
P R IMA R Y R E S E A R CH A R T I C L E

Global projections of future cropland expansion to 2050 and
direct impacts on biodiversity and carbon storage

Amy Molotoks1 | Elke Stehfest2 | Jonathan Doelman2 | Fabrizio Albanito1 |

Nuala Fitton1 | Terence P. Dawson3 | Pete Smith1

1Institute of Biological and Environmental

Sciences, University of Aberdeen,

Aberdeen, UK

2PBL Netherlands, The Hague, The

Netherlands

3Department of Geography, King's College

London, London, UK

Correspondence

Amy Molotoks, Institute of Biological and

Environmental Sciences, University of

Aberdeen, Aberdeen, UK.

Email: a.molotoks@abdn.ac.uk

Funding information

Biotechnology and Biological Sciences

Research Council (BBSRC), Grant/Award

Number: BB/, M010996/1

Abstract

Cropland expansion threatens biodiversity by driving habitat loss and impacts carbon

storage through loss of biomass and soil carbon (C). There is a growing concern

land‐use change (LUC) to cropland will result in a loss of ecosystem function and

various ecosystem services essential for human health and well‐being. This paper

examines projections of future cropland expansion from an integrated assessment

model IMAGE 3.0 under a “business as usual” scenario and the direct impact on

both biodiversity and C storage. By focusing on biodiversity hotspots and Alliance

for Zero Extinction (AZE) sites, loss of habitat as well as potential impacts on endan-

gered and critically endangered species are explored. With regards to C storage, the

impact on both soil and vegetation standing C stocks are examined. We show that

if projected trends are realized, there are likely to be severe consequences for these

resources. Substantial loss of habitat in biodiversity hotspots such as Indo‐Burma,

and the Philippians is expected as well as 50% of species in AZE sites losing part of

their last remaining habitat. An estimated 13.7% of vegetation standing C stocks

and 4.6% of soil C stocks are also projected to be lost in areas affected with Brazil

and Mexico being identified as priorities in terms of both biodiversity and C losses

from cropland expansion. Changes in policy to regulate projected cropland expan-

sion, and increased measures to protect natural resources, are highly likely to be

required to prevent these biodiversity and C losses in the future.
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1 | INTRODUCTION

One of the greatest challenges of the 21st century is to meet soci-

ety's growing food needs whilst simultaneously reducing the envi-

ronmental impact of agriculture (Foley et al., 2011). As a result of

global population increase and changing demand, it is estimated that

between 60%–110% more food could be needed by 2050 (Alexan-

dratos & Bruinsma, 2012; Dawson, Perryman, & Osborne, 2016;

Godfray et al., 2010; Tilman, Balzer, Hill, & Befort, 2011). Whilst

increased production can partially be met through sustainable inten-

sification on existing land (Garnett et al., 2013), substantial expan-

sion of agriculture is expected as it is unlikely that all production

increases will come from current agricultural land (Delzeit, Zabel,

Meyer, & Václavík, 2017; Popp et al., 2017).

Agricultural land use already makes up one of the largest terres-

trial biomes on the planet (Foley et al., 2011) yet according to the

FAO, cropland is expected to expand globally by 7% until 2030
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(Alexandratos & Bruinsma, 2012). However, of the world's 13.4 bil-

lion hectare land surface, only 3 billion is suitable for crop produc-

tion (Bruinsma, 2003), which is restricted by availability of land

resources and local natural conditions (Delzeit et al., 2017). Half of

this is already cultivated (Smith et al., 2010), and although there is

still a large area of land that would be highly suitable for agriculture

that is not currently under cultivation (Delzeit et al., 2017), a large

fraction of remaining land is currently beneath tropical forests (Smith

et al., 2010). Therefore global reviews of cropland availability which

exclude forests indicate there is almost no room for cropland expan-

sion (Eitelberg, Vliet, & Verburg, 2015). The majority of current crop-

land expansion occurs in the tropics, with as much as 80% of new

croplands replacing forests (Foley et al., 2011); however, tropical for-

ests are especially important for C storage and for biodiversity

(Johnson, Runge, Senauer, Foley, & Polasky, 2014). It is therefore

extremely undesirable to convert these natural ecosystems, the con-

sequences of which would include increased greenhouse emissions,

deterioration of soil quality, degradation of land and freshwater

through pollution from chemical fertilisers and loss of biodiversity

(Foley et al., 2005, 2011; Smith et al., 2013).

Deforestation is estimated to account for 20% of worldwide

annual C emissions (IPCC, 2007) and cleared tropical forests release

~95–215 more tonnes of C per hectare than grasslands or pastures

(West et al., 2010). Forests tend to have the largest standing stock

of C, which is often in the region of hundreds of tonnes of C per

hectare (Albanito et al., 2016), as well as the largest inputs of C into

the soil (Smith, 2008). Grasslands also tend to have large inputs into

the soil, although the inputs are often less recalcitrant than forest lit-

ter (Smith, 2008). Carbon inputs to the soil are largely determined

by land use (Smith, 2008), and globally, soils contain 1,500 Gt of C

to one metre depth, which is twice that contained in the atmosphere

(Smith, 2012) and greater than the amount in living vegetation (Post

& Kwon, 2000). Although often overlooked, global soil management

can contribute significantly to climate change mitigation (Paustian

et al., 2016). A small percentage change in soil C can release a large

quantity of C and have a substantial impact on the atmosphere

(Smith, 2012). Therefore, despite high yields, food production gains

from deforested land are tempered by high C losses (West et al.,

2010), with deforestation rendering soil less fertile and more prone

to erosion and degradation, undermining soil quality and soil health

(Smith et al., 2015).

As well as being one of the largest sources of human‐induced cli-

mate change, conversion of natural ecosystems is the single most

important driver of species extinctions (Baillie, Hilton‐Taylor, & Stu-

art, 2004). Global studies have found a strong association between

C stocks and species richness (Strassburg et al., 2010) and natural

habitats with greater soil C stocks are often associated with not only

more species, but more threatened species (Sheil, Ladd, Silva, Laffan,

& Heist, 2016). Assuming that higher than average rates of habitat

loss continue, 40% of species in some of the most biologically

diverse areas around the world could be lost within the next decade

(Pimm & Raven, 2000). Rapid further losses are predicted under a

business as usual land use scenario (Newbold et al., 2015), and it is

projected that 1%–10% of the world's species will be lost in the next

quarter of a century, which is a rate comparable to the Cretaceous

extinction event (Chappell & LaValle, 2011). Current rates of biodi-

versity loss range between several hundred times the background

(natural) rate (Pimm, Russell, Gittleman, & Brooks, 1995) to 1,000–
10,000 times the background rate (Chappell & LaValle, 2011). This

biodiversity loss raises concerns for the consequences on ecosystem

functioning (Civantos, Thuiller, Maiorano, Guisan, & Araújo, 2012)

and in turn, the delivery of ecosystem services, resilience of social‐
ecological systems and human welfare (Corvalan, Hales, & McMi-

chael, 2005).

Preliminary studies have identified areas of potential conflict

between increased agricultural expansion and biodiversity on a regio-

nal scale (Molotoks, Kuhnert, Dawson, & Smith, 2017). However,

there have been only a few global studies addressing future LUC

impacts on vulnerable biodiversity and ecosystem carbon storage

(Seto, Güneralp, & Hutyra, 2012), and even fewer which are spatially

explicit. Furthermore, there have been global studies on the impacts

of cropland expansion on carbon storage (Johnson et al., 2014; West

et al., 2010) and biodiversity (Delzeit et al., 2017) separately; how-

ever, most global studies often define biodiversity as the total num-

ber of species, as opposed to focusing on habitats and species most

at risk. Studies have shown a high correlation between species rich-

ness and carbon storage (Sheil et al., 2016; Strassburg et al., 2010).

Therefore this study aims to examine where the direct impacts of

cropland expansion are most likely to be highest for both C storage

and the most vulnerable, irreplaceable areas of biodiversity.

2 | MATERIALS AND METHODS

Future cropland expansion was assessed using spatially explicit pro-

jections of change in cropland area from the integrated assessment

model IMAGE 3.0 (Stehfest et al., 2014) from 2010–2050. These

projections were then overlaid with various data sets using ArcGIS

to demonstrate the impact of this LUC on biodiversity and C storage

(Figure 1).

IMAGE 3.0 is a comprehensive integrated modelling framework,

suited to large‐scale and long‐term assessments of the impacts of

human activities on natural systems (Stehfest et al., 2014). The

model identifies socioeconomic pathways and projects implications

for energy, land, water and other natural resources (Stehfest et al.,

2014). The scenario we used was the Shared Socio‐Economic Refer-

ence Pathway (SSP) 2 scenario, on a 30 × 30 arc minute resolution,

showing percentage per grid cell converted to cropland over the

40 year time period. SSP2 represents the continuation of current

trends with regard to development and is referred to as the “middle

of the road” scenario (O’Neill et al., 2014). Social, economic and

technological trends do not shift significantly from historical patterns

(Popp et al., 2017) with trade tariffs and subsidies assumed to stay

at current levels (Doelman et al., 2018). LUC is incompletely regu-

lated, with tropical deforestation continuing but at slowly declining

rates over time (Popp et al., 2017). Rates of crop yield increase also

decline slowly with calorie consumption and animal calorie shares
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converging towards high levels (Popp et al., 2017). The overall regio-

nal crop yield changes are calibrated to the FAO Agricultural Out-

look (Alexandratos & Bruinsma, 2012) with 50% of the improvement

in agricultural efficiency being autonomous whilst the other 50%

being price driven (Doelman et al., 2018). In regard to biodiversity,

an assumption of the model is that protected areas are allocated as

to protect 17% of each biome; however, no allocations for other

important areas of biodiversity are implemented. Using this baseline

scenario, we examine impacts of LUC under the presumption that

no major policy changes occur and that intermediate challenges are

present with respect to mitigation of, and adaptation to, climate

change (O’Neill et al., 2014).

To demonstrate the impact on biodiversity through loss of habi-

tat as a result of cropland expansion, two data sets were selected,

based on fundamental principles of conservation: vulnerability and

irreplaceability. The establishment of biodiversity conservation

priorities is commonly addressed using this framework (Margules &

Pressey, 2000). Vulnerability measures the risk to species present

which are highly threatened yet are unprotected, whilst irreplaceabil-

ity measures the extent to which spatial substitutes exists for secur-

ing biodiversity (Mittermeier, Turner, Larsen, Brooks, & Gascon,

2011). Areas with high levels of endemism, for example, are irre-

placeable (Mittermeier et al., 2011) and prioritization of endemic

species, and their habitats are crucial points for conservation actions

(Bacchetta, Farris, & Pontecorvo, 2012).

Biodiversity hotspots were originally identified based on the two

principles and are defined by exceptional concentrations of endemic

species which were experiencing an extreme rate of habitat loss

(Myers, Mittermeier, Mittermeier, Fonseca, & Kent, 2000). Therefore,

we first used this independent data set of 35 existing biodiversity

hotspots (Mittermeier et al., 2011, Figure 2) which have been con-

firmed as priority regions for the efficient conservation of

F IGURE 1 Graphic showing various
steps taken in the methodology to produce
results

F IGURE 2 Biodiversity hotspots (red) and their outer limit (red line) (Mittermeier et al., 2011)
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biodiversity (Mittermeier et al., 2011). Each hotspot holds at least

1,500 endemic plant species and each having lost 70% or more of

its original habitat extent (Mittermeier et al., 2011). A spatial overlay

between these locations and projected cropland expansion to 2050

was therefore conducted at a 30 × 30 arc minute resolution to

examine impact on biodiversity in terms of habitat cleared within

hotspots. The percentage of each hotspot projected to be converted

to cropland was calculated in ArcGIS after harmonising the spatial

consistency of the data sets.

The conservation planning principles of irreplaceability and vul-

nerability are used to identify not only important habitats (Mitter-

meier et al., 2011) but also specific species. The Alliance for Zero

Extinction (AZE) engages 88 non‐governmental biodiversity conser-

vation organizations working to prevent species extinctions (AZE,

2010). It identifies sites where species evaluated to be Endangered

or Critically Endangered under IUCN‐World Conservation Union cri-

teria and is restricted to single remaining sites with definable bound-

aries, containing more than 95% of the global population (AZE,

2010; Ricketts et al., 2005). Currently, 587 sites for 920 species of

mammals, birds, amphibians, reptiles, conifers and reef‐building corals

have been identified with 81% AZE sites being found within a biodi-

versity hotspot (AZE, 2010). These species are endemic, rare and

threatened (McDonald, Kareiva, & Forman, 2008) with small,

restricted populations and little official protection, so are extremely

vulnerable to habitat destruction (Ricketts et al., 2005). These spe-

cies face extinction either because of their remaining habitat being

degraded locally or because of their restricted global range making

them vulnerable to external threats (AZE, 2010). We therefore

decided to use this second, independent data set in another spatial

overlay in ArcGIS at the same spatial resolution to examine infringe-

ment of cropland expansion on AZE sites. The sum of species per

region was then calculated to estimate total species impacted by

future cropland expansion.

To examine C storage loss, spatial overlays were also used. For

vegetation C stocks, the cropland expansion projections were over-

laid with current vegetation C stocks data, focusing on forests. Data

F IGURE 3 Global forecasts of cropland expansion into biodiversity hotspots from 2010 to 2050 under SSP2 as predicted by the IMAGE
model

F IGURE 4 Areas affected by concentrated, high percentages of conversion of habitat to cropland
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sets for 14 individual forest types were combined using spatial joins

and the resulting data set used for calculations at 1 km resolution in

tonnes per hectare. The vegetation C stocks used are those pre-

sented in Ruesch and Gibbs (2008) for land covers represented in

the Global Land Cover 2000 map (Arino, Ramos, Kalogirou,

Defourny, & Achard, 2010). They represent the total biomass C

stored in both above and below ground vegetation. Where cropland

expansion projections overlapped with forests, the C stored is lost

as a result of vegetation being cleared.

Soil C can also be lost as a result of LUC. To examine this, we

used current soil C stocks represented in the Harmonized World Soil

Database (FAO/IIASA/ISRIC/ISS‐CAS/JRC v.1.1, 2009) 30‐arc second

resolution grids for each land use represented in the Global Land

Cover 2009 map (Arino et al., 2010) using the total organic soil C

stock density to a depth of 1 m reported by Hiederer and Kochy

(2012). Together, the HWSD and Global land cover data set were

overlaid with the cropland expansion projections (Figure 1). Calcula-

tions per grid cell were used to estimate C lost, using estimates from

a global meta‐analysis of the impacts of LUC on soil organic C (Guo

& Gifford, 2002), that is, 42% and 59% loss of SOC when converting

to cropland from forest and grassland, respectively. Comparisons

were then made on a regional scale, identifying areas which are pro-

jected to experience both high impacts on biodiversity as well as

large losses of C storage.

3 | RESULTS

3.1 | Biodiversity hotspots

The majority of overlap of cropland expansion within biodiversity

hotspots occurs in the tropics. The three main areas within hotspots

affected by high percentages of conversion to cropland are the

fringe of the Amazon basin in Brazil in the Cerrado hotspot, the

Northern coast of Africa in the Mediterranean basin hotspot and

several countries in South East Asia including Laos, Cambodia, Viet-

nam and Myanmar (Figures 3 and 4). These countries are located

within Indo‐Burma, the most threatened hotspot, with over 7.5% of

the entire area predicted to be completely converted to cropland,

which is approximately almost 180,000 km2 (Table 1).

Other areas, for example, Mexico, Madagascar and Turkey are

affected more by relatively low‐density expansion of cropland spread

across a large area (Figures 3 and 5). Turkey is located within the

TABLE 1 Percentage and area of each biodiversity hotspot
converted to cropland

Hotspot

Area
converted
(sq km)

Total hotspot
extent (sq km)

Percentage
converted
(%)

Indo‐Burma 178,677 2,373,057 7.53

Mediterranean Basin 125,888 2,085,292 6.04

Cerrado 67,741 2,031,990 3.33

Irano‐Anatolian 59,903 899,773 6.66

Sundaland 54,264 1,501,063 3.62

Eastern Afromontane 43,479 1,017,806 4.27

Mesoamerica 38,631 1,130,019 3.42

Himalaya 37,792 741,706 5.10

Caucasus 26,776 532,658 5.03

Madagascar and the

Indian Ocean Islands

24,850 600,461 4.14

Philippines 22,601 297,179 7.61

Wallacea 22,209 338,494 6.56

Guinean Forests of

West Africa

21,820 620,314 3.52

Atlantic Forest 18,741 1,233,875 1.52

Madrean Pine‐Oak

Woodlands

16,083 461,265 3.49

Japan 15,434 373,490 4.13

New Zealand 14,150 270,197 5.24

Mountains of Central

Asia

13,740 863,362 1.59

Coastal Forests of

Eastern Africa

12,550 291,250 4.31

Tropical Andes 10,301 1,542,644 0.67

Southwest Australia 9,157 356,717 2.57

Western Ghats and Sri

Lanka

9,104 189,611 4.80

Horn of Africa 7,740 1,659,363 0.47

California Floristic

Province

7,612 293,804 2.59

Forests of East

Australia

7,355 253,200 2.90

Maputaland‐
Pondoland‐Albany

6,104 274,136 2.23

Chilean Winter

Rainfall and Valdivian

Forests

5,977 397,142 1.51

Tumbes‐Choco‐
Magdalena

3,525 274,597 1.28

Caribbean Islands 2,393 229,549 1.04

Mountains of

Southwest China

2,314 262,446 0.88

Succulent Karoo 2,065 102,691 2.01

Cape Floristic Region 1,721 78,555 2.19

Polynesia‐Micronesia 1,050 47,239 2.22

(Continues)

TABLE 1 (Continued)

Hotspot

Area
converted
(sq km)

Total hotspot
extent (sq km)

Percentage
converted
(%)

East Melanesian

Islands

1,011 99,384 1.02

New Caledonia 675 18,972 3.56

Total 893,436 23,743,301 3.76
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Irano‐Anatolian hotspot which is projected to experience the third

highest percentage of loss, with over 6% of the total area being con-

verted, which is approximately 60,000 km2. In contrast to Indo‐

Burma, this hotspot is predicted to see widespread conversion to

cropland at lower density (Figure 5).

Similarly, Madagascar and Mexico are predicted to experience

low‐density cropland expansion across the entire country (Figure 5).

Madagascar in particular is projected to experience cropland conver-

sion almost country‐wide (Figure 5) even though only 4% or 24,850

km2 is projected to be converted to cropland (Table 1).

Indo‐Burma has the largest area converted to cropland as well as

the second highest percentage of the hotspot converted at 7.53%

(Table 1). The highest percentage of a hotspot being converted does

not, however, necessarily equate to the largest absolute area since

the total extent of each hotspot differs. For example, the Philippians

hotspot has the largest percentage converted at 7.61%. However,

only a total of 22,601 km2 converted to cropland (Table 1). Similarly,

the second largest area within a hotspot projected to be converted

is the Mediterranean Basin, with 125,888 km2 which is only 6.04%

of the hotspot, followed by the Cerrado with 67,741 km2 or 3.33%

(Table 1).

3.2 | AZE sites

Many AZE sites are projected to experience habitat destruction as a

direct result of conversion to cropland. Almost 50% of all species,

455 out of 920 (Table 2), are projected to experience loss of habitat

as a direct result of this LUC. This includes almost 300 amphibian

species, as well as 83 species of mammal and 67 species of bird

(Table 2, Figure 6), all of which are already listed as either endan-

gered or critically endangered by the International Union for Conser-

vation of Nature.

Approximately equal numbers of critically endangered and

endangered species are projected to be affected, with 240 critically

endangered and 217 endangered species (Table 2). The Americas are

predicted to have the largest numbers of all species affected, with

the habitat of 290 species being encroached upon by future crop-

land expansion, followed by Africa and Asia, with 93 and 55 species

being threatened, respectively (Table 2, Figure 6). In contrast, there

are only 16 species affected in Oceania and a single species of

amphibian affected in Europe (Table 2).

Only a small number of species are shown to be present in areas

of high conversion to cropland, with only one species of amphibian

in Oceania affected by the top quartile of cropland expansion

F IGURE 5 Areas affected by widespread, low percentages of conversion to cropland

TABLE 2 Count of all species in AZE sites affected by cropland
expansion

Region and class affected CR EN Total

Africa 41 52 93

Amphibia 26 23 49

Aves 3 9 12

Mammalia 9 19 28

Pinopsida 2 1 3

Reptilia 1 0 1

Asia 27 28 55

Amphibia 10 12 22

Aves 3 3 6

Mammalia 11 11 22

Pinopsida 1 1 2

Reptilia 2 1 3

Europe 0 1 1

Amphibia 0 1 1

North America 97 58 155

Amphibia 73 40 113

Anthozoa 1 0 1

Aves 9 3 12

Mammalia 12 12 24

Pinopsida 1 2 3

Reptilia 1 1 2

Oceania 12 4 16

Amphibia 3 2 5

Aves 3 1 4

Mammalia 2 0 2

Pinopsida 4 1 5

South America 62 73 135

Amphibia 43 51 94

Aves 14 19 33

Mammalia 4 3 7

Reptilia 1 0 1

Grand Total 239 216 455
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(Table 3). This species may, therefore, be at higher risk than species

in areas of low conversion to cropland, as the area is projected to

experience a larger percentage of conversion to cropland within the

AZE site. On a country level, Mexico is projected to have the highest

number of AZE sites impacted by cropland expansion with 111 sites

set to experience some level of conversion (Supporting information

Table S1).

3.3 | Carbon storage

For both soil C and vegetation biomass, Africa is projected to lose

the most C storage (Figures 7 and 8), followed by Asia as a result of

cropland expansion with 11.48 and 7.78 Gt C lost in each, respec-

tively (Figure 8).

On a country level, the Democratic Republic of the Congo is

estimated to lose the most C with a total of 3.19 Gt C from soil and

biomass, followed by Brazil and the United States with 2.62 and

2.48Gt C estimated to be lost, respectively (Tables 4 and 5). For soil

C, the United States is projected to lose the most, with an estimated

loss of 1.18 Gt C followed by Russia and Canada (Table 4). For bio-

mass C stocks in vegetation, the Democratic Republic of the Congo,

followed by Brazil and Angola are estimated the experience the

greatest C losses (Table 5).

When considering carbon and biodiversity losses together, the

Americas have the most AZE species affected, but carbon losses, in

comparison, are relatively small. In contrast, Asia shows large carbon

losses but fewer species are impacted (Figure 9).

Africa shows the highest C losses as well as high numbers of

AZE species threatened by cropland expansion. Although Madagas-

car is the country with most species affected, Tanzania is the only

country in Africa which also has high C losses. Furthermore, on a

country level, Indonesia and Mexico both have very high numbers of

species at risk as well as being in the top ten countries for both soil

and vegetation biomass C loss (Supporting information Table S1,).

4 | DISCUSSION

The projections show large areas of biodiversity hotspots potentially

at risk from future cropland expansion. Biodiversity hotspots cover

over 23million km2 of which an estimated 0.9 million km2, approxi-

mately 3.76%, are projected to be converted to cropland by 2050

(Table 1). Although this seems a small percentage, collectively they

hold over 50% of the world's endemic plant species and 77% of ter-

restrial vertebrates (Mittermeier et al., 2011), and 88% of the original

extent of their primary vegetation land cover has already been

destroyed (Myers et al., 2000). Therefore, considering the vulnerabil-

ity and irreplaceability of these areas, land conversion could have

profound impacts on biodiversity. Furthermore, 50% of all AZE spe-

cies are estimated to be impacted through habitat destruction from

this LUC (Table 2). In total, 455 species have been identified as

being at risk from future cropland expansion, of which almost 300

are amphibian species (Table 2, Figure 5). Considering that AZE sites

are designated based on a species which is already endangered or

critically endangered, as well as being restricted to single remaining

sites, these species are particularly vulnerable to external threats

(AZE, 2010).

This LUC also has profound impacts on C storage with 13.7%

of standing biomass C stocks and 4.6% of soil C stocks being lost

in areas projected to experience cropland expansion. A total of 33

Gt C is estimated to be lost as a direct result of clearing land for

cropland, with 11.3Gt lost from soil and 21.9Gt C from vegetation

biomass C stocks in forests (Figure 7). Globally, forests are esti-

mated to contain 816 Gt C (Lal, 2008) so this represents a loss of

2.67% of global C. To put this in context, in 2010 total global

annual GHG emissions were estimated at 49.5 Gt CO2eq (= 13.5

Gt C eq.) with CO2 comprising over 75% which is 38 GtCO2 per

year (= 10.4 Gt C eq.) (IPCC, 2014). The projected C loss is equiv-

alent to therefore 2.4 times greater than the annual global anthro-

pogenic GHG emissions or 2.9 times greater than the annual

global C emissions. This loss of C stocks is therefore substantial

and would contribute significantly to greenhouse gas emissions

during a period when it is essential to minimize such emissions

(Smith et al., 2016). Furthermore, loss of C storage in the soil

often impacts supporting services such as soil formation, nutrient

cycling and water quality, affecting the fertility, quality and health

of the soil (Smith et al., 2015). This could in turn negatively

impact biodiversity as well as the productivity of the soils newly

converted to croplands.

F IGURE 6 Count of all species for
Critically Endangered (CR) and Endangered
(EN) status in AZE sites for classes most
affected by cropland expansion (Amphibia,
Aves and Mammalia)
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Although biodiversity and C storage are rarely addressed

together, natural habitats with greater soil C stocks have been found

to often be associated with more species of conservation signifi-

cance (Sheil et al., 2016; Strassburg et al., 2010). Maintaining vegeta-

tion not only protects habitat for biodiversity but also benefits water

quality and maintains landscape connectivity, which contribute to

supporting wildlife (Sheil et al., 2016). On a regional scale, Africa

experiences the highest impact on both biodiversity and C storage.

Projections estimate high C losses, especially surrounding the Congo

Basin (Figure 7), which is reflected in the Democratic Republic of the

Congo being one of the countries with the highest C losses (Tables

4 and 5). It also shows high numbers of AZE species impacted by

cropland expansion (Figure 9). However, the Americas show low C

losses compared to higher numbers of species impacted, whilst the

reverse is true for Asia (Figure 9), despite having the highest losses

from biodiversity hotspots with over 350,000 km2 converted to

cropland (Table 1).

The most threatened hotspot with the largest percentage area

converted to cropland is also located in Asia. Indo‐Burma is the hot-

spot with the largest areas of conversion to cropland, concentrated

in Laos (Figures 3 and 4, Table 1). It also has the second highest per-

centage of total area within the hotspot lost with 7.5% being con-

verted to cropland (Table 1). Another study also projects that Indo‐
Burma will lose an additional 20% of its primary vegetation from

2005–2100 in all climate scenarios, which is the most amongst all

the biodiversity hotspots (Jantz et al., 2015).

Over the past couple of decades, tropical Asia has seen unprece-

dented LUC and has experienced the highest deforestation rate

globally (Achard et al., 2002; Tao et al., 2013) and faster cropland

expansion over the past 20 years than any other region (Tao et al.,

2013). Asia is characterized by faster than global average population

growth, with a consequent increase in food production to meet

demand, by expansion of agricultural land (Cervarich et al., 2016).

Furthermore, the hotspots are home to a disproportionate share of

people, with populations in hotspots growing faster than the rest of

the world, and also having a substantial fraction of the world's poor

(Mittermeier et al., 2011). Geographically, tropical Asia occupies one

of the largest areas of tropical forests (Cervarich et al., 2016) and

has relied heavily on clearing intact forests for new agricultural land

(Gibbs et al., 2010). It is also likely to undergo further rapid develop-

ment in the future with large areas of cropland expansion and natu-

ral forest shrinkage occurring to meet growing demands (Tao et al.,

2013). It is therefore unsurprising that tropical Asia is also predicted

to experience high losses of C (Figure 9) with a combined total of

1.03 Gt C lost from Laos and Myanmar alone.

Although Asia has the highest projected rates of habitat loss

from conversion to cropland and large C losses, it has lower AZE

species impacted (Figure 9) which is potentially because of the

majority of these sites being situated in the Americas. Several coun-

tries in South America have high numbers of species impacted, for

example, 38 in Colombia and 29 in Peru (supporting information

Table S1). However, the numbers impacted in Mexico exceed even

these, with 111 species affected out of a total of 155 in the whole

of North America (Supporting information Table S1). This is not only

the highest number of AZE species globally but is also more than

three times the amount of threatened species affected than in any

other country (Supporting information Table S1). Only a third of AZE

sites are legally protected (Ricketts et al., 2005) and many are also

surrounded by intense human development, placing these sites

under significant risk from future LUC (Ricketts et al., 2005; Seto

et al., 2012). Furthermore, Mexico also incurs heavy C losses (Tables

4 and 5) and spans across all three biodiversity hotspots found in

North America, so is one of few countries projected to be heavily

TABLE 3 Count of all species in AZE sites affected by each
quartile of cropland expansion shown by region and class

Distinct count of
species affected
shown by region
and class

Intensity of cropland expansion
affecting AZE site (%)a

Total<25 25–50 50–75 >75

Africa 92 8 3 0 93

Amphibia 49 6 1 0 49

Aves 12 0 2 0 12

Mammalia 27 2 0 0 28

Pinopsida 3 0 0 0 3

Reptilia 1 0 0 0 1

Asia 51 6 1 0 55

Amphibia 22 0 0 0 22

Aves 5 1 0 0 6

Mammalia 20 3 1 0 22

Pinopsida 2 1 0 0 2

Reptilia 2 1 0 0 3

Europe 1 0 0 0 1

Amphibia 1 0 0 0 1

North America 145 29 0 0 155

Amphibia 107 20 0 0 113

Anthozoa 1 0 0 0 1

Aves 8 4 0 0 12

Mammalia 24 4 0 0 24

Pinopsida 3 0 0 0 3

Reptilia 2 1 0 0 2

Oceania 16 3 0 1 16

Amphibia 5 2 0 1 5

Aves 4 0 0 0 4

Mammalia 2 0 0 0 2

Pinopsida 5 1 0 0 5

South America 134 15 0 0 135

Amphibia 94 8 0 0 94

Aves 32 6 0 0 33

Mammalia 7 1 0 0 7

Reptilia 1 0 0 0 1

Grand Total 439 61 4 1 455

aTotals do not always sum each row as each species may be affected by

more than one area of cropland expansion.
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impacted by future cropland expansion for both vulnerable biodiver-

sity and C storage.

Latin America has the planet's largest land reserves for agricul-

ture (Graesser, Aide, Grau, & Ramankutty, 2015), and Mexico has

been found to have high natural expansion potential as it is charac-

terized by fertile soils and adequate climate conditions for crop

growth (Delzeit et al., 2017). It is one of the most biodiverse coun-

tries in the world, with approximately 30,000 species of plants and

449 mammal species (Cantu, Wright, Scott, & Strand, 2004). How-

ever, it is also amongst the countries predicted to have the most

species suffering large habitat declines by 2050 (Visconti et al.,

2011, Supporting information Table S1) as most new agricultural

land in Latin America has also come from intact, undisturbed forests

(Gibbs et al., 2010). This is a result of large increases in food produc-

tion and consumption, driven by accelerated growth of population

and consumption (Visconti et al., 2011).

F IGURE 7 Panel showing spatial patterns of carbon lost a) from soil and b) from vegetation biomass
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The majority of species projected to be affected in Mexico are

amphibians, making up 83 of the 111 species (Supporting informa-

tion Table S1). Likewise, on a global scale, amphibians are the most

heavily impacted with 278 of the 455 AZE species impacted

(Table 3). Amphibians are currently undergoing worldwide population

declines which are unprecedented (Stuart et al., 2004), with habitat

loss and fragmentation the main causes of this conservation crisis

(Cushman, 2006). They are more threatened and are declining more

rapidly than other classes such as birds or mammals and many are

on the brink of extinction, with 427 species listed as critically endan-

gered (Stuart et al., 2004). Their vulnerability in comparison to other

classes can be explained by a number of factors, including low mobil-

ity, narrow habitat and climate tolerances, high susceptibility to

pathogens and sensitivity to environmental pollution (Cushman,

2006). Climate change in particular has been proposed as a signifi-

cant threat to amphibians, with shifts in temperatures increasing the

likelihood of pathogen outbreaks (Pounds et al., 2006). It is therefore

unsurprising that amphibians are shown to be the most affected

class by cropland expansion into AZE sites.

Not all AZE sites are located within biodiversity hotspots, and

Brazil is an example of a very biodiverse country (Cantu et al.,

2004), yet has low numbers of AZE species impacted by cropland

expansion (Supporting information Table S1). The Cerrado biodiver-

sity hotspot, however, has the third largest area of land converted to

cropland, with almost 70,000 km2 projected to be lost from this hot-

spot (Table 1). Brazil has, until recently, experienced the world's

highest rates of tropical deforestation (Lapola et al., 2014), and as in

tropical Asia, lower production costs and fewer environmental regu-

lations have created rapid responses to increased demand for crops

(Gibbs et al., 2010). Brazil is also projected to incur the second lar-

gest C losses with a combined loss of 2.62Gt C (Tables 4 and 5) and

is therefore also a potential global priority in terms of future impacts

on both biodiversity and C storage.

Projections from this study suggest the areas around the south-

ern extent of the Amazon in Brazil will be particularly affected, with

this “arc of deforestation” stated to be one of the most active land

use frontiers in the world in terms of total forest loss (Morton et al.,

2006). Approximately 62% of the forests of Amazonia are located in

Brazil, with clearance concentrated on the southern and eastern

margins (Malhi et al., 2008), with one of the main drivers of clear-

ance being from mass soybean production (Gibbs et al., 2010; Malhi

F IGURE 8 Estimated sum of carbon
lost from soil and vegetation biomass per
region (Gt C = billions of tonnes C)

TABLE 4 Top ten countries with the largest estimated soil carbon
loss (Gt C = billions of tonnes C)

Country Gt C lost

United States 1.18

Russia 1.12

Canada 1.04

China 0.56

Democratic Republic of the Congo 0.53

Brazil 0.49

Australia 0.44

Indonesia 0.43

Angola 0.34

Mexico 0.27

TABLE 5 Top ten countries with the largest estimated carbon
storage loss from vegetation (Gt C = billions of tonnes C)

Country Gt C lost

Democratic Republic of the Congo 2.66

Brazil 2.13

Angola 1.52

United States 1.30

India 1.24

Australia 1.03

Central African Republic 1.03

Indonesia 1.00

China 0.75

Mexico 0.63
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et al., 2008; Morton et al., 2006). The projections suggest cropland

expansion in this area is likely to increase over the next 30 years,

with higher rates of land conversion in small areas on the fringes of

the Amazon and more widespread conversion of land at lower per-

centages to cropland in Southern Brazil. This is consistent with other

studies showing that although deforestation rates in the Amazon

have declined, cropland expansion continues in the Cerrado (Graes-

ser et al., 2015).

Carbon losses in Brazil are second only to the Democratic

Republic of the Congo, which is projected to lose 3.19 Gt C (Tables

4 and 5). A UN report examining the potential for cropland expan-

sion concluded that Africa had more under‐utilized arable land than

any other continent (Deininger & Byerlee, 2011). More than half the

uncultivated area left which is unforested and unprotected is located

in ten countries, six of which (Sudan, The Democratic Republic of

the Congo, Mozambique, Madagascar, Chad, Zambia) are in Africa,

which inevitably leaves the region at a higher risk of C loss from

expansion of agriculture. Furthermore, the largest areas of forest

cover are located in the Congo basin, half of which are within the

boundaries of the Democratic Republic of the Congo (Potapov et al.,

2012). Compared to forests in other regions, most tropical forests

generally have relatively high soil C density; therefore, land conver-

sion will significantly reduce C storage (Tao et al., 2013). Further-

more, the DRC has the highest area of annual forest cover loss

because of high population density and the highest population

growth rate in the region, both of which are key drivers of LUC

(Potapov et al., 2012).

Although there is not a great threat to vulnerable biodiversity in

this region, it is possible that clearing forests also has a significant

impact on biodiversity metrics not considered in this study. This is

also the case for other countries, such as the United States which

appears in the top five for both categories of C loss (Tables 4 and

5), yet has very few AZE species affected (Supporting information

Table S1) and even less important habitat at risk (Figure 2). The

Irano‐Anatolian biodiversity hotspot, on the other hand, is also heav-

ily impacted by cropland expansion, yet only one AZE species is

located in the area (Table 2) and is also not predicted to experience

large C losses. It is impossible to say what the impact on biodiversity

apart from the metrics used in this study are, however the impor-

tance of these results is to highlight areas where the most vulnera-

ble, irreplaceable species are at the greatest risk as well as heavy

losses of C storage being incurred from cropland expansion.

A number of countries and regions are identified as particular

priorities for careful management and regulation (or prevention) of

cropland expansion for reasons of both biodiversity conservation

and C storage. This includes the Indo‐Burma biodiversity hotspot in

tropical Asia, as well as Mexico and Brazil, both countries being long

recognized for their biodiversity and classified as mega‐diverse coun-

tries (Mittermeier, Robles‐Gil, & Mittermeier, 1997). For biodiversity

alone, the Irano‐Antaolian and the Mediterranean Basin also show

substantial loss of habitat, whilst for C storage alone the Democratic

Republic of Congo shows the heaviest losses. However, areas where

both vulnerable biodiversity and C storage are threatened perhaps

deserve special attention. Having identified the areas and countries

with particular vulnerability to future cropland expansion, further in‐
depth research is needed within these countries to pinpoint local

areas at the highest risk from cropland expansion.

Future cropland expansion may well contribute towards

improved food security, but as we have demonstrated, it frequently

presents a trade‐off with biodiversity (Delzeit et al., 2017) and/or

F IGURE 9 Comparison of impacts of cropland expansion for each region on carbon storage for both soil and standing vegetation stocks
and AZE species, Endangered (EN) and Critically Endangered (CR)
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carbon storage (Smith et al., 2013; West et al., 2010). Further, we

have demonstrated that whilst cropland expansion is likely to lead to

both biodiversity loss and ecosystem C loss, cropland expansion

does not always threaten habitat, species and C storage to the same

extent. As a provisioning ecosystem service, food production often

has trade‐offs with almost all other ecosystem services (Raudsepp‐
Hearne, Peterson, & Bennett, 2010), some of which have been

shown to decline as a direct result of economic growth and

enhancement of food provision (Dearing et al., 2012). Cropland

expansion, as projected in this study, leads to direct impacts on both

C storage and biodiversity, showing significant loss of habitat and

biomass from global biodiversity hotspots, AZE sites and C pools.

There is a danger that this could create positive feedback, where

cropland expansion into a certain area could have repercussions on

neighbouring areas and lead to further losses of other ecosystem

services. However, further research is required using finer resolution

data within countries to identify local areas most at risk of these

repercussions. Though the full extent of the impacts of cropland

expansion in these areas cannot be assessed in a global study such

as this, it highlights areas particularly at risk, shows regions in which

conservation policy is likely to be needed to further protect biodiver-

sity and ensure minimal losses of C storage in these vulnerable

areas, and highlights the magnitude of the threats to biodiversity

and C storage posed by cropland expansion in the future if current

trends are continued.
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