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Abstract

We use Adaptive Weights Smoothing (AWS) of Polzehl and Spokoiny (2000,

2003, 2006) to estimate a map of land values for Berlin, Germany. Our data

are prices of undeveloped land that was transacted between 1996-2009. Even

though the observed land price is an indicator of the respective land value, it is

influenced by transaction noise. The iterative AWS applies piecewise constant

regression to reduce this noise and tests at each location for constancy at the

margin. If not rejected, further observations are included in the local regres-

sion. The estimated land value map conforms overall well with expert-based

land values. Our application suggests that the transparent AWS could prove a

useful tool for researchers and real estate practitioners alike.
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1 Introduction

The scope of flexible, local regression modelling has been greatly expanded in the

past decades, both by computational advances and increased data availability. Non-

parametric kernel regression, in particular, has become a standard tool of applied

statistics and is nowadays implemented in most statistical software packages. Kernel

regression assumes only that the regression function is smooth. Smoothness, how-

ever, is an unattractive assumption in applications where the regression function is

likely to posses jumps or sharp edges. Moreover, smoothness is at the heart of the

well-known ‘curse of dimensionality’: the implied continously changing regression

function makes kernel regression very data-hungry, resulting in the low precision of

kernel estimates in multivariate settings.

Semiparametric regression models, the topic of this special issue of Computa-

tional Statistics, have been developed to overcome the problems associated with

the ‘over-flexibility’ of nonparametric regression. Additive regression models, for in-

stance, impose an additively seperable structure on the regression relation in order

to overcome the curse of dimensionality (Stone 1985). They maintain, however, that

each component function is smooth. Additive models thus are also not suitable for

situations with ‘edgy’ regression functions.

A well-known example of edgy regression is image denoising. From a statistical

perspective, image data can be regarded as a noisy representation of the image of

interest. The underlying image is regarded as the regression function to be recovered

by a suitable estimation method. A challenge for regression modelling of image data

are the specific structural features of images: they are typically composed of several

regions (e.g. organs or tumors in medical images) with pronounced edges. Moreover,

within each region of the image (i.e. the regression function) image values are rather

homogenous. Smooth nonparametric regression is unsuitable in this setting as it

can neither cope with the edges of the regression function nor does it exploit its

local homogeneity. A suitable regression method for this situation was proposed by
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Polzehl and Spokoiny (2000, 2003). They developed Adaptive Weights Smoothing

(AWS) originally in the context of image denoising. In this paper, we demonstrate

that AWS can also be applied to land value estimation, a problem of considerable

interest in economics that shares the main structural features of the image denoising

problem.

AWS, which has been extended into the propagation-separation approach1, re-

places the smoothness assumption of nonparametric kernel regression with the as-

sumption that the unknown regression function is constant or can be at least ap-

proximated by a constant for a set of observations U(xi) around a location xi. AWS

uses an iterative algorithm to determine this set. For each observation i, the algo-

rithm starts with a small neighborhood U0(xi) of locally close observations and uses

these to estimate the local constant. In each step k, the algorithm enlarges the set of

observations for each i and includes all those observations xj into Uk(xi) for which

the hypothesis of local constancy at i and j cannot be rejected. In this situation,

propagation of the set of observations takes place. If, however, local constancy for

observations i and j is rejected, separation takes place. xj does not become member

of Uk(xi). The algorithm stops in step k∗ and the observations in Uk
∗
(xi) are used

for the final estimate of the constant at xi.

AWS has several remarkable properties. First, AWS does not suffer from the

‘curse of dimensionality’, because the dimension of xi plays no role for the iterative

procedure. Second, unlike nonparametric kernel regression, AWS can handle ‘edges’

in the regression function. Third, by successively increasing the bandwidth in the

direction of xi, AWS allows more distant observations to be included in an estimate

at any location as long as this is justified by approximate constancy of the estimate.

The resulting areas of local constancy are completely determined by the data. Areas

with identical values need not be of the same shape, say rectangular or radial (as in

kernel regression), and also do not have to be adjacent.

1See Polzehl and Spokoiny (2006). For simplicity, we nonetheless refer to the approach as AWS
throughout the paper
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We show in this paper that AWS and its properties are well-suited not only

for image denoising but also for our economic application of land value estimation.

Instead of a smudged image, we work with a set of land prices from a city (Berlin,

Germany); instead of pixels, our design points xi are location coordinates; instead

of finding areas with the same contrast, we find areas with approximately constant

land values. There are strong reasons for using AWS in our application. First,

piecewise constancy agrees with the block-wise layout of a city, formed by streets

and transport infrastructure and shaped by planing and zoning regulations. It also

fits with the prediction of the monocentric city model that land should have the same

value at locations with equal travel distance to the central business district. Second,

in most practical situations, fine graduation of land values will not be economically

relevant, making the assumption of approximate local constancy reasonable. Third,

a smooth map of land values could only be estimated imprecisely, as it requires many

local observations, which might not be available.

Land value estimation is an important problem in economics. Knowledge of

a city’s land values is of high interest to both real estate market participants and

urban economists. Market participants need information on land values for purchas-

ing decisions, development decisions, property taxation, and compulsory purchases.

Urban economists have used (expert-based) land values to decompose house price

dynamics (Bostic et al. 2007) and to assess the effect of local (dis)amenities on land

values (Diamond 1980, Ahlfeldt and Maennig 2010).

Indeed, in Germany, information on the real estate market is seen as so important

that expert-based land values (Bodenrichtwerte, BRW) must be published at least

every two years. BRW are assessed by independent surveyors, following detailed

guidelines. They serve as the benchmark for our AWS-based land values in this

paper. Despite being based on detailed guidelines, it is fair to say that BRW rely

heavily on local surveyors’ knowledge and expertise. AWS, on the other hand, is

a transparent statistical approach for the problem of determining jointly areas and

land values. We apply AWS to our data of undeveloped land transacted between
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1996-2009. AWS splits each price into the land value (the expected price) and

transaction noise, which could have occurred during the business dealings. Our

application of AWS to Berlin land prices reveals that the estimated land values are

close overall to BRW. For specific parts of Berlin, however, land values estimated

with AWS and BRW can show different local behavior, particularly if AWS is applied

with a low degree of smoothing or if local circumstances (such as a lake-side location)

demand (favor) expert knowledge. In summary, our paper demonstrates how land

values can be estimated using a transparent statistical procedure. In addition to

academic research, the procedure should be useful for practitioners as it provides a

statistical method to which they can bring their expert knowledge.

The remainder of the paper is organized as follows. In Section 2, we explain the

BRW, which serve as benchmark in our study. In Section 3, we explain AWS in the

context of our application and detail in Section 4 the computational aspects of our

implementation. Section 5 describes the transaction data. Section 6 presents the

results of our empirical analysis. The final section concludes.

2 Expert-based land values

Local surveyor commissions are obliged by the German Building Law (Baugesetz-

buch) to assess land values (Bodenrichtwerte, BRW) at least every two years. The

members of a surveyor commission act on an honorary basis and are independent

from the local administration. The local administration provides support, however,

by collating information on the market and individual transactions.

The surveyors assess BRW with the sales comparison approach using land prices

of comparable lots that were sold recently. Land transactions dating further back

can be considered too once adjusted for the general price trend. Effects of unusual

site conditions on the transaction price should be corrected for. Besides land prices,

other real estate market information should be used too whenever deemed as being

relevant. Such information can include transaction prices of developed land, zoning
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restrictions, and rent levels. In addition to the land value for a location, the surveyors

have also to decide on areas for which BRW are the same. Guidelines provide further

details on how such areas should be found and BRW should be derived (Richtlinie

zur Ermittlung von Bodenrichtwerten).

Figure 1 shows the BRW map for Berlin, the 1 January 2010 is the reference date.

The expert-based land values are therefore effectively for the year 2009, as the map

is based on transaction information up and including this year. Land values within

the first percentile of the value distribution are shown in light grey (bright yellow).

The intensity increases to dark grey (bright red) for land values that fall within

the tenth percentile of the distribution. From this distant view, the dominating

feature of the map is the declining (color) intensity in the outward direction away

from the city center. At the aggregate level, the land value map seems to confirm

the prediction of the monocentric city model that the land value gradient falls with

distance from the city center.2

[Figure 1 about here.]

At close view, however, there is indication that the land value gradient is not

strictly monotone in all directions. Figure 2 shows a detail of the BRW map for

the center of Berlin. BRW areas are indicated by the dashed (red) lines and the

solid (red) lines in case that the areas share borders with special development areas

(Entwicklungsbereiche). Area 1132 in the lower left quadrant of the map detail, for

instance, has a BRW of 2900 EUR per square meter. M1 indicates that this area

is developed densely for commercial use mainly. Within area 1132, there are also

areas with a higher BRW, such as the Gendarmenmarkt square in area 1335.

[Figure 2 about here.]

The detail reveals even better than Figure 1 that the BRW map consists of areas

with identical land values and that the areas have sharp boundaries. Even between

2Fitting a third degree polynomial for the distance to the CBD gives such a decreasing function
with an R2 = 0.2345.
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adjacent areas, BRW can vary substantially. At the same time, BRW can be the

same in areas that are disconnected. Any statistical estimator of land values should

be able to mimic this behavior. We now explain that AWS is such an estimator.

3 Adaptive Weights Smoothing

We consider the nonparametric regression model

yi = θ(xi) + εi (1)

for our application of land value estimation. yi is the log land price per sqm of a

site with location coordinates xi = [x1i, x2i]. θ(xi) is the log land value at xi and

εi ∼ N(0, σ2) is independent of xi.
3 As discussed in Section 1, it is reasonable to

assume that land values can be the same at different locations, whereby the locations

do not have to be adjacent. We denote with U(xi) the set of locations where the

log land value is θ(xi). If we knew the set U(xi), it would be straightforward to

estimate θ(xi). On the other hand, if we knew θ(xi) for all observations, then it

would be straightforward to determine the set U(xi).

In an iterative procedure AWS identifies, for each location xi, such sets of ob-

servations and uses the kernel estimator

θ̂i ≡ θ̂ (xi) =

∑n
j=1wijyj∑n
j=1wij

. (2)

to estimate θ (xi). The weights are

wij = K1 (distij)×K2 (levij) . (3)

3Scatterplots of the estimated AWS land values, θ̂(xi), against the land prices, yi, (not reported)
as well as kernel density estimates of the estimated AWS residuals, ε̂i, (not reported) indicate
that the assumption of normally distributed and homoscedastic (log) land prices is approximately
satisified in our application below.
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The kernel functions K1(u) and K2(u) work on a positive argument u, are strictly

positive and non-increasing on the support [0, 1] and zero otherwise. Examples are

the uniform kernel function K(u) = I(u ∈ [0, 1]), which is constant on the support

and the triangular kernel function K(u) = (1 − u)I(u ∈ [0, 1]), which is decreasing

on the support. The arguments in the kernel functions in Eq. 3 are the distance

measure for the locations i and j scaled by bandwidth h

distij ≡
ρ(xi,xj)

h
(4)

and the test statistic for a constant local level of land values scaled by its critical

value

levij ≡
Tij
λ

. (5)

While the role of the first kernel in Eq. 3 should be clear to readers familiar with

nonparametric regression, the role of the second kernel needs motivation. This is

best done by going through the first two iterative steps of AWS, where the second

kernel becomes relevant after the initial step and plays a role at the extensive and

the intensive margin of weighting.

In the initial estimation step, k = 0, lev0ij = 0 for all i, j, so that K(lev0ij) = 1.

The bandwidth h0 is set very small, leading to a small set U0(xi). The observations

in this set are spatially close to xi and we can be confident that their land values

are approximately the same. Using Eq. 2, we estimate

θ̂0i =

∑n
j=1w

0
ijyj∑n

j=1w
0
ij

(6)

with weights

w0
ij = K1

(
dist0ij

)
. (7)

Eq. 6 is the conventional Nadaraya-Watson kernel estimator of θ(xi). Because only

few spatially close observations are used, θ̂0i will be a very local estimate of θ(xi).

It might be that the initial bandwidth is too small and that the estimate could be
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improved by increasing the bandwidth to h1 > h0, thereby increasing the number of

observations used to estimate θ(xi). Increasing the bandwidth has the well-known

effect of reducing the variability of the estimates, but may introduce bias. This will

not occur if those observations in the now enlarged neighborhood can be identified

that have the same land value as observation i. In this case, the larger bandwidth

leads to variance reduction, because more observations are used to estimate the land

value without introducing bias.

It is therefore crucial to test if θ(xj) is the same as θ(xi). To understand how

this is implemented in AWS, suppose we used initially the most local version of the

estimator in Eq. 6 by setting h0 so small that only observation i would be used.

The land value estimate would be θ̂0i = yi. Increasing the bandwidth to h1 > h0

would imply that more observations become available that could be used for the

estimation of θ(xi). For each such observation j, we had to decide if we should

include the observation into U1(xi). Obviously, we should do this only if the land

values are the same at both locations and

H0 : θ(xi) = θ(xj) (8)

is true. Given the model from Eq. 1, the null hypothesis implies θ̂0i − θ̂0j = yi− yj =

εi − εj and θ̂0i − θ̂0j
H0∼ N(0, 2σ2). We can therefore construct the test statistic

θ̂0i − θ̂0j√
2σ2

H0∼ N(0, 1) ⇒ T 1
ij ≡

(
θ̂0i − θ̂0j√

2σ2

)2
H0∼ χ2

1 . (9)

If we knew σ2, we could compute T 1
ij and compare it with the critical value λ of the

χ2
1 distribution at some significance level α. Whenever T 1

ijλ
−1 = lev1ij < 1, we could

not reject the null hypothesis in Eq. 8 at significance level α and K2(lev
1
ij) > 0. The

observation with location xj should become member of U1(xi) and yj should be

used for the estimation of θ(xi). If, on the other hand, lev1ij > 1, then observation

j should not become member of U1(xi) and yj should not be used to estimate θ(xi)
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and K2(lev
1
ij) = 0. The treatment of the borderline case lev1ij = 1 depends on the

chosen kernel function and could lead to the in- or exclusion of observation j.

We see that K2(lev
1
ij) works at the extensive margin by indicating whether obser-

vation j should be included in U1(xi) or not. But K2(lev
1
ij) plays also a role at the

intensive margin as long as K ′2(u) < 0. For observations in U1(xi), the magnitude

of K2(lev
1
ij) is then inversely related to the magnitude of lev1ij . If we now consider

the weights from Eq. 3 for step k = 1

w1
ij = K1

(
dist1ij

)
×K2

(
lev1ij

)
, (10)

we see that the weight of observation yj in the average formed at i is determined

by both kernel functions. The first kernel plays the same role as in conventional

nonparametric regression. It will allocate more weight to observation j the closer xj

is to xi. In step k = 1, the distance penalty is relaxed because a larger bandwidth h1

is employed than in the initial step. Hence, more observations are used for θ̂1i . The

second kernel controls that this does not introduce bias. At the extensive margin,

only those observations receive a nonzero weight for which the assumption of local

constancy is not rejected. At the intensive margin, the included observations receive

a higher weight the more likely it is that they fit with the null hypothesis.

Comparing the weights from Eqs. 7 and 10 reveals how AWS differs from and

improves upon conventional kernel smoothing. Introducing a second kernel function,

which kicks in at iteration k = 1, makes AWS ‘structurally adaptive’. It incorporates

information about the local properties of the regression function from the previous

iterative step. If there is evidence for local constancy, then increasing the bandwidth

h is beneficial (‘propagation’) as the constant land value will be estimated with more

land price observations. If, however, the previous step estimates θ̂0i and θ̂0j differ con-

siderably, then T 1
ij will be large relative to λ and local homogeneity will be rejected

and K2(lev
1
ij) will assign a zero weight to observation j (‘separation’). Successive

estimation and testing are thus intertwined to improve estimation precision and to
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identify the set of locations where land values are the same.

In the motivation just given, we made several simplifying assumptions that need

qualification. First, we assumed that the initial bandwidth is set so small that

only observation yi is considered. This will lead to a very imprecise initial estimate

of θ(xi). As a consequence, AWS starts with a small bandwidth, but one that is

typically large enough to allow computation of θ̂0i at most locations with more than

one observation. The test statistic becomes

T 1
ij = A0

i

(
θ̂0i − θ̂0j√

2σ̂2

)2

, (11)

where A0
i =

∑n
j=1w

0
ij , i.e., the sum of the weights at i from step 0, which can be

regarded as the ‘local sample size’.4 Second, AWS is an iterative algorithm and the

distributional assumption regarding T kij will only hold in the first iteration, k = 1.

We summarize the iterative AWS algorithm. In step 0, θ̂0i is estimated for each

location with an observation using a Nadaraya-Watson kernel estimator using a

small bandwidth h0. The estimated land values are used to compute the pairwise

terms lev0ij . In step 1, the bandwidth is increased to h1. More observations are now

available for the estimation of θ(xi). However, some observations will have markedly

different land values from θ(xi) and should not be used. The estimator from Eq. 2

controls for this via the second kernel. Observations with land values similar to θ(xi)

will receive positive weight in the estimator θ̂1i , those with markedly different values

will receive no weight at all. The estimated land values θ̂1i are used to compute the

pairwise terms lev1ij . In step 2, the bandwidth is increased to h2 and so on. The

procedure terminates in step k∗, when the bandwidth reaches the threshold h∗.

4Obviously, if only the observation itself was used in step 0, A0
i = 1, and Eq. 11 becomes Eq. 9.
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4 Implementation

For our application, we use the R-package: Adaptive weights smoothing (Polzehl

2014). We work on a grid of bins instead of the individual site location to increase

the computational speed. In our preferred implementation, bins have the size of

152 × 152 meters, which is smaller than the average BRW area. Combinations of

adjacent bins therefore have the potential to recombine into BRW areas. Given that

Berlin covers an area of 891 km2, with 45 km distance from west to east and 38 km

from south to north, this leads to a grid of 300× 300 = 90, 000 equally-sized bins.

Within each bin, we average the log transaction prices pj,i. These bin-averages

become the dependent variable yi. Binning smoothes the transaction data and

increases computational speed with only small cost to accuracy (Fan and Marron

1994). For instance, given our choice of k∗, the algorithm takes about 14 minutes of

CPU time on the preferred grid. On a 500 × 500 grid, the algorithm takes already

about 29 minutes to run. The algorithm would take much longer if the individual

transaction data were used instead. Visual inspection of the land values estimated

on the 500 × 500 and the 300 × 300 grids show no discernable differences. A grid

coarser than 300 × 300 speeds up the computation further, but differences in the

estimated land value maps become discernable.

Given the grid structure of our data, the location coordinates are integers and

indicate the row and column position of bin i in the grid. Therefore, xi = [ri, ci] with

r, c ∈ {1, . . . , 300}. Correspondingly, the bandwidth h is an integer. To measure the

distance between observations in Eq. 4, we use the Manhattan distance

ρ(xi,xj) = |ri − rj |+ |ci − cj | . (12)

We use the triangular kernel function on the positive semi-axis

K(u) = (1− u)I(u ∈ [0, 1]) (13)
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for both K1(u) and K2(u). We have experimented also with other kernel functions,

but the choice was negligible for the results.

To motivate what these choices imply, we use Figure 3 and focus on bin i = 25

in the center. For h = 2, we have ρ(x25,x25) = 0, ρ(x25,x24) = ρ(x25,x26) = 1

and ρ(x25,x27) = 2. The scaled distance measures are dist25,25 = 0, dist25,24 =

dist25,26 = 0.5 and bins further to the left or right have a distance measure of at

least one. This implies that the distance kernel gives y25 the most weight, y24 and

y26 lesser weight and, for instance, y27 no weight at all.

[Figure 3 about here.]

We estimate the variance for the level penalty term in Eq. 11 with

σ̂2 =
1

N

N∑
i=1

 1

ni − 1

ni∑
j=1

(pj,i − yi)2
 . (14)

Only bins i with at least two transaction prices pj,i are relevant for this average over

estimated within-bin variances. N is the total number of such bins.

The crucial smoothing parameter of AWS is λ, which can be viewed as the ‘band-

width’ in the level direction. Choosing λ too high will lead to a loss of sensitivity to

changes in the land value map. Choosing λ too low will result in forgoing the benefits

of extending the number of observations that can be used to estimate the local land

value. This trade-off is akin to the familiar bias-variance trade-off of non-adaptive,

conventional nonparametric regression. In the latter case, the desirable properties

of data-driven smoothing parameter selectors such as cross-validation have been

established. However, working out such a theory for the adaptive, iterative AWS

procedure is very challenging and has not yet been accomplished.

While there is no established data-driven method for choosing λ, Polzehl and

Spokoiny (2006, 2008) have proposed an approach to arrive at a suitable, objective

value. This approach is based on the observation that the level penalty of AWS can
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be viewed as a test statistic, T kij , with λ acting as the critical value (see Eqs. 9 and

11 above). For T kij > λ, the null hypothesis of local homogeneity is rejected and

yj should not be used to estimate θ(xi). If the null hypothesis is true, then this

amounts to a type-I error: an artificial ‘edge’ has been detected when there should

have been propagation. Hence, one may choose λ such that the probability of a

type-I error is sufficiently small. This suggests to choose λ as the 1−α percentile

of the χ2
1−distribution.5 Due to the multiple testing of the null hypothesis in each

iteration step, at every design point, however, α does not equal the probability of

a type-I error. Thus, no unique, well-defined choice for λ can be made within this

approach.

To arrive at a unique value of λ, Polzehl and Spokoiny (2006, 2008) have sug-

gested to consider the following extreme situation: the case where θ(xi) = θ, i.e.

the regression function is globally homogenous. In this hypothetical situation, the

null hypothesis of homogeneity holds everywhere and the AWS algorithm should

continue to propagate in each iteration step such that it arrives at the global model

in the final iteration step k∗ at all design points. Obviously, this can be achieved

by choosing λ → ∞. To arrive at a sensible value of λ, Polzehl and Spokoiny thus

propose to choose the smallest value of λ such that the algorithm will, with a high

probability, continue to propagate everywhere in the case of the globally constant

model. We will refer to this smallest value of λ satisfying the propagation condition

as λ∗.

Since the hypothetical situation of a globally constant regression model is con-

sidered, λ∗ must be found by Monte Carlo simulation. We follow the simulation

design proposed by Becker (2014) and Becker and Mathé (2013) and adapt it to our

context. We maintain the assumption that the errors of the regression model are

normally distributed and homoscedastic. The variance used to simulate the data

equals the conditional variance estimate obtained from our transactions data using

5While the exact sampling distribution of T k
ij can only be derived in iteration step k = 1 if

the bandwidth h0 is very small, the χ2
1−distribution may still be a good approximation in every

iteration step k under the assumptions of normally distributed, homoscedastic errors.
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Eq. 14. Becker (2014) and Becker and Mathé (2013) have shown that in our case of

Gaussian regression, λ∗ does not depend on the value of θ. We thus set θ(xi) = θ = 0,

for simplicity. We simulate data for this normal regression with constant mean and

fixed variance on a quadratic grid of 100× 100 points. This is close to the number

of bins for which we observe land transactions and is exactly a third of the grid used

in our application. The bandwidth for the location penalty is set to 45. This is a

third of the bandwidth h∗ = 135 in our actual application, see Section 6 below.

The definition of λ∗ requires to specify the desired level at which one safeguards

against not propagating everywhere at the end of the iteration process in the case

of the globally constant model. In the formulation of Becker (2014) and Becker

and Mathé (2013), this ‘propagation level’ ε can be interpreted as the expected

probability that AWS (erroneously) separates in the homogenous situation θ(xi) =

θ = 0. We set ε = 0.0005. Given ε, Becker (2014) and Becker and Mathé (2013)

provide a sufficient condition for checking whether a candidate value of λ is meeting

the desired propagation level.6 λ∗ is then found as the smallest value of λ meeting

this requirement for the simulated data.

5 Data

The transaction data comes from Berlin’s surveyor commission (Gutachterausschuss

für Grundstückswerte, GAA). The GAA is entitled by law to request and collect

information on all real estate transactions occurring in Berlin. The data has 24,519

observations and covers arms-length transactions of undeveloped land during the

years 1996-2009. For each observation, information is provided on the transaction

price per square meter (sqm), geo-coordinates, unusual features of the site, and

information on aspects of the business dealings. The BRW map shown in Figure

6The condition involves the probability that the Kullback Leibler divergence between the adap-
tive AWS estimate and the globally constant θ is bounded and that the bound does not increase
in the iteration process for a given propagation level ε. Becker and Mathé (2013) also propose a
method for estimating this probability from the simulated data.
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1 is based on these land transactions, but the GAA surveyors will have considered

also other real estate market information. We have therefore only a subset of the

information that was available to the surveyors. Figure 4 shows the locations of the

transacted sites.

[Figure 4 about here]

Most transactions of undeveloped land took place in the residential areas at the

outskirts of the city. Less transactions of undeveloped land took place in the densely

developed city center.

Table 1 presents summary statistics for the transaction data. The land prices

are in real terms and adjusted for unusual features of the site and unusual aspects

of the business dealing. Unusual features of the site include physical aspects such as

structural damage or flooding risk and legal aspects such as rights of way or use for

pipes or cables. Such easements are rather common. Unusual aspects of business

transaction include price rebates, installment payment, and investment obligations.

The Appendix explains the adjustments. We could match 23,950 transactions with

their BRW using the geo-coordinates. For the remaining 569 transactions, the GAA

did not compute a BRW, perhaps because of restrictions on land use or land disposal.

[Table 1 about here]

Land prices and the corresponding BRW show substantial variation, both at the

natural and the log scale, as indicated by their standard deviations. The average

levels of land prices and BRW are quite similar, indicating that our adjustments for

the general price trend and unusual aspects is in line with adjustments done by the

GAA surveyors.

[Figure 5 about here]
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Applying the 300× 300 grid to the transaction data, 7,448 bins end up with trans-

actions, of which 2,924 bins contain exactly one transaction. On average, the filled

bins contain 3.29 land transactions. Figure 5 shows a map with the non-empty land

price bins and as backdrop the map of expert-based log land values. The more sati-

ated a bin, the higher is yi. Inspection reveals that in some areas land prices yi are

similar to surrounding expert-based land values, but in others they are not. As to

be expected, the expert-based land values are smoother than the raw land prices,

see Figure 6.

[Figure 6 about here]

If we apply the same grid to the expert-based land values, we obtain 21,842 non-

empty bins. Denoting with BRWi the bin-average of the log expert-based land

values, we observe this variable for 7,222 of the 7,448 bins with land transactions.

Table 2 presents summary statistics for the binned data conditional on the bin

containing at least one transaction.

[Table 2 about here]

Binning corrects for the fact that we observe relatively more transactions in the

lower-priced residential than the higher-priced central areas of the city. This ex-

plains why binned land prices and binned BRW are higher on average and show

larger variation than the observations at the level of individual transactions, see the

relevant statistics in Tables 1 and 2.

6 Results

We start by motivating the numerical values of the two smoothing parameters, h

and λ, employed in our AWS application. We set the initial bandwidth h0 = 2.

A smaller bandwidth corresponds to yi and therefore an imprecise estimate of θ̂0.
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Even our initial bandwidth choice leads to a jaggy land value map. The iterative

algorithm stops when the location bandwidth reaches h∗ = 135.7 This corresponds

to a radius of 20,520 meters.

To assess if AWS can reproduce the BRW values, we estimate the land values

for an array of different λ values. We choose critical values of the χ2
1−distribution

for this array. The critical values correspond to the 1−α percentiles of the χ2
1-

distribution with α0 = 0.05 and 1−αp = 0.051.125k for p = 1 . . . 6. As we discussed

in Section 3, the test statistic in iteration step k = 1 will follow the χ2
1-distribution

under the null hypothesis if h0 is very small. Even though our initial bandwidth is

slightly larger, Figure 7 shows that T 1
ij follows the χ2

1-distribution fairly.

[Figure 7 about here]

Although this distributional result is unlikely to hold in later steps of the algorithm,

we feel that our choice of λ is less arbitrary than others. To further safeguard against

separation in homogenous regions, we estimate also the land values using λ∗ = 19.9

which has been chosen with the simulation explained in Section 4.

We begin our discussion of the AWS results by showing in Figure 8 the estimated

Berlin-wide land value map for λ∗. As our AWS procedure works on a bin grid, the

estimated land values are visualized by framed bins. For coloring the bins in Figure

8 we employ the same scheme as in the BRW map of Figure 1.

[Figure 8 about here]

Comparing both maps shows that that the AWS bins in Figure 8 only cover a part of

the continuously shaded BRW areas of Figure 1. In view of the map of transactions

in Figure 4, it becomes clear that the expert-based BRW map involves a substantial

amount of extrapolation as there were no transactions in the areas not covered by

7We use the sequence h = {1, 2, 3, 4, 5, 7, 9, 11, 14, 18, 22, 28, 35, 44, 55, 69, 86, 108, 135} to increase
hk in the k∗ = 19 iteration steps.
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one of the AWS bins. Moreover, the comparison of the BRW and AWS maps shows

that both approaches agree fairly well in terms of their spatial color patterns. Hence,

at least for λ∗, the estimated log-land values based on AWS appear to correspond

quite closely to their expert-based benchmark.

Both the differences of AWS and BRW in terms of their spatial coverage as

well as their general agreement in log-land values is summarized in Figure 9 where

both maps have been superimposed (rectangular AWS bins are in the foreground,

continuously shaded BRW areas in the background).

[Figure 9 about here]

In order to investigate the dependency of the AWS land values on λ, particularly

the (dis-)agreement between AWS and BRW land values, we run a series of bivariate

least-squares regressions. The dependent variable in each regression is the AWS land

value obtained for a given value of λ.

We start by regressing the AWS land values on the land prices yi. The resulting

coefficients of determination, R2, is reported in the ‘Land price’ row of Table 3. We

find that the in-sample fit is fairly good for all values of λ. Moreover, the R2s from

these regressions show the expected pattern: more smoothing (i.e. a larger value

of λ) leads to a worse in-sample fit. While these results suggest that AWS delivers

sensible results for a range of values of λ, they can not give an answer about which

value of λ to prefer.

[Table 3 about here]

We therefore run a second set of regressions, where we regress the AWS land

values on the corresponding bin averages of the expert-based land value, i.e. the

BRWi. The R2s of these regression are reported in the row ‘BRW’ of Table 3.

There is generally good agreement between the AWS and BRW land values for all

considered values of λ. Though, the R2 values show an inverse U-shape pattern:
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they initially increase but eventually decrease for successively higher values of λ.

The strongest agreement occurs at λ = 23.284 (R2 = 0.783). For our favoured

λ∗, the coefficient of determination is only slightly smaller. While this exercise is

not the equivalent of independent out-of sample evidence, the observed pattern still

suggests that the simulation based method delivers a reasonable choice of λ. That

is, if we regard the expert-based BRW as a benchmark, λ∗ offers a good-compromise

between over– and under-smoothing for our data.

While Table 3 collects some evidence on the impact of λ at the global level, its

influence on the AWS procedure is also noticeable at a more local level. This is

illustrated in Figure 10 which shows AWS results for a particular area of the city

that roughly corresponds to the Rudow and Alt-Glienicke localities of the boroughs

of Neukölln and Treptow (to locate this area within the Berlin-map it is marked by

a rectangle in Figure 9). The estimates in the upper panel are based on λ∗ while

the lower panel shows results for the considerably smaller λ = 3.8415.8

[Figure 10 about here]

In the upper panel, it can be seen that with λ∗ AWS identifies three distinct areas

of homogenous land values marked by dashed ellipsoids. While roughly these three

areas are also visible in the lower panel, the AWS estimates for the small value of

λ show considerably more variation in the levels of land values and in the shapes of

locally homogenous areas. In the light of the discussion in the previous paragraph,

where λ∗ was found to overall deliver a good agreement between AWS and BRW land

values, Figure 10 suggests that the surveyors appear to implicitly apply a relatively

high degree of smoothing when judging differences in land values at different locales

rather than aiming at a very detailed map that AWS delivers for small λ.

Finally, in Figure 11 we consider the local degree of (dis-)agreement between the

estimated AWS land values (shown in the upper panel) and the BRWi land values

8λ = 3.8415 corresponds to the 5% percentile of the χ2
1−distribution.
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(shown in the lower panel). The depicted area is again the locality defined by the

black rectangular in Figure 9. The AWS land values are estimated using our favored

λ∗.

[Figure 11 about here]

It is apparent that the AWS land values divide the locality into roughly the same

three areas of local homogeneity (indicated by the encircled areas) as the BRWi. At

the very local level, however, the BRWi bring the surveyors’ expert-knowledge to

fore. For instance, the BRWi close to the river ‘Dahme’ (indicated by the arrows)

are significantly higher than the corresponding AWS land values which imply an

area of local homogeneity across the river banks. It is clear, that at this micro-level,

the surveyors have a knowledge advantage, as compared to the data-driven AWS

algorithm which must rely on the globally set λ∗.

7 Conclusions

In this paper, we applied adaptive weights smoothing (AWS) to a problem of sub-

stantial economic relevance, estimation of the contour map of land values of a city.

Using AWS has several advantages over standard nonparametric regression. It allows

the size and shape of areas with a common land value to be completely determined

by the data. As illustrated by our application, these areas need not be symmetric

or adhere to a particular shape. Moreover, unlike kernel regression, AWS does not

require the land value map to be smooth. AWS identifies these areas by relaxing the

distance penalty in successive iterations and implicitly testing for local constancy of

land values. As long as the land values are sufficiently similar, relaxing the distance

penalty is justified and adjacent areas are subsumed into one.

Our application to the Berlin market revealed that estimated land value maps

based on AWS generally agree fairly well with the benchmark of expert-based land
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values (BRW). This is paricularly true if AWS’ crucial smoothing parameter is cho-

sen by the simulation based method based on the propagation condition. We also

find, though, that land values estimated with AWS and BRW can show different

local behavior, for instance if local circumstances (such as a lake-side location) favor

expert knowledge. However, such expert-knowledge may contain subjective judge-

ment or may be unvailable altogether. Our paper demonstrates that AWS, on the

other hand, is a transparent statistical procedure. It delivers in our application land

values that should at least provide a sound basis for academic research. They may

also be useful for practitioners as a statistical basis to which they can bring their

expert knowledge

In future research, we will enlarge our land data by including house and con-

dominium prices purged of the building component as in Bryan and Satre (2009).

This will increase our data set to about 250,000 observations. The larger data set

will allow us to fill gaps in the current AWS land value map. Remaining gaps for

residential land (developed or undeveloped) will then be interpolated.
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A Appendix

We adjust the land prices as follows. First, we run the regression

pj,t = djα + xjβ + zjγ + εj,t , (A1)
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where pj,t is the log price of site j transacted in quarter t. The column vector dj has

T elements: the first element for the overall constant is one, the period t element

is one if site j was transacted in this period, zero otherwise. 1996Q1 is the omitted

reference period. The vector xj contains binary indicators for unusual features of

the site and for unusual aspects of the business dealings. The vector zj contains

binary indicators for Berlin’s 96 administrative sub-districts (Ortsteile). The site

will be located in one of these sub-districts. The vector zj also contains a binary

indicator for site location adjacent to a lake or the bank of a river. Finally, the vector

contains binary indicators for site’s location rating. This rating comes from Berlin’s

Senate Department for Urban Development and rates the natural amenities, the

quality of existing buildings, and access to public transport and shopping facilities

within. The rating for a site takes one of four values: low, medium, high, very high.

The variables in zj control crudely for location effects. Without the inclusion, the

estimates of α and β may suffer from omitted variable bias. Table A1 presents

least squares estimates of the model in Eq. A1. The in-sample fit, as measured

by the R2, is reasonably good. Except for the coefficient for ground monument, all

coefficients are statistically significant at the 5% significance level. The signs of the

point estimates, as well as their magnitude, are plausible.

[Table A1 about here]

Second, given the coefficient estimates, we compute the adjusted log real land

price as

pj = pj,t − (dj − db)α̂− xj,tβ̂ . (A2)

The first entry of db is one, the entries for the four quarters of the year 2009 are

0.25 each, the remainig entries are zero. The term in brackets in Eq. A2 converts

prices to the base year 2009. The estimated value of zjγ is not considered for pj ,

because it enters Eq. A1 only to prevent bias. The resulting pj is in real terms and

adjusted for unusual circumstances of the site. Using it in our analysis puts us on an

equal footing with the land price information used by local surveyors to produce the
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BRW. The summary statistics for prices in natural scale in Table 1 are computed

using Pj = exp
{
pj + 0.5σ̂2ε

}
, where σ̂2ε is the estimated variance of the error term in

Eq. A1 (Kennedy 1983).
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Table 1: Summary statistics for transacted land. Number of observations is 24,519.

BRW information is available for 23,950 of these observations. Land prices are adjusted for

unusual features of the site and unusual aspects of the business dealing. Land price and

BRW are in real (year 2009) Euro. Discrete characteristics are in percent. Other unusual

aspects of business transaction include price rebates, installment payment, and investment

obligations. Expert-based location rating comes from Berlin’s Senate Department for Urban

Development.

Mean Median Std. Dev.
Land price per sqm

Natural scale 182.65 117.24 416.45
Log scale 4.774 4.667 0.647

Expert-based land value per sqm (BRW)
Natural scale 190.65 110.00 407.69
Log scale 4.943 4.701 0.590

Unusual features of the lot
Ground monument 0.009
Contaminated soil 0.030
Demolished structure 0.350
Land easement 0.211

Aspects of business dealing
Non-private seller 0.352
Non-private buyer 0.179
Infrastructure charge 0.418
Other unusual aspects 0.098

Amenities and expert-based location rating
Lake side 0.025
Low quality 0.417
Medium quality 0.458
High quality 0.114
Very high quality 0.009
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Table 2: Summary statistics for binned data. Reports summary statistics for land

prices and BRW at the bin level, conditional on the bin covering at least one transaction.

Of the 7,448 bins fulfilling this criterion, 7,222 have also BRW information.

Mean Median Std. Dev.
Land price per sqm

Natural scale 225.66 126.63 545.97
Log scale 4.880 4.727 0.736

Expert-based land value per sqm (BRW)
Natural scale 240.03 140.00 562.55
Log scale 5.085 4.942 0.683
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Table 3: Explanatory power. Reports coefficient of determination R2 for bivariate

regressions of BRWi and land prices yi on AWS land values θ̂i. Regressions include a

constant. Number of observations used for regressions in first row is 7,222 and 7,448 for

regressions in second row.

λ∗ λ
19.9 3.8415 4.4756 10.5180 16.8410 23.2840 29.7938 36.346

BRW 0.7747 0.7274 0.7390 0.7640 0.7720 0.7828 0.7733 0.7690
Land price 0.6992 0.8661 0.8526 0.7734 0.7195 0.6764 0.6525 0.6418
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Table A1: Parameter estimates for land price adjustment model. Reports OLS

estimates of the parameters in Eq. A1. Dependent variable is log price per sqm of undevel-

oped land. Regression uses 24,519 observations. Expert-based location rating comes from

Berlin’s Senate Department for Urban Development. Reference category is low location

quality. Sub-district dummies, quarterly time dummies and overall constant are included,

but estimated coefficients are not reported. Heteroscedasticity robust standard errors are

reported in brackets. ** significant at 1%-level * significant at 5%-level.

Ground monument -0.104 [0.056]
Contaminated soil -0.120∗∗ [0.033]
Demolished structure 0.030∗∗ [0.006]
Land easement -0.113∗∗ [0.008]
Recoupment charge 0.082∗∗ [0.007]
Non-private buyer 0.098∗∗ [0.011]
Non-private seller -0.075∗∗ [0.008]
Other unusual circumstances 0.063∗∗ [0.016]
Lake side 0.212∗∗ [0.024]
Medium location quality 0.067∗∗ [0.009]
High location quality 0.191∗∗ [0.015]
Very high location quality 0.246∗∗ [0.095]
σ̂2
ε 0.194
R2 0.581
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Figure 2: Detail of expert-based land value (BRW) map. Shows central business

district including the boulevard Unter den Linden, the Museumsinsel, and the Alexander-

platz. Reference date for map is 1 January 2010. Source: Geoportal Berlin/Bodenrichtwerte

01.01.2010.
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Figure 3: Distance weighting of observations in AWS estimator. Illustrates scaled

Manhattan distance and Kernel weight for bandwidth h0 = 2. We want to compute θ(x25)

for the dark red shaded bin 25 in the center. Scaled distance for this bin is zero and y25
receives the highest distance weight in θ̂025. The light red shaded bins have a scaled distance

of 0.5 to the reference bin. Prices yj from these bins receive less weight in θ̂025. The scaled

distance of the light yellow shaded bins is 1. These bins (as those further away) are not

considered in θ̂025.

33



G
re

e
n
 S

p
a
ce

s

W
a
te

r

O
b

se
rv

a
ti

o
n

F
ig

u
re

4
:

L
o
c
a
ti

o
n

o
f

tr
a
n

sa
c
te

d
si

te
s

w
it

h
in

B
e
rl

in
.

S
h

ow
s

th
e

lo
ca

ti
o
n

o
f

2
4
,5

1
9

u
n

d
ev

el
o
p

ed
si

te
s

th
a
t

h
av

e
b

ee
n

tr
a
n

sa
ct

ed

b
et

w
ee

n
19

96
to

20
09

.
S

ol
id

li
n

es
re

p
re

se
n
t

th
e

b
o
rd

er
s

o
f

B
er

li
n

’s
1
2

a
d

m
in

is
tr

a
ti

ve
d

is
tr

ic
ts

(a
s

o
f

th
e

ye
a
r

2
0
0
0
).

.

34



G
re

e
n
 S

p
a
ce

s

W
a
te

r

3
.2

4
5

3
7

.3
3

8
6B

in
n
e
d

 /
 B

R
W

 L
a
n
d

 V
a
lu

e
s 

(l
o
g

)

F
ig

u
re

5
:

L
a
n

d
p

ri
c
e

b
in

s
fo

r
B

e
rl

in
.

S
h

ow
s

th
e

7
,4

4
8

n
o
n

-e
m

p
ty

b
in

s
w

it
h
y i

,
i.

e.
,

th
e

lo
g

la
n

d
p

ri
ce

s
av

er
a
g
ed

b
y

b
in

.
B

a
ck

d
ro

p
is

ex
p

er
t-

b
as

ed
la

n
d

va
lu

e
m

ap
.

35



Figure 6: Detail of raw land prices and BRW land values. Upper panel shows bins

with raw land prices. Lower panel shows bin average of BRW land values.
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Figure 7: Kernel density estimate of realizations of the test statistic. Shows kernel

density estimate of realizations of test statistic in iteration k = 1. Bandwidth is computed

according to Silverman’s rule of thumb. Shaded area is 95% pointwise confidence interval.

Dashed curve is χ2-density with 1 degree of freedoms. Number of observations is 16,022.
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Figure 10: Detail of AWS land values for different λ values. Upper panel sets level

bandwidth to λ∗ = 19.9. Lower panel sets level bandwidth to λ = 3.8415.
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Figure 11: Detail of AWS land values and BRW land values. Upper panel shows

estimated AWS land values. Level bandwidth is set to λ∗ = 19.9. Lower panel shows bin

average of BRW land values.
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