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A VARIANT OF HARISH-CHANDRA FUNCTORS

TYRONE CRISP, EHUD MEIR, AND URI ONN

ABSTRACT. Harish-Chandra induction and restriction functors play akey role in the representation theory of
reductive groups over finite fields. In this paper, extendingearlier work of Dat, we introduce and study generalisa-
tions of these functors which apply to a wide range of finite and profinite groups, typical examples being compact
open subgroups of reductive groups over non-archimedean local fields. We prove that these generalisations are
compatible with two of the tools commonly used to study the (smooth, complex) representations of such groups,
namely Clifford theory and the orbit method. As a test case, we examine in detail the induction and restriction
of representations from and to the Siegel Levi subgroup of the symplectic groupSp4 over a finite local principal
ideal ring of length two. We obtain in this case a Mackey-typeformula for the composition of these induction and
restriction functors which is a perfect analogue of the well-known formula for the composition of Harish-Chandra
functors. In a different direction, we study representations of the Iwahori subgroupIn of GLnpFq, whereF is a
non-archimedean local field. We establish a bijection between the set of irreducible representations ofIn and tuples
of primitive irreducible representations of smaller Iwahori subgroups, where primitivity is defined by the vanishing
of suitable restriction functors.
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1. INTRODUCTION

1.1. Overview. Harish-Chandra (or parabolic) induction and restriction are fundamental operations in the rep-
resentation theory of reductive groups over finite fields, allowing efficient transport of representations between
such groups and establishing a close connection to the representation theory of finite Coxeter groups; see
[42, 40] for a particularly elegant development of this connectionfor finite classical groups. Recall that Harish-
Chandra induction is an instance of the following general construction. Given a finite groupG, and subgroupsL
andU such thatL normalisesU, one obtains a functor iGL from the complex representations ofL to the complex
representations ofG by tensor product with theHpGq-HpLq bimoduleHpGqeU, whereHpGq is the complex
group algebra ofG andeU is the idempotent associated with the trivial representation ofU. Dually, tensoring
with the bimoduleeUHpGq gives a functor rGL that is adjoint to iGL . A variant of Mackey’s double-coset formula
applies to the composite functor rG

L iGL , yielding a decomposition of the endomorphism algebra of aninduced
representation iGL pMq into a direct sum indexed by the double-coset spaceLUzG{LU; cf. [40, Theorem 2.3.1].
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In the case of Harish-Chandra induction,G is the group of rational points of a connected reductive group de-
fined over a finite field, andL andU are the respective groups of rational points of a Levi factorof and the
unipotent radical of a rational parabolic subgroupP of G. The Bruhat decomposition gives a parametrisation
of theP-double cosets inG by the double cosets of the Weyl group ofL in the Weyl groupG, and the Mackey
formula becomes

(1.1) rGL iGL –
à

gPWLzWG{WL

iLLXgLg´1 Adg rLg´1LgXL .

See [11] for the precise general formulation and proof, and for a sampling of the applications of this formula;
and see [15, 37] for the original work of Harish-Chandra.

In this paper we study induction and restriction functors which generalise the Harish-Chandra functors to
a rich family of profinite groups, to which the family of reductive groups over finite fields is only a partial
first approximation. Our motivating examples are classicalgroups over compact discrete valuation rings, but
our framework covers many other cases, including arbitraryopen compact subgroups of reductive groups over
local fields. Certain representations of such open compact subgroups play an important role in the construction
and classification of smooth representations of the reductive groups via the theory of types. However, the
representation theory of these compact subgroups per se is not so well understood.

Before we introduce the functors that are at the heart of the present paper we remark that the most obvious
generalisation of the Harish-Chandra functors to the setting considered here tends to produce representations
that are far from irreducible, and in this sense lacks the efficiency of the ‘classical’ Harish-Chandra functors.
For a concrete example, leto be the ring of integers in a non-archimedean local fieldF (soF is either the field
of Laurent series over a finite field, or a finite extension of thep-adic numbers). Letp denote the maximal ideal
of o, and for everyℓ P N setoℓ “ o{pℓ. Let Tn Ă Bn Ă GLn denote the standard diagonal torus and the
standard upper-triangular Borel subgroup in the general linear group, and let Un denote the unipotent radical
of Bn. The subgroup Tnpoℓq normalises Unpoℓq, and so the construction described in the first paragraph gives
a functor from representations of Tnpoℓq to representations of GLnpoℓq, which in particular sends the trivial
representation of Tnpoℓq to the permutation representation of GLnpoℓq given by

(1.2) HpGLnpoℓqqeUnpoℓq bHpTnpoℓqq 1 – HpGLnpoℓq{ Bnpoℓqq.

Whenℓ “ 1 the Mackey formula (1.1) gives a decomposition of (1.2) according to the regular representation
of the symmetric group onn letters. Forℓ ą 1 the decomposition of (1.2) into irreducibles gets very quickly out
of control, owing to the complicated nature of the double-coset space Bnpoℓqz GLnpoℓq{ Bnpoℓq. Misleadingly
simple is the casen “ 2, where the induced representation hasℓ` 1 irreducible components (see [5]); already
for n “ 3 the decomposition of the induced representation is rather complicated and, in particular, depends on
the degree of the residue fieldo1 “ o{p, see [33].

Our proposed variant of Harish-Chandra induction, in this GLn example, sends the trivial representation of
Tnpoℓq to the image of the intertwining operator

H pGLnpoℓq{ Bnpoℓqq Ñ H
`
GLnpoℓq{ Btnpoℓq

˘

which averages right Bnpoℓq-invariant functions on GLnpoℓq by the right action of Utnpoℓq, wheret means
transpose, to obtain right Btnpoℓq-invariant functions. This image is isomorphic—regardless ofℓ—to the module
HpGLnpo1q{ Bnpo1qq, on which GLnpoℓq acts through the quotient map GLnpoℓq Ñ GLnpo1q.

This process of passing to the image of a canonical intertwining operator between two induced representa-
tions fits into a rather general setting, which we shall now describe. In the main body of the paper we study
representations of profinite groups, such as groups of matrices over compact discrete valuation rings; but our
results also apply to (and are interesting for) finite groups, such as matrix groups over the finite ringsoℓ, and in
order to minimise the technicalities in this introduction we shall restrict our attention here to the finite case.
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Let G be a finite group, and suppose thatU, L andV are subgroups ofG such thatL normalisesU andV ,
and such that the map

Uˆ Lˆ V ãÑ G

given by multiplication inG is injective. We leteU and eV denote the idempotents in the complex group
algebraHpGq associated to the trivial representations ofU andV , and we consider theHpGq-HpLq bimodule
HpGqeUeV . Let iU,V be the functor from the categoryRpLq of complex representations ofL to the category of
complex representations ofG defined by tensoring with this bimodule:

iU,V : RpLq Ñ RpGq, M ÞÑ HpGqeUeV bHpLq M.

Similarly, define

rU,V : RpGq Ñ RpLq, N ÞÑ eUeVHpGq bHpGq N.

This definition is closely related to, and directly inspiredby, a construction of Dat [8]. Note, though, that we
consider only complex representations, whereas Dat studied representations over more general commutative
rings. The relationship between our definition and Dat’s, for complex coefficients, is discussed further in
Remark2.8 and in Section5.5. The main novelty of the above definition relative to Dat’s isthat we do not
require the productULV to be a group, so that for instance we could as above takeG to be GLnpoℓq, and let
L “ Tnpoℓq,U “ Unpoℓq andV “ Utnpoℓq. Whenℓ “ 1, a theorem of Howlett and Lehrer ([22, Theorem 2.4];
cf. Example2.10) implies that the functors iU,V and rU,V in this GLn example are isomorphic to the functors
of Harish-Chandra induction and restriction. Whenℓ ą 1 these functors are proper subfunctors of the more
obvious generalisations of the Harish-Chandra functors mentioned above.

1.2. Description of the main results. Basic properties of the functors iU,V and rU,V , in the abstract setting for
profinite groups, are presented in Section2. For instance, these functors are adjoints on both sides; they do
not depend on the order ofU andV , up to natural isomorphism; they preserve finite-dimensionality; and they
satisfy a version of ‘induction in stages’.

The analysis of the functors iU,V and rU,V becomes considerably less complicated in cases where the product
mapU ˆ L ˆ V Ñ G is a bijection. In many examples, such as the GLn example considered above, this
is not the case, but there is a normal subgroupG0 ✁ G such that the product mapU0 ˆ L0 ˆ V0 Ñ G0 is
a bijection, whereH0 meansH X G0. In the GLn example we can takeG0 to be the principal congruence
subgroupG0 “ tg P GLnpoℓq | g ” 1 modulopu.

Suppose thatG admits such a normal subgroupG0. The representation categoriesRpLq andRpGq decompose
according toL0- andG0-isotypic components, and the individual components can bedescribed using Clifford
theory. In Section3 we prove that the Clifford analysis is compatible with the induction and restriction functors
iU,V and rU,V .

More precisely, letψ be an irreducible representation ofL0, and letϕ “ iU0,V0pψq be the corresponding
(irreducible) induced representation ofG0. LetLpψq andGpϕq denote the inertia groups ofψ andϕ. We prove
in Theorems3.4, 3.6 and3.14 that there is a commutative diagram for induction (and a similar diagram for
restriction):

RpLqψ
iU,V // RpGqϕ

RpLpψqqψ
iUpϕq,Vpϕq //

–

OO

RpGpϕqqϕ

–

OO

RγpLpψq{L0q
iUpϕq{U0,Vpϕq{V0 //

–

OO

RγpGpϕq{G0q

–

OO
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whereRpHqθ stands for the representations ofH whose restriction toH0 ✁ H contains the irreducible repre-
sentationθ; andRγpHpθq{H0q stands for projective representations (for a certain cocycle γ) of the quotient
Hpθq{H0.

As for the groupsL0 andG0, in many of our motivating examples they are amenable to the orbit method:
their irreducible representations correspond bijectively to coadjoint orbits in the Pontryagin duals of certain Lie
algebrasl0 andg0. This situation is studied in Section4, where we show that under appropriate assumptions the
induction functor iU0,V0 : RpL0q Ñ RpG0q corresponds to a natural inclusion of coadjoint orbitsΛ˚ : L0zpl0 ãÑ

G0z pg0. That is, the diagram

IrrpL0q
iU0,V0 //

–

��

IrrpG0q

–

��
L0zpl0 Λ˚

// G0z pg0
commutes.

Returning from the abstract setting to our motivating examples, the functors iU,V and rU,V provide a new ap-
proach to the representation theory of classical groups over compact discrete valuation rings, and the results of
Sections3 and4 provide tools to analyse these functors. In Section5 we illustrate the method for the symplec-
tic group Sp4po2q. The main result is a Mackey-type formula for the composition of restriction and induction
to/from the Siegel Levi subgroup. The formula is the same as the usual formula (1.1) for the composition
of Harish-Chandra induction and restriction for the corresponding group Sp4po1q over the residue field ofo,
which lends some support to the analogy between our functorsand the Harish-Chandra functors. This analogy
is further supported by an analysis for the groups GLn, which will be presented in a sequel to this paper.

The general methods developed in Sections3 and4 and used in Section5 apply equally well to Dat’s para-
horic induction and restriction functors. In Section5.5we prove that Dat’s parahoric induction and restriction
functors are not isomorphic to ours, in the example of the Siegel Levi in Sp4po2q; this gives a negative answer
to Dat’s question [8, Question 2.15]. We also prove that the parahoric inductionand restriction functors do not
satisfy the analogue of (1.1) in this example.

While our primary motivation for studying the functors iU,V and rU,V is their application to classical groups,
these functors are defined in much broader generality, and webelieve that they have a useful role to play in
the representation theory of more general matrix groups. InSection6 we use these functors to study one such
example, the representation theory of the Iwahori subgroupIn of GLnpoq. The Iwahori in SL2 was previously
studied from a similar point of view in [8] and [7]. The main result of this section, Theorem6.11, states that
the functors iU,V and rU,V in this context give a bijection

(1.3) IrrpInq ÐÑ
ğ

n1`¨¨¨`nk“n

PrimpIn1q ˆ ¨ ¨ ¨ ˆ PrimpInkq

between the irreducible representations ofIn, and tuples ofprimitive irreducible representations of smaller
Iwahori subgroups (where primitivity is defined by the vanishing of the functors rU,V ). The problem of clas-
sifying the irreducible representations ofIn remains a very difficult one—it contains the problem of counting
the conjugacy classes in the group of upper-triangular matrices over the residue fieldo1—but the bijection (1.3)
shows that part of this classification is very simple and combinatorial in nature.

1.3. Related constructions. Representations of open compact subgroups of reductive groups over local fields
have received much attention in the past two decades. One approach, taken by Lusztig and Stasinski, is to
generalise Deligne-Lusztig theory [10] (which is itself a generalisation of the Harish-Chandra theory) to such
groups; see [30, 39], and also [6] and [31]. Another approach, taken by Hill [16, 17, 18, 19], consists of a
direct Clifford-theoretic analysis of representations according to their restrictions to congruence kernels. In
particular, in [16] Hill establishes a Jordan decomposition for characters ofgeneral linear groups over rings
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of integers inp-adic fields, analogous to the Jordan decomposition of irreducible characters of finite reductive
groups established by Lusztig, cf. [29]. Hill’s work relies on an analysis of certain Hecke algebras building on
the work of Howe and Moy [21]. Another approach was proposed by the third author in [32] using a different
variant of Harish-Chandra induction that allows one to import representations from automorphism groups of
finite modules over discrete valuation rings, yielding a complete and characteristic-independent treatment in
rank two. The work of Dat [8], in which representations of parahoric subgroups ofp-adic reductive groups are
studied using methods closely related to those of the present paper, has already been mentioned above.

It would be of great interest to understand how all these approaches align with the one taken in this paper.
The relationship between our work and that of Dat is addressed in Remark2.8and Section5.5. As for the other
works cited above, let us make a couple of general observations.

The first point to note is that the natural filtration on the valuation ringo does not enter a priori into the
definition of our induction/restriction functors, and in this sense our approach is more elementary than those
of the above-cited works. It is consequently more general—applying for instance to GLnpRq for an arbitrary
(pro)finite commutative ringR—although the usefulness of our methods beyond the setting of discrete valuation
rings remains to be tested.

A second difference is one of scope. Our functors are defined with a view to making the induced represen-
tations as small as possible, and the set of representationswhich cannot be obtained by induction in our sense
(the ‘cuspidal’ representations) will be accordingly large—certainly larger than the corresponding sets for the
approaches listed above. Our goal is to develop an analogue of Harish-Chandra theory which mirrors as closely
as possible the theory for reductive groups over a finite field, yielding a description of arbitrary representa-
tions in terms of cuspidal ones and of Weyl group combinatorics. We leave untouched for now the problem of
constructing (let alone classifying) the cuspidal representations.

1.4. Acknowledgments. We thank George Willis and Helge Glöckner for helpful discussions on tidy sub-
groups. The first two authors were partly supported by the Danish National Research Council through the
Centre for Symmetry and Deformation (DNRF92). The third author acknowledges the support of the Israel
Science Foundation and of the Australian Research Council.

2. NOTATION, DEFINITIONS, AND BASIC PROPERTIES

In this section we define and develop basic properties of the functors iU,V and rU,V in an abstract setting.
The pivotal point in this section is Proposition2.13, which allows us to generalise many of Dat’s results from
[8, Section 2] to the situation considered in this paper. We begin by setting up the notation that will be used
throughout the paper.

2.1. Notation. For a profinite groupG we letRpGq denote the category of smooth, complex representations
of G, that is, linear representationsϕ : G Ñ GLCpMq in which each vector inM is fixed by some open
subgroup ofG. We will denote such a representation either by the mapϕ or by the spaceM, as convenient. If
M is any representation ofG (not necessarily smooth), we letM8 denote theG-subspace of vectors fixed by
some open subgroup ofG.

Let HpGq denote the algebra of locally constant, complex-valued functions onG, with product given by
convolution with respect to some Haar measure onG. Different choices of Haar measure give isomorphic
algebras, the isomorphism being multiplication by the ratio vol1pGq{ vol2pGq of the total volumes of the two
measures. The categoryRpGq is equivalent to the category of nondegenerate leftHpGq-modules, i.e. those
modulesM which satisfyM “ HpGqM. If G is finite then we will usually use counting measure as the Haar
measure onG, in which case the map sendingg P G to theδ-functionδg atg extends to an isomorphism from
the complex group ringCpGq to HpGq.

Let IrrpGq denote the set of isomorphism classes of irreducible smoothrepresentations ofG. When chances
for confusion are slim we will also writeρ P IrrpGq for an actual irreducible representation. For eachρ P IrrpGq
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let chρ P HpGq be the characterg ÞÑ trpρpgqq of ρ, and leteρ P HpGq be the idempotent defined by

eρ : g ÞÑ
dimCpρq

volpGq
chρpg´1q.

If M is a smooth representation ofG theneρ acts onM by projectingM onto itsρ-isotypical submodule. For
the special case of the trivial representation we writeeG for the corresponding idempotent, namely, the function
onG with constant value1{ volpGq. The elementeG acts on each smooth representationM by projecting onto
the submoduleMG of G-fixed vectors.

If M is a nondegenerate leftHpGq-module, andN is a nondegenerate rightHpGq-module, then by definition

NbHpGq M “ NbCM
L

spantnfbm´ nb fm | n P N, m P M, f P HpGqu.

Equivalently, viewingN andM as smooth representations ofG, N bHpGq M is the space of coinvariants for
the actiong : nbm Ñ ng´1 b gm of G onNbCM.

If H is a closed subgroup ofG, thenHpGq is a smooth representation ofH under both left- and right-
translation, and consequentlyHpGq is anHpHq-bimodule. Given a smooth representationM of H we write

indGHM “
!
f : G

locally
ÝÝÝÝÑ
constant

M
ˇ̌
ˇ fphgq “ h ¨ fpgq,@h P H,g P G

)

for the induced representation, on whichG acts by right-translation. This is isomorphic to the tensorproduct
HpGqbHpHqM. If the subgroupH is a semidirect productU¸L, then representations may be induced fromL to
G by first inflating toH (i.e. pulling back along the quotient mapH Ñ L), and then applying the functor indGH.
The resulting functor fromRpLq to RpGq is isomorphic to the functor of tensor product with theHpGq-HpLq

bimoduleHpGqeU – HpG{Uq, whereHpG{Uq denotes the space of locally constant functions onG{U.
Whenever a groupG acts on a setX we writeGpxq for the stabiliser inG of x P X.
The first three chapters of [34] are a convenient reference for all of the above. Many of the examples

considered here will be groups of matrices over compact subrings of non-archimedean local fields; see [34,
Chapter V], for instance, for more background on these.

2.2. Virtual Iwahori decompositions. Let us begin by describing the kind of groups that we shall be interested
in, and giving several examples.

Definition 2.1. LetG be a profinite group. Avirtual Iwahori decompositionofG is a triple of closed subgroups
pU, L, Vq of G, whereL normalisesU andV , such that

(1) The multiplication mapUˆ Lˆ V Ñ G is an open embedding (and therefore a homeomorphism onto its
image).

(2) G contains arbitrarily small open, normal subgroupsK for which the multiplication map

pUX Kq ˆ pLX Kq ˆ pV X Kq Ñ K

is a homeomorphism.

An Iwahori decompositionof G is a virtual Iwahori decomposition for which the multiplication map in (1) is
surjective (and therefore, a homeomorphism).

The following immediate observation shows that the notion of virtual Iwahori decomposition is inherited by
subgroups and quotients.

Observation 2.2. Let pU, L, Vq be a virtual Iwahori decomposition ofG.

(1) If J is a closed subgroup ofG, thenpUX J, LX J, V X Jq is a virtual Iwahori decomposition ofJ.
(2) If pX,H, Yq is a virtual Iwahori decomposition ofL, thenpU¸ X,H, Y ˙ Vq is a virtual Iwahori decompo-

sition ofG.
(3) If K is an open normal subgroup ofG with an Iwahori decomposition as in part (2) of Definition2.1, then

pU{pU X Kq, L{pLX Kq, V{pV X Kqq is a virtual Iwahori decomposition ofG{K.
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The concept of Iwahori decomposition first appeared in the work of Iwahori and Matsumoto onp-adic
Chevalley groups [23]. The ‘virtual’ version defined above is likewise motivatedby examples occurring natu-
rally in the study of reductive groups:

Example 2.3. Let G be a connected reductive group over a non-archimedean localfield F, and letG be any
compact open subgroup ofGpFq. There is a maximalF-split torusT Ă G (depending onG) with the property
that if L is an F-rational Levi subgroup ofG containingT, and U and V are the unipotent radicals of an
opposite pair ofF-rational parabolic subgroups ofG with common Levi factorL , then the triple of subgroups
pG X UpFq, G X LpFq, G X VpFqq is a virtual Iwahori decomposition ofG. This follows from the Bruhat-Tits
theory: one can takeT to be any torus whose associated apartment in the affine building of GpFq contains a
point fixed byG. An explicit filtration ofG by open normal subgroups admitting Iwahori decompositionsis
constructed in [35, Section 1.2]; cf. [8, 2.11].

Example 2.4. For a specific instance of the previous example, letG “ GLnpoq, whereo is the ring of integers
in a non-archimedean local field. Given an ordered partitionn “ n1 ` ¨ ¨ ¨ ` nm of n as a sum of positive
integers, letL – GLn1poq ˆ ¨ ¨ ¨ ˆ GLnmpoq be the corresponding subgroup of block-diagonal matrices in G.
LetU be the group of upper-triangular matrices inGwith diagonal blocks1n1ˆn1 ˆ¨ ¨ ¨ˆ1nmˆnm , and letV be
the transpose ofU. Then the triplepU, L, Vq is a virtual Iwahori decomposition ofG; the principal congruence
subgroups

Kℓ – kerpGLnpoq Ñ GLnpoℓqq

(whereoℓ “ o{pℓ, p being the maximal ideal ofo) all admit Iwahori decompositions. Passing to quotients by
theKℓ yields virtual Iwahori decompositions of the finite groups GLnpoℓq.

Example 2.5. A second virtual Iwahori decomposition ofG “ GLnpoq is given bypU, L, V1q, whereU andL
are as in Example2.4, andV1 “ VXK1. In this case the imageULV1 of the product mappingUˆLˆV1 Ñ G

is a subgroup ofG. For instance, if the partition isn “ 1`¨ ¨ ¨`1, thenULV1 is the standardIwahori subgroup
of GLnpoq, comprising those matrices which are upper-triangular modulo p.

If G is finite then the condition (2) in Definition2.1is always satisfied, e.g. by the trivial subgroupK “ t1u.
Since the smooth representation theory of a profinite groupG is determined in a very simple way by the
representations of the finite quotients ofG, the condition (2) is therefore not essential to much of the sequel.
On the other hand, this condition is convenient in places forshortening some proofs, and it is satisfied by all of
our motivating examples. Nevertheless, let us note the following quite general construction of examples which
satisfy condition (1) without—at least a priori—satisfying (2).

Example 2.6. Let G be a totally disconnected locally compact group and letα : G Ñ G be a topological group
automorphism. Suppose that the contraction subgroups

Uα “ tg P G | αnpgq Ñ 1 asn Ñ 8u and Vα “ Uα´1

are closed inG. This is always the case, for example, ifG is ap-adic Lie group.
These contraction subgroups are both normalised by the closed subgroup

Lα “ tg P G | tαnpgq | n P Zu is precompact inGu,

and the multiplication map

Uα ˆ Lα ˆ Vα Ñ G

is an open embedding. So ifG is any compact open subgroup ofG, then the triplepUα XG,Lα XG,Vα XGq

satisfies condition (1) of Definition2.1. Moreover,G contains arbitrarily small open subgroupsK for which the
multiplication map

pUα X Kq ˆ pLα X Kq ˆ pVα X Kq Ñ K
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is a homeomorphism (the so-calledtidy subgroups forα). It is not clear to us whetherG contains arbitrarily
small opennormal subgroupsK with this property. IfG is an analytic Lie group over a local field and the
automorphismα is analytic (keeping the assumption that the contraction groups are closed), then it is at least
true thatG contains arbitrarily small open subgroupsK with Iwahori decompositionpUαXK,LαXK,VαXKq;
cf. Example4.8 for the characteristic0 case. We thank George Willis and Helge Glöckner for a discussion of
this example. See [1] and [14] for details.

2.3. Definition and basic properties of the functors i and r. We now come to the main definition of the paper.
WheneverH is a closed subgroup of a profinite groupG, the spaceHpGq is a bimodule overHpHq. If L, U
andV are closed subgroups ofG, andL normalisesU andV , then the action ofHpLq onHpGq commutes with
the idempotentseU P HpUq andeV P HpVq. ThusHpGqeUeV is anHpGq-HpLq bimodule, andeUeVHpGq is
anHpLq-HpGq bimodule.

Definition 2.7. Let pU, L, Vq be a virtual Iwahori decomposition of a profinite groupG. Define the following
functors:

iU,V : RpLq Ñ RpGq, iU,V :M ÞÑ HpGqeUeV bHpLq M

rU,V : RpGq Ñ RpLq, rU,V : N ÞÑ eUeVHpGq bHpGq N.

Remark 2.8. The definition in the case whereULV is a subgroup ofG is due to Dat, who considered situations
like Example2.5, see [8, 2.6, 2.11]. The novelty of Definition2.7 is that we relax the requirement thatULV be
a group, so as to cover cases like Example2.4. See Section5.5 for an example of the difference between our
definition and Dat’s definition ofparahoric induction. Also note that Dat makes a further assumption in [8],
namely that the groupL should contain an open normal subgroupL: such that the setUL:V is a pro-p subgroup
of G. This assumption, which is needed to ensure the integralityof certain constructions in [8], plays no role
here, where all representations are overC.

Let us make a few further remarks on Definition2.7. Firstly, sinceHpGqeUeV is the image of the bimodule
mapf ÞÑ feV from HpGqeU toHpGqeV , and since everyM P RpLq is a direct sum of representations of finite
quotients ofL, and hence flat as a module overHpLq, the module iU,V pMq is isomorphic to the image of the
map

(2.9) JV : HpGqeU bHpLq M
fbm ÞÑfeVbm

ÝÝÝÝÝÝÝÝÝÑ HpGqeV bHpLq M.

The moduleHpGqeU bHpLqM is isomorphic as a representation ofG to the induced representation indG
LUpMq,

whereM is inflated to a representation ofLU by lettingU act trivially (cf. Section2.1). We similarly have
HpGqeV bHpLq M – indGLVpMq, and the mapJV corresponds in this picture to the ‘standard intertwining
operator’

JV : indGLUpMq Ñ indGLVpMq, JVpfq : g ÞÑ

ż

V

fpvgqdv.

Similarly, rU,VpNq is isomorphic to the image of the canonical projection

eU : NV Ñ NU, n ÞÑ

ż

U

undu

from theV-invariants to theU-invariants ofN.
As a final remark on Definition2.7, we note that the definition makes sense if we assume only thatL, U

andV are closed subgroups ofG such thatL normalisesU andV . Some of the properties of the functors iU,V

and rU,V that we shall establish below remain valid in this degree of generality: e.g., parts (1), (2), (4) and (7)
of Theorem2.15. For the applications we have in mind, the assumption thatpU, L, Vq is a virtual Iwahori
decomposition is both a natural and a useful one.
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Example 2.10.LetG be a reductive group over a finite field, and letLU andLV be an opposite pair of parabolic
subgroups ofG. A theorem of Howlett and Lehrer (see [22, Theorem 2.4]) asserts that in this case the map (2.9)
is an isomorphism for everyM P RpLq, and this implies that the functor iU,V is equal to the Harish-Chandra
induction functorM ÞÑ HpGqeV bHpLq M (and isomorphic to the analogous functor withU in place ofV).
Similarly, rU,V is isomorphic to the functor of Harish-Chandra restriction. See [11, Chapter 4] for background
on Harish-Chandra functors for finite reductive groups.

Example 2.11. Example2.10notwithstanding, the map (2.9) is usually far from being an isomorphism. For
instance, ifG is a compact open subgroup of a reductive groupGpFq as in Example2.3, andpU, L, Vq is the
virtual Iwahori decomposition ofG corresponding to an opposite pair of proper parabolic subgroups ofG, then
the subgroupsLU andLV have infinite index inG, and hence the representations indG

LUpMq and indGLVpMq

are infinite-dimensional for everyM P RpLq. By contrast, the representation iU,VpMq is finite-dimensional
wheneverM is: see Theorem2.15(6).

Example 2.12.Suppose thatpU, L, Vq is a virtual Iwahori decomposition ofG such that the subgroupsU andV
commute with one another. Then the productH – ULV is an open subgroup ofG, isomorphic topUˆVq ¸L.
We haveeUeV “ eUˆV , and there are isomorphisms ofHpGq-HpLq bimodules

HpGqeUeV “ HpGqeUˆV – HpG{pUˆ Vqq.

Consequently the functor iU,V is of the formRpLq
inf
ÝÑ RpHq

ind
ÝÑ RpGq discussed in Section2.1.

We shall now establish some basic properties of the functorsiU,V and rU,V . Many of these properties were
established in [8] for the case wherepU, L, Vq is an actual, as opposed to a virtual, Iwahori decompositionofG.
The proofs in [8] mostly carry over with only minor changes to the case of a virtual Iwahori decomposition,
thanks to the following analogue of [8, Proposition 2.2]. The proofs of these propositions, though, are quite
different.

Proposition 2.13. LetG be a profinite group and letL, U andV be closed subgroups of G such thatL nor-
malisesU andV . For everyM P RpGq there is a linear automorphismzM P GLpMq, commuting with the
actions ofL, eU andeV , such thatz´1

M eUeV is an idempotent inEndpMq.

Proof. Each smooth representationM P RpGq may be regarded as a representation of the infinite dihedral
group Γ “ xs, t | s2 “ t2 “ 1y, by sendings ÞÑ 2eU ´ 1 andt ÞÑ 2eV ´ 1. SinceG is profinite, every
M P RpGq is isomorphic to a direct sum of finite-dimensional unitary representations ofG, which restrict
to finite-dimensional unitary representations ofΓ (unitary because the idempotentseU andeV are self-adjoint
in HpGq). It follows that everyM P RpGq is semisimple as a representation ofΓ , and soM decomposes
(uniquely) as the direct sum of itsΓ -isotypic components.

We claim that in each irreducible representationW of Γ there is a nonzerozW P C such thatz´1
W pq is an

idempotent in GLpWq, wherep “ 1
2ps` 1q andq “ 1

2pt` 1q. Indeed, since the dihedral group has an abelian
normal subgroup of index two, every irreducible representation of Γ is either one- or two-dimensional. In the
one-dimensional casep andq commute and so we may takezW “ 1. In the two-dimensional case,pq and
ppqq2 are two nonzero maps between the one-dimensional subspacesqW andpW, and so there is a (unique)
nonzero scalarzW such thatpq “ z´1

W ppqq2.
Having established the claim, we letzM P GLpMq to be the automorphism ofM which acts as the scalar

zW on theW-isotypical component ofM. It is clear from the construction thatzM commutes witheU andeV ,
and thatz´1

M eUeV is an idempotent. IfT P EndpMq commutes witheU andeV thenT preserves theΓ -isotypic
components, and so commutes withzM. In particular,zM commutes with theL-action onM. �

Remark 2.14. If W is a two-dimensional irreducible unitary representation of the infinite dihedral group, then
zW “ cos2pαWq, whereαW is the angle between the images ofp andq in the Hilbert spaceW. Thus the
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eigenvalues ofzM all lie in the intervalp0, 1s. If the multiplication mapUˆ LˆV Ñ G is a homeomorphism,
andM is an irreducible representation ofG, thenzM is the scalar operator

zM “

#
dim rU,VpMq{ dimM if rU,VpMq ‰ 0,

1 if rU,VpMq “ 0;

see [7, Proposition 1.11]. Moreover, Dat has shown that ifL contains an open normal subgroupL: such that
UL:V is a pro-p subgroup ofG, then the eigenvalues lie inZr1{ps; see [8, Proposition 2.2].

With the automorphismszM in hand, many of the arguments from [8, Section 2] carry over to our setting,
and establish the following properties of the functors iU,V and rU,V .

Theorem 2.15. Let pU, L, Vq be a virtual Iwahori decomposition of a profinite groupG, and consider the
functorsiU,V andrU,V . Then:

(1) There are natural isomorphismsiU,V – iV,U andrU,V – rV,U.
(2) iU,V is naturally isomorphic to the functor

i 1
U,V :M ÞÑ HomHpLqpeVeUHpGq,Mq8,

and is therefore right-adjoint torU,V .
(3) rU,V is naturally isomorphic to the functor

r 1
U,V : N ÞÑ HomHpGqpHpGqeVeU,Nq8,

and is therefore right-adjoint toiU,V .
(4) Let pU 1, L, V 1q be a second virtual Iwahori decomposition ofG, such that

U “ pUXU 1qpUX V 1q, V “ pV XU 1qpV X V 1q,

U 1 “ pU 1 XUqpU 1 X Vq, and V 1 “ pV 1 XUqpV 1 X Vq.

TheniU,V – iU 1,V 1 andrU,V – rU 1,V 1 .
(5) Let K be an open normal subgroup ofG with an Iwahori decompositionpUK, LK, VKq – pU X K, L X

K,V X Kq. The diagrams

RpLq
iU,V // RpGq

RpL{LKq

inf

OO

iU{UK,V{VK // RpG{Kq

inf

OO
and RpGq

rU,V // RpLq

RpG{Kq

inf

OO

rU{UK,V{VK // RpL{LKq

inf

OO

commute up to natural isomorphism. (Hereinf denotes inflation.)
(6) iU,V pMq is nonzero wheneverM is nonzero, andiU,V pMq is finite-dimensional wheneverM is finite-

dimensional.
(7) If pX,H, Yq is a virtual Iwahori decomposition ofL, then

iU,V ˝ iX,Y – iU¸X,Y˙V

as functorsRpHq Ñ RpGq.

Parts (2) and (3) are instances of the following general fact, whose proof generalises the argument of [8,
Corollaire 2.7]:

Lemma 2.16. LetH andK be closed subgroups of a profinite groupG. LetX Ď HpGq be anHpHq-HpKq

subbimodule, and denote byX˚ the image ofX under the involutionf˚pgq “ fpg´1q onHpGq; note thatX˚

is anHpKq-HpHq bimodule. Suppose that for every open normal subgroupH1 Ď H there is an open normal
subgroupG1 Ď G satisfying

(2.17) eH1X Ď eG1HpGq.
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Then the functorsRpKq Ñ RpHq defined by

M ÞÑ XbHpKq M and M ÞÑ HomHpKqpX
˚,Mq8

are naturally isomorphic.

Proof. Consider the natural transformation

Φ : XbHpKq M Ñ HomHpKqpX
˚,Mq, Φpx1 bmq : x˚

2 ÞÑ px˚
2x1q

ˇ̌
K

¨m

wherepx˚
2x1q

ˇ̌
K

means the restriction of the convolution productx˚
2x1 P HpGq to the subgroupK. Fix an open

normal subgroupH1 Ď H. We will show that the mapΦ restricts to an isomorphism between the respective
subspaces ofH1-fixed vectors.

Let G1 be an open normal subgroup ofG satisfying condition (2.17), so that the subspaceeH1X Ă HpGq

consists exclusively ofG1-invariant functions. We may then replaceG byG{G1, and assume for the rest of the
proof thatG is a finite group. Furthermore, the moduleM decomposes as a direct sum of finite-dimensional
modules, and the natural mapΦ commutes with direct sums, so we may assume thatM is finite-dimensional.

Now, the pairing
X˚ ˆ X Ñ C px˚

2 , x1q ÞÑ px˚
2x1qp1q

is nondegenerate, since it is the restriction toX of the naturalL2-inner product onHpGq. It follows from this,
and from the standard duality theory of finite-dimensional vector spaces, that the map

Ψ : XbCM Ñ HomCpX˚,Mq Ψpx1 bmq : x˚
2 ÞÑ px˚

2x1qp1q ¨m

is an isomorphism. The mapΨ descends to an isomorphism ofK-coinvariants

(2.18) XbHpKq M
–
ÝÑ pHomCpX˚,MqqK ,

where theK-action on HomCpX˚,Mq is by conjugation. Averaging overK gives an isomorphism ofK-
coinvariants withK-invariants:

(2.19) pHomCpX˚,MqqK
T ÞÑ

ş
K
kTk´1 dk

ÝÝÝÝÝÝÝÝÝÑ
–

HomHpKqpX
˚,Mq,

and the mapΦ is the composition of the isomorphisms (2.18) and (2.19). �

Proof of Theorem2.15. To prove part (1), letzHpGq be the automorphism ofHpGq obtained by applying Propo-
sition 2.13to the left-translation action ofG. Then the maps

eUeVHpGq
f ÞÑeV fÝÝÝÝÑ eVeUHpGq and eVeUHpGq

f ÞÑz´1
HpGq

eUf

ÝÝÝÝÝÝÝÝÑ eUeVHpGq

are mutually inverse isomorphisms ofHpLq-HpGq bimodules, giving rise to a natural isomorphism of functors
rU,V – rV,U. A similar argument, using the right action ofG onHpGq, gives iU,V – iV,U.

To prove part (2) we apply Lemma2.16with H “ G, K “ L, andX “ HpGqeUeV . The hypothesis (2.17)
is trivially satisfied and we conclude that the functor iU,V is naturally isomorphic to i1U,V . The standardb-
Hom adjunction implies that i1

U,V is right-adjoint to rV,U, and we have rV,U – rU,V by part (1); see [34, I.2.2
(Corollaire)] for a formulation and proof of the adjunctionin the present context.

To prove part (3) we apply Lemma2.16again, this time withH “ L, K “ G andX “ eUeVHpGq. To verify
the hypothesis (2.17), fix an open normal subgroupH1 Ď L. Then there is an open normal subgroupG0 Ď G

having an Iwahori decompositionpU0, L0, V0q, whereL0 is contained inH1. HereY0 meansY X G0 for every
subsetY Ă G. We then have

eH1eUeVHpGq Ď eL0eUeVHpGq “ eUpeU0eL0eV0qeVHpGq Ď eG0HpGq,

so (2.17) is satisfied byG1 “ G0. Now Lemma2.16 implies that rU,V is isomorphic to r1U,V , which is right-
adjoint to iU,V by the argument of part (2).

Part (4) follows from Proposition2.13, as in [8, Lemme 2.9].
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Part (5) follows from the equalityeK “ eUKeLKeVK , as was remarked in [8, p.272]. It is also a consequence
of Theorem3.4, below.

The finite-dimensionality assertion in part (6) follows from part (5): every finite-dimensional smooth rep-
resentation ofL is inflated from a representation of some finite quotientL{LK, and the functor iU{UK,V{VK

obviously preserves finite-dimensionality. To prove that iU,VpMq ‰ 0 as long asM ‰ 0, fix a nonzerom P M

and letf P indGLUpMq be the function supported on the open setULV Ă G, and given there byfpulvq “ l ¨m.
The image off under the intertwinerJV : indGLUpMq Ñ indGLVpMq (see (2.9)) is nonzero, because

pJVfqp1q “

ż

V

fpvqdv “ m,

and so iU,V pMq – ImpJVq is nonzero.
For part (7), convolution overL gives an isomorphism ofHpGq-HpHq bimodules

HpGqeUeV bHpLq HpLqeXeY
–
ÝÑ HpGqeUeVeXeY .

Now eX commutes witheV sinceX normalisesV , and we haveeUeX “ eU¸X andeVeY “ eY˙V , and so we
have produced an isomorphism between the bimodules representing the functors iU,V ˝ iX,Y and iU¸X,Y˙V . �

If the triple pU, L, Vq is an actual Iwahori decomposition ofG, then the functors iU,V and rU,V enjoy the
following additional properties, which we recall from [8] and [7] for the reader’s convenience:

Theorem 2.20.Suppose thatpU, L, Vq is an Iwahori decomposition of a profinite groupG. Then:

(1) iU,V sendsIrrpLq to IrrpGq, while rU,V sendsIrrpGq to IrrpLq \ t0u.
(2) rU,V ˝ iU,V – idRpLq.
(3) If M P IrrpGq and rU,VpMq ‰ 0, theniU,V rU,V pMq – M.
(4) If M P IrrpGq, then eitherHomLpMU,MVq is zero, in which caserU,V pMq “ 0; or HomLpMU,MVq

is one-dimensional, in which case it is spanned by the operator eVeU, which is an isomorphism, and
rU,V pMq – MU – MV .

(5) GivenM P IrrpGq andN P IrrpLq, one hasM – iU,V pNq if and only ifN is a common subrepresentation
ofMU andMV .

(6) For eachpϕ,Mq P IrrpGq there is a nonzero scalarc such that

eUeϕeV “ ceUerU,V pϕqeV

as operators onHpGq.

Proof. Parts (1) and (2) are proved in [8, Corollaire 2.10]. Part (4) is proved in [7, Lemma 1.10], and part (5)
follows from parts (4) and (3).

To prove part (3): if rU,VpMq ‰ 0 then the adjunction in part (2) of Theorem2.15gives a nonzero intertwiner
M Ñ iU,V rU,VpMq. Both of these representations are irreducible (by part (1)), and so they are isomorphic.

Part (6) follows from the character formula for rU,V proved in [7, Proposition 1.11]. That formula implies
that there is a nonzeros P C such that

chrU,V pϕqplq “ s

ż

U

ż

V

chϕpvluqdudv
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for all l P L. Writing „ to indicate equality up to a nonzero scalar multiple, the operatoreUerU,V pϕqeV is thus
given by

eUerU,V pϕqeV „

ż

U

ż

L

ż

V

chrU,Vpϕqpl
´1qulvdudl dv

„

ż

U

ż

L

ż

V

ˆż

U

ż

V

chϕpv´1
1 l

´1u´1
1 qdu1 dv1

˙
ulvdudl dv

„

ż

U

ż

L

ż

V

ˆż

U

ż

V

chϕpv´1
1 l

´1u´1
1 qdu1 dv1

˙
upu1lv1qv dudl dv

„

ż

U

ż

G

ż

V

chϕpg´1qugvdudgdv

„ eUeϕeV

where in the third step we used invariance of the Haar measures, and in fourth we used the fact that the product
of the Haar measures onU, L andV is a Haar measure onG “ ULV . �

3. RELATIONS OF THE FUNCTORSi AND r WITH CLIFFORD THEORY

The functors iU,V and rU,V can be difficult to work with, since the bimoduleHpGqeUeV is not obviously the
space of functions on any niceG ˆ L-space. The situation wherepU, L, Vq is an actual, rather than a virtual,
Iwahori decomposition ofG is significantly easier to deal with; see Sections4 and6, for instance. IfG admits
only a virtual Iwahori decomposition, thenG contains an open normal subgroupG0 which admits an actual
Iwahori decomposition (this is part of the definition). In this section we will firstly recall how Clifford theory
reduces the study of representations ofG to that of projective representations of certain subgroupsof G{G0;
and then we will show how the induction and restriction functors i and r are compatible with this reduction.

3.1. Review of Clifford theory. Let us recall the basic assertions of Clifford theory. Details can be found
in [25], for example.

LetG0 be an open normal subgroup of a profinite groupG. ThenG acts by conjugation on the set IrrpG0q

of isomorphism classes of irreducible representations ofG0. For eachϕ P IrrpG0q we let RpGqϕ denote
the category of smooth representations ofG whose restriction toG0 contains only representations in theG-
orbitG ¨ϕ. The first assertion of Clifford theory is:

(C1) RpGq is equivalent to the product
ź

G¨ϕPGz IrrpG0q

RpGqϕ.

Fix an irreducible representationϕ : G0 Ñ GLpWq of G0, and letGpϕq denote the stabiliser ofϕ in G.
Sinceϕ is smooth, it is trivial on some open normal subgroupG00 of G, and replacingG byG{G00 we might
as well assume—as we shall, for the rest of Section3.1—thatG is finite. We use the counting measure onG to
define the convolution onHpGq, so that theδ-functionsδg satisfyδgδh “ δgh.

Representations may be induced fromGpϕq toG in the usual way (see Section2.1). The second assertion
of Clifford theory is:

(C2) The functor ind: RpGpϕqqϕ Ñ RpGqϕ is an equivalence of categories.

An inverse is given by the functor which sends a representationM P RpGqϕ to itsGpϕq-subspaceeϕM, where
eϕ P HpG0q is the central idempotent associated toϕ. Note that the categoryRpGpϕqqϕ is equivalent, in an
obvious way, to the category of modules over the direct-summandeϕHpGpϕqq of the algebraHpGpϕqq.

Let G denote the quotientG{G0, and letθ : G Ñ G be the quotient map. Schur’s lemma implies thatϕ

admits aprojective extensiontoGpϕq, i.e. a mapϕ 1 : Gpϕq Ñ GLpWq which becomes a group homomorphism
upon passing to the quotient PGLpWq, and which satisfies

ϕ 1pg0gq “ ϕpg0qϕ
1pgq and ϕ 1pgg0q “ ϕ 1pgqϕpg0q
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for all g P Gpϕq and allg0 P G0. These two properties imply that there is a two-cocycleγ : Gpϕq ˆGpϕq Ñ

Cˆ whose inflation to a cocycle onGpϕq, which we also denote byγ, satisfies

(3.1) ϕ 1pg1qϕ
1pg2q “ γpg1, g2q

´1ϕ 1pg1g2q.

We call γ´1 the two-cocycle associated toϕ 1; the cocycles associated to different choices of projective
extensions ofϕ are cohomologous. The projective representationϕ 1 may be regarded as a module over the
twisted group algebraHγ´1

pGpϕqq, a construction that we now recall. To a two-cocycleα on a finite group
Γ , one may associate thetwisted group algebraHαpΓq, that is, the algebra of complex-valued functions onG,
with twisted convolution multiplication̈α defined on the basistδg | g P Γu of δ-functions by

δg1 ¨α δg2 – αpg1, g2qδg1g2 .

We letRαpΓq denote the category ofHαpΓq-modules. An immediate consequence of the definition is that
if α,β : Γ ˆ Γ Ñ Cˆ are two-cocycles, andM andN are modules overHαpΓq andHβpΓq respectively, then
MbN is naturally anHαβpΓq-module with respect to the diagonal action.

Returning to our setup, ifM is anHγpGpϕqq-module, then by inflationM is also anHγpGpϕqq-module. As

W P Rγ
´1

pGpϕqq we get thatMbW is anHγ¨γ´1
pGpϕqq-module, i.e. an ordinary (as opposed to a projective)

representation ofGpϕq, and the third assertion of Clifford theory is:

(C3) The functorbϕ 1 : RγpGpϕqq
MÞÑMbW
ÝÝÝÝÝÝÑ RpGpϕqqϕ is an equivalence of categories.

An equivalent formulation of (C3), which we shall use below, is that the map

θbϕ 1 : HpGpϕqqeϕ Ñ HγpGpϕqq bC EndpWq δgeϕ ÞÑ δθpgq bϕ 1pgq

is an isomorphism of algebras. Then the equivalence (C3) decomposes as

(3.2) RγpGpϕqq
MÞÑMbW
ÝÝÝÝÝÝÑ

–
Mod

`
HγpGpϕqq b EndpWq

˘ pθbϕ 1q˚

ÝÝÝÝÝÑ
–

RpGpϕqqϕ.

Here ModpRq denotes the category of leftR-modules.
This ends our review of Clifford theory. We shall now explainthe compatibility with the functors i and r.

3.2. Induction and Clifford theory. In this section we letG be a profinite group, with a virtual Iwahori
decompositionpU, L, Vq as in Definition2.1. We also fix one open normal subgroupG0 Ă G for which the
product mapping

U0 ˆ L0 ˆ V0 Ñ G0

is a homeomorphism, whereH0 – HXG0 for every subgroupH Ď G. We consider the induction functors

i “ iU,V : RpLq Ñ RpGq and i0 “ iU0,V0 : RpL0q Ñ RpG0q,

along with their adjoint restriction functors r and r0, as in Definition2.7.
It follows from part (1) of Theorem2.20that the functor i0 sends irreducible representations ofL0 to irre-

ducible representations ofG0, and thus produces a map from IrrpL0q to IrrpG0q.

Lemma 3.3. The mapi0 : IrrpL0q Ñ IrrpG0q is L-equivariant and injective.

Proof. L normalisesU0 andV0, and so commutes witheU0 andeV0 . The injectivity follows from part (2) of
Theorem2.20. �

The functors i and r are compatible with the decomposition (C1), in the following sense.

Theorem 3.4. With the above notation one hasipRpLqψq Ď RpGqi0pψq, for everyψ P IrrpL0q.
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Proof. We first claim thatHpGqeUeV is isomorphic, as anHpGq-HpLq bimodule, to some submodule of
HpGqeU0eV0 . This is because

HpGqeUeV Ď HpGqeU0eV – HpGqeVeU0 Ď HpGqeV0eU0 – HpGqeU0eV0 ,

where the inclusions hold becauseU0 andV0 are subgroups ofU andV , respectively, and the isomorphisms
hold by part (1) of Theorem2.15.

For eachN P RpLqψ we now have (up toG-equivariant isomorphism)

(3.5) ipNq Ď HpGqeU0eV0 bHpLq N Ď HpGqeU0eV0 bHpL0q resLL0pNq

where the first inclusion holds because of the inclusion of bimodules established above, and the second inclusion
holds because the tensor product overHpLq is a quotient—and therefore also a submodule—of the tensor
product over the subalgebraHpL0q. The restriction toG0 of the right-hand side in (3.5) is a direct sum of
G-conjugates of i0presLL0pNqq, where resLL0pNq is a direct sum ofL-conjugates ofψ. Since i0 is L-equivariant
this implies that the restriction of ipNq toG0 is a direct sum ofG-conjugates of i0pψq, as claimed. �

For the rest of this section we shall fix an irreducible representationψ : L0 Ñ GLpWq of L0, and study the
functor i on the subcategoryRpLqψ. There is an open normal subgroupG00 Ă Gwith an Iwahori decomposition
G00 “ U00L00V00, such thatψ is trivial onL00. Part (5) of Theorem2.15allows us to replaceG by the quotient
G{G00, and so we may assume without loss of generality for the rest of this section thatG is a finite group. We
consequently take all Haar measures to be counting measures, so that theδ functions on elements ofG satisfy
δgδh “ δgh insideHpGq.

To simplify the notation let us writeϕ for i0pψq. Lemma3.3implies thatGpϕq X L “ Lpψq. LetUpϕq and
Vpϕq denote the inertia groups ofϕ in U andV , respectively, and consider the functor

iψ – iUpϕq,Vpϕq : RpLpψqqψ Ñ RpGpϕqqϕ

given by tensor product with theeϕHpGpϕqq-eψHpLpψqq bimoduleeϕHpGpϕqqeUpϕqeVpϕqeψ.
The functors i and r are compatible with the equivalence (C2) as follows:

Theorem 3.6. The diagram

RpLqψ
i // RpGqϕ

RpLpψqqψ

ind –

OO

iψ // RpGpϕqqϕ

ind–

OO

commutes up to a natural isomorphism.

Proof. We will replace the right-hand vertical arrow in the diagramby its inverse, and prove that the diagram

(3.7) RpLqψ
i // RpGqϕ

eϕ

��
RpLpψqqψ

ind

OO

iψ // RpGpϕqqϕ

commutes up to natural isomorphism. This amounts to producing an isomorphism ofGpϕq-Lpψq bimodules

(3.8) eϕHpGqeUeVeψ – eϕHpGpϕqqeUpϕqeVpϕqeψ.

We first claim that

(3.9) eϕHpGqeUeVeψ “ eϕHpGpϕqqeUpϕqeVeψ,
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the equality holding insideHpGq. For vectorsx andy we write x „ y if they differ by a non-zero scalar
multiple. To prove (3.9) we compute for everyg P G:

δgeUeVeψ“δgeUpeU0eψeV0qeVeψ „ δgeUpeU0eϕeV0qeVeψ“δgeUeϕeVeψ „
ÿ

uPU{Upϕq

δgueϕeUpϕqeVeψ,

where in the first step we have used thateψ is an idempotent which commutes witheV , and in the second step
we have used part (6) of Theorem2.20. Orthogonality of characters then implies

eϕδgeUeVeψ „
ÿ

uPU{Upϕq

eϕepguq¨ϕδgueUpϕqeVeψ

„

#
eϕδgueUpϕqeVeψ if Du P U with gu P Gpϕq,

0 otherwise.

This shows that every element of the left-hand side of (3.9) can be written as an element of the right-hand side,
and vice versa.

Now, theGpϕq ˆ Lpψq-equivariant map

(3.10) eϕHpGpϕqqeUpϕqeVpϕqeψ
f ÞÑfeVÝÝÝÝÑ eϕHpGpϕqqeUpϕqeVeψ

is obviously surjective. It is injective as well, for iff P HpGpϕqqeVpϕq then

feV „
ÿ

vPVpϕqzV

feVpϕqδv “
ÿ

vPVpϕqzV

fδv,

where the functionsfδv (asv varies overVpϕqzV) are supported on the disjoint cosetsGpϕqv and are therefore
linearly independent. Thus the map (3.10) is an isomorphism. Composing with the equality (3.9) gives the
desired isomorphism (3.8). �

We are still fixing an irreducible representationψ : L0 Ñ GLpWq and lettingϕ denote the induced repre-
sentation i0pψq : G0 Ñ GLpi0pWqq. Consider the quotients

Gpϕq “ Gpϕq{G0, Lpψq “ Lpψq{L0, Upϕq “ Upϕq{U0, Vpϕq “ Vpϕq{V0.

Choose a projective extensionϕ 1 of ϕ to Gpϕq, and letγ´1 be the associated two-cocycle as in (3.1).
Part (2) of Theorem2.20implies that there is anL0-equivariant isomorphism

Θ :W
–
ÝÑ ϕpeU0qϕpeV0q i0pWq,

unique up to a nonzero scalar multiple. Since the subgroupLpψq normalizes the subgroupsU0 andV0 it follows
that ϕ 1plq commutes withϕpeU0qϕpeV0q for every l P Lpψq, and thereforeϕ 1plq stabilises the subspace
ϕpeU0qϕpeV0q i0pWq Ă i0pWq. The mapψ 1 : Lpψq Ñ GLpWq defined by

(3.11) ψ 1plq “ Θ´1ϕ 1plqΘ

is then a projective extension ofψ to Lpψq, independent of the choice ofΘ. (It does depend, however, on the
choice ofϕ 1.) An easy argument shows that the resulting two-cocycle onLpψq is just the restriction of the
two-cocycleγ to Lpψq, and we shall therefore denote both two-cocycles by the sameletter.

Lemma 3.12. Given a projective extensionϕ 1 of ϕ as above, there are unique scalarsax, by P Cˆ for
x P Upϕq andy P Vpϕq such that the elements

eϕ
1

Upϕq
–

1

|Upϕq|

ÿ

xPUpϕq

axδx and eϕ
1

Vpϕq
–

1

|Vpϕq|

ÿ

yPVpϕq

byδy

are idempotents inHγpGpϕqq, commute with the subalgebraHγpLpψqq, and such that the image of the ele-
mentseUpϕqeϕ andeVpϕqeϕ under the isomorphism of algebras

θbϕ 1 : HpGpϕqqeϕ Ñ HγpGpϕqq b Endpi0pWqq
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areeϕ
1

Upϕq
bϕpeU0q andeϕ

1

Vpϕq
bϕpeV0q, respectively.

Proof. We will prove the lemma for theU-subgroups. The proof for theV-subgroups is identical.
We know, by Parts (2) and (4) of Theorem2.20, thatϕpeU0q i0pWq – W as representations ofL0, and in

particular thatϕpeU0q i0pWq is irreducible overL0.
Let u P Upϕq. SinceU0 is a normal subgroup ofUpϕq, we know thatu commutes witheU0 in HpGpϕqq,

and soϕ 1puq induces a linear automorphism of the subspaceϕpeU0q i0pWq. Moreover, forl P L0 we have
that ulu´1l´1 P UXG0 “ U0. Writing ul “ luu0 with u0 P U0, we observe that onϕpeU0q i0pWq the
operatorϕ 1puq commutes withϕplq for everyl P L0. Hence, by Schur’s lemma, the operatorϕ 1puq acts on
ϕpeU0q i0pWq as a non-zero scalarau P Cˆ. The scalarau depends only on the class ofu in the quotient
Upϕq “ Upϕq{U0, and so for eachx P Upϕq we may defineax – ax̃, wherex̃ P Upϕq is any lift of x.

The image of the idempotenteUpϕqeϕ underθbϕ 1 is therefore

θbϕ 1peUpϕqeϕq “
1

|Upϕq|

ÿ

uPUpϕq

θpδuq bϕ 1puq

“
1

|Upϕq| ¨ |U0|

ÿ

xPUpϕq
u0PU0

δx bϕ 1px̃qϕpu0q

“
1

|Upϕq|

ÿ

xPUpϕq

δx bϕ 1px̃qϕpeU0q “ eϕ
1

Upϕq
bϕpeU0q.

From the fact that the elementeUpϕqeϕ is an idempotent which commutes with the elements ofLpψq in

HpGpϕqq, and the fact thatθ b ϕ 1 is an algebra homomorphism, it follows immediately thateϕ
1

Upϕq
is an

idempotent which commutes with the subalgebraHγpLpψqq.
Finally, the uniqueness of the scalarsax follows from the linear independence of the elementsδx b ϕpeU0q

in HγpGpϕqq b Endpi0pWqq. �

Remark 3.13. From the proof of Lemma3.12it follows that the restriction ofγ toUpϕq and toVpϕq is coho-
mologous to the trivial two-cocycle. Indeed, following theproof of the lemma, we see that forx1, x2 P Upϕq

one hasax1ax2γpx1, x2q “ ax1x2 . In other words,a : Upϕq Ñ Cˆ is a coboundary which provides a trivial-
isation of the restriction ofγ to Upϕq. The same is true forVpϕq andb. By changing the choice ofϕ 1 by a
suitable coboundary, one can therefore arrange that all thenumbersax andby are 1. We shall continue to work
with an arbitrary choice ofϕ 1 in what follows.

Lemma 3.12 implies thatHγpGpϕqqeϕ
1

Upϕq
eϕ

1

Vpϕq
is an HγpGpϕqq-HγpLpψqq bimodule. We denote by

iϕ
1

Upϕq,Vpϕq
: RγpLpψqq Ñ RγpGpϕqq the functor of tensor product with this bimodule. Likewise,we denote

by rϕ
1

Upϕq,Vpϕq
the functor of tensor product with theHγpLpψqq-HγpGpϕqq bimoduleeϕ

1

Upϕq
eϕ

1

Vpϕq
HγpGpϕqq.

The arguments of Theorem2.15carry over to this twisted setting, and show that the functors iϕ
1

Upϕq,Vpϕq
and

rϕ
1

Upϕq,Vpϕq
are two-sided adjoints, and that up to natural isomorphism they do not depend on the order ofUpϕq

andVpϕq.
Our induction functors are compatible with the final assertion (C3) of Clifford theory, as follows:
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Theorem 3.14. Let ϕ 1 be a projective extension ofϕ, with corresponding cocycleγ´1, and letψ 1 be the
projective extension ofψ defined by(3.11). The diagram

RpLpψqqψ
iψ // RpGpϕqqϕ

RγpLpψqq

–bψ 1

OO

iϕ
1

Upϕq,Vpϕq // RγpGpϕqq

bϕ 1–

OO

is commutative up to natural isomorphism.

Example 3.15.Suppose that the irreducible representationψ of L0 satisfiesGpi0ψq “ LpψqG0. We then have
Gpϕq “ Lpψq in Theorem3.14, and iϕ

1

Upϕq,Vpϕq
is the identity functor, and so we conclude from Theorems3.6

and3.14that in this case

iU,V : RpLqψ Ñ RpGqi0pψq

is an equivalence of categories. Specific examples of this kind arise in Section5.

The proof of Theorem3.14 uses the following lemma, whose proof is a matter of straightforward linear
algebra:

Lemma 3.16. LetE be a finite dimensional vector space overC, and letS : E Ñ E be a linear endomorphism.
LetA Ď EndCpEq be the centraliser ofS in EndCpEq. Then we have isomorphisms

Eb pImpSqq˚ ebf ÞÝÑre 1 ÞÑefpe 1qs
ÝÝÝÝÝÝÝÝÝÝÝÑ HompImpSq, Eq

T ÞÑT˝S
ÝÝÝÝÑ EndpEqS

of EndpEq-A-bimodules. �

In our application the spaceE will be i0pWq, and the endomorphismS will be the action ofeU0eV0eψ.

Proof of Theorem3.14. Let

T : Mod
`
HγpLpψqq b EndpWq

˘
Ñ Mod

`
HγpGpϕqq b Endpi0pWq

˘

be the functor of tensor product with the bimoduleHγpGpϕqqeϕ
1

Upϕq
eϕ

1

Vpϕq
bC pi0pWq bCW

˚q, where i0pWq is

viewed as a left Endpi0pWqq module andW˚ is viewed as a right EndpWq-module in the obvious way.
We shall decompose the equivalencesbψ 1 andbϕ 1 into compositions of two equivalences, as in (3.2), and

show both squares in the diagram

(3.17) RpLpψqqψ
iψ // RpGpϕqqϕ

Mod
`
HβpLpψqq b EndpWq

˘

–pθbψ 1q˚

OO

T // Mod
`
HγpGpϕqq b Endpi0pWqq

˘

– pθbϕ 1q˚

OO

RβpLpψqq

–bW

OO

iϕ
1

Upϕq,Vpϕq // RγpGpϕqq

– b i0pWq

OO

commute.
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To show that the bottom square of (3.17) commutes, letM be anHγpLpψqq module. We have natural
isomorphisms ofHγpGpϕqq b Endpi0pWqq modules

TpMbWq “
´
HγpGpϕqqeϕ

1

Upϕq
eϕ

1

Vpϕq
b pi0pWq bW˚q

¯
b

HγpLpψqqbEndpWq pMbWq

–
´
HγpGpϕqqeϕ

1

Upϕq
eϕ

1

Vpϕq
b

HγpLpψqq M
¯

b
`
i0pWq b pW˚ bEndpWq Wq

˘

– iϕ
1

Upϕq,Vpϕq
pMq b i0pWq,

becauseW˚ bEndpWq W – C, asW is finite-dimensional. Thus the bottom square of the diagramcommutes.
To show that the top square of (3.17) commutes, it is enough to construct a linear isomorphism

F : eϕHpGpϕqqeUpϕqeVpϕqeψ ÝÑ HγpGpϕqqeϕ
1

Upϕq
eϕ

1

Vpϕq
bC pi0pWq bCW

˚q

between the bimodules associated to the functors iψ andT , satisfying

(3.18) Fpf ¨ h ¨ kq “ pθbϕ 1qpfq ¨ Fphq ¨ pθbψ 1qpkq

for all f P eϕHpGpϕqq, h P eϕHpGpϕqqeUpϕqeVpϕqeψ andk P eψHpLpψqq.
We shall constructF as a compositionF “ F3F2F1:

eϕHpGpϕqqeUpϕqeVpϕqeψ
F1ÝÑ
–

HγpGpϕqqeϕ
1

Upϕq
eϕ

1

Vpϕq
b Endpi0pWqqϕpeU0eV0eψq

F2ÝÑ
–

HγpGpϕqqeϕ
1

Upϕq
eϕ

1

Vpϕq
b i0pWq b pϕpeψeU0eV0q i0pWqq˚

F3ÝÑ
–

HγpGpϕqqeϕ
1

Upϕq
eϕ

1

Vpϕq
b i0pWq bW˚,

where the isomorphismsF1, F2 andF3 are defined below.
The mapF1 is the restriction of the algebra isomorphismθbϕ 1 to the bimoduleeϕHpGpϕqqeUpϕqeVpϕqeψ.

The image is as claimed because of Lemma3.12. By definition,F1 satisfies

F1pf ¨ h ¨ kq “ pθbϕ 1qpfq ¨ F1phq ¨ pθbϕ 1qpkq

(wheref, h andk are as in (3.18)).
The mapF2 is the identity on the first tensor factor, while on the secondfactor it is the isomorphism given

by Lemma3.16, with E “ i0pWq andS “ ϕpeU0eV0eψq. ClearlyF2 is a map of leftHγpGpϕqq b Endpi0pWqq

modules. Turning to the right module structure, fixl P Lpψq. The operatorϕ 1peψδlq P Endpi0pWqq commutes
with ϕpeψeU0eV0q, becauseLpψq centralisesψ and normalisesU0 andV0. Thereforeϕ 1peψδlq lies in the
algebraA of Lemma3.16, and so the isomorphismF2 satisfies

F2
`
F1phq ¨ θplq bϕ 1peψδlq

˘
“ F2F1phq ¨

`
θplq bϕ 1peψδlq

˘
.

The mapF3 is the identity on the first two tensor factors, while on the third factor it is the linear dualΘ˚ of
the isomorphismΘ :W Ñ ϕpeU0eV0q i0pWq. (Note thateψ acts as the identity onW.) ClearlyF3 is a map of
left HγpGpϕqq b Endpi0pWqq modules. The isomorphismΘ satisfiesϕ 1peψδlq ˝ Θ “ Θ ˝ ψ 1peψδlq, by the
definition (3.11) of ψ 1, and we therefore have

F3
“
F2F1phq ¨

`
θplq bϕ 1peψδlq

˘‰
“ Fphq ¨

`
θplq bψ 1peψδlq

˘
.

We have now shown that the isomorphismF satisfies (3.18), and this completes the proof of Theorem3.14. �

4. THE FUNCTOR i AND THE ORBIT METHOD

In this section we examine the induction functor iU,V in situations to which the orbit method applies, and
show that it corresponds to a natural inclusion map on coadjoint orbits. We begin with an abstract formulation
and then discuss a natural family of groups to which it applies, namely uniform pro-p groups and finitep-
groups of nilpotency class less thanp. In particular, this family includes many compact open subgroups in
reductive groups overp-adic fields.
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4.1. An abstract formulation. The orbit method in the context of profinite groups goes back to the work of
Howe [20]. An abstract formulation was given by Boyarchenko and Sabitova in [4], and it is this latter point of
view that we shall adopt here.

Let G be a profinite group, letg be an abelian profinite group, and let exp: g Ñ G be a homeomorphism
satisfying

(A) The formula Adgpxq – logpg exppxqg´1q for g P G, x P g, and log“ exṕ 1 defines an action ofG on g

by group automorphisms.
(B) The pullback map exp̊ : HpGqG Ñ HpgqG, from the AdG-invariant locally constant functions onG to

those ong, is an isomorphism of convolution algebras.

The adjoint action ofG on g induces a coadjoint action on the Pontryagin dual grouppg. It is shown in [4,
Theorem 1.1] that for each irreducible smooth representation τ of G, with character chτ P HpGqG, there is an
AdG-orbitΩ Ă pg such that

(4.1) exp˚pchτq “ |Ω|´1{2
ÿ

ψPΩ

ψ,

and the map chτ ÞÑ Ω sets up a bijectionOG : IrrpGq Ñ Gzpg from the set of isomorphism classes of irreducible
representations ofG to the set of coadjoint orbits inpg.

Theorem 4.2. LetG, g andexpbe as above. LetU, L andV be closed subgroups ofG such that:

(1) pU, L, Vq is an Iwahori decomposition ofG.
(2) The preimagesu, l, v ofU, L, V underexpare subgroups ofg, andg “ u ‘ l ‘ v as abelian groups.
(3) The mapexp : g Ñ G restricts to homeomorphisms

l Ñ L, l ‘ u Ñ LU and l ‘ v Ñ LV,

each of which satisfies the conditions (A) and (B).

Then the projectionΛ of g onto its summandl induces an injective map

Λ˚ : Lzpl Ñ Gzpg, Ω ÞÑ Ad˚
GpΩ ˝Λq

which makes the diagram

IrrpLq
iU,V //

OL
��

IrrpGq

OG

��
Lzpl Λ˚

// Gzpg
commutative.

We require the following lemma:

Lemma 4.3. LetΩ be an orbit inLUzplu, corresponding via the orbit method to an irreducible representation
τ of LU. Thenτ is trivial onU if and only if everyψ P Ω is trivial on u.

Proof. If everyψ P Ω is trivial onu, then the character formula (4.1) ensures that the character ofτ is constant
onU, and therefore thatτ is trivial onU. Conversely, ifτ is trivial onU then its character is constant onU,
with constant value dimpτq “ |Ω|1{2, and so (4.1) implies that

ř
ψPΩψpyq “ |Ω| for everyy P u. Since each

ψpyq is a complex number of modulus one, this equality forcesψpyq “ 1 for everyψ and everyy. �

Note that by Theorem2.20(1) the functor i“ iU,V : RpLq Ñ RpGq preserves irreducibility, and therefore
induces a map i: IrrpLq Ñ IrrpGq. We recall the following characterisation of the map i from Theorem2.20(4):
given irreducible representationsτ P RpGq andσ P RpLq, one hasτ – ipσq if and only if σ is a common
subrepresentation ofτU andτV .
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Proof of Theorem4.2. Fix an orbitΩ P Lzpl and letσ “ O´1
L pΩq P IrrpLq be the corresponding irreducible

representation ofL. Let τ “ O´1
G pΛ˚Ωq P IrrpGq be the corresponding irreducible representation ofG. We

will show thatσ is isomorphic to a subrepresentation ofτU. The same argument shows thatσ is isomorphic to
a subrepresentation ofτV , and then Theorem2.20(4) givesτ – ipσq as required.

The characters chρ, whereρ ranges over IrrpLUq, constitute a linear basis for the spaceHpLUqLU. We let
P : HpLUqLU Ñ HpLUqLU be the projection

Ppchρq “

#
chρ if ρ is trivial onU

0 otherwise.

On the other hand, the functions

χΨ – |Ψ|´1{2
ÿ

ψPΨ

ψ,

asΨ ranges overLUzplu, constitute a basis forHpluqLU, and we letQ be the idempotent operator onHpluqLU

defined by

QpχΨq “

#
χΨ if everyψ P Ψ is trivial onu

0 otherwise.

Lemma4.3implies the commutativity of the middle square in the diagram

(4.4) HpGqG
restrict //

exp̊

��

HpLUqLU
P //

exp̊

��

HpLUqLU
restrict //

exp̊

��

HpLqL

exp̊

��

HpgqG
restrict // HpluqLU

Q // HpluqLU
restrict // HplqL

where ‘restrict’ means restriction of functions. The two outer squares in the diagram obviously commute. For
each irreducible representationρ of G, the composition along the top row of (4.4) sends the character ofρ to
the character ofρU.

Choose a pointψ in the orbitΩ Ăpl, and writeΛ˚Ω “ tψ ˝Λ,ϕ1, . . . , ϕnu. Since the characterψ ˝Λ P pg
is trivial onu, and hasψ ˝Λ

ˇ̌
l

“ ψ, we find that the composition along the bottom row of (4.4) sendsχΛ˚Ω “

exp̊ pchτq to the function

|Λ˚Ω|´1{2

˜
ψ`

ÿ

ϕi”1 onu

ϕi
ˇ̌
l

¸
.

Since this sum containsψ—and henceχΩ “ exp̊ pchσq—with a positive coefficient, we conclude from the
commutativity of (4.4) thatτU contains a copy ofσ. �

4.2. Application to (pro-) p-groups. The results of the previous subsection apply to a rich and well-behaved
family of (pro-) p-groups which we now discuss. Roughly speaking these groupsadmit good linearisations,
that is, to each such group one may associate a Lie algebra that carries complete information on the group.

Uniform pro-p-groups. A finite p-group is calledpowerful if rG,Gs Ă Gp whenp is odd (andrG,Gs Ă G4

whenp “ 2). HereGm is the group generated bym-powers. A pro-p group is called powerful if it is the
inverse limit of finite powerful groups. A pro-p group is calleduniform if it is powerful, finitely generated
(as a pro-p group), and torsion-free. To each uniform pro-p groupG one may associate auniform Zp-Lie
algebrag “ LiepGq, that is, aZp-Lie algebra which is free of finite rank as aZp-module, and which satisfies
rg, gsLie Ă pg for p odd (andrg, gsLie Ă 4g for p “ 2); see [12] for a comprehensive treatment. This
association defines an equivalence of categories between the category of uniform pro-p groups and uniform



22 TYRONE CRISP, EHUD MEIR, AND URI ONN

Zp-Lie algebras. Starting with a uniform Lie algebrag this association is made concrete using the Campbell-
Hausdorff series

Hpu, vq “ log pexppuq exppvqq “ u` v` pLie bracketsq P Qxxu, vyy,

which is expressible in terms ofu, v P g by means of the Lie bracket, and which allows one to define a uniform
pro-p groupG having the same underlying set asg and group operationu ¨ v “ Hpu, vq. Let exp denote the
identity map ong, thought of as a map from the Lie algebrag to the groupG. This map is well-behaved with
respect to passage to subgroups or quotients: Lie subalgebras ofg correspond bijectively to closed uniform
subgroups ofG, and ideals ing correspond to normal subgroups inG; see [12, Section 4.5]. Moreover, it is
shown in [4, Theorem 2.6] that forp ‰ 2 this map exp satisfies the conditions (A) and (B) from Section4.1,
meaning that the orbit method applies and gives a bijectionOG : IrrpGq Ñ Gzpg. This generalises an earlier
result of Howe [20, Theorem 1.1].

Finite p-groups of nilpotency class less thanp. There is a similar Lie-type correspondence for finitep-groups
of nilpotency class less thanp. To each groupG of this type one may associate a finiteZ-Lie algebrag “ LiepGq

which is nilpotent of class less thanp, and whose additive group is ap-group, such thatG is isomorphic to the
group exppgq whose underlying set isg and whose multiplication is given by the Campbell-Hausdorff series
(which is finite, in this case); see [26, Section 10.2]. Ifp is odd then the orbit method applies to the map
exp : g Ñ G; see [4, Theorem 2.6].

Application of Theorem4.2. For the rest of this section letG “ exppgq be either a uniform pro-p group or a
finite p-group of nilpotency class less thanp, with corresponding Lie algebrag. For each subalgebrah of g we
writeH for the corresponding subgroup expphq of G.

Definition 4.5. An Iwahori decompositionof g is a triple of Lie subalgebraspu, l, vq of g such thatrl, us Ď u,
rl, vs Ď v, and such thatg “ u‘ l‘ v asZp-modules (in the uniform pro-p case) or asZ-modules (in the finite
p-group case).

Lemma 4.6. If pu, l, vq is an Iwahori decomposition ofg, thenpU, L, Vq is an Iwahori decomposition ofG.

Proof. The Lie correspondence ensures thatU, L andV are closed subgroups ofG such thatL normalisesU
andV . The subgroupsV andB – UL have trivial intersection inG, because the subalgebrasv andu ‘ l have
trivial intersection ing, and so the product mapUˆ Lˆ V Ñ G is injective. We shall now show that this map
is surjective.

We must show that for eachx P b – u‘l and eachy P v one has exppx`yq P BV . The Campbell-Hausdorff
formula implies that exppx ` yq “ exppxq exppz1q exppyq for somez1 P g1 “ rg, gs. Writing z1 “ x1 ` y1,
wherex1 P b andy1 P v, another application of Campbell-Hausdorff gives exppz1q “ exppx1q exppz2q exppy1q

for somez2 P g2 “ rg, g1s. Continuing in this way we findzn P gn “ rg, gn´1s, xn´1 P b andyn´1 P v, for
everyn P N, such that exppzn´1q “ exppxn´1q exppznq exppyn´1q, and we deduce that

exppx` yq P
č

ně0

B exppgnqV “ B

˜č

ně0

exppgnq

¸
V “ BV,

where the first equality holds because the groups exppgnq form a descending chain andG is compact, and the
second holds becauseg is either uniform or nilpotent.

We are left to verify condition (2) of Definition2.1. If G is finite this condition is trivially satisfied, so
suppose thatG is a uniform pro-p group. For eachn ě 0 the tripleppnu, pnl, pnvq is an Iwahori decomposition
of the idealpng of g, and so the above argument shows that the open normal subgroupsKn “ expppngq of G
satisfy condition (2). �

We now have the following corollary of Theorem4.2:
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Corollary 4.7. Letp be an odd prime. LetG be either a uniform pro-p group, or a finitep-group of nilpotency
class less thanp. Let pu, l, vq be an Iwahori decomposition of the Lie algebrag ofG, and letpU, L, Vq be the
corresponding Iwahori decomposition ofG. The diagram

IrrpLq
iU,V //

OL

��

IrrpGq

OG

��
Lzpl Λ˚

// Gzpg
is commutative.

Proof. This follows from Theorem4.2. The hypothesis (1) of that theorem is satisfied because of Lemma4.6;
hypothesis (2) is satisfied by assumption; and the hypothesis (3) is satisfied because of [4, Theorem 2.6]. �

We remark that for uniform pro-2 groups the orbit method does not fully apply, though one has weaker
versions; see [24, 4].

Example 4.8. In ‘real life’ one may find a rich supply of groups to which the corollary may be applied. LetG
be ap-adic Lie group, letα be an automorphism ofG, and denote byα˚ the derived automorphism of the Lie
algebrag of G. Then

uα – tx P g | αn˚pxq Ñ 0 asn Ñ 8u and vα – uα´1

are nilpotent Lie subalgebras ofg, normalised by the subalgebra

lα – tx P g | tαn˚pxq | n P Zu is precompact ingu,

and we haveg “ uα ‘ lα ‘ vα asQp-vector spaces. Moreover,uα, lα andvα are the respective Lie algebras of
the closed subgroupsUα, Lα andVα of G, where we are using the notation of Example2.6. These assertions
are proved in [41, Theorem 3.5]. It is shown in [13, Lemma 3.3] thatg contains arbitrary small open uniform
Zp-Lie subalgebrask havingk “ puα X kq ‘ plα X kq ‘ pvα X kq. The compact open subgroupsK “ exppkq of G
then have Iwahori decompositionspUαXK,LαXK,VαXKq. If p is odd, Corollary4.7describes the induction
functor iUαXK,VαXK : RpLα X Kq Ñ RpKq in terms of the orbit method and of the projectionk Ñ lα X k.

Example 4.9. For a finite example, leto be a compact discrete valuation ring with maximal idealp and residue
characteristicp. LetK “ K1 be the first principal congruence subgroup in GLnpo{pℓq, for ℓ ą 1. ThenK is a
finite p-group of nilpotency classℓ ´ 1, with Lie algebrak “ Mnpp{pℓq. As explained in Example2.4, each
partitionn “ n1`¨ ¨ ¨`nm gives an Iwahori decompositionpUXK, LXK,VXKq of K, corresponding to the de-
composition ofk into block-upper-triangular, block-diagonal and block-lower-triangular matrices. Ifp ą ℓ´ 1

and odd, Corollary4.7gives a description of the resulting induction functor iUXK,VXK : RpLX Kq Ñ RpKq in
terms of the orbit method and the projection ofk onto its subalgebra of block-diagonal matrices.

Remark 4.10. We have taken the point of view of the theory of uniform groupsdue to its fairly concrete and
algebraic formulation. Historically, the Lie correspondence for (pro-)p-groups goes back to the seminal work
of Lazard [27], [28]. The technique of obtaining Iwahori decompositions of groups from decompositions of
Lie algebras is well known in the setting ofp-adic reductive groups: see [2] and [9], for example.
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5. CASE STUDY: SIEGEL LEVI SUBGROUP INSp4po2q

Let o be a compact discrete valuation ring with maximal idealp, a fixed uniformiserπ and finite residue
field k of odd characteristic. Letoℓ :“ o{pℓ. In this section we illustrate how the results of the previous sections
may be applied to study the representations of the symplectic group Sp4po2q that are induced, in the sense of
Definition 2.7, from the Siegel Levi subgroup of2 ˆ 2 block-diagonal matrices. Note that this is equivalent
to studying those induced representations of Sp4poq which factor through Sp4po2q: see Theorem2.15(5). The
main results in this section are a double-coset formula, à la Mackey, for the composition of induction and
restriction for these groups (Theorem5.1); and an answer to a question of Dat regarding parahoric induction
(Corollary5.16).

Let us introduce the notation used to state the Mackey formula. Let

G “ Sp4po2q “ tg P GL4po2q | gtjg “ ju, where j “

„
´1

´1
1
1


.

This group admits a virtual Iwahori decompositionpU, L, Vq, with

L “

"„
a 0

0 a´t

 ˇ̌
ˇ̌ a P GL2po2q

*
,

U “

"„
1 m

1

 ˇ̌
ˇ̌ m P M2po2q, m “ mt

*
, and V “ Ut,

wherep¨qt means transpose andp¨q´t means transpose inverse. We consider the associated functors

iGL – iU,V : RpLq Ñ RpGq and rGL – rU,V : RpGq Ñ RpLq.

The subgroupL – GL2po2q has a virtual Iwahori decompositionpU 1,D, V 1q, where

D “ tdiagpα, δ, α´1, δ´1q | α, δ P oˆ
2 u,

U 1 “
 
diag

`“
1 β
1

‰
,
“
1

´β 1

‰˘ ˇ̌
β P o2

(
and V 1 “ pU 1qt.

We consider the associated functors

iLD – iU 1,V 1 : RpDq Ñ RpLq and rLD – rU 1,V 1 : RpLq Ñ RpDq.

We let

WG – NGpDq{D and WL – NLpDq{D

denote the Weyl groups ofD in G and in L, respectively. We write Adg for the conjugation action of a
group on itself and subsets thereof, and with a slight abuse of notation also for the corresponding action on
representations.

Theorem 5.1. There is a natural isomorphism of functorsRpLq Ñ RpLq,

rGL iGL –
à

gPWLzWG{WL

iLgLg´1XL Adg rLLXg´1Lg .

Remarks 5.2. Let us unpack Theorem5.1a little.

(1) The right-hand side of the formula in Theorem5.1 is a sum over a set of representativesg P NGpDq for
the double cosets ofWL in WG; the resulting functor does not depend on the choices made, up to natural
isomorphism.

(2) For eachg P NGpDq, the intersectiongLg´1 X L is eitherL or D. The functors iLD and rLD were defined
above; the functors iLL and rLL are, by definition, the identity functors onRpLq.
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(3) The groupWL is the two-element group generated (moduloD) by the matrix

t“ diagpσ, σq P L, where σ “
“

´1
1

‰
P GL2po2q.

The eight-element dihedral groupWG is generated (moduloD) byWL together with the matrix

w –

»
——–

0 ´1

1

1 0

1

fi
ffiffifl .

Defining

s –

„
σ

σ´1


P G,

we have the double-coset decomposition

WG “ WL \WLsWL \WLwWL.

The elements normalisesL, whilewLw´1XL “ D. Putting all of this together, the formula in Theorem5.1
takes the following more explicit form:

rGL iGL – id ‘ Ads ‘ iLD Adw rLD .

(4) Note that the definition of the functors iG
L and rGL , and the statement of Theorem5.1, continue to make

sense wheno2 is replaced byoℓ, or indeed by any finite (or profinite) commutative ring. Overo1, the
formula is valid: as explained in Example2.10, the functors iGL , rGL , iLD and rLD are isomorphic in that case to
Harish-Chandra functors, and the formula in Theorem5.1 is an instance of the well-known formula (1.1)
for the composition of these functors (cf. [11, Theorem 5.1]). We do not know whether the formula
in Theorem5.1 is valid for Sp4 over more general rings; the proof presented below relies onsome very
special features ofo2.

Our strategy for proving Theorem5.1is as follows. Reduction moduloπ gives rise to a surjective group ho-
momorphismG “ Sp4po2q Ñ Sp4pkq, whose kernel is an abelian group isomorphic to the Lie algebra sp4pkq.
In Sections5.1 and5.2 we apply the orbit method and Clifford theory to reduce Theorem 5.1 to a statement
about orbits and representations of stabilisers for the adjoint action of Sp4pkq onsp4pkq. In Sections5.3and5.4
we verify the theorem through a case-by-case analysis of theorbits (with some details postponed to Appen-
dix A).

For the semisimple orbits our induction and restriction functors correspond to Harish-Chandra induction and
restriction for (reductive) subgroups of Sp4pkq, and our Mackey formula follows from the well-known Mackey
formula (1.1) for Harish-Chandra functors. The computation for the non-semisimple orbits—and in particular,
for the one nilpotent orbit that is relevant here—is more subtle. In Corollary5.16we shall see that it is precisely
this nilpotent orbit that witnesses the difference betweenour induction functor and Dat’s parahoric induction.

5.1. The congruence subgroup.LetG0 denote the kernel of the reduction map Sp4po2q Ñ Sp4pkq, and let

g “ sp4pkq “ ty P M4pkq | jy` ytj “ 0u,

viewed as an additive abelian group on whichG acts via the adjoint action of its quotient Sp4pkq. To reduce the
notational load we shall write

g ¨ y “ Adgpyq “ gyg´1 (moduloπ), g P G,y P g.

Lemma 5.3. The mapexp : g Ñ G0 defined as the composition

g
yÞÑπy
ÝÝÝÝÑ πsp4po2q

zÞÑ1`z
ÝÝÝÝÑ G0

is aG-equivariant group isomorphism.



26 TYRONE CRISP, EHUD MEIR, AND URI ONN

Proof. Clear. �

For every subgroupH of G we set

H0 – HXG0, H – HG0{G0 – H{H0, and h – logpH0q,

where log: G0 Ñ g denotes the inverse to exp. In particular,l is the additive subgroup ofM4pkq consisting of
the block-diagonal matrices diagpx,´xtq, for x P M2pkq.

It is easily checked that the triple of subgroupspu, l, vq forms an Iwahori decomposition ofg, and it follows
that the triplepU0, L0, V0q is an Iwahori decomposition ofG0. Similarly, pu 1, d, v 1q is an Iwahori decomposition
of l, and sopU 1

0,D0, V
1
0q is an Iwahori decomposition ofL0.

Lemma 5.4. Choose and fix a nontrivial characterζ : k Ñ Cˆ. For eachy P g, denote byϕy : G0 Ñ Cˆ the
character

ϕy : g ÞÑ ζ ˝ tr plogpgqyq .

The mappingy ÞÑ ϕy is aG-equivariant bijectiong –
ÝÑ IrrpG0q, which restricts to anL-equivariant bijection

l
–
ÝÑ IrrpL0q, and to aD-equivariant bijectiond –

ÝÑ IrrpD0q.

Proof. Let xz, yy – ζ ˝ trpzyq for z, y P M4pkq. It is well-known that the mapM4pkq Ñ {M4pkq sending
y to x¨, yy is an isomorphism. By Pontryagin duality this map restrictsto an isomorphism betweeng and the
dual ofM4pkq{gK, wheregK “ tz P M4pkq | xz, gy “ 1u. Let g 1 “ tz P M4pkq | jz ´ ztj “ 0u. For
eachz P g 1 andy P g we have trpzyq “ trpAdjpzq Adjpyqq “ ´ trpzyq, showing thatg 1 Ď gK. We also have
M4pkq “ g‘g 1 (this is the eigenspace decomposition for the involutiony ÞÑ Adjpytq), and sinceg and its dual
M4pkq{gK have the same cardinality we must haveg 1 “ gK. Thus the pairingx¨, ¨y restricts to an isomorphism
g Ñ pg. Composing with the isomorphismxlog : pg Ñ xG0 “ IrrpG0q shows thaty ÞÑ ϕy is an isomorphism
g Ñ IrrpG0q. TheG-equivariance of this map follows from the invariance of thetrace. Similar arguments apply
to l andd. �

Theorem4.2, applied to this particularly simple setting, gives the following identification of the induction
maps

i0 – iU0,V0 : IrrpL0q Ñ IrrpG0q and i10 – iU 1
0
,V 1
0
: IrrpD0q Ñ IrrpL0q.

Lemma 5.5. The diagram

IrrpD0q
i 1
0 // IrrpL0q

i0 // IrrpG0q

d
inclusion //

yÞÑϕy –

OO

l
inclusion //

yÞÑϕy –

OO

g

yÞÑϕy –

OO

is commutative.

Proof. In view of Theorem4.2and Lemma5.3, it is enough to observe that the diagram

pd pΛ 1q˚

// pl Λ˚
// pg

d

yÞÑx¨,yy –

OO

inclusion // l

yÞÑx¨,yy –

OO

inclusion // g

yÞÑx¨,yy –

OO

commutes, whereΛ is the projection ofg “ u ‘ l ‘ v onto its summandl, andΛ 1 is the projection ofl onto its
summandd. �
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5.2. Application of Clifford theory. We shall use Theorems3.4, 3.6 and3.14 to transport the functors iGL
and rGL to the setting of (projective) representations of the centralisersLpyq Ď GL2pkq andGpyq Ď Sp4pkq

associated to the charactersϕy.
The first assertion (C1) of Clifford theory decomposes the categoriesRpDq, RpLq andRpGq as products over

the setsDz IrrpD0q, Lz IrrpL0q andGz IrrpG0q, respectively. For eachy P g, letϕy be the character in IrrpG0q

defined in Lemma5.4. We denote by

EGy : RpGq Ñ RpGqϕy

the projection onto the subcategory associated to (theG-orbit of) the characterϕy. We similarly defineELy and
EDy , for y P l andy P d respectively.

For eachy P l we write

Gpy, lq – tg P G | g ¨ y P lu

for the set of elements inG which conjugatey back intol. Notice thatGpy, lq is stable under left multiplication
by L, and under right multiplication byGpyq.

The first step is to show that we may deal with ordinary, as opposed to projective, representations of the
centralisers.

Lemma 5.6. There is a family of mapspϕ 1
yqyPl with the following properties:

(1) ϕ 1
y is a one-dimensional (ordinary) representation of the centraliserGpyq that extendsϕy.

(2) For eachg P Gpy, lq one hasAdgpϕ 1
yq “ ϕ 1

g¨y.
(3) ϕ 1

ypgq “ 1 for all g P Upyq Y Vpyq.
(4) If y P d thenϕ 1

ypgq “ 1 for all g P U 1pyq Y V 1pyq.

Proof. For eachy P l Ă M4pkq, let Hpyq denote the centraliser ofy in the group GL4po2q (which acts on
M4pkq through the adjoint action of its quotient GL4pkq). Singla showed in [36, Proposition 2.2] that the
characterϕy extends to a linear character ofHpyq. If ϕ 1

y is such an extension, then for eachg P Gpy, lq the
character Adgpϕ 1pyqq is an extension ofϕg¨y to Hpg ¨ yq. Moreover, ifg P Gpyq then Adgpϕ 1

yq “ ϕ 1
y. We

may thus choose a family of charactersϕ 1
y satisfying (1) and (2) by fixing oney in eachG-orbit, choosing an

extensionϕ 1
y as above, and then definingϕ 1

g¨y – Adgpϕ 1
yq for eachg P Gpy, lq.

We will prove that the charactersϕ 1
y constructed above are trivial onUpyq andVpyq by showing that these

two groups belong to the commutator subgroup ofHpyq. Indeed, letm P M2po2q be any matrix such that the

4 ˆ 4 matrixu “
“
1 m
1

‰
lies inHpyq. Then the matricesu 1 “

”
1 m{2

1

ı
andz “

“
1

´1

‰
also lie inHpyq, and

we haveu “ ru 1, zs. This shows thatUpyq lies in rHpyq, Hpyqs, and a similar argument applies toVpyq. Thus
the familyϕ 1

y constructed above satisfies condition (3).
Finally, if y P d, then a similar argument to the above shows thatU 1pyq andV 1pyq belong to the commutator

subgroup of the centraliser ofy inside the block-diagonal subgroup diagpGL2po2q,GL2po2qq Ă GL4po2q, and
so property (4) is also satisfied. �

For the rest of Section5 we fix a family of charactersϕ 1
y as in Lemma5.6. As explained in Section3.1,

Clifford theory gives equivalences of categories

FLy : RpLpyqq
bϕ 1

y
ÝÝÝÑ RpLpyqqϕy

indL
Lpyq

ÝÝÝÝÑ RpLqϕy

and

FGy : RpGpyqq
bϕ 1

y
ÝÝÝÑ RpGpyqqϕy

indG
Gpyq

ÝÝÝÝÑ RpGqϕy .
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Lemma 5.7. For eachy P l, eachg P Gpy, lq and eachh P NGpLq, the diagrams

RpGqϕy
id // RpGqϕg¨y

RpGpyqq

FGy

OO

Adg // RpGpg ¨ yqq

FGg¨y

OO
and RpLqϕy

Adh // RpLqϕh¨y

RpLpyqq

FLy

OO

Adh // RpLph ¨ yqq

FLh¨y

OO

commute up to natural isomorphism.

Proof. The commutativity of the second diagram follows from property (2) of Lemma5.6, and from the well-
known fact that Adh ˝ indLLpyq – indLLph¨yq ˝ Adh. The commutativity of the first diagram follows from the same
argument, plus the fact that Adg is isomorphic to the identity functor onRpGq for everyg P G. �

For eachy P l we consider the functors

iGpyq

Lpyq
– iUpyq,Vpyq : RpLpyqq Ñ RpGpyqq and rGpyq

Lpyq
: RpGpyqq Ñ RpLpyqq.

Lemma 5.8. For eachy P l the diagrams

RpLqϕy
iGL E

L
y // RpGqϕy

RpLpyqq
iGpyq

Lpyq //

FLy –

OO

RpGpyqq

FGy–

OO
and RpGqϕy

ELy rGL // RpLqϕy

RpGpyqq
rGpyq

Lpyq //

FGy –

OO

RpLpyqq

FLy–

OO

commute up to natural isomorphism.

Proof. The fact thatϕ 1
y is trivial on the subgroupsUpyq andVpyq ensures that the functionsa andb of Lemma

3.12are identically equal to1, and thus that the functor i
ϕ 1
y

Upyq,Vpyq
appearing in Theorem3.14is equal to iGpyq

Lpyq
.

This proves the commutativity of the i-diagram; taking adjoints proves the commutativity of the r-diagram.�

Combining Lemmas5.7and5.8gives immediately:

Lemma 5.9. For eachy P l and eachg P Gpy, lq the diagram

RpLqϕy
iGL E

L
y // RpGqϕy

id // RpGqϕg¨y

ELg¨y rGL // RpLqϕg¨y

RpLpyqq

FLy

OO

iGpyq

Lpyq // RpGpyqq

FGy

OO

Adg // RpGpg ¨ yqq

FGg¨y

OO

rGpg¨yq

Lpg¨yq // RpLpg ¨ yqq

FLg¨y

OO

commutes up to natural isomorphism. �

Now we use Clifford theory to analyse the right-hand side id‘ Ads ‘ iLD Adw rLD of the Mackey formula (cf.
Remarks5.2(3)). For each pair of elementsy, z P l, define a functor

∆pz, yq : RpLpyqq Ñ RpLpzqq, ∆pz, yq “

#
Adl if z “ l ¨ y

0 if z R L ¨ y.

Note that∆pz, lq is well-defined up to natural isomorphism, because Adl – id onRpLpyqq for everyl P Lpyq.
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Lemma 5.10. For eachy, z P l the diagrams

RpLqϕy
ELzE

L
y // RpLqϕz

RpLpyqq
∆pz,yq

//

FLy

OO

RpLpzqq

FLz

OO
and RpLqϕy

ELz Ads ELy // RpLqϕz

RpLpyqq
∆pz,s¨yq Ads //

FLy

OO

RpLpzqq

FLz

OO

commute up to natural isomorphism.

Proof. The commutativity of the first diagram follows from Lemma5.7, and from the fact thatELzE
L
y “ 0 unless

y andz areL-conjugate. The commutativity of the second diagram follows from a similar argument, plus the
equality Ads ELy “ ELs¨y Ads. �

The analysis of the functors iLD and rLD follows the above analysis of iGL and rGL . BecauseD is abelian we have
Dpyq “ D for eachy P d. Clifford theory gives an equivalence of categories

FDy : RpDq
bϕ 1

y
ÝÝÝÑ RpDqϕy ,

such that for eachh P NGpDq the diagram

RpDqϕy
Adh // RpDqϕh¨y

RpDq
Adh //

FDy

OO

RpDq

FDh¨y

OO

commutes up to natural isomorphism.
We consider the functors

iLpyq

D
– i

U 1
0pyq,V 1

0pyq
: RpDq Ñ RpLpyqq and rLpyq

D
– r

U 1
0pyq,V 1

0pyq
: RpLpyqq Ñ RpDq.

For eachy, z P l, we define the functor

Ξpz, yq : RpLpyqq Ñ RpLpzqq

as the direct sum, overd P d, of the compositions

RpLpyqq
∆pd,yq
ÝÝÝÝÑ RpLpdqq

rLpdq

DÝÝÝÑ RpDq
AdwÝÝÑ RpDq

iLpw¨dq

DÝÝÝÝÑ RpLpw ¨ dqq
∆pz,w¨dq
ÝÝÝÝÝÑ RpLpzqq.

Lemma 5.11. For eachy, z P l the diagram

RpLqϕy
ELzpiLD Adw rLDqELy // RpLqϕz

RpLpyqq
Ξpz,yq

//

FLy

OO

RpLpzqq

FLz

OO

commutes up to natural isomorphism.

Proof. Decomposing the categoryRpDq over IrrpD0q – d, we have

iLD Adw rLD “
à
dPd

iLD Adw E
D
d rLD “

à
dPd

iLD E
D
w¨d Adw E

D
d rLD “

à
dPd

ELw¨d iLD E
D
w¨d Adw E

D
d rLD E

L
d
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where in the last equality we have used Theorem3.4. After applying Lemma5.10to the functorsELyE
L
w¨d and

ELdE
L
z , we are left to prove the commutativity of

RpLqϕd
EDd rLD // RpDqϕd

Adw // RpDqϕw¨d

iLD // RpLqϕw¨d

RpLpdqq
rLpdq

D //

FLd

OO

RpDq
Adw //

FDd

OO

RpDq
iLpw¨dq

D //

FDw¨d

OO

RpLpw ¨ dqq

FLw¨d

OO

for eachd P d. This follows from Theorem3.14, just as in Lemma5.9. �

The end result of our Clifford analysis is as follows:

Corollary 5.12. Theorem5.1 is equivalent to the assertion that for everyy P l and everyg P Gpy, lq, there is
a natural isomorphism

rGpg¨yq

Lpg¨yq
Adg iGpyq

Lpyq
– ∆pg ¨ y, yq

à
∆pg ¨ y, s ¨ yq Ads

à
Ξpg ¨ y, yq

of functorsRpLpyqq Ñ RpLpg ¨ yqq.

Proof. By Lemma5.4and (C1) we have

rGL iGL “
à

L¨y, L¨z PLzl

ELz rGL iGL E
L
y.

Theorem3.4 implies that
ELz rGL iGL E

L
y “ ELz rGL E

G
z E

G
y iGL E

L
y,

andEGz E
G
y “ 0 unlessz andy lie in the sameG-orbit. This proves that

(5.13) rGL iGL “
à

L¨yPLzl,
gPLzGpy,lq{Gpyq

ELg¨y rGL iGL E
L
y.

Clifford theory likewise gives a decomposition

id ‘ Ads ‘ iLD Adw rLD “
à

L¨y, L¨zPLzl

´
ELzE

L
y ‘ ELz Ads E

L
y ‘ ELz iLD Adw rLD E

L
y

¯
,

and Lemmas5.10 and5.11 imply that each term in the sum vanishes ifz andy are notG-conjugate. This
proves that

(5.14) id‘ Ads ‘ iLD Adw rLD “
à

L¨yPLzl,
gPLzGpy,lq{Gpyq

´
ELg¨yE

L
y ‘ ELg¨y Ads E

L
y ‘ ELg¨y iLD Adw rLD E

L
y

¯
.

Thus the reformulation of Theorem5.1 given in Remarks5.2(3) is equivalent to the existence of a natural
isomorphism, for eachy P l and eachg P Gpy, lq, between thepy, gq terms on the right-hand sides of (5.13)
and (5.14). Conjugating each of these terms by the equivalencesFLy andFLg¨y, and applying Lemmas5.9, 5.10
and5.11, we bring Theorem5.1 into the asserted form. �

5.3. Centralisers. We now present the facts about the centralisersGpyq andLpyq and about the orbit spaces
LzGpy, lq{Gpyq that will be needed for the proof of Theorem5.1. More details, and the proofs of the assertions
made here, are given in AppendixA.

Fix x P M2pkq, and lety “ diagpx,´xtq be the corresponding element ofl. We divide our analysis
according to the Jordan normal form ofx. Up to conjugacy byL – GL2pkq, the following nine cases exhaust
all of the possibilities. In the followings, t,w andσ are as in Remarks5.2. We shall write ‘LzGpy, lq{Gpyq “

tg, h, ku’ to mean thatGpy, lq “ LgGpyq \ LhGpyq \ LkGpyq.

Case 1:x “ diagpµ, µq, µ P k. In this caseLpyq “ L – GL2pkq. There are two subcases:
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1A: µ ‰ 0. HereGpyq “ Lpyq, andLzGpy, lq{Gpyq “ t1, s,wu.

1B: µ “ 0. HereGpyq “ G andLzGpy, lq{Gpyq “ t1u.

Case 2:x “ diagpµ, νq, µ ‰ ν. In this caseLpyq “ D. There are three subcases:

2A: µ ‰ ˘ν, µ ‰ 0 ‰ ν. HereGpyq “ Lpyq, andLzGpy, lq{Gpyq “ t1, s,w,wtu.

2A‹: ν “ 0. HereGpyq is a reductive group overk; Lpyq “ D is a rational maximal torus, whose Weyl group
in Gpyq is generated (moduloD) by the involutiont´1wt; andUpyq andVpyq are the unipotent radicals of an
opposite pair of rational Borel subgroups ofGpyq containingLpyq. We haveLzGpyq{Gpyq “ t1,wu.

2B: µ “ ´ν. In this case we haveGpyq “ AdwpLq, Upyq “ Adw
`
V 1

˘
andVpyq “ Adw

`
U 1

˘
, while

LzGpy, lq{Gpyq “ t1,w,wtu.

Case 3: x “
“
α β
µβ α

‰
, µ P k non-square,α P k, β P kˆ. In this casek2 – M2pkqpxq is a quadratic field

extension ofk, andLpyq “ tdiagpa, a´tq | a P kˆ
2 u – kˆ

2 . There are two subcases.

3A: α ‰ 0. We haveGpyq “ Lpyq andLzGpy, lq{Gpyq “ t1, su.

3B: α “ 0. HereGpyq is a reductive group overk; Lpyq is a rational maximal torus ofGpyq whose Weyl group
is generated bys; andUpyq andVpyq are the unipotent radicals of an opposite pair of rational Borel subgroups
of Gpyq containingLpyq. In this caseLzGpy, lq{Gpyq “ t1u.

Case 4:x “
“
µ 1
µ

‰
. In this caseLpyq “ tdiagpa, a´tq | a P krxsu – GL1pkrεs{pε2qq. There are two subcases.

4A: µ ‰ 0. HereGpyq “ Lpyq andLzGpy, lq{Gpyq “ t1, su.

4B: µ “ 0. The subgroupsUpyq andVpyq commute with one another inGpyq, and we have

Gpyq “
`
Upyq ˆ Vpyq

˘
¸
`
Lpyq ¸ S

˘

whereS is the two-element group generated bys. We haveLzGpy, lq{Gpyq “ t1u.

5.4. Proof of Theorem 5.1. In this section we shall use the results of the previous section to prove that for
eachy P l and eachg P Gpy, lq, there is a natural isomorphism

(5.15) rGpg¨yq

Lpg¨yq
Adg iGpyq

Lpyq
– ∆pg ¨ y, yq

à
∆pg ¨ y, s ¨ yq Ads

à
Ξpg ¨ y, yq

of functorsRpLpyqq Ñ RpLpg ¨ yq. By Corollary5.12, this constitutes a proof of Theorem5.1. We recall from
Section5.2that

∆pz, yq “

#
Adl if z “ l ¨ y

0 if z R L ¨ y
and Ξpz, yq “

à
dPd

´
∆pz,w ¨ dq iLpw¨dq

D
Adw rLpdq

D
∆pd, yq

¯

for all y, z P l.
The proof of (5.15) goes through a case-by-case analysis of the various possibilities for y “ diagpx,´xtq.

The cases are labelled as in Section5.3. The reader who is more interested in ideas than in details might like to
focus on cases 1A , 2A‹ and 4B, which together contain all of the techniques used in the other cases.

Case 1A:Takey “ diagpµ, µ,´µ,´µq, µ ‰ 0. We must considerg “ 1, g “ s andg “ w.
Forg “ 1, the left-hand side of (5.15) is the identity onRpLq, because all of the centralisers are equal toL.

We have∆py, s ¨ yq “ 0 becausey ands ¨ y “ ´y are notL-conjugate. The only diagonal matrixd P d that
is L-conjugate toy is d “ y itself, and we have∆py,w ¨ yq “ 0, and soΞpy, yq “ 0. Thus the only nonzero
term on the right-hand side of (5.15) is∆py, yq, which is the identity onRpLq. Thus the two sides of (5.15) are
isomorphic.

For g “ s all of the centralisers are again equal toL, and so the left-hand side of (5.15) equals Ads. One
finds as above that the only nonzero term on the right-hand side is∆ps ¨ y, s ¨ yq Ads, which equals Ads.

For g “ w we havew ¨ y “ diagp´µ, µ, µ,´µq, and so the centralisers ofg ¨ y are as in case 2B. The

left-hand side of (5.15) is thus equal to rGpw¨yq

D
Adw. Since∆pw ¨ y, yq and∆pw ¨ y, s ¨ yq are both zero, the
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only potentially nonzero term on the right-hand side of (5.15) is Ξpw ¨ y, yq. Since the only diagonal matrix
that isL-conjugate toy is y itself, we have

Ξpw ¨ y, yq “ ∆pw ¨ y,w ¨ yq iLpw¨yq

D
Adw rLpyq

D
∆py, yq “ Adw rL

D
.

Now, we haveGpw ¨ yq “ AdwpLq, Upw ¨ yq “ AdwpV 1q, andVpw ¨ yq “ AdwpU 1q (see case 2B in Section
5.3), and therefore

rGpw¨yq

D
Adw “ rUpw¨yq,Vpw¨yq Adw – Adw rV 1,U 1 – Adw rU 1,V 1 “ Adw rL

D

where we used Theorem2.15(1) to switchU 1 andV 1. This completes the proof of (5.15) in case 1A.

Case 2A:Takey “ diagpµ, ν,´µ,´νq, whereµ andν are nonzero andµ ‰ ˘ν. We must considerg “ 1,
g “ s, g “ w andg “ wt. For each of theseg the matrixg ¨ y is again of the form 2A, and so all of the
centralisers appearing in (5.15) are equal toD, and the left-hand side of (5.15) is equal to the functor Adg
onRpDq.

For g “ 1 the functor∆py, yq equals the identity, while∆py, s ¨ yq “ 0 (becausey ands ¨ y are notL-
conjugate) andΞpy, yq “ 0 (because the only diagonal matrices that areL-conjugate toy arey andt ¨ y, and
neither of these isL-conjugate tow ¨ y). So both sides of (5.15) equal the identity.

Forg “ s the functor∆ps ¨ y, s ¨ yq is the identity, while∆ps ¨ y, yq andΞps ¨y, s ¨ yq are both zero. So both
sides of (5.15) equal Ads.

Forg “ w, the only potentially nonzero term on the right-hand side of(5.15) is Ξpw ¨ y, yq. There are two
diagonal matricesd P d that areL-conjugate toy, namelyy itself andt ¨ y. Sincew ¨ y “ diagp´µ, ν, µ, νq

andwt ¨ y “ diagp´ν, µ, ν,´µq are notL-conjugate, we have∆pw ¨ y,wt ¨ yq “ 0, and so the summand in
Ξpw ¨ y,w ¨ yq corresponding tod “ t ¨ y is equal to zero. Therefore

Ξpw ¨ y, yq “ ∆pw ¨ y,w ¨ yq iLpw¨yq

D
Adw rLpyq

D
∆py, yq “ Adw

as required.
For g “ wt the argument of the previous paragraph shows that the right-hand side of (5.15) is equal to

Ξpwt ¨ y, yq, and that only thed “ t ¨ y summand in the latter is nonzero. We have

Ξpwt ¨ y, yq “ ∆pwt ¨ y,wt ¨ yq iLpwt¨yq

D
Adw rLpt¨yq

D
∆pt ¨ y, yq “ Adw Adt

because∆pt ¨ y, yq “ Adt and all of the centralisers equalD. This completes the proof of (5.15) in case 2A.

Case 2A‹: Let y “ diagpµ, 0,´µ, 0q whereµ ‰ 0. We must considerg “ 1 andg “ w.

For g “ 1, the left-hand side of (5.15) equals rGpyq

D
iGpyq

D
. We are in the situation of Example2.10, and so

rGpyq

D
and iGpyq

D
are isomorphic to the functors of Harish-Chandra restriction and induction (respectively) for

the maximal torusD Ă Gpyq. Since the Weyl group ofD in Gpyq is equal tot1, t´1wtu, the usual Mackey
formula (1.1) (cf. [11, Theorem 5.1]) for the composition of Harish-Chandra functors gives

rGpyq

D
iGpyq

D
– id ‘ Adt´1wt .

Still takingg “ 1, we have∆pg ¨ y, s ¨ yq “ 0, and so the right-hand side of (5.15) equals id‘ Ξpy, yq. The
only diagonal matrices that areL-conjugate toy ared “ y andd “ t ¨ y. Ford “ y we have∆py,w ¨ yq “ 0,
and so the only potentially nonzero summand inΞpy, yq is the one corresponding tod “ t ¨ y. Computing this
summand, we find

Ξpy, yq “ ∆py,wt ¨ yq iLpwt¨yq

D
Adw rLpt¨yq

D
∆pt ¨ y, yq “ Adt´1 Adw Adt,

becauseLpwt ¨ yq “ Lpt ¨ yq “ D. Thus the right-hand side of (5.15) is, like the left-hand side, isomorphic to
id ‘ Adt´1wt.
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Now takeg “ w. Notice thatw ¨ y “ ´y. The left-hand side of (5.15) is

rGpyq

D
Adw iGpyq

D
– Adw rGpyq

D
iGpyq

D
– Adw ‘ Adts,

where for the first isomorphism we have used Theorem2.15(1), and for the second we have used the Mackey
formula (1.1) for Harish-Chandra induction together with the equalitywt´1wt “ ts in G.

Keepingg “ w and turning to the right-hand side of (5.15), the term∆pw ¨ y, yq vanishes, while the fact
thatw ¨y “ ts ¨ y implies that∆pw ¨ y, s ¨yq Ads “ Adts. So we are left to show thatΞpw ¨y, yq “ Adw. The
d “ y term inΞpw ¨ y, yq is equal to

∆pw ¨ y,w ¨ yq iD
D

Adw rD
D
∆py, yq “ Adw,

while thed “ t ¨ y term vanishes because∆pw ¨ y, t ¨ yq “ 0. Thus both sides of (5.15) are isomorphic to
Adw ‘ Adts in this case.

Case 3A:Takex “
”
α β
βµ α

ı
, whereµ P k is a non-square andα,β P kˆ, and lety “ diagpx,´xtq. We must

considerg “ 1 andg “ s. We haveGpyq “ Gps ¨ yq “ Lps ¨ yq “ Lpyq, so that the left-hand side of (5.15)
is equal to Adg for eachg. Note that sincey is notL-conjugate to a diagonal matrix we haveΞpz, yq “ 0 for
everyz.

Forg “ 1 we have∆py, yq “ id while∆py, s ¨ yq “ 0, so both sides of (5.15) equal the identity.
Forg “ s we have∆ps ¨y, yq “ 0 while∆ps ¨y, s ¨yq “ id and so both sides of (5.15) equal Ads. So (5.15)

holds in case 3A .

Case 4A:Takex “
“
µ 1
µ

‰
, whereµ ‰ 0, and lety “ diagpx,´xtq. The argument is the same as in case 3A.

Case 1B:Takey “ 0. We need only considerg “ 1. Then (5.15) becomes the assertion that

rG
L

iG
L

– id ‘ Ads ‘ iL
D

Adw rL
D
.

This is true: the functors iG
L

and rG
L

identify, as in Example2.10, with the functors of Harish-Chandra induction

and restriction for the Siegel Levi subgroup inG “ Sp4pkq, and the above formula is just the standard Mackey
formula (1.1) for the composition of these functors.

Case 2B:Let y “ diagpµ,´µ,´µ, µq, µ ‰ 0. We must considerg “ 1, g “ w andg “ wt.
Forg “ 1 the left-hand side of (5.15) is equal to

rAdwpLq

D
iAdwpLq

D
“ Adw rL

D
iL
D

Adw´1 – Adwpid ‘ Adtq Adw´1 – id ‘ Ads

where we have identified iL
D

and rL
D

with Harish-Chandra functors and applied the usual Mackey formula (1.1)

for the groupL – GL2pkq and its diagonal torusD. On the right-hand side of (5.15) we have∆py, yq “ id and
∆py, s ¨ yq “ id, so we are left to show thatΞpy, yq “ 0. The onlyd P d with ∆pd, yq ‰ 0 ared “ y and
d “ t ¨ y. In both of these cases we have∆py,w ¨ dq “ 0, and soΞpy, yq “ 0 as required.

Theg “ w andg “ wt cases follow the argument for the ‘g “ w component’ of case 1A. The left-hand

side of (5.15) is isomorphic to Adg iAdgpLq

D
, while the right-hand side is isomorphic to iL

D
Adg, and the two sides

are isomorphic to each other by Theorem2.15(1).

Case 3B:Let x “
”

β
βµ

ı
, µ P k a non-square,β P kˆ, and takey “ diagpx,´xtq. We need consider only

g “ 1. We have on the one hand∆py, s ¨ yq “ id, while on the other handΞpy, yq “ 0 (sincey is not
L-conjugate to anyd P d), and so (5.15) reads

rGpyq

Lpyq
iGpyq

Lpyq
– id ‘ Ads .

This is true: the functors on the right-hand side are isomorphic to Harish-Chandra functors as in Example2.10,
and the above formula is the usual Mackey formula for these functors.
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Case 4B:Takex “
“
0 1
0 0

‰
andy “ diagpx,´xtq. We need only considerg “ 1. As in case 3B, the right-hand

side of (5.15) is id ‘ Ads, while the left-hand side is rGpyq

Lpyq
iGpyq

Lpyq
. SinceUpyq andVpyq commute, the latter

functor is isomorphic as in Example2.12to the tensor product with theHpLpyqq-bimodule

eUpyqeVpyqHpGpyqqeUpyqeVpyq – H
`
pUpyq ˆ VpyqqzGpyq{pUpyq ˆ Vpyq

˘
“ H

`
pUpyq ˆ VpyqqzGpyq

˘
,

with the last equality holding becauseUpyq ˆ Vpyq is normal inGpyq. The semidirect product decomposition
of Gpyq given in Section5.3for this case implies that

H
`
pUpyq ˆ VpyqqzGpyq

˘
– HpLpyq ¸ Sq – HpLpyqq ‘ HpLpyqqs

asHpLpyqq-bimodules, and so the corresponding tensor product functor rGpyq

Lpyq
iGpyq

Lpyq
is isomorphic to id‘ Ads

as required.
This completes the proof of (5.15) and hence, by Corollary5.12, of Theorem5.1. �

5.5. Comparison with parahoric induction. We now come to the second corollary of the analysis of Sec-
tions5.1–5.3. In addition to the functor

iU,V : RpLq Ñ RpGq

that we have been considering until now, we also have the functor

iU0,V : RpLq Ñ RpGq,

which is an example ofparahoric inductionas defined by Dat in [8]. More precisely, iU0,V is the restriction of
a parahoric induction functor for Sp4poq to the subcategory of representations inflated from Sp4po2q, whereo is
the ring of integers in a non-archimedean local field. It follows immediately from the definitions that we have
a natural inclusion iU,V Ď iU0,V . We shall show that this inclusion is proper. This gives a negative answer to [8,
Question 2.15] in this case.

Corollary 5.16. Letx P M2pkq and considery “ diagpx,´xtq P l. The restrictions of the functors

iU,V , iU0,V : RpLq Ñ RpGq

to the subcategoryRpLqϕy are mutually nonisomorphic ifx is nonzero and nilpotent; and these restrictions are
mutually isomorphic ifx is zero or non-nilpotent.

Proof. The computations of Section5.2show that there are commutative (up to natural isomorphism)diagrams

RpLqϕy
iU,V // RpGqϕy

RpLpyqq
i
Upyq,Vpyq //

FLy –

OO

RpGpyqq

FGy–

OO
and RpLqϕy

iU0,V // RpGqϕy

RpLpyqq
i
Vpyq //

FLy –

OO

RpGpyqq

FGy–

OO

If x is semisimple thenGpyq is a finite reductive group, andUpyq andVpyq are the unipotent radicals of an
opposite pair of rational parabolic subgroups with common Levi subgroupLpyq. The functor iVpyqis the Harish-

Chandra induction functor associated to the parabolic subgroupLpyqVpyq of Gpyq, and as in Example2.10the
natural inclusion iUpyq,Vpyq Ď iVpyq is an isomorphism.

If x is neither semisimple nor nilpotent, as in Case 4A, then the groupsUpyq andVpyq are both trivial,
Gpyq “ Lpyq, and the functors iUpyq,Vpyq and iVpyq are both isomorphic to the identity.

We are left to consider the case wherex is nilpotent; sayx “
“
0 1
0 0

‰
. In this case we have

Gpyq “
`
Upyq ˆ Vpyq

˘
¸
`
Lpyq ¸ S

˘
,
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from which it follows (cf. Example2.12) that the functors iUpyq,Vpyq and iVpyq are isomorphic, respectively, to
the compositions

iUpyq,Vpyq : RpLpyqq
inf
ÝÑ R

``
Upyq ˆ Vpyq

˘
¸ Lpyq

˘ ind
ÝÑ RpGpyqq,

iVpyq : RpLpyqq
inf
ÝÑ RpVpyq ¸ Lpyqq

ind
ÝÑ RpGpyqq.

The functor iUpyq,Vpyq thus scales theC-dimension of representations by a factor of
“
Gpyq : pUpyq ˆ Vpyqq ¸ Lpyq

‰
“ |S| “ 2,

while iVpyq scales the dimension by
“
Gpyq : Vpyq ¸ Lpyq

‰
“ |S| ¨ |Upyq| “ 2|k|.

Thus iU,V is not isomorphic to iU0,V as functors onRpLqϕy . �

The above proof also shows that the parahoric induction and restriction functors do not satisfy the analogue
of Theorem5.1:

Corollary 5.17. Let x P M2pkq be nonzero and nilpotent, and lety “ diagpx,´xtq. The restriction of the
functor

rU0,V iU0,V : RpLq Ñ RpLq

to the subcategoryRpLqϕy is not isomorphic toid ‘ Ads.

Proof. The proof of Corollary5.16 showed that for each nonzeroM P RpLqϕy there is a proper inclusion
iU,VpMq Ĺ iU0,VpMq, and hence a proper inclusion

HomLpM,M‘ AdspMqq – EndGpiU,VpMqq Ĺ EndGpiU0,VpMqq – HomLpM, rU0,V iU0,VpMqq.

Thus rU0,V iU0,VpMq is not isomorphic toM‘ AdspMq. �

Remarks 5.18. (1) A straightforward computation with the functors iVpyq and rVpyq, using the semidirect prod-

uct decomposition ofGpyq, shows that for each irreducibleM P RpLqϕy one has

dimC EndGpiU0,VpMqq “

#
|k| ` 1 if M – AdspMq,

|k| if M fl AdspMq.

(2) The nilpotent orbitL ¨ y is the only one on which the Mackey formula fails to hold for the functors iU0,V
and rU0,V : on all of the other orbits our proof of Theorem5.1carries over to the parahoric functors, thanks
to Corollary5.16.

6. REPRESENTATIONS OF THEIWAHORI SUBGROUP OF THE GENERAL LINEAR GROUP

Let o be a compact discrete valuation ring with maximal idealp. In this section we shall present a simple
application of the functors iU,V and rU,V to the representation theory of theIwahori subgroups

In “ Inpoq “ tg P GLnpoq | g is upper-triangular modulopu

We shall relate the representations ofIn to representations of its block-diagonal subgroups. Before stating the
main result let us establish some notation (borrowed from [3]) for these subgroups.

Let Pn denote the set of compositions (also called ordered partitions) ofn: an elementα P Pn is thus an
ordered tuple of positive integerspα1, α2, . . . , αmq having

ř
αi “ n. Theblocksof α are the subsets

b1pαq “ t1, . . . , α1u, b2pαq “ tα1 ` 1, . . . , α1 ` α2u, etc.

of t1, . . . , nu. We shall usually writen, instead ofpnq, for the composition with one block.
The setPn is partially ordered by refinement:α ď β if each block ofβ is a union of blocks ofα. This partial

order makesPn into a lattice, the greatest lower boundα^β of two compositions being the composition whose
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blocks are the nonempty intersectionsbipαq X bjpβq of the blocks ofα andβ. We also have an associative
order-preserving product

Pn ˆ Pm Ñ Pn`m, pα,βq ÞÑ α ¨ β

given by concatenation.
Given a compositionα P Pn we denote by

Iα “ tg P In | gij “ 0 unlessi andj lie in the same block ofαu

the closed subgroup ofα-block-diagonal matrices inIn. These groups are compatible with the concatenation
product:

(6.1) Iα¨β – Iα ˆ Iβ

in an obvious way, and this gives an equivalence on smooth representations,

RpIαq ˆ RpIβq
pMα,MβqÞÑMαbMβ
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

–
RpIα¨βq.

We also consider the groups

Uα “

#
g P In

ˇ̌
ˇ̌
ˇ
g is upper-triangular; gii “ 1 for everyi; and

gij “ 0 if i ‰ j andi andj lie in the same block ofα

+
, and

Vα “ Utα X In.

If β is a second composition withα ď β, we define

Uβα “ Uα X Iβ and Vβα “ Vα X Iβ.

If α ď β P Pn andγ ď δ P Pm, then the isomorphismIβ¨δ – Iβ ˆ Iδ of (6.1) restricts to isomorphisms

(6.2) Uβ¨δ
α¨γ – Uβα ˆUδγ and Vβ¨δ

α¨γ – Vβα ˆ Vδγ.

Example 6.3. If α “ p2, 1q andβ “ p3q, then

Iα “

„
oˆ o
p oˆ

oˆ


, Uβα “

”
1 o
1 o
1

ı
, Vβα “

”
1
1

p p 1

ı

where the blanks indicate zeros.

Lemma 6.4.

(1) For each pair of compositionsα ď β in Pn, the triplepUβα, Iα, V
β
α q is an Iwahori decomposition ofIβ.

(2) For each triple of compositionsα ď β ď γ one has

Uγα “ Uβα ˙Uγβ and Vγα “ Vβα ˙ Vγβ .

(3) For each pair of compositionsα,β P Pn one has

Uαα^β “ Uβ X Iα and Vαα^β “ Vβ X Iα.

Proof. Part (1) is well-known, and can be established by elementarylinear algebra as in [3, 3.11]. Part (2)
follows immediately from the Iwahori decompositions. Part(3) boils down to the (manifestly true) assertion
that for integersi andj lying in the same block ofα, i andj lie in the same block ofα^ β if and only if they
lie in the same block ofβ. �

Definition 6.5. For each pair of compositionsα ď β in Pn, consider the functors

iβα “ i
U
β
α,V

β
α
: RpIαq Ñ RpIβq and rβα “ r

U
β
α,V

β
α
: RpIβq Ñ RpIαq.

The functors iβα and rβα are examples of parahoric induction as defined in [8]. Theorems2.15and2.20give
some basic properties of these functors. Let us mention two that will be used below:
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Lemma 6.6. (1) If α ď β ď γ are compositions ofn, then

iγα – iγβ iβα and rγα – rβα rγβ .

(2) If α ď β P Pn andγ ď δ P Pm, then the diagram

RpIαq ˆ RpIγq
iβαˆ iδγ //

b
��

RpIβq ˆ RpIδq

b
��

RpIα¨γq
iβ¨δ
α¨γ // RpIβ¨δq

commutes up to natural isomorphism, as does the corresponding diagram of adjoint functorsr.

Proof. Part (1) follows from part (2) of Lemma6.4 and part (7) of Theorem2.15. Part (2) follows from the
compatibility of the decompositions (6.1) and (6.2). �

Definition 6.7. An irreducible representationM of In will be calledprimitive if rnαpMq “ 0 for every composi-
tionα P Pn except forα “ n. We denote the set of isomorphism classes of primitive irreducible representations
by PrimpInq.

The following lemma is key to our analysis of the functors i and r.

Lemma 6.8. Letα,β P Pn be compositions ofn, and letM be an irreducible representation ofIn. If rnαpMq

and rnβpMq are both nonzero, then so isrnα^βpMq.

Proof. Since the representationM is irreducible and smooth, it factors through the quotient map Inpoq Ñ

Inpo{pℓq for someℓ. The functors i and r commute with inflation (Theorem2.15(5)), and so we may replaceo
by o{pℓ and assume throughout the proof thatIn is a finite group.

We know thatN – rnαpMq is nonzero. Therefore, up to isomorphism, we can write

M “ inαpNq “ HpInqeUαeVα bHpIαq N “ HpInqeUαeVαeUαeVα bHpIαq N.

(In the last equality we used Proposition2.13.)
We know that the subspace

(6.9) rnβpMq “ eUβeVβHpInqeUαeVαeUαeVα bHpIαq N

of M is nonzero. By part (2) of Lemma6.4 we know that each element ofVα Ď Vα^β can be written as the
product of an element ofVβ with an element ofVβα^β “ Vα X Iβ. Therefore, using the Iwahori decomposition

of In with respect toα, we get thatIn “ VαIαUα “ VβV
β
α^βIαUα, which allows us to replaceHpInq by

HpVβα^βq in (6.9) and write

rnβpMq “ eUβeVβHpVβα^βqeUαeVαeUαeVα bHpIαq N

“ HpVβα^βqeUβeVβeUαeVαeUαeVα bHpIαq N,

where the second equality holds because the elements ofHpVβα^βq Ă HpIβq commute witheUβ andeVβ . So
we see that rnβpMq is generated as a representation ofIβ by its subspace

(6.10) eUβeVβeUαeVαeUαeVα bHpIαq N

and hence that this subspace is nonzero.
We now writeeVβ “ eVβeVαα^β

. We use the fact that elements ofHpVαα^βq Ă HpIαq commute witheUα
and thateVα

α^β
eVα “ eVα^β

(by part (2) of Lemma6.4), to obtain

eVβeUαeVα “ eVβeVαα^β
eUαeVα “ eVβeUαeVαα^β

eVα “ eVβeUαeVα^β
.
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A similar argument shows thateUβeVβeUα “ eUα^β
eVβeUα , and so the subspace (6.10) is equal to

eUα^β
eVβeUαeVα^β

eUαeVα bHpIαq N.

This non-zero subspace ofM is contained in the subspace

eUα^β
HpInqeVα^β

eUαeVα bHpIαq N “ eUα^β
HpIα^βqeVα^β

eUαeVα bHpIαq N

“ eUα^β
eVα^β

eUαeVα bHpIαq N,

where we have used the Iwahori decomposition ofIn with respect toα^ β, and the inclusionIα^β Ď Iα. But
this last nonzero subspace ofM is exactly rnα^βpMq, so we are done. �

Let us now present the main results of this section:

Theorem 6.11. LetM be an irreducible representation of the Iwahori subgroupIn Ă GLnpoq. There is a
unique compositionα “ pα1, . . . , αmq ofn, and unique primitive irreducible representationsMi P PrimpIαiq,
such that

M – inαpM1 b ¨ ¨ ¨ bMmq.

Proof. First note the following consequence of part (2) of Lemma6.6: if M1, . . . ,Mm are irreducible repre-
sentations ofIα1 , . . . , Iαm , then

(6.12) Mi is primitive for all i ðñ rαγpM1 b ¨ ¨ ¨ bMmq “ 0 for all γ ň α.

Consider the set
Q “ tα P Pn | rnαpMq ‰ 0u,

which is nonempty since it contains the compositionn. Let α “ pα1, . . . , αmq be the greatest lower bound
of Q in the latticePn; Lemma6.8 implies thatα P Q. The (nonzero) irreducible representation rn

αpMq of the
groupIα decomposes uniquely as a tensor product

rnαpMq –
mâ
i“1

Mi

of irreducible representations of the factorsIαi of Iα (cf. (6.1)). If γ ň α then

rαγ
`â

Mi

˘
– rnγpMq “ 0

by Lemma6.6part (1) and the minimality ofα, and so all of theMi’s are primitive by (6.12). Since by part (3)
of Theorem2.20we haveM – inα rnαpMq, we are done with the ‘existence’ part of the proof.

The uniqueness follows from (6.12): if rnβpMq – N1 b ¨ ¨ ¨ b Nℓ, where theNi are all primitive, then
we must haveβ “ α by minimality, and thenNi – Mi for eachi by the uniqueness of the tensor product
decomposition. �

Lemma6.8also implies the following simple formula for the composition of induction and restriction:

Proposition 6.13. For all α,β P Pn and allM P IrrpIαq one has

rnβ inαpMq – iβα^β rαα^βpMq.

Proof. If rnβpinαpMqq is nonzero, then—since rnαpinαMq – M is also nonzero—Lemma6.8implies that

rαα^βpMq – rnα^βpinαpMqq ‰ 0.

In other words, if rαα^βpMq “ 0, then rnβ inαpMq “ 0 too.
If rαα^βpMq ‰ 0, then we can use Theorem2.20and Lemma6.6(1) to compute

rnβ inαpMq – rnβ inαpiαα^β rαα^βpMqq – rnβ inα^β rαα^βpMq – rnβ inβpiβα^β rαα^βpMqq – iβα^β rαα^βpMq

as claimed. �
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Theorem6.11has the following corollary, which gives a neat descriptionof the way the representations of
all the groupsIn (for n ě 0) fit in together. Namely, letK –

À
ně0 K0 pRfpInqq denote the direct sum of the

Grothendieck groups of the categories of finite-dimensional smooth representations of the groupsIn, with the
convention thatI0 is the trivial group . The maps induced on Grothendieck groups by the functors

RpInq ˆ RpImq Ñ RpIn`mq, pM1,M2q ÞÑ in`m
pn,mqpM1 bM2q

equipK with a graded multiplication structure. It follows from Lemma6.6 that this multiplication is associa-
tive. Since the irreducible representations ofIn constitute aZ-basis forK0pRfpInqq, Theorem6.11implies the
following result:

Corollary 6.14. The ringK is isomorphic toZ
@Ů

ně0 PrimpInq
D
, the non-commutative polynomial algebra

with indeterminates the primitive irreducible representations. �

APPENDIX A. CENTRALISERS FOR THE ADJOINT ACTION OFSp4pkq

In this section we give proofs of the assertions in Section5.3 regarding the centralisersGpyq andLpyq and
the spacesLzGpy, lq{Gpyq. Part of the computations here can be deduced from [38], where the cardinalities
of the centralisers of elements of Sp4pkq are computed, by using the Cayley map. As we require the precise
structure of the centralisers we give a detailed computation below.

Fix x P M2pkq, and lety “ diagpx,´xtq be the corresponding element ofl. Clearly we have

Lpyq “ tdiagpa, a´tq | a P M2pkqpxqu,

whereM2pkqpxq denotes the centraliser ofx in the algebraM2pkq. Elements ofM2pkq are either scalar or
regular (in the sense of admitting a cyclic vector ink2). We therefore have

M2pkqpxq “

#
M2pkq if x is a scalar matrix,

krxs if x is non-scalar.

Turning to the centralisers inG “ Sp4pkq, let us first note that the matricesx and ´xt give rise to two
krT s-module structures onk2, and that the centraliser ofy in GL4pkq is isomorphic, in an obvious way, to the
automorphism group of the direct sumk2x ‘ k2´xt of these modules.

Lemma A.1. For eachx P M2pkq with trpxq “ 0, the centraliserGL4pkqpyq of y “ diagpx,´xtq P M4pkq

insideGL4pkq is given by
GL4pkqpyq “ Σ ¨ GL2 pM2pkqpxqq ¨ Σ´1

whereσ “
“

´1
1

‰
P GL2pkq andΣ “ r 1 σ s P GL4pkq.

Proof. If tr pxq “ 0 thenσxσ´1 “ ´xt, and so id‘ σ : k2x ‘ k2x Ñ k2x ‘ k2´xt is akrT s-module isomorphism.
Conjugating GL2pM2pkqpxqq “ Autpk2x‘k2xq by this isomorphism gives the asserted description of GL4pkqpyq.

�

We now proceed to the computation ofLpyq, Gpyq andLzGpy, lq{Gpyq in each of the cases listed in Sec-
tion 5.3. Note that trpxq ‰ 0 in the ‘A’ cases, while trpxq “ 0 in the ‘B’ cases.

Case 1:x “ diagpµ, µq.

We haveM2pkqpxq “ M2pkq, soLpyq “ L. ForGpyq andLzGpy, lq{Gpyq there are two subcases to consider:

1A: µ ‰ 0. Sincex and´xt share no eigenvalue, there are no nonzero morphisms betweenthekrT s modules
k2x andk2´xt , and consequently we haveGpyq “ Lpyq “ L.

We claim thatLzGpy, lq{Gpyq “ t1, s,wu. This is equivalent to the claim that there are, up to conjugacy
by L, threeG-conjugates ofy lying in l: namelyy itself, s ¨ y, andw ¨ y. Indeed, anyG-conjugate ofy in
l must be split and semisimple, and must therefore beL-conjugate to a diagonal matrixz whose entries form
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a permutation of the entries ofy. Sincez lies in l, and hence is of the form diagpz1, z2,´z1,´z2q, the only
possibilities forz are

diagpµ, µ,´µ,´µq, diagp´µ,´µ, µ, µq, diagp´µ, µ, µ,´µq, or diagpµ,´µ,´µ, µq.

The first three are equal toy, s ¨ y andw ¨ y respectively, while the last isL-conjugate tow ¨ y.

1B: µ “ 0. ObviouslyHpyq “ H for all H Ď G, andGpy, lq “ Gpyq.

Case 2:x “ diagpµ, νq, µ ‰ ν.

We haveM2pkqpxq “
 “ α

β

‰ ˇ̌
α,β P k

(
– k ‘ k, and soLpyq “ D is the group of diagonal matrices inG.

There are three subcases to consider:

2A: ν ‰ ˘µ, µ ‰ 0 ‰ ν. Similar arguments to those of Case 1A show thatGpyq “ Lpyq, and that
LzGpy, lq{Gpyq “ t1, s,w,wtu.

2A‹: ν “ 0. The space HomkrT spk
2
x,k

2
´xtq is one-dimensional, spanned byp “

“
0
1

‰
, and so we have

GL4pkqpyq “

"„
a b

c d

 ˇ̌
ˇ̌ a, d P D, b, c P kp

*
.

Applying the conditionj´1gtj “ g´1 defining Sp4pkq to a matrix of the above form, we find that

Gpyq “

$
’’&
’’%

»
——–

α1
α2 β

δ1
γ δ2

fi
ffiffifl P GL4pkq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
α1δ1 “ 1 “ α2δ2 ´ βγ

,
//.
//-

– GL1pkq ˆ SL2pkq.

The Weyl group of SL2pkq with respect to its diagonal torus is generated by the matrixσ, and so the Weyl group
of Gpyq with respect toD is generated by the matrix

»
——–

1

0 ´1

1

1 0

fi
ffiffifl “ t´1wt.

Up toL-conjugacy, theG-conjugates ofy lying in l arey and´y “ w ¨ y, and soLzGpy, lq{Gpyq “ t1,wu.

2B: ν “ ´µ. Let z “ diagp´µ,´µ, µ, µq, so thaty “ w ¨ z. ThenGpyq “ AdwpGpzqq, andGpzq “ L as
in Case 1A. Since Ad´1w pUq X L “ V 1, and Ad´1w pVq X L “ U 1, we haveUpyq “ Adw

`
V 1

˘
andVpyq “

Adw
`
U 1

˘
. The argument of Case 1A givesLzGpy, lq{Gpyq “ t1,w,wtu.

Case 3:x “
“
α β
µβ α

‰
, µ P k non-square,α P k, β P kˆ.

In this caseM2pkqpxq “
!“

α1 β1
µβ1 α1

‰
| α1, β1 P k

)
is a quadratic field extension ofk, which we shall denote by

k2. There are two subcases to consider.

3A: α ‰ 0. Similar arguments to those of case 1A (considering the eigenvalues ink2) show thatGpyq “ Lpyq,
while LzGpy, lq{Gpyq “ t1, su.

3B: α “ 0. Since trpxq “ 0, LemmaA.1 implies that AdΣ´1 : GL4pkqpyq Ñ GL2pk2q is an isomorphism.

Observing that AdΣ´1pjq “
”

σ´1

σ´1

ı
, and thatΣt “ Σ´1, we find that the isomorphism AdΣ´1 sendsGpyq to

AdΣ´1pGpyqq “ tg P GL2pk2q | g˚g “ 1u,

where „
a b

c d

˚

“

„
σdtσ´1 σbtσ´1

σctσ´1 σatσ´1


.
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The mapa ÞÑ σatσ´1 is a nontrivialk-algebra automorphism ofk2, and so is equal to the nontrivial element
a ÞÑ a|k| in Galpk2{kq.

Letk denote an algebraic closure ofk2. The above computations show that AdΣ´1 restricts to an isomorphism
fromGpyq to the (unitary) group GU2pkq of fixed points of the automorphism

GL2pkq Ñ GL2pkq,

„
a b

c d


ÞÑ

„
d|k| b|k|

c|k| a|k|

´1

.

The subgroupLpyq corresponds under this isomorphism to the non-split rational maximal torus of diagonal
matricestdiagpa, a´|k|q | a P kˆ

2 u in GU2pkq, whileUpyq andVpyq correspond to the unipotent radicals of
rational Borel subgroups of upper / lower triangular matrices. The Weyl group of GU2pkq with respect to its
diagonal torus is generated by the matrix

“
´1

´1

‰
“ AdΣ´1psq.

The argument of case 1A shows that all of theG-conjugates ofy lying in L are alreadyL-conjugate, and so
we haveLzGpy, lq{Gpyq “ t1u.

Case 4:x “
“
µ 1
µ

‰
.

We haveM2pkqpxq “
 “

α β
α

‰
| α,β P k

(
– krεs{pε2q. There are two subcases to consider.

4A: µ ‰ 0. Arguing as in case 1A once again, we find thatGpyq “ Lpyq, while LzGpy, lq{Gpyq “ t1, su.

4B: µ “ 0. Arguing as in case 3B, we find that the isomorphism

AdΣ´1 : GL4pkqpyq Ñ GL2pkrxsq

of LemmaA.1 restricts to an isomorphism betweenGpyq and the groupQ Ă GL2pkrxsq of fixed points of the
involution

GL2pkrxsq Ñ GL2pkrxsq,

„
a b

c d


ÞÑ

„
d# b#

c# a#

´1

where # denotes thek-automorphismx ÞÑ ´x of krxs. We have furthermore

AdΣ´1pLpyqq “

"„
a

a´#


P GL2pkrxsq

ˇ̌
ˇ̌ a P krxsˆ

*
— H,

AdΣ´1pUpyqq “

"„
1 b

1


P GL2pkrxsq

ˇ̌
ˇ̌ b P xkrxs

*
— X, and

AdΣ´1pVpyqq “

"„
1

c 1


P GL2pkrxsq

ˇ̌
ˇ̌ c P xkrxs

*
— Y.

Let S denote the two-element subgroup ofGpyq generated bys, and letR denote the subgroup AdΣ´1pSq of Q;
thusR is the two-element group generated byr “ AdΣ´1psq “

“
´1

´1

‰
.

The subgroupsX andY commute inQ, becausex2 “ 0. SinceH normalisesX andY, this implies that the
productXHY is a subgroup ofQ, equal topXˆ Yq ¸H. Explicitly,

XHY “

"„
a b

c a´#

 ˇ̌
ˇ̌ a P krxsˆ, b, c P xkrxs

*
,

i.e. the group ofq P Q such thatq is diagonal modulox.
Now, for eachq P Q, the reduction ofq modulox is a fixed point of the involution

GL2pkq Ñ GL2pkq,

„
a b

c d


ÞÑ

„
d b

c a

´1

and soq modulox is either of the form
“
a
a´1

‰
or

“
b

b´1

‰
. Thus the homomorphism

Q Ñ t˘1u, q ÞÑ detpq moduloxq
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has kernelXHY, and is split by the homomorphism

t˘1u Ñ Q, ´1 ÞÑ r.

This gives a decompositionQ “ ppXˆ Yq ¸Hq ¸ R. Since conjugation byr preservesH and permutesX and
Y, we may rewrite this decomposition asQ “ pXˆ Yq ¸ pH¸ Rq. Applying AdΣ gives

Gpyq “
`
Upyq ˆ Vpyq

˘
¸
`
Lpyq ¸ S

˘
.

As in Case 3B we haveG ¨ yX l “ L ¨ y, and soLzGpy, lq{Gpyq “ t1u.
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