetic

interactions play an essential role, a direct numerical simulation (DNS) should be utilized. However,

DNS is associated with a high and sometimes a prohibitive computational cost. Therefore, in order

to achieve a desirable accuracy with practical computational costs, proper assumptions are needed

to simplify the physical model. In 2012, Kang et al. [31] analyzed the apparent steady shear

viscosity of a periodic array of non-gap-spanning magnetic chains using a DNS approach. They
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found that by decreasing the Mason number, the apparent viscosity increases up to a maximum

value corresponding to a plateau in viscosity-Mason curves. This value is correlated to the blockage

ratio of the magnetic chains suspended in the channel and volume fraction of the solid particles [37].

Later in 2015, Hashemi et al. [37] reported the viscoelastic response of a similar system under an

oscillatory shear flow.

Using a DNS approach, it is also possible to include the inertia of both the suspending fluid

and the suspended solid particles. Inertia has a negligible role in a steady shear, however, inertial

effects are intensified by increasing frequency and/or amplitude of the input strain (rate), and/or

the height of the test domain in an oscillatory shear rheometry [38, 39]. Therefore, one cannot

completely prevent inertia from affecting the measured viscoelastic properties of fluids [40]. Inertia

leads to a non-uniform velocity gradient and consequently alters the stress response [41] which was

revealed to further reduce the apparent elasticity of a viscoelastic fluid [42]. For MR fluids in the

pre-yield state, inertial effects are negligible due to the imposed restriction on the movement of

solid particles, however, inertia can play a significant role in the post-yield state.

In the present work, the apparent rheological behaviour of a confined array of non-gap-spanning

magnetic chain is investigated using a DNS approach. Circular paramagnetic solid particles are

suspended in a two-dimensional periodic channel and the apparent stress response is computed

as an average of the hydrodynamic stress exerted on the confining walls. A similar configuration

was first used in [31]. Previous studies [31, 37] are extended by further investigating the apparent

viscoelasticity of the system influenced by a constant external magnetic field and inertia under

an oscillatory shear test. Amplitude of the input strain is small enough to avoid rupture and

reformation of the magnetic chains, and keeping the stress response in the linear regime. Considering

an initially symmetric configuration and the flow direction which is perpendicular to the external

magnetic field, solid particles retain their chain-like structure. A rather large blockage ratio is

chosen so that clearly distinctive results can be obtained for different combinations of the input

parameters. In all cases, inertia plays a crucial role and is characterized by the Reynolds number
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since all solid particles are assumed to be neutrally buoyant [43]. It must be noted that although a

more realistic three-dimensional model of spherical magnetic particles might lead to quantitatively

different results, the present two-dimensional model is expected to exhibit similar physical features.

In the following sections, first, a brief description of the physical modeling of the problem is

presented. The theoretical background of the oscillatory shear rheometry and the effects of inertia

on the apparent stress response are explained next. The apparent viscoelasticity of a suspension

of magnetically attracted solid bodies under an oscillatory shear are discussed afterwards. The

apparent viscoelastic moduli are studied as functions of the intensity of magnetic field and the

frequency of the input strain.

2. Physical Modeling

The ultimate goal of this study is to understand the rheological behaviour of fully suspended

(para-)magnetic solid particles forming chain-like structures. This aim is achieved using a direct

numerical simulation (DNS) approach and employing the least necessary assumptions in the mod-

eling of the problem. Computations are performed for a two-dimensional domain. In the following,

the simplified model is described and the numerical method is briefly presented.

2.1. Non-gap-spanning Magnetic Chains

Here, a series of paramagnetic solid bodies are suspended in a channel filled with a Newtonian

fluid and a small amplitude oscillatory shear (SAOS) test is conducted. To establish a correlation

between the measured rheological parameters and the assumed micro-structure, it is necessary to

avoid structural reconfiguration of the magnetic chain during simulations.

It is known that the chaining mechanism of a series of suspended magnetic solid particles depends

intrinsically on the configuration of these particles [44]. Having known this, a configuration is chosen

which is symmetric in the flow direction; thus, the rejoining of the adjacent chains is prevented.

Also, the amplitude and frequency of the exerted strain are kept small so that no rupture occurs
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Figure 1: Schematic of (a) the suspension of magnetic solid particles shearing in a channel with oscillating solid walls

and (b) the initial configuration of the particles in the computational domain. The computational domain is marked

by dashed-lines in (a).

and consequently a chain-like structure is retained. A schematic of the simplified model is shown

in Fig. 1a. Figure 1b illustrates the computational domain and the initial arrangement of the solid

particles.

In this work, N paramagnetic neutrally buoyant circular cylinders are suspended in a periodic

channel filled with a Newtonian suspending fluid and an oscillatory shear is imposed to the system

by controlling velocity, u, of the channel walls. A uniform vertically aligned external magnetic

field with intensity of H0 actuates the paramagnetic solids to be arranged in chains. The apparent

rheological behaviour of the system is studied by measuring the average shear stress exerted on the

(bottom) wall as

σ̄xy =
1

L

∫
y=0

σxy(x)dx, (1)

where σxy is the local value of the shear stress. A similar system was considered by Kang et al. [31]

in order to investigate the response of a magnetic suspension subject to a steady shear. It must be

noted that in the following, the over-bar sign is omitted for brevity.
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2.2. Governing Equations

In the present DNS approach, fluid flow is simulated using a weakly compressible Smoothed

Particle Hydrodynamics (SPH) method [45]. In SPH [46], the governing equations are written in

the Lagrangian framework. The conservation of momentum reads

ρ
dv

dt
= −∇p+ η0∇2v, (2)

and the continuity becomes

dρ

dt
= −ρ∇ · v. (3)

Here, v is the velocity vector, and p is pressure. No-slip boundary condition is imposed on all

solid surfaces and all test-cases are solved in two-dimensional domains. In a suspension of magnetic

solid particles, the time-scale associated with the movement of particles is much larger than the

electromagnetic time-scale. In this sense, the time-dependency of the electromagnetic field can be

neglected [34] and the magnetostatic Maxwell’s equations govern the magnetic field [47] as

∇×H = 0, (4)

for the magnetic field intensity, H, and

∇ ·B = 0, (5)

for the magnetic flux density, B.

Here, solid particles are considered to be made of a paramagnetic substance, for which a linear

constitutive equation can be written as [48]

B = µH. (6)

The magnetic permeability, µ, is considered to be constant for an isotropic paramagnetic material

far below the magnetic saturation limit [49]. Considering µ0 to be the magnetic permeability of the

suspending fluid, the relative permeability and the magnetic susceptibility of the solid particles are

β = µs/µ0 and χ = β − 1, respectively.
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Figure 2: A flowchart of the numerical algorithm.

The system of equations (4) and (5) satisfies the conservation of the magnetic flux across any

surface and the continuity of the magnetic field along any interface [47]. In the absence of free

current, Maxwell’s equations are combined utilizing a scalar potential (in two-dimensions) φ as

∇ · (µ∇φ) = 0, (7)

where H = ∇φ. Equation (7) along with the corresponding boundary conditions [34, 37] are

discretized on the computational domain using the SPH method and solved for φ. The magnetic

forces are then calculated by integrating the Maxwell stress tensor along every fluid-solid interface

as described in [37].

A fully explicit numerical algorithm is used in the context of SPH to solve the governing equa-

tions coupled with the motion of solid particles as presented in Fig. 2. As a brief description of the

numerical algorithm, it can be noted that in every time-step, the governing equations are solved,

the magnetic and hydrodynamic forces are calculated, and the solid particles are moved accord-
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ingly. Once the new configuration is obtained, the procedure is repeated for a new time-step. The

numerical method was thoroughly described in [37].

2.3. Non-dimensional Parameters

For a MR fluid, the behaviour of the system is characterized by two non-dimensional parameters;

the Mason number which is a measure of viscous forces versus the magnetic field strength [50], and

the Reynolds number which is a measure of inertia. For a steady shear flow, the Mason number is

defined as [51]

Mn =
γ̇0η0

µ0β̂2H2
0

, (8)

where β̂ = χ/(3 + χ) is the effective polarization. In this way, Mn → ∞ corresponds to a non-

magnetic system and Mn → 0 refers to a non-viscous magnetic system. The smaller the Mason

number, the stronger the magnetic field and vice versa. For an oscillatory shear problem, a modified

Mason number can also be defined based on frequency as

Mn∗ =
ωη0

µ0β̂2H2
0

. (9)

In the following, Mn∗ is used as a measure of the strength of the external magnetic field when γ̇0

is variable.

The Reynolds number is defined at both the particle scale, Rep = ργ̇0a
2/η0, and the channel

scale, Re = ργ̇0H
2/η0, where ρ is fluid density, γ̇0 denotes the amplitude of the strain-rate, and η0

is dynamic viscosity of the suspending fluid. Since solid particles are neutrally buoyant, the particle

Reynolds number, Rep, characterizes the inertial movement of particles, while Re characterizes the

bulk flow of the system in the presence of inertia.

3. Oscillatory Shear Rheometry

As discussed before, a suspension of magnetic solid particles under the influence of an external

magnetic field behaves as a viscoelastic material. In this sense, dynamic oscillatory shear tests are

conducted to measure the rheological behaviour of the system. When subjected to an oscillatory
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shear strain, γ(t) = γ0 sin(ωt), the stress response of a viscoelastic material in the linear region (for

a rather small strain amplitude) can be generally described as [52]

σxy = |G∗|γ0 sin(ωt+ Ψ). (10)

The right-hand side of Eq. (10) can be rewritten as sum of two terms; one in-phase with the

input strain, σ′xy = |G∗|γ0 cos(Ψ) sin(ωt), and the other in-phase with the strain rate, σ′′xy =

|G∗|γ0 sin(Ψ) cos(ωt). It is simple to show that in a complete shear cycle, the odd part of stress,

σ′xy, and the even part, σ′′xy make contributions to the storage and loss of energy, respectively.

Consequently, the storage and loss moduli are respectively defined as G′ = |G∗| cos(Ψ) and G′′ =

|G∗| sin(Ψ). Rewriting the equations for the rate of shear strain, in the same manner, dynamic

viscosities are defined as η′′ = G′/ω and η′ = G′′/ω.

In rheological measurements, there are always concerns about misleading observations sourced

from inertia [42]. At a finite Reynolds number for a rather large channel width, there is a non-

uniform time-dependent velocity distribution across the channel. The first consequence can be an

increased viscous dissipation [53] or equivalently a larger G′′ compared to a uniformly sheared bulk

of fluid. Nevertheless, the presence of inertia may lead to a decrease in the amplitude of the stress

response for a polymeric melt [38].

At a vanishing Reynolds number, for a viscoelastic material subject to an oscillatory shear, a

phase angle of 0 ≤ Ψ ≤ π/2 is expected. When inertia is dominant, a phase angle larger than

π/2 also emerges which is misleading and gives an apparently negative value for G′. Schematic

Lissajous-Bowditch curves point out the issue in Fig. 3.

In order to provide an instance of the issue, a test-case is solved for a pure Newtonian fluid at

different Reynolds numbers. A bulk of Newtonian fluid with density ρ0 and viscosity η0 is sheared in

an infinitely long channel with height H = 0.025(m) and walls that oscillate in opposite directions

with u = ±U0 cos(ωt). The geometry as schematically shown in Fig. 4, is the same as the main

test-cases considered in this paper, however, here without solid particles. The Reynolds number,
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Figure 3: Schematic of the stress-strain Lissajous-Bowditch curves for different ranges of Ψ.

Figure 4: Schematic of a pure Newtonian fluid shearing in a channel with oscillating boundaries.
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Figure 5: (a) Normalized |G∗| and (b) phase angle obtained for a pure Newtonian fluid under oscillatory shear.

Re, is changed by altering ρ0 and keeping all other variables constant. Here, the amplitude of the

input strain-rate and the oscillating frequency are γ̇0 = 2U0/H = 0.8(s−1) and ω = 2π(rad/s),

respectively. Theoretical solution to the problem can be found following the method presented

in [41, 53], and the result is shown in Fig. 5 (see Appendix Appendix A).

It is revealed that inertia leads to a phase-lag in the velocity field with respect to the input strain

rate. This makes the layers of the fluid flowing at different velocities and consequently results in a

non-uniform flow across the channel. The lower the Reynolds number, the smaller the phase angle.

Figure 6 presents the (strain-stress) Lissajous-Bowditch curves obtained for Re = 5× 10−4 to 5. In

Fig. 6, Ψ ≈ 90◦ for Re = 5 × 10−4 while for higher Reynolds numbers, the phase angles of larger

than 90◦ are clearly detectable from the orientation of the Lissajous-Bowditch curves. Although

introducing solid particles significantly disturbs the fluid flow, inertial effects are expected to be

qualitatively similar. In order to keep the traces of inertia, in this article, |G∗| and Ψ are occasionally

reported instead of G′ and η′.
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Figure 6: Lissajous-Bowditch curves obtained for a pure Newtonian fluid under an oscillatory shear test.

4. Results

In all test-cases solved in this paper, the radius of circular cylinders, a = 0.00125(m), and the

height of the channel, H = 0.025(m), are kept constant. The solid bodies are initially vertically

arranged with a gap equal to the discretization length, δp; convergent solutions are obtained for

a/δp = 18.75. In the following, the present SPH method is verified for a steady shear flow and then

the viscoelastic response of the suspended magnetic chains is studied in an oscillatory shear flow.

4.1. Verification

The SPH solver is verified by studying the apparent shear viscosity obtained for a periodic

array of magnetic chains with N = 8 (see Fig. 1b) and χ = 1. The periodic length of the channel

is L = 0.0125, and the blockage ratio is N(2a)/H = 0.8. This problem was solved in [31], in a

Stokes flow regime using a direct numerical simulation. In this steady problem, the inertial effects

are insignificant for a relatively small particle Reynolds number, Rep = 0.00625.

Table 1 presents the non-dimensional average shear stress obtained using the SPH method in

comparison with [31] for Mn = 0.16 and 0.016. Here, the effective polarization is β̂ = 0.25. As

discussed in [37], the SPH solution of a magnetostatic problem deviates from the finite-element solu-
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Table 1: The non-dimensional average shear stress σ∗
xy = σxy/γ̇0η compared to the values reported in [31].

Mn Kang et al. [31] SPH Error%

0.16 2.704 2.697 0.28

0.016 3.921 3.809 2.8

Figure 7: Stream-lines around a chain of magnetic solid particles under steady shear for Mn = 0.016.

tion by increasing either the external magnetic field or the magnetic susceptivity in the suspension.

However, the solutions are in a good agreement for both cases. Figure 7 shows the steady-state

streamlines around the magnetic chain for Mn = 0.016. In this figure, the computational domain

is duplicated and the configuration of the system is illustrated for two adjacent magnetic chains.

4.2. Oscillatory shear

For the sake of comparison, geometry (see Fig. 1) is kept unchanged for the rest of results

presented in this paper; L = 0.01(m), and unless otherwise mentioned, the number of solid particles

is N = 9. The Reynolds number is changed by altering density and the Mason number is changed

by adjusting the intensity of external magnetic field, while all other parameters are the same.

In order to minimize the computational error, the magnetic susceptivity is set to χ = 0.1 [37].

Unless otherwise mentioned, amplitude of the input strain is γ0 = 0.4/π and its frequency is
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Figure 8: Lissajous-Bowditch curves in the absence of a magnetic field for (a) Re = 0.5 and (b) Re = 5.0 with

γ0 = 0.4/π and ω = 2π.

ω = 2π(rad/s). It should be noted that in the present work, for γ0 ≤ 0.13, the stress response is

almost linear; therefore, only the first harmonic response is investigated. As previously discussed,

inertia substantially affects the computed apparent stress response in an oscillatory shear test.

Therefore, it is useful to investigate first the effects of inertia for a non-magnetic suspension.

In Fig. 8, the Lissajous-Bowditch curves obtained for a suspension of non-magnetic particles are

compared with cases of a pure Newtonian fluid. The curves are plotted for two different Reynolds

numbers, Re = 0.5 and 5. It should be noted that for cases with suspended particles, the correspond-

ing particle Reynolds numbers are Rep = 0.00125 and 0.0125. The stress-strain Lissajous-Bowditch

curve is a means to qualitatively investigate the stress response; the area confined by a curve is a

measure of the energy lost in a cycle and for a linear stress response, the apparent storage modulus,

G′, is equal to the stress-strain slope
σxy|γ=γ0

γ0
.

As seen in Fig. 8 for both cases, the dissipated energy clearly increases by introducing suspended

solid particles. This is due to the fact that solid particles are obstacles which further disturb the

flow regime and add to the viscous dissipation. On the other hand, note that the stress-strain slope

is almost unchanged for a rather small particle Reynolds number, Rep = 0.00125, for both with
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Figure 9: Lissajous-Bowditch curves obtained for (a) Mn→∞ and (b) Mn = 0.028 with γ0 = 0.4/π and ω = 2π.

and without particles, while this is not the case for Re = 0.0125. For a pure Newtonian fluid, the

stress-strain slope is negative due to inertia. For a suspension in the absence of a magnetic field,

solid particles are free to move with the suspending fluid; however, this movement is also governed

by inertia due to their finite mass. The higher the particle Reynolds number, the more significant

the effects of solid particles on apparent G′. At the onset of applying an external magnetic field,

depending on its strength, solid particles are not free anymore.

In Fig. 9, Lissajous curves are compared for both a zero magnetic field and Mn = 0.028 at

different particle Reynolds numbers. While for all cases presented in Fig. 9a, the phase angle is

π/2 < Ψ, a positive acute phase angle, 0 < Ψ < π/2, is observed for all cases with Mn = 0.028 in

Fig. 9b. For a rather small Mn, the magnetized solid particles are attracted to each other forming

a chain-like structure aligned with the field direction. Once the structure is deflected, induced

magnetic forces tend to rotate the chain into its initial configuration. This works like a memory for

the bulk system leading to an elastic response [52]. However, the time-scale of such a reconfiguration

is limited by the hydrodynamic interactions which includes the viscous forces. The positive acute

phase angle observed for Mn = 0.028, confirms that the magnetic suspension apparently acts as a

viscoelastic medium.
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Figure 10: (a) The non-dimensional amplitude, |G∗|/η0ω, and (b) the phase angle, Ψ, of the apparent stress response

as functions of Mn for different Rep, γ0 = 0.4/π, and ω = 2π.

By increasing the particle Reynolds number, the orientation of Lissajous-Bowditch curves are

significantly changed as seen in Fig. 9a for a zero magnetic field intensity. The larger the particle

Reynolds number, the larger the absolute value of the apparently negative G′. Although G′ de-

creases by increasing the Reynolds number also for Mn = 0.028, variation of the apparent modulus

is more limited in Fig. 9b. This indicates the fact that magnetic forces suppress the inertial effects

by restricting the chain-like structures. This issue is further investigated in Fig. 10 which presents

the normalized amplitude and the phase angle of the apparent stress response as functions of the

Mason number for different Reynolds numbers. As expected, by decreasing the Mason number, the

apparent stress response is less sensitive to change in the Reynolds number. Also, the stronger the

magnetic field, the larger the complex modulus, |G∗|. As discussed earlier, an obtuse phase angle

is a definite sign of the dominance of inertia in an oscillatory shear test. For cases with Ψ > π/2,

the expected behaviour is reversed, i.e. |G∗| becomes an increasing function of Mn. In Fig. 10, the

phase angle becomes obtuse at Mn ≈ 0.04 and 0.08 for Rep = 0.0125 and 0.00625, respectively.

As seen in Fig. 10b for smaller Reynolds numbers, the phase angle shows a non-monotonic

variation with Mn. At a rather small Mason number, Mn < 0.04 for Rep ≤ 0.003125 in this
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Figure 11: The intra-cycle variation of (a) the elastic stress and (b) the viscous stress obtained for Rep = 0.003125,

γ0 = 0.4/π, and ω = 2π.

work, Ψ decreases by increasing the Mason number. Noting that inertial effects are weak in this

range of magnetic field intensity, this means that viscous dissipation grows at a higher rate than

elasticity of the system as the intensity of magnetic field increases. On the other hand, for a

relatively larger Mason number, Mn > 0.04 in Fig. 10b, the phase angle is an increasing function

of Mn. Therefore, there is a maximum value for the ratio of elasticity to viscous dissipation in

this system. By increasing the Reynolds number, the slope of Ψ versus Mn significantly increases.

This emphasizes the prominent role of inertia in weakening the apparent elasticity of the system.

In a rather large Mason numbers for which Ψ > π/2, the slope reduces and an asymptotic value is

expected for Mn→∞. Nevertheless, in all cases, the apparent viscosity dominates the viscoelastic

behaviour of the system, i.e. π/4 ≤ Ψ ≤ 3π/4. It should also be mentioned that for the present set

of parameters, the quality of stress response is almost similar for Rep = 0.00125 and 0.003125, so

that in the following, for the sake of brevity some data are only shown for Rep = 0.003125.

In Fig. 11, the intra-cycle elastic and viscous stress responses are shown for Rep = 0.003125.

Results shown in this figure include the third and fifth harmonics of the stress response in addition

to the first harmonic. In Fig. 11a, the apparent elastic stress is almost linear for the whole range
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Figure 12: (a) The apparent elastic modulus and (b) the dynamic viscosity as functions of Mn. Results are obtained

for Rep = 0.003125, γ0 = 0.4/π, and ω = 2π.

of Mn, while the apparent viscous stress is slightly non-linear at rather large Mason numbers,

Mn > 0.07 as seen in Fig. 11b. However, studying non-linearity of the stress response is outside the

scope of this work. It can be seen in Fig. 11 that both the apparent elastic modulus and dynamic

viscosity, defined as the slope in Figs 11a and 11b, respectively, are enhanced by decreasing the

Mason number. The non-dimensional apparent moduli are shown in Fig. 12 for three Reynolds

numbers.

As expected and discussed earlier, both G′ and η′ are decreasing functions of the Mason number.

Nevertheless, the slope is larger for the apparent dynamic viscosity than elasticity in a rather small

Mn. Also, G′ is considerably affected by inertia, specially for a rather large Mason number; the

larger the Reynolds number, the smaller the apparent elastic modulus of the system. On the other

hand, η′ decreases only slightly when the Reynolds number increases. In Fig. 13, the apparent

complex modulus and phase angle are shown as functions of the flux density of the external magnetic

field for two different γ0.

In Fig. 13, |G∗| and Ψ are shown as functions of Mn∗ for two strain amplitudes. Keeping the

frequency of oscillations constant, γ̇0 is proportional to γ0. In this manner, according to Eq. (8),

19



0.2 0.4 0.6 0.8 1.0 1.2

Mn∗

1.5

2.0

2.5

3.0

3.5

4.0
|G
∗ |/
η 0
ω

γ0 = 0.016

γ0 = 0.127

(a)

0.2 0.4 0.6 0.8 1.0 1.2

Mn∗

50

55

60

65

70

75

80

85

90

Ψ
(◦

)

γ0 = 0.016

γ0 = 0.127

(b)

Figure 13: (a) The non-dimensional amplitude, |G∗|/η0ω, and (b) the phase angle, Ψ, of the apparent stress response

as functions of Mn∗ for two different γ0, Rep = 0.00125 (γ0 = 0.127) and Rep = 0.00039 (γ0 = 0.016), and ω = 2π.

the (conventional) Mason number is also proportional to γ0 for a fixed B0 (or equivalently a fixed

Mn∗). The interesting point is that in Fig. 13, |G∗| and Ψ are almost the same for both γ0 values

while the corresponding values of Mn are eight-times different.

4.2.1. Particles configuration

A simplified physical model for a suspension of magnetic solid particles is considered in the

present work, and its apparent viscoelastic response was studied earlier in this paper. However,

it is also important to investigate the micro-structure of suspended magnetic chains and realize

its link with the apparent rheology of the system. In cases of gap-spanning magnetic chains, it is

fairly reasonable to assume an affine micro-structural deformation [24]. On the other hand, there

is certainly a phase angle between an oscillatory strain and a deforming non-gap-spanning micro-

structure. This phase angle is a function of the magnetic field intensity and the Reynolds number.

Time-history of the normalized input strain, apparent shear stress, and coordinate of solid particle

P1 positioned at the bottom of a magnetic chain is illustrated in Fig. 14 for Rep = 0.003125 with

and without an external magnetic field. The spatial position of P1 can be considered as an indicator

of deflection for the magnetic chain.
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Figure 14: The time-history of the normalized input strain, apparent stress, and the position of P1. Results are

obtained for (a) Mn→∞ and (b) Mn = 0.039, with Rep = 0.003125, γ0 = 0.4/π, and ω = 2π.

For the non-magnetic case presented in Fig. 14a, the movement of solid particles is almost

synchronized with the input strain; however, there is a small phase-lag due to inertia, while the

apparent stress is completely out of phase, i.e. Ψ > π/2. On the contrary for Mn = 0.039,

particle movement has a leading phase with respect to the input strain as observed in Fig. 14b.

Furthermore, the strain-stress phase angle, Ψ, decreases significantly for Mn = 0.039 in comparison

with the non-magnetic case. Figure 15 presents the phase angles of the chain deflection, Ψx−γ and

Ψσxy−x, calculated for location of P1 with respect to the input strain and the apparent stress,

respectively. These phase angles are obtained for different Reynolds numbers, and illustrated as

functions of Mn−1. Here, the inverse of the Mason number is used to be able to include results

obtained for B0 = 0 (Mn→∞).

For all Reynolds numbers, Ψx−γ is a monotonically increasing function of Mn−1 (B0). The

smaller the Reynolds number, the larger the strain-deflection phase angle. For B0 = 0 (Mn→∞)

with a rather small Rep, an almost synchronized deflection is observed, while a phase-lag is caused

by inertia, i.e. Ψx−γ ≈ 0 for Rep = 0.00125 and Ψx−γ < 0 for larger Reynolds numbers. On

the other hand, Ψσxy−x is a decreasing function of Mn−1. The larger the Reynolds number, the
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Figure 15: (a) The strain-deflection phase angle, Ψx−γ , and (b) the deflection-stress phase angle, Ψσxy−x, as

functions of Mn−1, obtained for γ0 = 0.4/π, and ω = 2π.

larger the deflection-stress phase angle, and Ψσxy−x is less sensitive to the Reynolds number for a

rather large Mn−1. The interesting point in Fig. 15 is that, although Ψx−γ varies significantly with

Mn−1, its variation with the Reynolds number is almost the same for all magnetic flux densities.

This shows that inertia affects the time-history of the motion of solid particles almost independent

of the imposed magnetic field. Configurations of the whole magnetic chain coinciding with γ = 0

and γ = γ0 are shown in Fig. 16, where x̂ = (x− L/2)/(L/2).

Knowing that the motion of non-magnetic solid particles is almost in-line with the input strain

for Rep = 0.00125, a phase-lead in the deflection of magnetic chain is clearly observed with respect

to γ, in Fig. 16a. In Fig. 16b, the non-magnetic solid particles are almost located at their farthest

position for γ = γ0. For larger Reynolds numbers, solid particles exhibit a similar behaviour;

however, with slightly different phase angles (see Fig. 15a) that are hardly detectable in Fig. 16. In

all cases, solid particles are maintained in a chain-like structure and the configuration of the system

does not deviate from model illustrated in Fig. 1. In order to further compare the motion of solid

particles for different sets of parameters, a normalized local chain slope is defined as

s̄ =
1

γ0

x− L
2

y − H
2

, (11)
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Figure 16: Position of solid particles obtained for (a,b) Rep = 0.00125, (c,d) 0.003125, and (e,f) 0.00625, with ω = 2π

and γ0 = 0.4/π. Lighter circles are the results for Mn→∞, while dark ones belong to the case with Mn = 0.039.

and is presented in Fig. 17 for the four bottom solid particles in a chain at the time when P1 is at

its extreme lateral position. For the non-magnetic case presented in Fig. 17a, the maximum chain

slope increases by reducing the Reynolds number; for Re = 0.00125, the extent of displacement

is slightly larger than that of the channel walls. This trend is reversed for the magnetic case

illustrated in Fig. 17b; the smaller the Reynolds number, the smaller the maximum chain slope.

It is deduced from Fig. 17 that the imposition of an external magnetic field reduces the extent of

displacement of the solid particles. Nevertheless, this limitation on the motion of solid particles is

relaxed by increasing the Reynolds number. Therefore, it can be inferred that the effectiveness of

the magnetic field on the extent of motion of solid particles is decreased by inertia. Another point

is that inertia has a more significant effect on the local chain slope nearer to the centre of a chain.

An interesting point in Fig. 17 is the changing curvature of the graphs. This is because in Fig. 17b,

there is a magnetic bond between solid particles which resists their relative motion due to different

hydrodynamic forces.
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Figure 17: The normalized local chain slope for the four bottom solid particles with P1 at its extreme lateral position.

Results are obtained for ω = 2π, γ0 = 0.4/π, and (a) Mn→∞ and (b) Mn = 0.039.

4.2.2. Blockage Ratio

So far in this paper, the stress response was computed for N = 9, resulting in a blockage ratio of

N(2a)/H = 0.9. Figure 18 presents the amplitude and phase angle of the computed stress response

for different number of solid particles (blockage ratios). The results are shown as functions of the

Mason number. It is evident that the trends are similar for all N numbers, i.e. |G∗| decreases by

increasing Mn, while Ψ is an increasing function of the Mason number. Nevertheless, by increasing

the blockage ratio, the magnetic cluster can exert a more effective resistance against fluid flow in

the channel, which leads to

• a decrease in Ψ, as it decreases the effect of inertia and increases the effect of elasticity

• a stronger stress response

• more significant variations in |G∗| and Ψ as functions of Mn

In the rest of this work, the blockage ratio is set to 0.9 in order to maintain the significance of the

viscoelastic response of the model.
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Figure 18: (a) The non-dimensional amplitude, |G∗|/η0ω, and (b) the phase angle, Ψ, of the computed stress response

as functions of Mn for different N , with γ0 = 0.4/π, and ω = 2π.

4.2.3. Effects of frequency

In the previous section, the frequency of the input strain was kept constant, ω = 2π. However,

generally for a viscoelastic material, moduli are functions of frequency [52]. For magnetorheological

fluids, such a functionality has been addressed in the literature [18, 24, 54]. Frequency is an impor-

tant factor which affects the micro-structure and consequently alters the rheology. Furthermore,

in determining the significance of inertia in a dynamic shear test, frequency is an important factor

along with the size of the test domain [55, 56]. Keeping all parameters constant, the higher the

frequency, the more significant the inertial effects. In this sense, the Stokes number, St = |ρωH2

G∗ |, is

introduced as a measure of the significance of inertia [55, 56]. It is worth to note that, the criterion

reported in the literature [56] for omitting inertial effects from apparent complex modulus, is not

applicable to the suspension of magnetized solid particles.

In an oscillatory shear test, the strain rate and strain are directly related to frequency, γ̇0 = ωγ0.

Therefore, among three input parameters, γ̇0, γ0, and ω, there are only two independent variables.

In the first set of test-cases, γ̇0 = 0.8 (1/s) is kept constant and ω varies. Results are shown as

Lissajous-Bowditch curves in Fig. 19 for Mn = 0.053 and different Reynolds numbers. In these
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Figure 19: Lissajous-Bowditch curves obtained for γ̇0 = 0.8 (1/s), Mn = 0.053, and different Reynolds numbers,

with (a) ω = π, (b) ω = 2π, and (c) ω = 4π.

test-cases, the smaller the frequency the larger the strain amplitude; thus a slightly non-linear

response is observed in Fig. 19a. Nevertheless, it is clear that for ω = 4π, inertia dramatically

affects the result, while for ω = π, the stress response is less sensitive to the Reynolds number.

Stokes numbers obtained for the apparent complex moduli, |G∗|, corresponding to Rep = 0.003125

and ω = π, 2π, and 4π are St = 1.4, 5, and 17, respectively. As observed in Fig. 19, results are

qualitatively similar for St ∼ O(1).

In the following, γ0 = 0.4/π is kept constant and since γ̇0 varies with frequency, both of the

non-dimensional numbers, Mn and Mn∗, vary for a constant external magnetic field. In this sense,
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Figure 20: (a) The magnitude of the complex modulus, |G∗
1|, and (b) the phase angle, Ψ1, of the apparent stress

response as functions of ω for Rep = 0.003125, γ0 = 0.4/π, and two different Mason numbers.

Mn/ω is used as a measure of the strength of the external magnetic field. Presented in Fig. 20

are the results obtained for Rep = 0.003125 and two different magnetic flux densities. In these

test-cases with ω = 2π, the Stokes numbers are St = 3.8 and 2.9 for Mn/ω = 0.0062 (s) and

Mn/ω = 0.0045 (s), respectively. By increasing frequency, inertial effects become more significant

and based on the above discussions, |G∗| decreases while Ψ is an increasing function of frequency.

The maximum value for |G∗| and the minimum phase angle are observed for ω ≈ 2π.

As observed in Fig. 20 for ω ≤ 2π, |G∗| is an increasing function of ω, while Ψ is decreasing. In

both Figs. 20a and 20b, the slope gradually decreases by increasing ω. For ω > 2π, inertia causes

a decrease in |G∗| and a sharp increase in the phase angle. The frequency dependent behaviour

of the system is further studied in Fig. 21 that presents the intra-cycle variation of σ′xy and σ′′xy.

The stress response is almost linear for all cases shown in Fig. 21; however, by keeping γ0 = 0.4/π

constant and increasing ω, the stress response becomes slightly non-linear. This nonlinearity is more

significant for a weaker magnetic field. This is due to the fact that for a constant γ0, frequency is

directly proportional to γ̇0, and consequently, hydrodynamic forces are enhanced. This leads to a

larger chain deformation, as discussed later in this paper, and higher nonlinearities.
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Figure 21: The intra-cycle variation of the elastic stress (a,c) and the viscous stress (b,d) obtained for Rep = 0.003125,

and γ0 = 0.4/π. The external magnetic flux density is Mn/ω = 0.0062 (s) for (a) and (b), while for (c) and (d) it is

Mn/ω = 0.0045 (s).
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Figure 22: (a) The apparent elastic modulus and (b) the dynamic viscosity as functions of ω. Results are obtained

for Rep = 0.003125, γ0 = 0.4/π, and two different magnetic flux densities.

It is evident in Fig. 21 that by increasing frequency, the storage modulus increases while dynamic

viscosity decreases for both Mn/ω = 0.0062 (s) and Mn/ω = 0.0045 (s). This is quantitatively

shown in Fig. 22 where G′ and η′ are shown as functions of ω. Here, the results are also shown

for ω > 2π where a dramatic inertial effect leads to a decrease in G′. Nevertheless, as discussed

earlier, the apparent dynamic viscosity is less sensitive to inertia. These results can be compared

with similar behaviour reported in the literature [20, 54] for a magnetorheological fluid under a

dynamic shear load with a rather large amplitude and high frequency.

In Fig. 23, magnetized solid particles are shown forming magnetic chains for the current set of

parameters. In this figure, the configurations of chains are compared for different frequencies with

γ = 0 and γ = γ0, along with the maximum deflection. At the starting of a cycle, magnetic chains

are tilted almost to the same extent for all three frequencies as shown in Fig. 23a. During a cycle

for a constant γ0, the amplitude of the imposed strain rate and consequently, the magnitude of the

hydrodynamic force (mostly viscous force due to a small Rep) are greater for a higher frequency.

Therefore, the magnetic chain is tilted more for ω = 2π in Figs. 23b and 23c. The more the chain

is tilted, the higher the amount of energy stored in the system for a constant external magnetic
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Figure 23: Position of solid particles obtained for Mn/ω = 0.0062 (s), Rep = 0.003125 and γ0 = 0.4/π with (a)

γ = 0, (b) γ ≈ γ0, and (c) once the chain reaches its maximum deflection. Results obtained for ω = 2π are shown

with the lightest circles while darker ones depict the cases with ω = π and π/2, respectively.
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Figure 24: The normalized local chain slope for the four bottom solid particles in a chain at (a) γ ≈ γ0 and (b) the

maximum chain deflection, obtained for Mn/ω = 0.0045 (s) and γ0 = 0.4/π.

field intensity. This leads to a larger storage modulus and a smaller phase angle. Also, a larger

chain tilting and consequently a wider gap result in a reduction in the loss of energy by viscous

dissipation. In Fig. 24, the local chain slope for the four bottom solid particles are shown. By

increasing the frequency, not only the maximum chain slope increases but also s̄ has a smaller

variation from the instant of γ = γ0 to its maximum value. It can be inferred from Fig. 24 that the

chain-like structures keep an almost straight shape during a small amplitude oscillatory shear test.

5. Conclusion

In this paper, the rheological behaviour of a periodic suspension of vertically arranged para-

magnetic solid particles was numerically investigated using oscillatory shear tests at finite Reynolds

numbers. The non-gap-spanning chains of solid particles were formed upon the imposition of an

external magnetic field, and hence, the system behaved like a viscoelastic fluid with the ratio of

elasticity to viscous dissipation being higher than unity, i.e. ωη′ > G′. The results of this work are

summarized in Tables 2 and 3 for cases with a relatively large inertia and a rather strong magnetic

field, respectively. It can also be added that
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Table 2: A summary of results with significant inertial effects.

|G∗| Ψ Apparent G′ Viscous dissipation Chain tilting

Presence of particles ↑ ↑
cte (negligible Rep)

↓ (finite Rep)
↑ —

Increasing inertia ↑ ↑ ↓ ↑ slightly ↓

Strengthening magnetics ↓ ↓ ↑ ↓ ↓

Increasing frequency (constant γ0) slightly ↓ ↑ ↓ ↓ ↑

Table 3: A summary of results for a relatively strong magnetic field.

|G∗| Ψ Elasticity Viscous dissipation Chain tilting

Increasing inertia ↓ ↑ ↓ slightly ↓ ↑

Strengthening magnetics ↑ ↓ ↑ ↑ ↓

Increasing frequency (constant γ0) ↑ ↓ ↑ ↓ ↑

• For a rather small Mason number, the ratio of elasticity to viscous dissipation decreased by

increasing the intensity of the external magnetic field.

• For the current system, the phase-lag imposed by inertia in the movement of solid particles

with respect to the input strain, gradually decreased by increasing the strength of the magnetic

field and ultimately switched to a phase-lead.

• The higher the frequency at a constant shear rate, the stronger the inertial effects.

• For a rather small Stokes number, the system behaved as expected from a viscoelastic system

similar to a spring and a damper in series, i.e. elasticity increased while viscosity decreased

by increasing frequency.

• In all cases, viscous dissipation was a decreasing function of frequency and was only slightly

affected by inertia, while the calculated elasticity was substantially a decreasing function of

inertia.

Conducting similar studies for a wider range of concentration, blockage ratio, magnetic flux density,
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and the Reynolds number, one might be able to define a proper constitutive equation for MR fluids

in the post-yield state.
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Appendix A. Analytical Solution for Pure Newtonian Fluid under Oscillatory Shear

The very first assumption to obtain an analytical solution for problem depicted in Fig. 4, is to

consider a parallel fluid flow. Therefore, velocity vector has a non-zero component in the x-direction,

u = u(y, t), while other components are zero. The Navier-Stokes equation is reduced to

ρ
∂u

∂t
= η0

∂2u

∂y2
. (A.1)

Considering the oscillatory boundary conditions for u,
u = −U0 exp(iωt) y = 0

u = U0 exp(iωt) y = h,

(A.2)

the velocity field can be assumed as

u = f(y) exp(iωt). (A.3)

Substituting Eq. (A.3) into Eq. (A.1) and solving the resulting differential equation for f(y), one

obtains

f(y) = C1 sin(αy) + C2 cos(αy), (A.4)

where α =
√
−(iρω)/η0, C1 = U0(cos(αh) + 1)/ sin(αh), and C2 = −U0. Finally, Eq. (A.4) is

substituted into Eq. (A.3), the real part is adopted and the apparent stress response is calculated

as

τxy = η0
∂u

∂y

∣∣∣∣
y=0

(A.5)

39




