B emerald International Journal of Numerical Methods for Heat and
: PUBLISHING Fluid Flow

A comparative study of explicit high-resolution schemes for
compositional simulations

Journal: | International Journal of Numerical Methods for Heat and Fluid Flow

Manuscript ID | HFF-08-2017-0333.R1

Manuscript Type: | Research Article

compositional, porous media, conservation laws, MUSCL, WENO, wave

LR structure

Note: The following files were submitted by the author for peer review, but cannot be converted to
PDF. You must view these files (e.g. movies) online.

Paper.tex




2

©CoO~NOUTA,WNPE

A comparative study of explicit high-resolution schemes for
compositional simulations

October 31, 2017

Abstract

Purpose- In this paper, compositional flow of two- and three-phase fluids in one dimensional
porous media is studied numerically and a comparison is made between several upwind and central
numerical schemes.

Design/methodology/approach- Implicit Pressure Explicit Composition (IMPEC) procedure
is used for discretization of governing equations. The pressure equation is solved implicitly while
the mass conservation equations are solved explicitly using different Upwind (UPW) and Central
(CEN) numerical schemes. These include Classical Upwind (UPW-CLS), Flux-based Decompo-
sition Upwind (UPW-FLX), Variable-based Decomposition Upwind (UPW-VAR), Roe’s Upwind
(UPW-ROE), Local Lax Friedrichs (CEN-LLF), Dominant Wave (CEN-DW), Harten-Lax-van Leer
(HLL), and newly proposed Modified Dominant Wave (CEN-MDW) schemes. To achieve higher
resolution, high-order data generated by either MUSCL or WENO reconstructions are utilized.

Findings- It was found that the new CEN-MDW scheme can accurately solve multiphase compo-
sitional flow equations. This scheme utilizes most of the information in flux function while it has a
moderate computational cost as a consequence of using simple algebraic formula for the wave speed
approximation. Moreover, numerically calculated wave structure is shown to be used as a tool for a
priori estimation of problematic regions, i.e., degenerate, umbilic, and elliptic points, which require
to apply correction procedures to produce physically acceptable (entropy) solutions.

Research limitations/implications- This paper is concerned with one-dimensional study of
compositional two- and three-phase flows in porous media. Temperature is assumed constant and
the physical model accounts for miscibility and compressibility of fluids while gravity and capillary
effects are neglected.

Practical implications- The proposed numerical scheme can be efficiently used for solving two-
and three-phase compositional flows in porous media with a low computational cost which is espe-
cially useful when the number of chemical species increases.

Originality /value- A new central scheme is proposed that leads to improved accuracy and com-
putational efficiency. Moreover, to the best of authors knowledge, this is the first time that the
wave structure of compositional model is investigated numerically to determine the problematic
situations during numerical solution and adopt appropriate correction techniques.

Keywords compositional, porous media, conservation laws, MUSCL, WENO, wave structure
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1 Introduction

Compositional model is one of the most comprehensive approaches for studying multi-component
flow in hydrocarbon reservoirs (Cao, 2002; Orr, 2005; Han et al., 2006; Moortgat et al., 2012). This
model can provide fairly accurate representation of hydrocarbon reservoir fluids (Firoozabadi, 1999;
Haugen et al., 2007; Rezaveisi, 2015) using an Equation Of State (EOS) (Redlich and Kwong, 1949;
Soave, 1972; Peng and Robinson, 1976). The mathematical formulation of compositional model
usually consists of a parabolic pressure equation together with a system of hyperbolic mass conser-
vation equations (Acs et al., 1985; Watts, 1986; Chen et al., 2006). The so-called Implicit Pressure
Explicit Composition (IMPEC) approach is often used to solve the governing equations, in which
the parabolic part is solved implicitly while the hyperbolic part is solved explicitly (Trangenstein
and Bell, 1989; Coats, 2000). In one-dimensional case, the solution of pressure equation is usually
obtained using Thomas algorithm (Conte and de Boor, 1980) while the solution of mass conserva-
tion equations requires much more efforts. This paper focuses on the latter part.

There are two different approaches for numerically solving hyperbolic conservation equations: 1)
upwind, 2) central. To detect upwind direction, upwind schemes may use phase velocities (Thiele
and Edwards, 2001; Mallison et al., 2005) or utilize characteristic decompositions together with
an exact/approximate Riemann solver (Godunov, 1959; Roe, 1981; Bell et al., 1989; Edwards,
2005). The latter schemes usually exhibit good shock capturing properties; they are however,
computationally expensive, especially for large systems of equations (Kurganov and Tadmor, 2000;
Edwards, 2006, 2010) which is typical in compositional studies. On the other hand, central schemes
with Rusanov-based flux approximations (Nessyahu and Tadmor, 1990; Liu et al., 2007) utilize one-
wave approximation and eliminate the need for costly characteristic decomposition. These schemes
may generate excessive numerical dissipation as they use the largest eigenvalue of the system to
determine the one-wave speed. To alleviate this problem, the largest eigenvalue may be replaced
by the so-called Dominant Wave (DW) (Edwards, 2006) speed. The DW scheme was successfully
used for simulation of multi-phase flow in porous media using three-phase Buckley-Leverett and
black-oil models (Moshiri et al., 2013).

Both upwind and central schemes are prone to numerical dissipation if they are implemented as
first order methods. In order to reduce inherent numerical dissipation of these first order schemes,
high-order reconstruction of variables can be used. This can be achieved using either Monotone
Upstream-centered Schemes for Conservation Laws (MUSCL) methods (Van Leer, 1974; Sweby,
1984; Mallison et al., 2005) which utilize Total Variation Diminishing (TVD) concept or Weighted /-
Essentially Non-Oscillatory (W/ENO) (Liu and Osher, 1998; Qiu and Shu, 2002; Christlieb et al.,
2015) methods. In this work, both MUSCL and WENO reconstructions are used for simulation
of the system of conservation laws. Extension of numerical schemes to high-order of accuracy
in space is achieved in a simple straightforward way. Moreover, the computational cost of this
extension will be relatively small if all extrapolations and limiting procedures are implemented in
a component-wise manner.

To understand the mathematical properties of multi-component multi-phase flow, its wave struc-
ture should be studied. The wave structure of incompressible immiscible three phase flow, i.e, the
Buckley-Leverett equations, has been studied extensively (Isaacson et al., 1992; Guzman and Fay-
ers, 1997; Juanes and Patzek, 2004a). To account for the effect of fluid composition, the wave
structure of compositional flow is investigated in this paper. This wave structure can be used to
determine the problematic situations during numerical solution and adopt appropriate correction
techniques.

Shocks and contact discontinuities frequently occur when solving hyperbolic system of equations.
Numerical methods must therefore satisfy an appropriate entropy condition (Laney, 1998; Tadmor,
2003) for the solution to be admissible (Lax, 1973; Harten et al., 1976). Sometimes, upwind
numerical schemes violate the entropy condition and exhibit non-physical features such as expansion
shocks (Tadmor, 2003; Trangenstein, 2007). To obtain entropy satisfying solution, an appropriate
correction (Harten et al., 1976; Tadmor, 1984; Kermani and Plett, 2001) may be used. Harten’s
correction (Harten and Hyman, 1983) has been used in the context of multi-component multi-phase
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flow in porous media using black-oil model (Moshiri et al., 2013). Numerical experiments show that
this correction is sensitive to its tuning parameter and may lead to over-diffusive solutions. Here, a
different approach is used in which the flux of upwind scheme is substituted by a version of central
flux at problematic points.

The objective of this paper is to assess the accuracy and computational cost of high-order upwind
and central numerical schemes using the finite volume method. The context of this assessment is
the system of mass conservation equations of compressible miscible multi-component multi-phase
flow in porous media using compositional model.

In the following, first a brief review of the governing equations of compositional model is pre-
sented and the wave-structure of the system is investigated. Then, the numerical schemes for
solving the system of conservation equations are described and the procedure to construct high-
order schemes is presented. Finally, a number of benchmark problems are solved to assess the
performance of different methods.

2 Compositional Model

In the compositional model used in this paper, reservoir temperature is considered constant and
fluid is assumed to be consisted of n. chemical components. Moreover, the fluid has at most n, =3
phases, i.e., liquid [, vapor v, and aqua a, while gravity and capillary effects are neglected.

Mole number of components is shown by vector n with n. entities. Assuming thermodynamic
equilibrium, components are distributed in phases, so that n = n! 4+ n? +n®, where n® is the vector
of component mole numbers in phase a. Conservation of mass equation for ith component reads

d(pni)
ot

:*V-ViﬁLin i:1727"'5n07 (1)

where ¢ is porosity and ¢; is source/sink term of component i. Moreover, v; is defined as,

Tp
Vi = —Z:c?p"‘famt"tK (Vp+0%9VZ), i=1,2,--- ,ng, (2)
a=1

me

where p is pressure and Z is reservoir altitude which is measured upward. In equation (2), f* = P
is fractional flow of phase «, while m™ = >""7  '/m® is total mobility in which, m® = k%/u® is
mobility of phase o where k¢ and ™ are relative permeability and viscosity of phase «, respectively.
Moreover, z* is mole fraction of component ¢ in phase o, while p* and p® are molar and mass
densities of phase «, respectively. In addition, K is the tensor of rock absolute permeability and g
is the gravitational acceleration.

Pressure equation is obtained using volume balance concept as

dp S tot S tot
¢(CT+Cf)8t:_;Vi V.vi—i-;ui q, (3)

where ¢, and c; are rock and fluid compressibilities, respectively. Moreover, Vo is total partial

molar volume of ith component which is calculated based on EOS and PVT relations. For further
discussion on the formulation the reader is referred to (Hoteit and Firoozabadi, 2006). The present
paper utilizes SI units.

In this work, an IMPEC approach is used to solve the fluid flow equations. In this ap-
proach, using the given temperature, pressure, and composition n at time ¢, first a stability
analysis (Michelsen, 1982a; Nelson, 1987; Iranshahr et al., 2010) is performed to specify the num-
ber of phases existing at each cell in the reservoir. If multiple phases are present, flash calcula-
tions (Michelsen, 1982b; Pan and Firoozabadi, 2003; Michelsen et al., 2008) should be performed
to determine the distribution of components in each phase, i.e., n®. The procedures for calculating
thermodynamic equilibrium and fluid properties, e.g. p®, 0%, and s%, can be found in (Firoozabadi,
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1999; Whitson and Brulé, 2000; Michelsen et al., 2008). To calculate hydrocarbon phase viscosities
p®, an algorithm proposed by Lohrenz et al. (1964) is used. Moreover, relative permeabilities k¢
are considered to be a function of phase saturation s*. Using fluid properties, at each time step,
pressure equation (3) is solved implicitly while its coefficients are calculated using compositions at
present time step. Then, using this pressure field, the system of mass conservation equations (1) is
solved explicitly. Solution of these equations is of main concern in this paper and will be discussed
in detail later.

In section 3, first the mathematical (or wave) structure of conservation equations (1) is studied
in detail in order to understand how the physical complexities of the compositional model lead to
mathematical complexities of the hyperbolic system of equation to be solved.

3 Wave Structure

The system of mass conservation equations of multi-component multi-phase flow in porous media
has a complex mathematical structure that may contain umbilic and/or elliptic regions (Guz-
man and Fayers, 1997; Juanes and Patzek, 2004a), for example in three-phase Buckley-Leverett
equations, where compressibility and miscibility effects are neglected, it has been known that,
gravitational forces together with relative permeability and viscosity ratio of phases may generate
umbilic and/or elliptic regions (Trangenstein, 1989; Holden, 1990; Isaacson et al., 1992; Guzman
and Fayers, 1997; Marchesin and Plohr, 2001; Juanes and Patzek, 2004b). Here, the mathematical
(wave) structure of compressible miscible multi-component two-phase system of conservation laws
appearing in a compositional model is studied and the parameters affecting the wave structure are
discussed. For the sake of simplicity, and without loss of generality, it is assumed that the fluid
consists of three components, so ternary diagrams can be used for visual demonstration. Clearly,
the discussion in this section is not limited to three-component systems.

Ternary diagrams are used extensively in petroleum industry to analyze properties and phase
behavior of three-component fluids (Mccain, 1990; Johns and Orr, 1996). Figure la shows a typical
ternary phase diagram for a compositional problem for which the fluid and PVT properties are given
in Tables 1 and 2, respectively. Phase behavior is calculated at average pressure, i.e. p = W%.
Each side of triangle represents molar composition, z;, of one component. Based on the relation
Yo, zi = 1, all possible composition states lie within the triangle. The components are assigned
to triangle corners from lighter to heavier molecular weight in a clock-wise manner with the lightest
component located at the top. Depending on composition, temperature, pressure, and the selected
EOS, fluid at any point in the ternary diagram can be either single or two-phase. In Figure la
different phase regions are seen.

Table 1: Problem properties

Components 1 Cy Cs

Injection mole fraction [-] | 0.90 | 0.10 | 0.00

Initial mole fraction [-] | 0.00 | 0.25 | 0.75
Initial pressure [MPa] 6.9
Injection pressure [MPa] 7.0
Temperature [K] 311
Porosity [-] 0.2
Permeability [mD] 10

Relative permeability [-] kY = s

Besides phase behavior, ternary diagrams can be used to describe the mathematical structure
of the system of hyperbolic conservation laws governing three-component two-phase compositional
flow, i.e. equation (1). To begin with, the system of conservation equations (1) is written in its
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Table 2: PVT properties of components (Danesh, 1998)

Components | Symbol De Te Z. M, w
MPa] | K] | [] | [ke/kgmol] | [
Methane Ch 4.599 | 190.56 | 0.2862 16.043 0.0115
Ethane Cy 4.873 | 305.32 | 0.2793 30.070 0.0995
Propane Cs 4.248 | 369.83 | 0.2763 44.096 0.1523

quasi-linear form,

on on

B +J P 0, (4)
where J = % is the Jacobian matrix. Moreover, A1 < Ao < A3 are eigenvalues of this matrix, while
ri,ro,r3 are the corresponding eigenvectors. To be consistent with the formulation given in the
previous section, investigation is based on the assumption of IMPEC procedure where pressure p
and total velocity v’ are considered constant, i.e., independent of n, when conservation equations
are to be solved. In Figures 1b to 1d, eigenvalues of the system of Tables 1 and 2 are shown. Solution
of the system of hyperbolic conservation equations involves n. individual waves that connect two
separate states known as the left and right states. The eigenvalues of hyperbolic system are in
fact the speeds of waves traveling in composition space. So, Figures 1b to 1d represent the wave
structure of the system as well. It can be seen from Figure 1 that at some points the wave speeds
show unexpected abnormalities. These composition states are mainly located near binodal curve
that separates one- and two-phase regions. This implies a dramatic variation in wave structure
during phase change process. As shown in Figures 1b to 1d, the fastest wave speed A3 varies
mainly along bubble-point curve where its maximum values located while the intermediate wave
speed A9 changes considerably along dew-point curve. An interesting fact about the intermediate
wave speed Ao and the fastest wave speed Ag is that they remain approximately the same and equal
to p®v'° in single phase region, where p® refers to single phase molar density; However, in the
two-phase region Ao and A3 behave quite differently. On the other hand, the slowest wave speed
A1 is almost zero everywhere in the composition space which is in agreement with the findings
of (Trangenstein and Bell, 1989). Of course, some relatively small variations, with respect to other
Ais, exist as a consequence of numerical differentiation.

It must be noted that when Buckley-Leverett equations are studied, the eigen-structure can
be obtained analytically (Juanes and Patzek, 2004a). However, in a compositional model, the
relation between flux functions f and the composition n is so complex that the Jacobian and its
eigen-structure should be evaluated numerically. If some simplifying assumptions are made, finding
analytical solutions in the form of Method Of Characteristic (MOC) for compositional problems
will be possible (Falls and Schulte, 1992; Jessen et al., 2001; Orr, 2005; LaForce et al., 2008b). More
specifically, a key concept in wave structure and analytical solutions of two phase compositional
flow is the so-called tie-line which connects compositions of liquid and vapor phases in equilibrium.
Each point on a tie line represents a composition in the two-phase region, hence, along a tie line
the phase compositions are fixed while the saturations of phases vary (LaForce et al., 2006). The
MOC solutions show that only a few (key) tie-lines determine the structure of the solution route in
composition space (Jessen et al., 2001; LaForce et al., 2006). The MOC theory has been recently
extended to three-phase flows (LaForce et al., 2008b). In this section, no simplifying assumption is
made and the wave structure is obtained numerically. In section 5, the MOC solutions are utilized
for validation of numerical procedures.

In order to further study mathematical properties of the system, the so-called structural non-
linearity coefficients are defined as x;; = V; - r;, where V is evaluated with respect to n (Bell
et al., 1989). ks resemble second derivatives for a scalar variable and can be used to measure the
non-linearity of the system. Specifically, x;; # 0 indicates that the system is genuinely non-linear
(convex in scalar case) and k;; = 0 shows that the system is linearly degenerate (non-convex in
scalar case). It is noteworthy that, in this context, the term convexity is defined to be the opposite
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Figure 1: Phase behavior and wave structure (A\; < A2 < A3) of the system of Table 1

of linearity and so includes concavity as well. Figures 2a to 2c show the genuinely nonlinear states,
i.e., ki # 0, within the composition space for each wave family. It should be noted that the 1st
wave family is linearly degenerate everywhere due to the fact that A\; = 0. On the other hand,
the 2nd and 3rd wave families are linearly degenerate in single phase region which is consistent
with (Trangenstein and Bell, 1989). It should be noted that, since the derivatives in k;; are
calculated numerically k;; = 0 cannot be obtained exactly due to numerical errors. These figures
imply that, the system in hand is neither entirely genuinely non-linear nor linearly degenerate; in
fact in the most of composition states the system is linearly degenerate, while in some points the
system is non-linear. Such systems are sometimes called non-genuinely non-linear (Dicks, 1993). In
a linearly degenerate system, compound waves, for example a wave consisting of both rarefaction
and shock, may occur (Dicks, 1993).

Another problem in solving hyperbolic system of conservation laws arises when the system loses
its strict hyperbolicity. This occurs when in a composition state two or more eigenvalues (wave
speeds) become equal. Such composition states are called umbilic points (Dicks, 1993). In some
cases umbilic points are close to each other and generate umbilic regions in composition space. De-
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ficiency of eigenvector bases or the so-called parabolic degeneracy may occur at umbilic points, i.e.
some of eigenvectors may not be determined independently. Because of this eigenvector deficiency,
the schemes using characteristic decomposition cannot be implemented successfully at such points.
Moreover, at umbilic points the waves can be transformed from one family to another (Lax, 1973;
Liu, 1975; Dicks, 1993). As opposed to strictly hyperbolic systems where constant left and right
states are connected by only simple waves, i.e. one rarefaction or one shock. Figure 2d shows
umbilic points for the current problem. It is evident that all single phase states are essentially
umbilic points due to the equality of Ao and A3 in this region. Moreover, there are some umbilic
points within two phase regions.

The most severe situation for a hyperbolic system occurs when at some composition states
complex eigenvalues appear. Such points lead to elliptic regions within the hyperbolic composition
space. In theory, it is difficult to solve such hyperbolic-elliptic coupled system, because boundary
conditions should be applied on all boundaries of elliptic region at each time (Isaacson et al.,
1988, 1992; Guzman and Fayers, 1997). However, in practice, when these elliptic regions are
confined and of relatively small size, they can be disregarded by some corrections in numerical
schemes in the expense of additional numerical diffusion. In particular, omitting the imaginary
parts of complex conjugate eigenvalues leads to umbilic points which, in turn, makes the use of
non-decomposition schemes inevitable. Present numerical investigation, in accordance with other
analytical studies (Trangenstein and Bell, 1989; Orr, 2005), shows that two phase flows such as
introduced in Tables 1 and 2 do not generate elliptic points. In fact, the current study confirms that
this sort of problematic points belongs only to special cases in three phase flows as a consequence
of relative permeability models and/or gravitational forces, as it is shown already in (Guzman and
Fayers, 1997).

It is worth mentioning that the sorting of A\;s does not affect the studies here as long as the
correspondent columns of eigenvector matrix are sorted accordingly. The same is true when these
eigen-structures are used in upwind numerical schemes in which the sorting of A\;s does not affect
the characteristic decomposition. However, these sorted \;s may not correspond to the same wave
family over the entire composition domain. In fact, the loss of strict hyperbolicity can be an
indication of the change in the order of eigenvalues.

Ternary wave structures as depicted in this section, can be used as a tool for choosing ap-
propriate numerical schemes for each problem. As mentioned before, there are a large number of
possibilities for methods of solving a hyperbolic system of equations. However, for all schemes, it
is necessary to use a procedure to detect problematic regions, i.e., degenerate, umbilic, and elliptic
points, and apply corrections to produce physically acceptable (entropy) solutions (Tadmor, 2003;
Juanes and Patzek, 2004a). However, these detection procedures are relatively complex and time
consuming because they should be applied to each composition state at each time step. It is rec-
ommended that, the wave structure as shown in this section should be calculated prior to using the
marching procedure and only if problematic regions exist within composition domain, correction
procedures are applied.

It is worth mentioning that, when the wave structure calculations are performed numerically it
is possible in some cases that the numerical differentiation leads to false detection of problematic
points or fails to detect some valid problematic points. The situation can be mitigated by adjusting
the variations (0) and tolerances (¢) of numerical calculations. Table 3 presents the tolerances
used for the calculations of this section and can be used for similar compositional wave structure
calculations. Moreover, even if the computed problematic points do not conform exactly with the
physics, they surely exhibit problematic behavior in numerical schemes where all the computations
are performed numerically.

Nevertheless, the analysis of wave structure in this section indicates that the numerical differ-
entiation can be used as a tool for a priori estimation of mathematical behavior of the system of
conservation equations in hand, despite its flux function complexities. As it is stated earlier, the
analysis of this section is not limited to three-component systems and can be used with arbitrary
number of equations as well but graphical visualization will be more difficult.
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(b) K22 75 0

(C) K33 75 0

(d) Umbilic points

Figure 2: Genuinely nonlinear and umbilic points in wave-structure

Table 3: Tolerances for numerical wave structure calculations

on €degenerate €umbilic €elliptic
1.0 x 1073 | 1.0 x 1075 | 1.0 x 102 <I§§¥P\k|> 1.0 x 1073 <r£’£‘_aii<uky>

4 Numerical Method

4.1 Discretization of Equations

A finite volume approach is used for the discretization of equations (1) and (3). In one-dimension,
position of grid points is defined as

T = (j - 1)&1‘,

j:1727"'7N7 (5)
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where Az and N are cell length and the total number of cells, respectively. Moreover, A; is the
cross section area of cell j. Assuming (Ax);41/0 = (Ax); = Az and Aj41/9 = Aj = A and define

K Ne Np
§jr1/2 = N <Z v Z x?pafamt0t> (6a)
=1 a=1

jE1/2

and

Njt1/2 = <Z Vtot Z l,ocpafoa tot a) gsin 0 (Gb)

j+1/2
where 6 is defined in Figure 4. The discretized form of pressure equation (3) becomes:

A.CU n 7, T
A (05 (cri + c) + Eirjo + Eim1ye) D7 = & yopil — €120t

Az

At¢ (Cm + CfJ)P] +jt1/2 — Mj-1/2 (7)

Harmonic averaging is used to find the discrete coefficients at cell interfaces (Chen et al., 2006).
The semi-discrete form of the mass conservation equations (1) is given by

d 1 /e, “n
I (n;) = T biAz (fj+1/2 - fj71/2> ) (8)

where f‘;lﬂ:l /2= f (fL,fR);}il /2 is the vector of components numerical flux calculated at interfaces
j £ 1/2, in which

fLR*ZfLRffA

Zxap“f“ o (Ap+ 0® gAxsm@)] : 9)
L,R

and Ap = :l:(pjzl:l - pj)'

To study fluid flow in one-dimensional reservoirs using the compositional model, the pressure
equation (7) must be solved along with the conservation equations (8). The resulting tridiagonal
linear system of equations given by (7) can be easily solved using Thomas algorithm (Conte and
de Boor, 1980). The rest of this section is dedicated to solving conservation equations (8). To solve
equations (8) it is necessary to approximate numerical fluxes f. el In this paper, several upwind

and central schemes are used for this purpose. Hereafter, the face subscript j £+ % is omitted for
brevity.

4.2 Classical Upwind Scheme

The simplest scheme used for solving the conservation equations (8) is the classical upwind scheme
(UPW-CLS) which is widely used in petroleum reservoir simulators. In this scheme, the numerical
flux function f in equation (8) is computed based on the sign of phase flux as (Aziz and Settari,
1979)

’I'l
o« max(w®,0) ., min(w*,0) ..,
f_Zf ;{WfL—MfR : (10)
where f;, = f(nz) and fr = f (nR) are flux functions calculated at the left and right cell interface
states, i.e., ny, and ng, respectively using (9). Moreover, the so-called potential difference is defined
as w® = pf + 079241, — PR — 0%9Zr which is simplified in the absence of capillary and gravity effects
to w® = pr, — pr. In such cases, the scheme of (10) is equivalent to component-wise flux f=1f, or
f=fg depending on the sign of pressure gradient. In fact, (10) is a flux splitting scheme based on
physical concept of phase flow. This scheme is implemented efficiently since there is no need for
characteristic decomposition or any other eigen-structure calculation.

Hn 9
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4.3 Flux-based Decomposition Upwind Scheme

In order to obtain a flux-based upwind scheme, all wave directions may be detected through char-
acteristic decomposition as,

A~ 1 1

f=5Er+1fr)—35 Rsgn(A)R™ (fr — f1), (11)
where sgn(A) = diag(sgn(A1),sgn(Xa), - ,sgn(A,.)) while A; is the jth eigenvalue and R =
[r1,ro, -+, 1y, ] is the matrix of right eigenvectors of the Jacobian matrix ngl evaluated at ny; =

BLADE - The scheme of equation (11) is named UPW-FLX hereafter. This scheme is clearly com-

putationally expensive.

4.4 Variable-based Decomposition Upwind Scheme

The scheme of equation (11) can be rewrite in variable format as

N 1 1 1

f=f|;(mrp+n.) - Rsgn(A)R™ (ng—nz)|, (12)
which is called UPW-VAR hereafter.

4.5 Roe-based Upwind Scheme

Alternatively, one can define upwind numerical flux as,

f=J (fa+f) ~ JRIAIR™ (np—my), (13)
where A = diag(A1, A2, -+ , Ap,). The scheme of (13) is a modification of Roe’s upwind scheme (Bell
et al., 1989) and is called UPW-ROE in this paper.

It should be noted that, in order to use the UPW-FLX, UPW-VAR, or UPW-ROE schemes, it is
necessary to have a set of independent eigenvector bases so that R™! can be calculated, otherwise at
the umbilic points with eigenvector deficiency the schemes fail to predict correct solution. To deal
with such points, relatively complicated procedures have been proposed (Bell et al., 1989; Edwards,
2010). However, in this paper a simple approach as described in section 4.12 is implemented to
circumvent this problem.

4.6 Harten-Lax-van Leer Scheme

Harten-Lax-van Leer (HLL) is a two-wave scheme that computationally lies between decomposition
upwind schemes as prescribed above and one-wave central schemes as discussed later. The numerical
flux is defined as,

fL S\LEO,
5 Aefr — A\ fr + Az — N 5
R A R AL L D Y Y (14)
AR — A\ )
fr Ar < 0.

The so-called signal speeds Az, and A are originally introduced for solving Euler equations of gas
dynamics (Toro, 2009); however, for other systems they can be generalized to Ay, = min( A7, \74n)
and Ag = max( A7 NHe)  where AR = max(<; (A\ip) and )\g”" = min;*, (\;g) for f =
L, M, R (Trangenstein, 2007).
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4.7 Local Lax-Friedrichs Scheme

To avoid the costly characteristic decomposition and the need for a set of independent eigenvectors
as in UPW-FLX, UPW-VAR, and UPW-ROE schemes, the so-called central schemes can be em-
ployed. Local Lax-Friedrichs (CEN-LLF) scheme lies in this category for which the numerical flux
function is defined as (Liu and Osher, 1998; Edwards, 2010)

~ 1 1
fzi(fR—i_fL)_g ’)\LLF| I(nR—nL), (15)

where the CEN-LLF wave speed (Arrr) is approximated as (Edwards, 2010)

sl = e (i) = max (A N L DL DD (16)
[zr,zr] \ =1

Here A7, Ap®, and A" are the maximum eigenvalues corresponding to the Left, Right, and
Mean values and are calculated at nz, ng, and ny; = (nz + ng)/2, respectively. Moreover, A\E7*
and A\GE are the maximum eigenvalues corresponding to Left and Right Gauss points calculated
at ngr = nyr + (np — nyr)/V3 and ngg = nyr + (ng — nyr)/V/3, respectively. Comparing (15)
and (13) it can be inferred that the term R |A| R™! is approximated by |Arrr| I in the CEN-LLF
scheme.

4.8 Dominant Wave Scheme

While the scheme defined by (15) is decomposition free, it is still complicated and several eigen-
structures should be evaluated at each interface. The Dominant Wave (CEN-DW) scheme alleviates
this problem by defining the numerical flux as

| 1
f=35 (fr +1fL) — 5 |[Apw| I(ng —nr), (17)

where the CEN-DW speed (Apyw ) is defined as (Edwards, 2006)

(np —nyp). (fr — 1)
)\DW (nR—nL).(nR—nL)‘ (18)
This speed is consistent with the Rankine-Hugoniot shock relation (Trangenstein, 2007) and has
successfully been used in conjunction with the Enquist-Osher (Bell et al., 1989; Chen et al., 1992)
flux calculation. The main advantage of using the dominant wave speed as defined in (18) is that
there is no need for eigen-structure evaluation. For further discussions on this consult (Edwards,

2006; Moshiri et al., 2013).

4.9 Modified Dominant Wave Scheme

The CEN-DW scheme, despite its simplicity and cost efficiency, depends only on L and R states and
information in the region (L, R) is excluded in the formulation. This is especially crucial, when the
flux function is complicated between L and R, for example when non-convexities exist in the form
of local extrema. To overcome this deficiency while maintaining the simplicity of aforementioned
scheme, Modified Dominant Wave (CEN-MDW) scheme is presented here that incorporates the
basis of both CEN-LLF and CEN-DW. In particular, the numerical flux of this new scheme is
defined as,

“ 1 1
f= i(fR—FfL)—i ‘)\MDW| I(nR—nL), (19)
where the CEN-MDW wave speed (Ayrpw) is defined as

Avpw| = max(|Ar—cil, [Aer—m|s [Av—crls [A\ar-rl), (20)

with ( V(s — 1)
- ny —np).(fy —
Ao = 2 1 2=t (21)
(Il2 — n1) . (ng — 1’11)
The latter scheme has the advantage of not being prone to entropy violating solutions while the

added computational cost is relatively small.
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4.10 Some Comments on Central Schemes

As it can be seen from equations (15), (17), and (19) all CEN-LLF, CEN-DW, and CEN-MDW
schemes use a one-wave approximation for wave speed, i.e., all waves propagate with the same
speed. Although in reality this is not the case, but if wave speed is approximated accurately, the
numerical flux will be consistent with the physical flux except for some additional dissipation.

LLF scheme considers a conservative approach towards wave speed approximation and assumes
that all waves travel with the largest speed computed at a face. This results in better stability but
higher numerical dissipation for a given time step size since the one-wave speed works similar to ar-
tificial dissipation (Tadmor, 1984, 2003). Because of this additional diffusion, the CEN-LLF scheme
shows better stability and smaller oscillations when encountering problematic regions compared to
upwind schemes for the same CFL number.

In contrast to CEN-LLF, the CEN-DW scheme considers a severe approach towards the one-
wave speed calculation and utilizes a simple formula to find out a less dissipative wave speed.
As expected, the CEN-DW speed usually lies below the CEN-LLF wave speed. This leads to far
less dissipation and larger time step size as the time step is inversely proportional to the wave
speed. However, the latter scheme just use the information in ny and ng states and neglect other
information.

On the other hand, the proposed scheme (CEN-MDW) uses a more practical approach for
calculation of one-wave speed as it utilizes the maximum of dominant speeds for each interface and
includes the information of flux function in the region [np,ng|.

Figure 3 schematically compares the procedures for one-way speed approximation in CEN-
LLF, CEN-DW, and CEN-MDW schemes. Figure 3a shows a typical flux of a scalar conservation
equation as a function of n € [nr,ng]. When CEN-LLF scheme is used, the region between np,
and npg is divided into four subregions and the maximum of eigenvalues (flux derivative in scalar
case) is assigned as wave speed at the corners of these subregions, as shown in Figure 3b. Finally
the maximum of these speeds is selected as CEN-LLF wave speed in (15). When CEN-DW scheme
is used, the flux is approximated linearly in the region [nr,nr] and the wave speed is equal to the
slope of the line connecting ny, and ng, as shown in Figure 3c. When using CEN-MDW scheme,
as shown in Figure 3d, the region between n; and ng is divided into four subregions and in each
subregion the physical flux is approximated linearly using a two-point central scheme to obtain the
slopes given by (21). Then, the maximum of these slopes is used to approximate the numerical
flux (19). Computational cost of this new approach is much smaller than that of (15) and it is very
unlikely to generate expansion shocks since it rarely produce near zero wave speeds.

4.11 High-order States

For a first-order scheme, the left and right states in equations (10), (11), (12), (13), (14), (15), (17)
and (19) are simply the values of neighboring nodes of each interface, i.e. the values at j and
j + 1 are used as the left L and right R states, respectively for interface j + 1/2. In the following,
two procedures are described to reconstruct high-order states. Here, the study is limited to the
second-order schemes.

4.11.1 MUSCL Reconstruction

In order to provide a high-order scheme with TVD properties, one can define L and R states using
a MUSCL reconstruction (Lyra and Morgan, 2000). This is applied to each component of vector n
shown here by a typical scalar variable n as (Hirsch, 2007)

np =g+ 39(r ) g1 — m), (220)

1
NR = Mj41 — §¢(7“_)(nj+1 —nj), (22b)
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Figure 3: Approximation of one wave speed for central schemes
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where subscript j + 1/2 is omitted for brevity. In equations (22), ¢(r*) and ¢(r~) are the slope
limiters for which r* and r~ are defined as

n; —nj_
rt = 77; Jnl, (23a)
j+1 — 1y
Moo — s
ro o= M (23b)
Nj+1 — 1y

In order to have TVD properties like monotonicity preservation in a high-order scheme, non-linear
slope limiters may be used to restrict the variable gradients within each cell. Here, the following
limiters are used (Van Leer, 1977; Sweby, 1984)

minmod (mm) Grmm (1) = min (1, 1), (24a)
14 |r|
L 1 = 24
van Leer (v1) Gui(r) T+’ (24b)
. . . r+1
monotonized central (mc) Gme(r) = max {0, min [2, min <2r, 5 >] } , (24c)

for r > 0, and ¢ = 0 for » < 0. It should be noted that when r» = 0, the second-order piecewise
linear solution reduces to the first-order piecewise constant solution.

4.11.2 WENO Reconstruction

In order to use the WENO high-order schemes, ny and np should be reconstructed by a specific
polynomial. To increase the accuracy of reconstruction more and more terms should be added to
this polynomial. For a second order reconstruction, the procedure reads (Qiu and Shu, 2003)

1 1 1 3
nyp = wy inj + Qn]’_i_l + wq —§n]~_1 + in]’ s (25&)
and
1 1 1 3
nr = W2 (2le + an+1> + ws <—2nj+2 + 2nj+1> , (25b)

for interface j + 1/2, where wp to ws are weight functions that depend on nj, nj + 1, and nj £+ 2
as defined in (Qiu and Shu, 2003).

4.11.3 Characteristic Reconstruction

The reconstruction procedures described above, can be applied to either primitive (original) or
characteristic (transformed) sets of variables. Implementing primitive reconstruction, as discussed
before, is simple and computationally efficient. On the other hand, using characteristic recon-
struction provides better resolution but comes with higher computational cost. The procedure
for the latter option is relatively straightforward and contains two transformations together with
one typical reconstruction. First, a characteristic decomposition should be performed to produce
transformed variables from primitive ones as w = R™!n, where R is defined in equation (11). This
transformation should be applied to all primitive variables of the stencil. Then, the same proce-
dure of either MUSCL or WENO reconstruction is used to find w;, and wg from the transformed
variables. Finally, an inverse transformation n = Rw is applied to retrieve ny, and ng.

4.12 Correction for Stagnation and Singular Points

When upwind decomposition-based schemes, i.e., UPW-FLX, UPW-VAR, and UPW-ROE, are
used there is a possibility that the numerical scheme produce unphysical entropy violating solutions
whenever an eigenvalue associated to a genuinely non-linear expansion (rarefaction) wave reaches
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stagnation point, i.e., A, < A = 0 < Ai. To force the solution to satisfy entropy condition, an
entropy correction may be used. Harten’s entropy correction can be used for this purpose (Harten
and Hyman, 1983)
A2 e?
— A <,
A={ 2 MW
R Al =€,

(26)

where the tuning parameter £ must be optimized based on the wave speeds of the problem (Kermani
and Plett, 2001). In (Moshiri et al., 2013) an approximate relation was given to determine ¢ for
multiphase flows in porous media. Higher values of ¢ means higher diffusion, while for lower
values, non-physical solutions may appear. When decomposition schemes of (11), (12), and (13)
are used, this correction is usually applied component-wise, i.e., wave by wave for |A| = |\;| where
i =1,2,--- ,n.. Moreover, the correction (26) can be used along with the CEN-DW one-wave
speed of (18) whenever the rare case (fr — f1,) = 0 corresponding to (ng —nz) # 0 occurs.

Beside correction at stagnation points, another procedure is needed in decomposition-based
schemes whenever eigenvector deficiency, i.e. lose of strict hyperbolicity, occurs. In such cases, the
relatively complicated procedure of High-Order Godunov (HOG) (Bell et al., 1989) may be used.
Another approach for entropy correction was suggested in (Edwards, 2010) which uses CEN-LLF
scheme in the problematic points. This entropy fix has the advantage of being parameter free which
makes it possible to be used in various contexts. Mathematically speaking, one can use (Edwards,
2010)

LLF )‘kLgog)\k’I% k:1727"'an07

f: LLF mln(’)‘Z_A]‘) <6<%§E§‘¥’Ak‘> ) i7j7k:1727”' y Ne,y 27&] <27)

original Otherwise,

where numerical experiences show that ¢ = 0.01 is a reasonable choice which is already introduced
in Table 3. The first line in (27) refers to stagnation points while the second line deals with the
umbilic points where eigenvector deficiency may occur as a consequence of equal eigenvalues.

Using CEN-LLF flux in (27) makes this procedure expensive since it requires the computation
of several eigen-structures at each face. Here, it is recommended that the f'L LF in the relation (27)
is substituted by fy;pw as defined in (19) to (21).

4.13 Time Integration

To solve the semi-discrete conservation equations (8), two time integration methods are used: 1)
first-order forward Euler method and 2) second order Heun method. Defining A;f(n") = {7

j+1/2
f]ﬁl /2 and An = n;.”rl —n7, the discrete form of the mass conservation equation is given by
s At eron
An't = _QS-AxAjf(n )s (28)
for the first-order forward Euler method, and
At 1 4 1. .
An?" = “OAr 5Ajf(n") + iAjf(n" + An'*t) | (29)

for the second order Heun method.
The stability of the numerical method is determined by setting an upper limit on the Courant-
Friedrichs-Lewy (CFL) number defined as

)\maXAt
CFL = =——, (30)

x
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)\max

where is the global maximum wave speed in the solution, i.e.,

=! (31)

\max méx |)\;| for upwind and HLL schemes,
= 1=
|Acen|  for central schemes,

Numerical experiences show that whenever second order time integration method is used, a larger
value can be assigned to CFL. It should be noted that, the choice of reconstruction methods and
slope limiters affects the stability of the numerical schemes.

5 Results

In order to demonstrate the accuracy and computational performance of numerical schemes and
procedures presented in this paper, flow of a multi-component multi-phase fluid in a typical one-
dimensional reservoir core as shown in Figure 4 is studied. The dip angle ¢ can vary between =*

s
and 5

Figure 4: Schematic of reservoir

5.1 No Volume Change on Mixing Test Case

In this section, compositional flow of a five-component two-phase fluid is studied. In order to
compare the numerical schemes presented in this paper, the problem is simplified so that only the
hyperbolic part of the compositional equations needs to be solved. To this end, it is necessary to set
a predefined total velocity over the entire domain. From a physical point of view, if the displacing
pressure is high enough the volumes of components do not change when transferring between
liquid and vapor phases, i.e. the so-called No Volume Change on Mixing (NVCM) assumption is
valid. In such cases, the total velocity becomes independent of pressure (Orr, 2005); hence, the
pressure equation is eliminated and a constant pressure can be assigned to the entire domain at all
times. Moreover, the NVCM assumption makes it possible to utilize the Method Of Characteristics
(MOC) to obtain analytical solutions as described in (Dindoruk, 1992; Orr, 2005). Furthermore,
in this test case, the equilibrium ratios, i.e. the ratios of components mole fractions in vapor phase
to liquid phase, are assumed to be constant. Physically speaking, if the temperature, pressure,
and composition of the two phase system is such that the critical point does not appear in the
solution, the equilibrium ratios, i.e. K-values, depend weakly on composition and this dependency
can be eliminated, hence the K-values can be assumed constant. The latter assumption has the
advantage of eliminating need for EOS calculations, hence making the formulation independent
of EOS parameters. For more information on the formulation and the analytical solution of this
problem, the reader is referred to (Dindoruk, 1992; Orr, 2005).

The problem consists of injection of pure C'O2 gas into a reservoir initially filled with a mixture
of Cq, C4, Cio, and Cig in liquid phase. The problem properties together with its initial and
injection conditions are given in Table 4. In Figure 5 the computed vapor phase saturation are
compared to MOC solution of (Dindoruk, 1992) for various grid sizes while CFL is 0.7. In this
figure, the first order UPW-ROE scheme together with Euler forward time integration method are
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Table 4: Properties of two-phase NVCM test case

Components COy | Cy Cy | Cio | Cis
Injection mole fraction [-] | 1.00 | 0.00 | 0.00 | 0.00 | 0.00
Initial mole fraction [-] | 0.00 | 0.25 | 0.25 | 0.25 | 0.25
Equilibrium ratio [-] 1.50 | 2.80 | 0.40 | 0.20 | 0.01
Relative permeability [-] kS = (s%)?
{
Viscosity ratio [-] % =1
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Figure 5: Result of vapor phase saturation using UPW-ROE scheme

used and a small portion of domain is magnified in Figure 5b to allows a better distinction between
different profiles. The profiles are depicted with respect to dimensionless similarity variable vﬁt%
so that the profiles remain unchanged as the solution marches in time. Theoretically, the total
velocity v%! and length of reservoir can be set arbitrarily; however, here, the length of reservoir is
set to { = 1.5 m and v = 14, and the solution marches to ;. = 1 day. As it can be seen from
Figure 5a, the solution consists of five self-sharpening shocks and the results are in good agreement
with that of the MOC. Figure 5a shows convergence to the MOC solution as grid is refined from 100
to 4000 computational nodes. Moreover, it can be seen from Figure 5a that, the flow features such
as rarefactions, shocks, and discontinuities are captured well using 500 computational nodes, albeit
with some amounts of numerical dissipation. Other schemes exhibit somewhat similar convergence
behavior which are not showed here.

In Figure 6 the results of C'; overall mole fraction are shown for various first order numerical
schemes using 100 to 1000 computational nodes while CFL is 0.7. Hereafter, the results are to
be compared with a fine solution obtained using the UPW-ROE scheme with 4000 computational
nodes which is already shown to match the MOC solution in Figure 5. For the sake of clarity,
only a small part of computational domain is shown in Figure 6. Figures 6a and 6b indicate
that, HLL and upwind schemes, i.e., UPW-VAR/FLX/ROE, match the analytical solution with
higher accuracy while central schemes, i.e., CEN-DW, CEN-MDW, and CEN-LLF, generate larger
dissipation. Among latter schemes, CEN-DW and CEN-MDW exhibit better accuracy. Moreover,
it is evident that the CEN-LLF scheme have the largest amount of numerical dissipation among
the schemes studied here. It is interesting to see that, as the number of computational nodes
increases the difference between CEN-DW, and CEN-MDW schemes and upwind scheme becomes
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Figure 6: Overall mole fraction of C] using first order schemes

less prominent (Figures 6¢ and 6d). This suggests that CEN-DW and CEN-MDW central schemes
can compete well with the more computationally demanding upwind schemes at least in this NVCM
example. It should be noted that extremely fine grids are of little interest in practical reservoir
simulation studies where a large physical domain should be simulated using limited resources.
Hence, in this study the comparisons are made using reasonably fine grids (e.g., 200 or 500 nodes).

While Figures 5 and 6 were dedicated to the first order numerical schemes, Figure 7 shows
the results of C'Oy overall mole fraction for various high-order reconstructions using CEN-MDW
scheme with CFL = 0.4. It can be seen that both MUSCL and WENO high-order reconstruc-
tions dramatically increase the accuracy of results. Figure 7 clearly shows the superiority of the
component-wise high-order reconstruction (Figure 7a), over the more computationally demanding
characteristic reconstruction (Figure 7b). This behavior does not change when either of MUSCL
or WENO method is used. Figure 8 compares the effect of various high order reconstructions on
UPW-ROE and CEN-MDW schemes with CFL = 0.4. It is inferred from latter figure that the
high order reconstruction increase the accuracy of upwind and central schemes in a similar way.
In Figures 7 and 8, the MUSCL method utilizes the minmod limiter; however, using other limiters
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Figure 7: Overall mole fraction of C'O, for various high order reconstruction schemes and 200 nodes
using CEN-MDW scheme

will not change the results considerably.

While all aforementioned figures are utilized forward Euler time integration, Figure 9 shows
the effect of time integration method on the stability of solution. In Figures 9a to 9c, the results
of C overall mole fraction using high-order UPW-ROE scheme with the first-order forward Euler
time integration method is compared to the same result using second order Heun time integration
method, for three different CFL numbers. It can be seen from Figure 9 that Heun method allows
for using larger CFL numbers, so larger time step size can be utilized whenever Heun method is
used. Of course, the superiority of the Heun method is somewhat attenuated by knowing the fact
that the latter method is much more computationally demanding.

Figure 10 shows the mathematical and numerical wave speeds of this NVCM system. It can be
seen from this figure that while in the single phase region the wave structure is smooth, in two phase
region both mathematical and numerical wave speeds show considerable variations. Moreover, there
are abrupt changes when transferring between single and two phase regions. The latter phenomena
can be ascribed to the huge differences between the properties in single and two phase regions. In
the mathematical wave structure (Figure 10a), the sorted wave structure (A < --- < \,_) is shown
while in Figure 10b, the so called Buckley-Leverett-type wave speed is depicted which is comprised
of segments from Ay to A5. Moreover, in this figure the position of umbilic points are shown in the
two phase region.

Nevertheless, with respect to the numerical wave speeds (Figures 10c to 10e) it is evident that
in the two phase region all schemes represent somewhat similar numerical wave speeds with minor
differences. In particular, it can be seen that the numerical wave speeds of CEN-MDW and HLL
schemes are quite similar while the UPW-ROE scheme shows sharper variations especially in the
presence of umbilic points.

It should be noted that, for the upwind schemes, i.e. UPW-VAR/FLX/ROE, where the one-
wave speed is not calculated by default in the original formulation, this speed is approximated from
numerical flux relations (10) to (13) using a linear least square approach as

By
B.B’

where v = f — t(fr+fr) and B =1 (ngp —mny).
It is also interesting to investigate the computational cost of this five-component compositional

A= (32)
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Figure 8: Overall mole fraction of C] for various high order reconstruction schemes and 200 nodes

problem. Figure 1la compares the overall computational time of various first order numerical
schemes while in Figure 11b, the average CPU time is shown for a single interface. It can be seen
from Figure 11 that CEN-LLF and HLL have by far the largest CPU times among other schemes
while the computational cost of UPW-CLS, CEN-DW, and CEN-MDW are the lowest. To make a
better distinction between the computational performances of various schemes, a bar-chart is shown
in Figure 11c to compare the CPU times of first order schemes for 2000 computational nodes. It is
worth mentioning that, as the number of components increases the gap between computational cost
of the latter three and other schemes becomes larger. This is not surprising as the wave structure
evaluation becomes more time consuming in large systems.

In Figures 12a and 12b similar diagrams are shown for the case of high order numerical schemes.
Here, different high order reconstructions are compared using CEN-MDW scheme. It can be seen
from Figures 12a and 12b that, the component-wise MUSCL reconstruction method has the least
computational cost while the characteristic-based WENO reconstruction is about twice as more
computationally expensive as the former method.

In Figure 13a, error norm of COs mole fraction of is depicted as a function of the number of
computational nodes for various first order schemes. The error norms are computed as

E :H ¢ - Ql)e:mczt ||2> (33)

where 1) is any flow variable and || . ||2 indicates second Euclidean norm. Errors are calculated with
respect to the 4000 nodes fine solution shown in Figure 5. It can be seen that, CEN-LLF is the
least accurate scheme while the error norms of other schemes will eventually converge together as
the number of computational nodes increases. Figure 13b shows the error norms of mole fractions
of various components using first order CEN-MDW scheme. It is evident that, the Cy error norm
is the largest whereas the C'Oy has the least error with respect to fine solution.

5.2 Typical Two-Phase Compositional Test Case

In this section, a typical one-dimensional compositional problem with volume change and pressure
variation is studied. The problem was adopted from (Hoteit and Firoozabadi, 2006) but the bound-
ary conditions are of Dirichlet type, i.e. constant pressure and composition, unlike the original test
case that has injection and production wells. In this test case, a gas mixture of 'y and Cj is injected
into the domain which initially contains a liquid mixture of Co and C5. The required physical data
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Figure 9: Overall mole fraction of C; for different CFL numbers using various time integration
methods together with high-order UPW-Roe scheme and 500 nodes
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Figure 14: C7 mole fraction in liquid phase using first order schemes

and fluid properties are given in Tables 1 and 2. The length of reservoir is 50 meters and all results
are shown after 186 days of injection which is equivalent to 0.51 pore volume injection as described
in (Hoteit and Firoozabadi, 2006).

Results of C mole fraction in liquid phase are shown in Figure 14, for various first order
numerical schemes using 50 and 200 computational nodes. The CFL is set to 0.7 and the reference
solution is obtained using a first order scheme and a fine grid with 5000 nodes. It can be seen from
Figure 14 that the UPW-ROE and HLL schemes produce almost the same results while CEN-LLF
and CEN-MDW resemble each others. This behavior remains the same for other grid sizes and
numerical results shows that all schemes produce grid independent solutions for 500 cells or more.

Figure 15 compares the one-wave speed of selected numerical schemes against eigenvalues (wave
speeds) of the hyperbolic system. In fact, this figure shows the connection between mathematical
structure of the hyperbolic system and the numerical scheme. Different phase regions are displayed
in this figure. In the single phase region, as already shown in (Trangenstein and Bell, 1989), there
are two equal wave speeds, whereas in the two phase region, there is Buckley-Leverett speed together
with component particle speed (Trangenstein and Bell, 1989). This is in accordance with the wave
structure of NVCM system as depicted in Figure 10. The wave speeds change considerably when
crossing the two-phase region. These changes are greater near the boundaries of the two-phase
region, especially at bubble point. It is evident from Figure 15 that the smallest wave speed is
always zero which is an indication of a linearly degenerate system.

It can be seen from Figure 15 that, the one-wave speed of upwind schemes is zero in single phase
regions which indicates zero numerical dissipation in those regions in contrast with central schemes,
i.e. CEN-LLF and CEN-DW, where considerable amount of dissipation is added to the solution
in single phase regions. As expected, the CEN-LLF wave speed is the highest value at each face
whereas CEN-DW wave speed lies between eigenvalues of the system. This explains why CEN-LLF
scheme adds more dissipation than CEN-DW in those regions. Among other schemes, CEN-DW
has the smallest one-wave speed while CEN-LLF has the largest peaks hence highest numerical
dissipation. Because of the similarity between two formulations (13) and (11), the behavior of
UPW-ROE and UPW-FLX are almost the same which are not depicted here. It can be seen
from Figure 15 that for all numerical schemes the maximum wave speeds occur at the problematic
composition states, i.e. umbilic and/or elliptic points. This is due to the fact that all schemes try
to handle these problematic points by adding numerical diffusion. Note that the upwind schemes
used in this paper utilize CEN-MDW formulation for flux approximation when facing problematic

Hn 25
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Figure 15: Mathematical and numerical wave speeds for compositional example

points. It can be inferred that the CEN-MDW and UPW-ROE schemes add the least numerical
dissipation when facing problematic points while the CEN-LLF scheme adds the highest dissipation
in such occasions. Moreover, in this realistic compositional problem, the numerical wave speed of
central schemes show spurious oscillations in the single phase regions which are attributed to a few
composition states.

Figure 16a shows the composition route for the present problem. This is a path in composition
space on which the components travel from injection to production states. It can be seen from
Figure 16a that the composition route consists of two nearly straight line segments in single-phase
regions, i.e., extensions of initial and injection tie-lines, connected to the ends of a curved segment in
the two-phase region which is an indication of non-tie-line path (Dindoruk, 1992). As time marches,
this pattern remains almost the same except for slight changes in the two-phase region. The filled
circles in this figure indicate compositional states at cell centers which are located equidistantly in
the reservoir in a uniform grid. The clustering of these circles in the vicinity of injection, production,
and two phase regions indicates that large parts of reservoir lie in these compositional regions.

It should be noted that, since the injection, initial, and production pressures are different, the
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phase envelope is not exactly the same for various parts of the reservoir. However, the pressure
difference is relatively small, i.e. ap 0.01, and does not noticeably affect the phase behavior,

. favg o« . . . .
so the ternary phase diagram depicted at mean pressure of injection and production, i.e. pgug =
pinj+pprod
2

, can represent the phase behavior of the entire problem reasonably well.

Figure 16b shows the one-wave speed of CEN-MDW scheme depicted on a ternary phase diagram
showing various phase regions. This figure confirms that the largest amount of dissipation belongs
to the problematic points in the two phase region. Although Figure 16b may seem different from
Figure 15c¢, especially in the single phase region, they show exactly the same results. This difference
is due to the fact that most of the fluctuations in the wave speed in Figure 15¢ belong to very few
composition states in the vapor phase which are very close to each other near the injection state
of composition route and virtually disappeared in the phase diagram.

A (x10°)

50.3993
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15.1198
10.0799

Production

NN
A
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(a) Composition route (b) MDW wave speed on ternary phase diagram

Figure 16: Results of MDW on ternary phase diagram

It is worth mentioning that, in a typical compositional problem, as the number of components
(hence, the number of equations) increases the ratio of computational cost of the hyperbolic part
to elliptic part also increases, so most of the CPU time is allocated to solving the composition
equations. This mainly occurs due to the evaluation of wave structure which, in turn, requires large
matrix computations together with calculation of several physical properties. In fact, the bulk of
computational time is dedicated to the evaluation of thermodynamic equilibrium state which is
accomplished by iterative routines such as stability analysis and flash calculations as discussed in
Appendices A and A.1.

5.3 Three-Phase Test Case

In order to further investigate the MDW scheme in the presence of more complex flows, a three-
phase four-component compositional test case is solved in this section. Here, the NVCM assumption
is made and two sets of constant partitioning K-values, namely Kfl = Z—; and K¢ = %:7 are given
in Table 5. In this test case, the so-called quarter power mixing rule (LaForce et al., 2006) is
used to estimate phase viscosities from pure component viscosities mentioned in Table 5. Relative
permeability of phase « is defined as (LaForce et al., 2006)

0 5% <0,
k= Q k()" 0<3r <1, (34)
0 1 <57,
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Figure 17: Result of three-phase four-component problem using MDW scheme at PVI=0.333

in which s* = 1S£+5837 and the parameters k7, s§, and 3 are given in Table 6 for all three phases
T Zuy=1°0

a =1, v, and a. The procedures for estimation of fluid properties are briefly stated in Appendix A;
for further information, the reader is referred to (LaForce and Johns, 2005; LaForce et al., 2006,
2008a).

The problem consists of injection of COs and H2O into a reservoir initially saturated with C
and Chp. The initial and injection compositions are given in Table 5. Dirichlet and Neumann
boundary conditions are assigned to the left and right sides of the domain, respectively. CFL is
set to 0.5. In Figure 17a, results of C1g mole fraction obtained from MDW scheme for various grid
sizes are compared to the results of MOC solution shown by (LaForce et al., 2006). Moreover, in
Figure 17b the corresponding error norms are presented. It can be seen that, as the number of
computational nodes increases, the MDW solution approaches MOC. Moreover, Figures 18a and 18b
show the phase saturation profiles at two different PVI in which the phase regions are depicted.
In Figure 18c recoveries of C7 and C1g are presented with respect to injected pore volumes. The
latter Figure shows a prefect match between analytical and numerical solutions.

Table 5: Fluid properties of three phase problem

Components COq 1 H>0O Cho
Injection mole fraction [-] 0.50 0.00 0.50 | 0.00
Initial mole fraction [-] 0.00 0.50 0.00 | 0.50
K[ 1.5 10.0 2.0 | 0.005

KY* [ 0.1 0.05 50.0 | 0.001

Pure component viscosity [cP] | 0.15076 | 0.11072 | 1.0 | 0.8632

Table 6: Parameters of relative permeability model of three phase problem

Phase | Liquid | Vapor | Aqua
sST] [ 01 | 005 | 012
B> [-] | 2.00 2.00 2.00
% [ 0.9 1.0 0.85
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6 Conclusion

In this paper, several numerical schemes were used to solve hyperbolic system of mass conser-
vation equations of two and three phase compositional model. These include Classical Upwind
(UPW-CLS), Flux-based Decomposition Upwind (UPW-FLX), Variable-based Decomposition Up-
wind (UPW-VAR), Roe-based Decomposition Upwind (UPW-ROE), Local Lax Friedrichs (CEN-
LLF), Dominant Wave (CEN-DW) and HLL schemes. A new numerical scheme (CEN-MDW) was
proposed which inherits the advantages of both CEN-DW and CEN-LLF schemes. It was shown
that the new scheme can compete well with others while maintaining computational cost low.

Despite very low computational cost of CEN-DW, this scheme utilizes only L and R states
and neglects the flux variations in between. However, the new CEN-MDW scheme alleviates this
deficiency by utilizing several states between L and R while the computational cost does not rise
significantly as a consequence of using simple algebraic formula for the wave speed approximation.

The accuracy and computational cost of schemes differ significantly. The characteristic decom-
position schemes present better accuracy especially in course grids, but their computational cost is
higher in comparison with other schemes when the same grid is used. CEN-LLF scheme has a rel-
atively high computational cost; Moreover, it shows large amount of dissipation due to large wave
speed. CEN-DW and CEN-MDW generally require lower computational cost in comparison with
other schemes and provide fairly good approximations to wave speed with very low computational
cost. It can be suggested that, if the number of equations is low, characteristic decomposition
schemes are the best; on the other hand, when facing a problem with a large set of equations (large
number of components) the CEN-DW or CEN-MDW schemes are the best choices.

Several options were investigated to produce an upwind flux. While the classical first order
upwind scheme is the mainstream approach in commercial simulators, it can be shown that this
scheme leads to wrong evaluation of upwind flux when counter-current flow occurs. Among other
upwind formulas, the UPW-VAR/FLX/ROE exhibit comparable performances. Given that the
UPW-FLX scheme uses the same formulation for upwinding as UPW-VAR except that in the
UPW-FLX flux functions are upwinded directly, this can be an indication of preference of flux
upwinding over variable upwinding at least in this highly nonlinear problem.

It was shown that all schemes generate maximum numerical dissipation when dealing with
problematic points. These points are located mainly in the two phase regions where eigen-values
of the system differ from each other. The existence and size of a two phase region, and hence the
problematic points, is mainly a function of temperature, pressure, and composition of the problem.

Linear degeneracy of the system was confirmed by means of ternary composition space. The
complex wave structure of the two phase system of conservation equations was investigated graph-
ically. It was shown that, the system contains umbilic points in the two phase region while the
single phase region has relatively smooth wave structure.

The problem data including the gravity number, relative permeabilities, and viscosity ratios
may change in a way that the upwind numerical scheme fails to satisfy entropy condition. In
this paper, CEN-MDW flux supersedes the original upwind flux in such points as described in
section 4.12.

It was shown that the use of high order variable reconstruction procedures significantly increases
the accuracy of solution. However, no significant preference was observed between the second order
WENO and MUSCL reconstructions except for relative simplicity of the WENO procedure.

Numerical experiences shows that the CFL number should not exceed 0.5 when high order
spatial schemes are used along with the first order forward Euler time integration while in the first
order spatial scheme a CFL of 0.7 is acceptable for two-phase problems while for three phase cases
CFL should be at most 0.5. Using second order time integration method along with either first or
high order spatial scheme significantly increases the stability region to a CFL of 0.9.



8189

©CoO~NOUTA,WNPE

Nomenclature

Ne number of components, [-]

np number of phases, [-]

s* saturation of phase a, [-]

p®  viscosity of phase «, [kg/m.s] or
[ML=1T—1]

k& relative permeability of phase «, [-]

p* molar density of phase «, [kg — mol/m?]
or [NL73]

o mass density of phase «, [kg/m?] or
ML)

m®  mobility of phase «, [m.s/kg] or [M~1LT]

g gravitational acceleration, [m/s?] or
[LT~?

P pressure, [Pa] or [ML T2

T temperature, [K] or [©)]

n vector of component mole numbers,
[kg — mol| or [N]

Z vector of component overall mole frac-
tions, [-]

A mole fractions of aqua phase, [-]

L mole fractions of liquid phase, [-]

v mole fractions of vapor phase, [-]

x“ vector of component mole fractions in
phase «, [-]

v®  velocity of phase «, [m/s] or [LT}]

vt total velocity, [m/s] or [LT71]

vi°t  total partial molar volume of ith compo-
nent, [m?/kg — mol] or [N~1L3]

cy fluid compressibility, [1/Pa] or [M~1LT?]

cr rock compressibility, [1/Pa] or [M~1LT?]

o porosity, [-]

K absolute permeability, [m?] or [L2]

t time, [s] or [T

At time step size, [s| or [T]

tn

Az length of grid cell, [m] or [L]

Vj size of jth grid, [m?]

x length coordinate, [m] or [L]

7Z height coordinate, [m] or [L]

0 dip angle, [rad] or [0]

f vector of component hyperbolic fluxes,
[kg — mol.m/s| or [NLT 1]

f vector of component numerical fluxes,
[kg — mol.m/s| or [NLT~!]

a vector of component molar sources/sinks,
[kg — mol/s] or [NT~!]

A numerical wave speed, [m/s] or [LT~}]

Aj jth eigen-value of Jacobian matrix,
[m/s] or [LT7!]

A diagonal matrix of eigenvalues, [m/s] or
[LT]

r; jth right eigen-vector of Jacobian ma-
trix, [-]

R matrix of right eigenvectors of Jacobian
matrix, [m/s] or [LT1]

¢me  monotonized central slope limiter, [-]

¢mm minmod slope limiter, [-]

¢osh ~ Osher slope limiter, [-]

Dol van Leer slope limiter, [-]

CFL Courant-Friedrichs-Lewy number, [-]

HLL Harten-Lax-van Leer scheme

UPW- Upwind scheme

CEN- Central scheme

CLS Classical Upwind scheme

FLX Flux-based Decomposition Scheme

VAR Variable-based Decomposition Scheme

ROE Roe-based Scheme

LLF Local Lax- Friedrichs scheme

DW  Dominant Wave scheme

MDW Modified Dominant Wave scheme

subscripts

1

31

component index



©CoO~NOUTA,WNPE

phase index
liquid phase
vapor phase

node index

32

j +1/2 interface index

L

R

left high-order state

right high-order state
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A Fluid Properties and Thermodynamic Equilibrium

In order to determine phase properties, e.g., density p®, viscosity u“, and saturation s“, in a com-
positional model, thermodynamic (or phase) equilibrium state must be known. A multi-component
multi-phase system at specified temperature and pressure is in thermodynamic equilibrium when
there is no driving force to transport a component between different phases (Danesh, 1998). In
this case, each phase has its own composition, but all phases have the same temperature and pres-
sure. Total mole fraction of components z = n/(e’n) and mole fraction of components in phase a,
x% = n®/(e'n®) are defined with respect to n and n® in section 2. Thermodynamic equilibrium
state of a multi-component multi-phase system is the state with minimum Gibbs energy. Mathe-
matically speaking dG(T,p,z) = 0, where G represents Gibbs energy (Whitson and Brulé, 2000;
Nelson, 1987).

In order to find out how many phases exist in the reservoir, stability analysis (Michelsen, 1982a)
should be performed that specifies the number of phases by evaluating different probable single, two
or three-phase states. Again, the actual state is the one which has the least Gibbs energy (Whitson
and Brulé, 2000).

Whenever more than one phase exist, flash calculation is performed to determine the composi-
tion of each phase. For a system with liquid, vapor, and aqua phases, the criterion of thermodynamic
equilibrium becomes (Firoozabadi, 1999; Michelsen et al., 2008)

fil(T)p’Xl):fzp(Tapaxv):fia(Tvpvxa)a ,L:]-a s Ney (Al)

where f* is partial fugacity of component ¢ in phase «.

f{ is a complicated non-linear function of 7', p, and x“ which is derived by using Equation
Of State (EOS). In order to calculate the fugacity in the flash calculations, the EOS is employed
for each phase separately. Various types of EOS may be used to this end, for example (Redlich
and Kwong, 1949; Soave, 1972; Peng and Robinson, 1976), among them Peng-Robinson (Peng and
Robinson, 1976) is used here for hydrocarbon phases. The latter EOS is a cubic function of phase
compressibility factor Z¢ = p/(p®RT) where R is the universal gas constant. Consequently, the
inputs of flash calculations are T, p, and z; while, the outputs are x%, and Z¢ for a = [,v,a.
This information is used to estimate the values of p® which, in turn, leads to calculation of phase
saturation s® and relative permeabilities as a function of saturation. In order to calculate phase
viscosities p®, algorithm of (Lohrenz et al., 1964) is used. Details of these calculations can be found
in (Whitson and Brulé, 2000; Michelsen et al., 2008). It should be noted that, the NVCM test cases
studied in this paper use constant K-values assumption, hence in this case the stability and flash
procedures become independent of EOS (Orr, 2005; LaForce et al., 2006, 2008b).

A.1 Flash Procedure

1. Given the overall composition z;, K!* = i—é and K = i—Z are defined as the ratios of
component mole fraction in liquid and aqua thases to vapor thase7 respectively. Whenever
all three phases, i.e., liquid, vapor, and aqua, are presented simultaneously, the so-called multi-
phase Rachford-Rice equation (Michelsen et al., 2008) should be solved iteratively, with an
initial guess from stability analysis, to determine the mole fraction of liquid and aqua phases.
Mathematically speaking,

e Zl(Klv — 1)
Fi(L,A) = d =0 A2
1L, 4) ;1+L(K§v—1)+A(K5v—1) ’ (4.2a)
= zi(K& —1)
Fy(L,A) = : =0 A.2b
(L, A) Z1+L(K§v—1)+A(K;w—1) ’ (4.2b)

=1

where, L, V, and A are the mole fractions of liquid, vapor, and aqua phases, respectively.
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2. The mole fraction of components in the vapor phase is solved from the overall material balance

equation as
Z

Y = ) .:]-7"'7 (3} A3
YTIT LK — 1)+ A(K® 1) ! " (A:3)

hence, 2! = KV2? and 2¢ = K®x? fori=1,--- ,n,.

. If composition dependent K-values are used, given the T, p, x!, x¥, and x®, EOS is solved for

all phases, and the fugacities of each component in each phase are calculated. Finally, the
K! and K& in step (1) are updated successively as

Kzlv _ Kfv,oldfiy/le’ (A.4a)
Kzgw — K;Lv’OdeiU/fiav (A.4b)

until fil = f/ = f within a preset tolerance.

. If only two phases are present, depending on the type of existing phases, one of the following

equations must be solved

for liquid-vapor mixture, Fi(L,0) =0, (A.ba)
for aqua-vapor mixture, F»(0,A) =0, (A.5Db)
and for liquid-aqua mixture, Fi(L,A) = F>(L, A). (A.5c)

It should be noted that, the properties needed for calculations are given in Tables 2, 4 and 5.



