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ORDERS OF NIKSHYCH’S HOPF ALGEBRA

JUAN CUADRA AND EHUD MEIR

Abstract. Let p be an odd prime number and K a number field having a prim-
itive p-th root of unity ζp. We prove that Nikshych’s non group-theoretical Hopf
algebra Hp, which is defined over Q(ζp), admits a Hopf order over the ring of
integers OK if and only if there is an ideal I of OK such that I2(p−1) = (p). This
condition does not hold in a cyclotomic field. Hence this gives an example of a
semisimple Hopf algebra over a number field not admitting a Hopf order over any
cyclotomic ring of integers. Moreover, we show that, when a Hopf order over OK

exists, it is unique and we describe it explicitly.

Introduction

Many results in the Representation Theory of Finite Groups exploit the fact that
the complex group algebra CG of a finite group G is defined over the integers or, more
generally, over the ring of integers OK of a number field K. In other terms, OKG is
an algebra order of CG; indeed a Hopf (algebra) order. A prominent role is played
by cyclotomic fields: for example, the celebrated Brauer’s splitting field theorem
states that any irreducible representation of KG can be realized in K(ω), with ω
a primitive root of unity of order equals expG (see [3, Theorem 15.16, Corollary
15.18]).

Kaplansky’s sixth conjecture, still unsolved, is a generalization of Frobenius Theo-
rem for groups. It asserts that in a complex semisimple Hopf algebra H the dimension
of every irreducible representation of H divides the dimension of H. Larson gave a
positive answer in [6] if H admits a Hopf order over a number ring. Motivated by
this result, in [1] we addressed the question as to whether any complex semisimple
Hopf algebra admits a Hopf order over a number ring. In the dimensions less than 36
in which the classification is complete (24 and 32 are still open) it turns out that all
semisimple Hopf algebras are defined over cyclotomic rings of integers, see [1, Sub-
section 2.4] for an account. However, we exhibited in [1] an example in dimension
36 that does not admit a Hopf order over any number ring, although it satisfies the
conjecture.

As a continuation of our previous work we investigate in this paper the problem
of definability of semisimple Hopf algebras over cyclotomic ring of integers. Let H
be a semisimple Hopf algebra over a number field K and suppose that H has a
Hopf order over some number ring. Does H admit a Hopf order over a cyclotomic
ring of integers contained in K? Our main result gives a negative answer for the
family of non group-theoretical semisimple Hopf algebras {Hp}, with p an odd prime,
constructed by Nikshych (see [11]). The dimension of Hp is 4p2 (so in particular the
dimension of H3 is 36). These Hopf algebras were not constructed explicitly but
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2 J. CUADRA AND E. MEIR

through a tensor category and a fiber functor. The representation category Rep(Hp)
was obtained by equivariantization by C2 from Rep(Ap), with Ap the Hopf algebra
studied by Masuoka in [7]. Using Tannaka reconstruction, in Section 3 we describe
Hp completely as follows:

Theorem 1. Let ζp ∈ C be a primitive p-th root of unity. The Hopf algebra Hp is
generated, as an algebra over C, by the elements e0, e1, ua, ub, va, vb and g subject to
the following relations:

e0 + e1 = 1, e0e1 = e1e0 = 0,

upa = upb = e0, e0ua = ua, e0ub = ub, uaub = ubua,

vpa = vpb = e1, e1va = va, e1vb = vb, vavb = ζpvbva,

g2 = 1, gua = ubg, gub = uag, gva = vag, gvb = vbg.

The comultiplication, counit, and antipode of Hp is given by the following formulas:

∆(ua) = ua ⊗ ua + va ⊗ va, ε(ua) = 1, S(ua) = up−1
a ,

∆(ub) = ub ⊗ ub + vb ⊗ vp−1
b , ε(ub) = 1, S(ub) = up−1

b ,

∆(va) = ua ⊗ va + va ⊗ ua, ε(va) = 0, S(va) = vp−1
a ,

∆(vb) = ub ⊗ vb + vb ⊗ up−1
b , ε(vb) = 0, S(vb) = vb.

The comultiplication of g is given by

∆(g) =
1

p2

∑

i,j,k,l

ζkj−il
p guiau

j
b ⊗ gukau

l
b +

1

p

∑

k,l

ζ−(k+l)k
p gukau

l
b ⊗ gvk+l

a vk+l
b

+
1

p

∑

k,l

ζk(k+l)
p gvk+l

a v
(p−1)(k+l)
b ⊗ gukau

l
b +

1

p

∑

k,l

gvkav
l
b ⊗ gv(p−1)l

a vkb .

The counit and antipode of g are ε(g) = 1 and S(g) = g.

In Section 4 we delve into the structure of Hp: we describe its irreducible (co)re-
presentations and attached (co)characters, its Hopf automorphisms, and we show
that Hp is self-dual.

The set
B := {uiaujb} ∪ {viavjb} ∪ {guiaujb} ∪ {gviavjb}

is a basis of Hp. All structure constants of Hp in this basis belong to Q(ζp). Hence
Hp is defined over Q(ζp). Our main result states:

Theorem 2. Let K be a number field containing a primitive p-th root of unity ζp.
Consider Hp as defined over K. Then, Hp admits a Hopf order over OK , which

must be unique, if and only if there is an ideal I of OK such that I2(p−1) = (p). In
particular, K can not be a cyclotomic field (nor an abelian extension of Q) if a Hopf
order exists.

This theorem implies that Nikshych’s Hopf algebras behave rather differently than
group algebras. Firstly, all group algebras are already defined over Z. Secondly, the
number of Hopf orders of a group algebra over OK depends on K, and in some cases
it is not bounded (see for example the classification of orders of the group algebras
of the cyclic groups of prime orders in Section 2).
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The main result is contained in Section 5. We outline the strategy to prove it
and construct the Hopf order. The element h := ua + va is a group-like element
of Hp and generate a Hopf subalgebra isomorphic to KCp. If X is a Hopf order
of Hp over OK , then X ∩ KCp is a Hopf order of KCp. The Hopf orders of the
latter are known by the works of Greither, Larson, Tate and Oort (we review their
description in Section 2, after the preliminaries). They are given by ideals I of OK

containing ζp− 1, see Formula 2.1. Denoting by H(I) the corresponding Hopf order,

the OK -submodule of integrals of H(I) is 1
p
Ip−1

∑

i h
i. This determines uniquely

the Hopf orders of KCp. On the other hand, any Hopf order must contain certain
elements arising from characters and cocharacters. The proof of the main result
is based on the interaction between the order X of Hp and the order X ∩ KCp

of KCp. We exhibit certain elements which must be in X. We then conclude that
necessarily 1√

p

∑

i h
i ∈ X∩KCp, and by the classification of orders mentioned above,

we conclude that some more elements must lie in X ∩ KCp and therefore in X.
We then show that these elements generate an order of Hp, which thus must be a
minimal order. We then use the self-duality of Hp and conclude that there is also
a maximal order. A result of Larson (see Proposition 1.4) now implies that the
two orders must be equal, and therefore we only have one order. The necessity of
the existence of an ideal I of OK such that I2(p−1) = (p) arises from the following
consideration: We prove that the set of integrals ofX∩KCp is exactly OK

(

1√
p

∑

i h
i
)

.

We write J = {x ∈ K |x(h − 1) ∈ X}. By the classification in Section 2 we find

out that I := J−1 must satisfy I2(p−1) = (p). The unique Hopf order of Hp is the
OK -subalgebra of Hp generated by e0, e1, g, J(ua − e0), J(ub − e0), J(va − e1), and
J(vb − e1).

In Section 6 we study the problem of definability over cyclotomic ring of integers
of Hp but now considered as a complex Hopf algebra. Since Hp is already defined
over a number field K, the question reads now as follows. Let L/K be a Galois
extension. Could a L/K-form of Hp admit an order over some cyclotomic ring
of integers? Namely, could there be another Hopf algebra H ′

p over K such that
H ′

p⊗K L ≃ Hp⊗K L and H ′
p admits an order over some cyclotomic ring of integers?

The following result gives a number theoretical condition under which the answer is
affirmative:

Theorem 3. Let ζn ∈ C be a primitive n-th root of unity, with n divisible by p.
Consider Hp as defined over Q(ζn). Let w ∈ Z[ζn] and t ∈ C be such that w is
invertible and t2 = w(ζp − 1). Assume that there is d ∈ Z[ζn] such that 1

2(d + t) ∈
OQ(ζn,t). Then, Hp admits a Q(ζn, t)/Q(ζn)-form H ′

p which in turn admits an order
over Z[ζn].

For p = 7 and n = 28 we construct elements w, t and d satisfying this condition.
So, H7, as a complex Hopf algebra, admits an order over the cyclotomic ring of
integers Z[ζ28].

The following questions on the definability over cyclotomic ring of integers of
complex semisimple Hopf algebras remain open:

Questions. Does there exist a value of p for which Nikshych’s Hopf algebra Hp, as
defined over the complex numbers, does not admit an order over any cyclotomic ring
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of integers? More generally, does there exist a complex semisimple Hopf algebra which
admits an order over a number ring but not over any cyclotomic ring of integers?

1. Preliminaries

Throughout H is a finite-dimensional Hopf algebra over a ground field K. Unless
otherwise stated, vector spaces, linear maps, and unadorned tensor products are over
K. The identity element of H is denoted by 1H and the comultiplication, counit, and
antipode by ∆, ε, and S respectively. Our main references for Hopf algebra theory
are [9] and [12].

We next collect from [1, Subsection 1.2] several notions and results on Hopf orders
that we will need later. We refer the reader to there for the proofs.

1.1. Hopf orders. Let R ⊂ K be a subring and V a finite-dimensional K-vector
space. Recall that an order of V over R is a finitely generated and projective R-
submodule X of V such that the natural map X ⊗RK → V is an isomorphism. We
view X inside V as the image of X⊗RR. A Hopf order of H over R is an order X of
H such that 1H ∈ X, XX ⊆ X, ∆(X) ⊆ X ⊗RX, ε(X) ⊆ R and S(X) ⊆ X. (Note
that X⊗RX can be identified naturally as an R-submodule of H⊗H.) Equivalently,
a Hopf order of H over R is a Hopf algebra X over R, which is finitely generated
and projective as an R-module, such that X ⊗R K ≃ H as Hopf algebras over K.
We will assume throughout this subsection that K is a number field and R = OK .
A Hopf order without indication of the ground ring means a Hopf order over R.

Proposition 1.1. Let X be a Hopf order of H.

(i) The dual order X⋆ := {ϕ ∈ H∗ : ϕ(X) ⊆ R} is a Hopf order of H∗.

(ii) The natural isomorphism H ≃ H∗∗ induces an isomorphism of Hopf orders
X ≃ X⋆⋆.

(iii) If A is a Hopf subalgebra of H, then X ∩A is a Hopf order of A.

(iv) If f : H → B is a surjective Hopf algebra map, then f(X) is a Hopf order of
B.

An important fact in our study of Hopf orders is that they contain certain elements
arising from the characters and cocharacters of the Hopf algebra.

Proposition 1.2. Let X be a Hopf order of H. Any character of H belongs to X⋆.
As a consequence, any character of H∗ belongs to X.

We will also need the following two results by Larson:

Proposition 1.3. [6, Proposition 2.2] Let H be a semisimple Hopf algebra over K
and X a Hopf order of H. Denote by ΛX and ΛX⋆ the R-submodule of left integrals
of X and X⋆ respectively. Then ε(ΛX)ε(ΛX⋆) = (dimH) as ideals in R.

Proposition 1.4. [6, Corollary 3.2] With hypotheses as before, assume that X and
Y are Hopf orders of H such that X ⊆ Y . If ε(ΛX) = ε(ΛY ), then X = Y .
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2. Classification of Hopf orders of KCp

Let p be a prime number and ζ a primitive p-th root of unity. Let K be a number
field containing ζ and R := OK . Let σ denote a generator of the cyclic group Cp. We
will describe here all Hopf orders of KCp. Tate and Oort classified all group schemes
of order p over R in [14, Theorem 3]. Their result is more general than classifying
Hopf orders over R. However, we will combine it with Greither’s result [4, Lemma
1.2, page 40] to give a more explicit description of all Hopf orders of KCp.

We begin with the following observation:

Lemma 2.1. Let X be a Hopf order of KCp. Consider the fractional ideal

J = {α ∈ K : α(σ − 1) ∈ X}.
Then R ⊆ J ⊆ R 1

ζ−1 .

Proof. By Proposition 1.2, ψ(X) ⊆ R for any character ψ of Cp. Using the character
mapping σ to ζ we see that J(ζ−1) ⊆ R. Hence J ⊆ R 1

ζ−1 . For the other inclusion,
notice that σ is a character of (KCp)

∗. Then σ ∈ X again by Proposition 1.2, and
R(σ − 1) ⊆ X. �

The above lemma leads us to the following definition:

Definition 2.2. Let I be an ideal of R containing ζ − 1. The global Larson order
associated to I is the R-submodule of KCp

(2.1) H(I) =

p−1
⊕

i=0

Ii(ζ − 1)−i(σ − 1)i.

The name global Larson order will make sense in a few paragraphs. Notice that if
(ζ − 1) ⊆ I ⊆ I ′, then H(I) ⊆ H(I ′). Even though the Larson orders are orders of
the cyclic group algebra, they will play a decisive role in the classification of orders
of Nikshych’s Hopf algebra in Section 5.

Lemma 2.3. The global Larson orders are Hopf orders of KCp. The set of integrals

in H(I) is 1
p
Ip−1

∑

i σ
i.

Proof. We first show that H(I) is closed under multiplication. For this, it is enough
to prove that Ip(ζ−1)−p(σ−1)p ⊆ H(I). This follows from the fact that the element
x := 1

ζ−1(σ − 1) satisfies a monic polynomial over R of degree p. We have:

1 = σp =
(

(ζ − 1)x+ 1
)p

=

p
∑

k=0

(

p

k

)

(ζ − 1)kxk =⇒
p

∑

k=1

(

p

k

)

(ζ − 1)k−1xk = 0.

The coefficient of xp is (ζ − 1)p−1 and this equals pξ for some ξ ∈ R invertible.
Multiplying by p−1ξ−1 we obtain the desired polynomial. On the other hand, it is
clear that 1 ∈ H(I), ε(H(I)) ⊆ R, and S(H(I)) ⊆ H(I). It remains to prove that
∆(H(I)) ⊂ H(I) ⊗R H(I). Since ∆ is an algebra map and H(I) is closed under
multiplication, it suffices to check that ∆(rx) ∈ H(I) ⊗R H(I) for every r ∈ I. A
direct calculation reveals that

∆(rx) = rx⊗ 1 + 1⊗ rx+ (ζ − 1)x⊗ rx.



6 J. CUADRA AND E. MEIR

The first two summands clearly belong to H(I)⊗RH(I) and the third summand too
because ζ − 1 ∈ I.

To prove the statement about the integrals, notice that the integral 1
p

∑

i σ
i equals

an invertible element times a monic polynomial f of degree p− 1 in x. This can be
seen by the following calculation:

(2.2)
1

p

∑

i

σi =
1

p

(

(ζ − 1)x+ 1
)p − 1

(ζ − 1)x
=

p
∑

k=1

1

p

(

p

k

)

(ζ − 1)k−1xk−1.

The fractional expression is just symbolic as (ζ − 1)x is not necessarily invertible.
The powers of x in the right-hand side term have coefficients in R. Observe that p
divides

(

p
k

)

for k = 1, . . . , p − 1. For k = p the coefficient of xp−1 is (ζ − 1)p−1 = pξ

with ξ ∈ R invertible. If r ∈ Ip−1, then r
p

∑

i σ
i is an integral in H(I) by (2.2),

since ζ − 1 ∈ I. For the reverse inclusion, observe that by construction we have
Ip−1 = {α ∈ K : αxp−1 ∈ H(I)}. Let

∫

be an integral in H(I). There is λ ∈ K such

that
∫

= λ
p

∑

i σ
i. Then λξxp−1 ∈ H(I) by (2.2) and thus λ ∈ Ip−1. �

We will next prove that all Hopf orders of KCp are global Larson orders. Over a
local ring, this is a theorem by Greither, see [4, Lemma 1.2, page 40]. We will use
the local to global result of Tate and Oort [14, Lemma 4] to pass to the number field
case.

Let p ⊂ R be a prime ideal such that p ∈ p. Consider the corresponding valuation
ν, scaled so that ν(p) = 1 (we find more convenient to write here the valuation in
additive terms). Then it is easy to see that ν(1− ζ) = 1

p−1 because (ζ − 1)p−1 = (p).

Definition 2.4. [5, Section 3] Let b ∈ Rp be such that 0 ≤ ν(b) ≤ 1
p−1 . Set s = ν(b).

The Larson order H(s) is the Rp-subalgebra of KpCp generated by 1
b
(σ − 1).

One can see, exactly as in Lemma 2.3, that Larson orders are indeed Hopf orders,
and that H(s) does not depend on the choice of b. Notice that H(s) is defined only
if there is an element with valuation s in Rp. We have the following classification
result by Greither, see [15, Theorem 3.0.0] and [4, Lemma 1.2, page 40].

Theorem 2.5 (Greither). All Hopf orders of KpCp over Rp are Larson orders.

We recall the following result of Tate and Oort:

Proposition 2.6. [14, Lemma 4] For any commutative ring T , let E(T ) denote the
set of isomorphism classes of group schemes of order p over T . Then, the square

E(R) //

��

∏

p∈Spec(R)E(Rp)

��
E(K) //

∏

p∈Spec(R)E(Kp)

where the maps are given by extension of scalars, is cartesian.

With this in hand we can establish:

Theorem 2.7. Every Hopf order of KCp over R is a global Larson order.
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Proof. A Hopf order X of KCp over R can be viewed as a group scheme of order p.
Proposition 2.6 tells us that giving X is the same as giving its extension of scalars
to K and Rp for every p ∈ Spec(R), in a compatible way. The extension of scalars
of X to K will be just KCp, and thus we know the extension of scalars to all Kp.
Furthermore, if p ∈ Spec(R) satisfies p /∈ p, then we only have one Hopf order over
Rp. This is because all primitive idempotents will be contained in any Hopf order.

The different orders will differ only by their extension of scalars to Rp with p ∈ p.
We know by Greither’s Theorem that X ⊗R Rp is a Larson order over Rp. Let
qr11 · · · qrll be the prime decomposition of (ζ − 1) in R. Assume that X ⊗R Rqi is

isomorphic to H(si) over Rqi . Consider the ideal I =
∏

i q
(p−1)risi
i . One can now see

that the Larson order H(I) will give rise to exactly the same localizations as X at
qi. Since the square in Proposition 2.6 is cartesian, this means that X = H(I). �

We know how the integrals inside Larson orders look like by Lemma 2.3. As a
consequence:

Corollary 2.8. A Hopf order H(J) of KCp over R which contains 1
p
Ip−1

∑

i σ
i

contains the Hopf order H(I).

Proof. Using the prime decomposition of ideals, Ip−1 ⊆ Jp−1 implies I ⊆ J . �

The computation of the submodule of integrals in Lemma 2.3 together with Theo-
rem 2.7 has the following outcome, from which we will derive the necessary condition
in our main theorem:

Corollary 2.9. Let X be a Hopf order of KCp.

(i) Suppose that the R-submodule of integrals of X is generated by 1√
p

∑

i σ
i.

Then there exists an ideal I of R such that I2(p−1) = (p).

(ii) Suppose that 1√
p

∑

i σ
i ∈ X and there is π ∈ K such that π2 = ζ − 1. Then

1
π
(σ − 1) ∈ X.

Proof. (i) In view of Theorem 2.7, X is isomorphic to H(I) for some ideal I of R
containing ζ − 1. By hypothesis and Lemma 2.3 the submodule of integrals is

R

(

1√
p

∑

i

σi
)

=
1

p
Ip−1

∑

i

σi.

Then Ip−1 = (
√
p) and thus I2(p−1) = (p).

(ii) From the hypothesis and Lemma 2.3, we obtain (
√
p) ⊆ Ip−1. We know that

(ζ − 1)p−1 = (p). Using the prime factorization of ideals, we have (π)p−1 = (
√
p) ⊆

Ip−1. This implies that (π) ⊆ I. Then the element π
ζ−1(σ − 1) = 1

π
(σ − 1) ∈ X by

the construction of H(I). �

3. An explicit description of Nikshych’s Hopf algebra

The goal of this section will be to write in an explicit way Nikshych’s Hopf algebra.

For an odd prime number p, Nikshych constructed in [11] a finite-dimensional,
semisimple, weakly group-theoretical and non group-theoretical Hopf algebra Hp of
dimension 4p2. It was defined in terms of a tensor category and a fiber functor. The
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representation category Rep(Hp) is constructed from the representation category of
another Hopf algebra, Ap, by means of equivariantization by C2. As fusion categories,
Rep(Hp) ≃ Rep(Ap)

C2 . The Hopf algebra Ap first appeared in the work of Masuoka
[7]. The above equivalence implies that Hp fits into the short exact sequence

K → Ap → Hp → KC2 → K.

To describe explicitly the structure of Hp we need to write the structure of Ap,
the action of the generator g of C2 on Ap, and the comultiplication of g.

From now on we abbreviate Ap to A and Hp to H. In this section we assume that
K is algebraically closed of characteristic zero.

The main result of this section is the following:

Theorem 3.1. Let ζ ∈ K be a primitive p-th root of unity. The Hopf algebra H is
generated, as an algebra over K, by the elements e0, e1, ua, ub, va, vb and g subject to
the following relations:

e0 + e1 = 1, e0e1 = e1e0 = 0,

upa = upb = e0, e0ua = ua, e0ub = ub, uaub = ubua,

vpa = vpb = e1, e1va = va, e1vb = vb, vavb = ζpvbva,

g2 = 1, gua = ubg, gub = uag, gva = vag, gvb = vbg.

The comultiplication, counit, and antipode of H is given by the following formulas:

(3.1)

∆(ua) = ua ⊗ ua + va ⊗ va, ε(ua) = 1, S(ua) = up−1
a ,

∆(ub) = ub ⊗ ub + vb ⊗ vp−1
b , ε(ub) = 1, S(ub) = up−1

b ,

∆(va) = ua ⊗ va + va ⊗ ua, ε(va) = 0, S(va) = vp−1
a ,

∆(vb) = ub ⊗ vb + vb ⊗ up−1
b , ε(vb) = 0, S(vb) = vb.

The comultiplication of g is given by

(3.2)

∆(g) =
1

p2

∑

i,j,k,l

ζkj−ilguiau
j
b ⊗ gukau

l
b +

1

p

∑

k,l

ζ−(k+l)kgukau
l
b ⊗ gvk+l

a vk+l
b

+
1

p

∑

k,l

ζk(k+l)gvk+l
a v

(p−1)(k+l)
b ⊗ gukau

l
b +

1

p

∑

k,l

gvkav
l
b ⊗ gv(p−1)l

a vkb .

The counit and antipode of g are ε(g) = 1 and S(g) = g.

The rest of this section will be devoted to prove Theorem 3.1.

3.1. The algebra A. As an algebra, A is the direct sum

K(Cp × Cp)⊕Kc(Cp × Cp),

where c : (Cp × Cp)× (Cp × Cp) → K× is the 2-cocycle given by

c(aibj , akbl) = ζ−jk, 0 ≤ i, j, k, l < p.

Here a, b are generators of Cp × Cp. We present the group algebra K(Cp × Cp) by
generators ua, ub and defining relations upa = upb = 1, uaub = ubua. The twisted
group algebra Kc(Cp×Cp) is presented by generators va, vb and relations vpa = vpb =
1, vavb = ζvbva. Notice that Kc(Cp×Cp) is isomorphic to the matrix algebra Mp(K).
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To shorten, we set A0 = K(Cp × Cp) and A1 = Kc(Cp × Cp). We denote the units
of A0 and A1 by e0 and e1 respectively. So 1A = e0+ e1 and e0e1 = e1e0 = 0. Unless
otherwise specified, the inverses are taking inside either A0 or A1. For example, u−1

a

means up−1
a .

The comultiplication, counit, and antipode of A are described in (3.1) above.

3.2. The algebra H. As an algebra, H is the crossed product A ∗ KC2, where g
acts as an algebra automorphism on A by:

g(ua) = ub, g(ub) = ua, g(va) = va, g(vb) = vb.

In H we have the relations:

gua = ubg, gub = uag, gva = vag, gvb = vbg.

The hard part in the description of H is the formula for ∆(g). Recall from [11] that
H is constructed as follows: the automorphism g induces an autoequivalence

F : Rep(A) → Rep(A), V 7→ gV.

Here gV = V as a vector space, with new action x · v = g(x)v for all x ∈ A, v ∈ V .
The functor F is a tensor equivalence. Moreover, F−1 = F . To compute ∆(g) we
will need to describe the tensor structure of F . For this, we first need to consider
the irreducible representations of A.

3.3. Irreducible representations of A. Every irreducible representation of A is
an irreducible representation of either A0 or A1.

The algebra A0 has p2 one-dimensional irreducible representations, which we de-
note by Ki,j with 0 ≤ i, j < p. As a K-vector space, Ki,j = K. The action of ua and
ub on Ki,j is given by:

ua · 1 = ζ i1 ub · 1 = ζj1.

The algebra A1 has only one irreducible representation, of dimension p, which we
denote by M . Let {mi : 0 ≤ i < p} be a basis for M . The action of A1 on M is

va ·mi = ζ imi, vb ·mi = mi+1 (indices are taken mod. p).

3.4. Tensor structure on F . For any V,W ∈ Rep(A) irreducible we must estab-
lish an isomorphism θV,W : F (V ⊗ W ) → F (V ) ⊗ F (W ) satisfying the unit and
associativity constraints. We do need to calculate these isomorphisms explicitly, as
we will use them later to compute ∆(g). Observe that at the level of representations
F (Ki,j) = Kj,i and F (M) =M .

3.4.1. Isomorphisms between certain representations of A. Given x ∈ A1 invertible,

xM stands for the following representation of A1: as a vector space, xM = M , and
the action is given by

y ·m = (x−1yx)m ∀y ∈ A1,m ∈M.

We have an isomorphism

xM →M, m 7→ xm.

This will be used in this subsection to define isomorphisms between certain tensor
products of representation. Consider the representation Ki,j ⊗M . Identify it with
M, as a vector space, via 1 ⊗m 7→ m. Under this identification, va and vb act via
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ζ iva and ζjvb respectively. Since vavb = ζvbva, we see that this is the same as xM

for x = v−j
a vib. Then we have an isomorphism of representations

(3.3) li,j : K
i,j ⊗M →M, 1⊗m 7→ (v−j

a vib)m.

In a similar fashion, M ⊗Ki,j is isomorphic to xM for x = vjavib via

(3.4) ri,j :M ⊗Ki,j →M, m⊗ 1 7→ (vjav
i
b)m.

We discuss separately the four different cases that occur in the description of θV,W :

3.4.2. Two representations of A0. We begin by considering the case V = Ki,j and
W = Kk,l. We have V ⊗W ≃ Ki+k,j+l. We must give an isomorphism between
F (V ⊗W ) ≃ F (Ki+k,j+l) ≃ Kj+l,i+k and F (V )⊗ F (W ) ≃ Kj,i ⊗K l,k ≃ Kj+l,i+k.
It will be determined by a nonzero scalar µ((i, j), (k, l)). Then:

θV,W : F (V ⊗W ) → F (V )⊗ F (W ), 1⊗ 1 7→ µ((i, j), (k, l))1 ⊗ 1.

The associativity constraints yield that µ : (Cp × Cp)
2 → K× is a 2-cocycle. We

shall compute µ explicitly in the sequel. We will see that:

(3.5) θKi,j ,Kk,l : F (Ki,j ⊗Kk,l) → F (Ki,j)⊗ F (Kk,l), 1⊗ 1 7→ ζ il−jk1⊗ 1.

3.4.3. One representation of A0 and one representation of A1. We next consider the
case V = Ki,j and W = M (and V = M and W = Ki,j). We first deal with the
values (i, j) = (0, 1), (1, 0) and then we will deduce a formula for an arbitrary pair
(i, j).

We need to find an isomorphism between F (K1,0⊗M) and F (K1,0)⊗F (M). Both
representations are isomorphic to M . Thus, up to a nonzero scalar, there is only one
possible choice. Using (3.3), we see that such an isomorphism must be given by

θK1,0,M : F (K1,0 ⊗M) → F (K1,0)⊗ F (M), 1⊗m 7→ α1,0 ⊗ (vavb)m,

for some α1,0 ∈ K (that will be determined later). In a similar fashion:

θK0,1,M : F (K0,1 ⊗M) → F (K0,1)⊗ F (M), 1⊗m 7→ α0,1 ⊗ (v−1
b v−1

a )m,

θM,K1,0 : F (M ⊗K1,0) → F (M)⊗ F (K1,0), m⊗ 1 7→ β1,0(v
−1
a vb)m⊗ 1,

θM,K0,1 : F (M ⊗K0,1) → F (M)⊗ F (K0,1), m⊗ 1 7→ β0,1(v
−1
b va)m⊗ 1,

for α0,1, β1,0, β0,1 ∈ K.

The tensor structure on F will depend on α1,0, α0,1, β1,0, β0,1, and µ. The com-
patibility of F with associativity constraints will impose some restrictions on the
possible values of them.

We show by induction that the following formula holds for (i, 0) with i ≥ 2:

θKi,0,M : F (Ki,0 ⊗M) → F (Ki,0)⊗ F (M), 1⊗m 7→ αi
1,0 ⊗ (viav

i
b)m.
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Using naturality and compatibility of F with the associativity constraint we have
the following commutative diagram:

F (Ki,0 ⊗M)

θ
Ki,0,M

��

// F (Ki−1,0⊗K1,0⊗M)
F (id⊗ l1,0)// F (Ki−1,0 ⊗M)

θ
Ki−1,0,M

��
F (Ki,0)⊗ F (M) F (Ki−1,0)⊗ F (M)

id⊗F (l−1
1,0)

��
F (Ki−1,0⊗K1,0)⊗F (M)

OO

F (Ki−1,0)⊗F (K1,0⊗M)

id⊗ θ
K1,0,Mtt✐✐✐✐

✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

F (Ki−1,0)⊗F (K1,0)⊗F (M)

θ−1

Ki−1,0,K1,0⊗ id

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

One can check that 1⊗m is mapped to

αi
1,0 µ((i− 1, 0), (1, 0))−1 ⊗ (viav

i
b)m.

Without loss of generality, we can assume that µ((i, 0), (j, 0)) = µ((0, i), (0, j)) = 1,
and then we arrive at the desired formula.

By a similar calculation we also obtain:

θK0,j ,M : F (K0,j ⊗M) → F (K0,j)⊗ F (M), 1⊗m 7→ αj
0,1 ⊗ (v−j

b v−j
a )m.

We can combine these two isomorphisms with the associativity constraint to get
the following general formula:

(3.6) θKi,j,M :F (Ki,j⊗M)→F (Ki,j)⊗F (M), 1⊗m 7→ αi
1,0α

j
0,1ζ

i(i−j)⊗vi−j
b vi−j

a m.

This is done as follows. Using naturality and compatibility of F with the associativity
constraint we can construct the following commutative diagram:

F (Ki,j ⊗M)

θ
Ki,j ,M

��

// F (Ki,0 ⊗K0,j ⊗M)
F (id⊗ l0,j) // F (Ki,0 ⊗M)

θ
Ki,0,M

��
F (Ki,j)⊗ F (M) F (Ki,0)⊗ F (M)

id⊗F (l−1
0,j )

��
F (Ki,0 ⊗K0,j)⊗ F (M)

OO

F (Ki,0)⊗ F (K0,j ⊗M)

id⊗ θ
K0,j ,Mtt✐✐✐✐

✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

F (Ki,0)⊗ F (K0,j)⊗ F (M)

θ−1

Ki,0,K0,j ⊗ id

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

Following the longest path, we obtain:

(3.7) θKi,j,M (1⊗m) =
αi
1,0α

j
0,1ζ

i2

µ((i, 0), (0, j))
⊗ vi−j

b vi−j
a m.
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We can write a similar diagram with K0,j ⊗Ki,0⊗M in the upper central term and
proceeding accordingly we get:

θKi,j,M (1⊗m) =
αi
1,0α

j
0,1ζ

i2−2ij

µ((0, j), (i, 0))
⊗ vi−j

b vi−j
a m.

These two equalities yield the following formula for µ:

µ((0, j), (i, 0))

µ((i, 0), (0, j))
= ζ−2ij.

Since Cp×Cp is abelian and K is assumed to be algebraically closed of characteristic
zero, this completely determines the cohomology class of µ. We choose the following
representative from this cohomology class:

µ((i, j), (k, l)) = ζ il−jk.

Substituting this in (3.7) we arrive at the desired formula for θKi,j,M . By making

this choice we also assure that F 2 = Id on the subcategory of representations of A0.

By a similar calculation, we obtain:

(3.8) θM,Ki,j :F (M⊗Ki,j)→F (M)⊗F (Ki,j),m⊗1 7→ βi1,0β
j
0,1ζ

j(j−i)vj−i
a vi−j

b m⊗1.

We have described so the tensor structure on F for the tensor product of represen-
tations of A0 with representations of A1. One can verify that this structure is indeed
compatible with all the associativity constraints involving two irreducible representa-
tions of A0 if and only if α1,0, α0,1, β1,0, and β0,1 are p-th roots of unity. Moreover,
F 2 = Id on Ki,j ⊗M and M ⊗Ki,j if and only if

(3.9) α1,0α0,1 = β1,0β0,1 = 1.

We shall assume that this holds henceforth.

3.4.4. Two representations of A1. Lastly, we compute the isomorphism between
F (M ⊗ M) and F (M) ⊗ F (M). We know that M ⊗ M ≃ ⊕p−1

i,j=0K
i,j. One can

easily check that the element qi,j ∈ M ⊗M spanning the 1-dimensional representa-
tion isomorphic to Ki,j must be of the form

qi,j = λi,j
∑

t

ζ−tjmt ⊗mi−t, with λi,j ∈ K.

(Unless otherwise specified, throughout the limits in the sums are understood to run
from 0 to p− 1.) We take λi,j = 1 for every i, j. The isomorphism is given by:

(3.10) θM,M : F (M ⊗M) → F (M)⊗ F (M), qi,j 7→ γi,jqj,i,
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for some γi,j ∈ K. Using naturality and compatibility of F with the associativity
constraint at Ki,j ⊗M ⊗M we obtain the following commutative diagram:

⊕

s,t

F (Ki,j ⊗Ks,t)

⊕

s,t

θ
Ki,j ,Ks,t

��

// F (Ki,j ⊗M ⊗M)
F (li,j ⊗ id)

// F (M ⊗M)

θM,M

��
⊕

s,t

F (Ki,j)⊗ F (Ks,t)

��

F (M)⊗ F (M)

F (l−1
i,j )⊗ id

��
F (Ki,j)⊗ F (M ⊗M)

id⊗ θM,M ))❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚

F (Ki,j ⊗M)⊗ F (M)

θ
Ki,j ,M

⊗ id
uu❥❥❥❥

❥❥
❥❥
❥❥
❥❥
❥❥
❥

F (Ki,j)⊗ F (M) ⊗ F (M)

Through the isomorphism on the upper right side, 1 ⊗ 1 ∈ Ki,j ⊗ Ks,t is mapped

to γs+i,t+jα
i
1,0α

j
0,1ζ

it−js ⊗ qt,s. Through the isomorphism on the left side, 1 ⊗ 1 is

mapped to γs,tζ
it−js ⊗ qt,s. From here,

(3.11) γi,j = αj−i
1,0 γ0,0.

By considering the associativity constraint for M ⊗M ⊗Ki,j and writing the anal-

ogous diagram we get γi,j = βj−i
1,0 γ0,0. This implies

(3.12) α1,0 = β1,0.

The tensor structure of F on M ⊗M depends therefore on α1,0 (which is a p-th root
of unity) and γ0,0 (which equals ±1 since F 2 = Id on M ⊗M).

By checking compatibility with all associativity constraints we see that the iso-
morphism we have constructed does furnish a tensor structure on F . It can be shown
directly that no matter what choice we make for γ0,0 and α1,0, we will always end
up with an isomorphic functor. We can thus assume, without loss of generality, that

γ0,0 = α1,0 = 1.

Then, the scalars α0,1, β1,0, β0,1, and γi,j equal 1 by equations (3.9), (3.11), and
(3.12). This finishes the description of the tensor structure on F .

We summarize our discussion in the following result.

Proposition 3.2. Let A be the Hopf algebra defined in Subsection 3.1. Consider its
irreducible representations Ki,j, with 0 ≤ i, j < p, and M defined in Subsection 3.3.
There exists (up to isomorphism) only one tensor functor F : Rep(A) → Rep(A)
such that F (Ki,j) ≃ Kj,i and F (M) ≃ M . It is given by the equations (3.5), (3.6),
(3.8), and (3.10), where the scalars α1,0, α0,1, β1,0, β0,1, and γi,j equal 1.

3.5. The comultiplication of g. The category Rep(H) can be identified with that
of F -equivariant representations of A as follows: if V ∈ Rep(H), then V ∈ Rep(A)
by restriction, and g̃ : V → V, v 7→ gv establishes an isomorphism between V and
F (V ).
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We now consider the regular representation of H. The following diagram should
be commutative:

H ⊗H
∆(g)· //

(g⊗g)·
''❖❖

❖
❖
❖
❖
❖
❖
❖
❖
❖
❖

F (H ⊗H)

Ω·
��

F (H)⊗ F (H)

where Ω comes from the tensor structure of F . Since g = g−1, we have:

∆(g) = (g ⊗ g)Ω.

For V,W ∈ Rep(A) the isomorphism θV,W : F (V ⊗W ) → F (V )⊗F (W ) is given by
multiplication by Ω ∈ A⊗A. The reason for this is the following: the isomorphism
θA,A : A ⊗ A ≃ F (A ⊗ A) → F (A) ⊗ F (A) ≃ A ⊗ A is natural, and hence it must
commute with multiplication from the right by elements of A ⊗ A. So, it must be
given by multiplication from the left by some element Ω ∈ A⊗A. The same holds for
V,W ∈ Rep(A) by the naturality of θ again with respect to any morphisms A → V
and A → W . Then, the computation of Ω can be derived from our knowledge of
these isomorphisms for any two irreducible representations of A. To do this, we
first need the decomposition of the regular representation of A as a direct sum of
irreducible representations. For i, j = 0, . . . , p−1 let fij ∈ A0 denote the idempotent
upon which ua acts by ζ i and ub by ζj. It is:

(3.13) fij =
1

p2

∑

k,l

ζ−(ik+jl)ukau
l
b.

Let Vij = A0fij. Then Vij ≃ Ki,j. Consider in A1 the element

hi =
1

p

∑

k

ζ−ikvka .

Let Wi be the subspace spanned by vlbhi for l = 0, . . . , p − 1. Then Wi ≃ M by

mapping vl−i
b hi to ml. Thus we have:

A =
(

⊕

i,j

Vij

)

⊕

(

⊕

i

Wi

)

.

We claim that:

(3.14)

Ω =
1

p2

∑

i,j,k,l

ζkj−iluiau
j
b ⊗ ukau

l
b +

1

p

∑

k,l

ζ−(k+l)kukau
l
b ⊗ vk+l

a vk+l
b

+
1

p

∑

k,l

ζk(k+l)vk+l
a v

−(k+l)
b ⊗ ukau

l
b +

1

p

∑

k,l

vkav
l
b ⊗ v−l

a vkb .

Using (3.5), (3.8), (3.6), and (3.10), this formula for Ω is proved by checking directly
the following equalities, which we leave to the reader:

θVij ,Vkl
(fij ⊗ fkl) = ζ il−jkfij ⊗ fkl = Ω(fij ⊗ fkl),

θVij ,M(fij ⊗ vk−l
b hl) = ζ(i−j)(k+i)fij ⊗ vk+i−j−l

b hl = Ω(fij ⊗ vk−l
b hl),

θM,Vij
(vk−l

b hl ⊗ fij) = ζ(j−i)(k+i)vk+i−j−l
b hl ⊗ fij = Ω(vk−l

b hl ⊗ fij),
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θM,M

(

∑

k

ζ−jkvk−l
b hl ⊗ vi−k−l

b hl

)

=
∑

k

ζ−ikvk−l
b hl ⊗ vj−k−l

b hl

= Ω
(

∑

k

ζ−jkvk−l
b hl ⊗ vi−k−l

b hl

)

.

A careful calculation reveals that S(g) = g. This finishes the description of the Hopf
algebra structure of H and hence the proof of Theorem 3.1.

Remark 3.3. Although we used that K is algebraically closed to reconstruct H, a
posteriori we see from Theorem 3.1 that H is defined over Q(ζ).

4. Duality, (co)characters, and Hopf automorphisms

In this section we study further the structure of H: we describe its irreducible
(co)representations and (co)characters, its Hopf automorphisms and we show that
it is self-dual. The description of the (co)characters is one of the essential points in
the proof of our main result since they provide elements in any Hopf order in view
of Proposition 1.2. We keep the notation of the previous section.

4.1. Dual Hopf algebra. We present here the Hopf algebra structure of H∗. As a
vector space, H = A0 ⊕A1 ⊕ gA0 ⊕ gA1. We consider the following basis of H:

(4.1) B := {uiaujb} ∪ {viavjb} ∪ {guiaujb} ∪ {gviavjb}.

We denote the dual basis by:

(4.2) B
∗ := {sij} ∪ {tij} ∪ {αij} ∪ {βij}.

From (3.1) and (3.2), we easily see that H = A⊕ gA as a coalgebra. Then

(4.3) H∗ = A∗ ⊕ (gA)∗

as an algebra. We denote by εA and εgA the counit of H restricted to A and gA
respectively. Then, εA and εgA are the central idempotents of H∗ giving the previous
decomposition. The following result provides the full description of H∗.

Proposition 4.1. As an algebra, H∗ is the direct sum of the algebras A∗ and (gA)∗.
The algebra A∗ is spanned by the elements sij and tij and its multiplication is given
by:

(4.4)
sijskl = δi,kδj,l sij , tklsij = δi,kδj,−l tkl,

sij tkl = δi,kδj,l tkl, tij tkl = δi,kδj,−l sij.

The algebra (gA)∗ is generated by the elements γij and B subject to the following
relations:

(4.5) B2 = εgA, γijγkl = ζ il−jkγi+k j+l, and Bγij = γijB.
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The comultiplication, counit, and antipode of H∗ are given by:

(4.6)

∆(sij) =
∑

k,l

skl ⊗ si−k j−l +
1

p2
ζ−(il+jk)γkl ⊗ γlk,

ε(sij) = δi,0δj,0, S(sij) = s−i−j,

∆(tij) =
∑

k,l

ζ l(k−i)tkl ⊗ ti−k j−l +
1

p2
ζ−ilγklB ⊗ γl−j kB,

ε(tij) = δi,0δj,0, S(tij) = ζ−ijt−ij,

∆(γij) =
∑

k,l

ζ li+kjskl ⊗ γij + ζki+ljγij ⊗ skl,

ε(γij) = 0, S(γij) = γ−j−i,

∆(B) =
∑

k,l

ζklγl0B ⊗ tkl + tkl ⊗ γ0−lB,

ε(B) = 0, S(B) = B.

(The operations in the indices are all done modulo p.)

Proof. From the dual basis B∗ in (4.2), we are going to construct a new basis of H∗

which is more convenient to express the multiplication. In (gA0)
∗, instead of {αij}

we take the dual basis of {gfij}, where {fij} are the idempotents in (3.13). We
denote this basis by {γij}. Then:

γij(gu
k
au

l
b) = ζ ik+jl.

The sij ’s and tij’s form a basis of A∗ and the βij ’s and γij ’s form one of (gA)∗. A
direct and tedious calculation yields the following formulas:

sijskl = δi,kδj,l sij, tklsij = δi,kδj,−l tkl,

sij tkl = δi,kδj,l tkl, tij tkl = δi,kδj,−l sij,

γijβkl = ζj(l+j+k−i)βk−i+j l−i+j, βklγij = ζj(i+k−j−l)βk+i−j l+j−i,

γijγkl = ζ il−jkγi+k j+l.

This gives the statement for the multiplication in A∗. For the one in (gA)∗ we
proceed as follows: consider the element

(4.7) B =
√
p
∑

k

βk0.

It commutes with the γij’s in view of the above formulas. A simple computation
shows that B2 = εgA. Each βij can be expressed as

βij =
1

p
√
p

∑

k

ζ−kiγk−j kB.

This can be verified directly by using the equality:

(4.8) (γijB)(gvkav
l
b) =

√
p ζjkδl,j−i.
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Then {γij} ∪ {γijB} is a basis of (gA)∗. We change our basis of H∗ again to

(4.9) L := {sij} ∪ {tij} ∪ {γij} ∪ {γijB}.
The multiplication of H∗ is then fully described on L by (4.4) and (4.5).

We next compute the formulas for the comultiplication of H∗ given in (4.6). These
formulas follow from direct calculations, just using the multiplication in H. The
calculations do not present any special difficulty. We briefly indicate how to proceed
for sij and leave the details and the other cases to the reader. The element sij
vanishes on A1, gA0 and gA1. Since A0A0 = (gA0)(gA0) = A0 and A0A1 = A1A0 =
0 no other kind of summands can occur in the right-hand side. Hence it suffices to
evaluate ∆(sij) at ukau

l
b ⊗ uma u

n
b and gfkl ⊗ gfmn. The coefficients of skl ⊗ smn and

γkl ⊗ γmn must be respectively:

〈sij,(ukaulb)(uma unb )〉=δi,k+mδj,l+n and 〈sij,(gfkl)(gfmn)〉=
1

p2
ζ−(il+jk)δk,nδl,m.

Finally, one can check with no effort that the counit and antipode are the ones
given in (4.6). �

4.2. Self-duality. Nikshych proved in [11, Proposition 5.2] that H and H∗ are iso-
morphic as algebras. In this subsection we strengthen this result by the following
proposition:

Proposition 4.2. The Hopf algebras H and H∗ are isomorphic.

Proof. Let us begin by finding inside H∗ a Hopf subalgebra isomorphic to A. Set
d = p+1

2 . Consider the elements:

(4.10) ūa =
∑

k,l

ζ(k+l)dskl, ūb =
∑

k,l

ζ(k−l)dskl, v̄a = γdd, v̄b = γ−dd.

Let Ā be the subalgebra generated by ūa, ūb, v̄a, and v̄b. Using the multiplication
rules (4.4) and (4.5) one easily checks that the assignment ux 7→ ūx, vx 7→ v̄x for
x ∈ {a, b} establishes an algebra isomorphism Ψ between A and Ā. The elements
corresponding to the central idempotents e0 and e1 in Subsection 3.1 are

(4.11) εA =
∑

k,l

skl and εgA = γ00.

Notice that εA + εgA = εH = 1H∗ . Using formulas (4.6) one can verify with a long
but direct computation that the above isomorphism is actually an isomorphism of
Hopf algebras.

Consider finally the element

ḡ = B +
∑

k,l

ζdkltkl.

It can be shown that ḡ2 = 1H∗ , conjugation by ḡ stabilizes Ā, and, by the above
isomorphism, ḡ acts on Ā as g acts on A. Moreover, one can show that Ψ extends
to a Hopf algebra isomorphism from H to H∗ by defining g 7→ ḡ. This finishes the
proof. �
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Remark 4.3. If p = 1 mod. 4, then
√
p ∈ Q(ζ) and the above isomorphism is

defined over Q(ζ). Otherwise, it is not defined over Q(ζ) but over Q(ζ, ω), with ω a
primitive fourth root of unity, and maps B to ωB. Consider H as defined over Q(ζ).
Then B belongs to H ⊗Q(ζ)K but not to H because

√
p /∈ Q(ζ) in this case. In fact,

since the orbit of B under the group of Hopf automorphisms of H is {B,−B}, see
Subsection 4.5, it follows that an isomorphism between H and H∗ cannot be defined
over Q(ζ). The Hopf algebra H∗ will be a form of H but not isomorphic to it over
Q(ζ).

In the next two subsections we describe the irreducible representations of H and
H∗ and their characters, see [11, Proposition 5.2], which will be used to find the
possible Hopf orders of H.

4.3. Characters of H. We have the following irreducible representations of H and
corresponding characters:

4.3.1. Dimension 1. There are 2p irreducible representations of H of dimension 1.
They arise from the elements in A0 that are g-invariant. For i = 0, . . . , p−1 we have
the representation V +

i (resp. V −
i ), upon which A1 acts trivially, ukau

l
b acts through

the scalar ζ(k+l)i, and g acts as 1 (resp. −1). By using the previously chosen basis
L of H∗ (see Equation 4.9) we can write the characters of these representations as:

(4.12) χ
V ±

i
= ±γii +

∑

k,l

ζ(k+l)iskl.

4.3.2. Dimension 2. The irreducible representations of H of dimension 2 come from
the 1-dimensional representations of A0 which are not g-invariant. Therefore, their
orbits have two elements: Ki,j and Kj,i for i 6= j. Such representations are param-

eterized by pairs (i, j) with i < j. We denote them by Wij. There are p(p−1)
2 such

representations. The elements g and ukau
l
b act on Wij as the matrices

(

0 1
1 0

)

and

(

ζ ik+jl 0
0 ζ il+jk

)

respectively, and A1 acts trivially. The associated characters with respect to the
basis L of H∗ are:

(4.13) χWij
=

∑

k,l

(ζ ik+jl + ζ il+jk)skl.

4.3.3. Dimension p. Finally, there are two irreducible representations of H of dimen-
sion p. They arise from the p-dimensional representation M of A1, see Subsection
3.3. We denote them by M+ and M−. They have basis {m0, . . . ,mp−1}, the ele-
ments in A1 act as vami = ζ imi, vbmi = mi+1 and g acts as ±1. The elements of A0

act trivially. The corresponding characters in the basis L of H∗ are:

(4.14) χM± = pt00 ±
1√
p

∑

i

γiiB.
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4.4. Characters of H∗. To describe the irreducible representations of H∗ we will
use the decomposition (4.3) expressing H∗ as the direct sum of algebras H∗ = A∗ ⊕
(gA)∗. We start with the irreducible representations of A∗. By the multiplication
rules (4.4), A∗ is the direct sum of algebras

A∗ =
(

⊕

i

Ri

)

⊕

(

⊕

i,j

Ri,j

)

,

where Ri is spanned by si0 and ti0 and Rij by sij, si−j, tij , ti−j. The index i runs

from 0 to p− 1 and j from 1 to p−1
2 to avoid repetitions.

4.4.1. Dimension 1. The algebra Ri has two 1-dimensional representations, on both
of which si0 acts as 1 whereas ti0 acts as ±1. We denote them by L+

i and L−
i

respectively. The characters of these representations, expressed in the basis B of H,
see Equation 4.1, are:

(4.15) ψL±

i
= uia ± via.

4.4.2. Dimension 2. The algebra Rij is isomorphic to M2(K). Therefore, it has one
irreducible 2-dimensional representation, which we denote by Pij. This representa-
tion is given by the following map:

sij 7→
(

1 0
0 0

)

, si−j 7→
(

0 0
0 1

)

, tij 7→
(

0 1
0 0

)

, ti−j 7→
(

0 0
1 0

)

.

In the basis B of H the characters of these representations are expressed as:

(4.16) ψPij
= uiau

j
b + uiau

−j
b .

4.4.3. Dimension p. Lastly, we discuss the irreducible representations of (gA)∗. Since
B2 = ε|gA = 1(gA)∗ , we have the following two central idempotents:

κ =
1

2
(ε|gA +B) and κ′ =

1

2
(ε|gA −B).

They induce the algebra decomposition (gA)∗ = (gA)∗κ ⊕ (gA)∗κ′. From (4.5) we
obtain γp10 = γp01 = εgA and γ10γ01 = ζ2γ01γ10. Then (gA)∗κ and (gA)∗κ′ are iso-
morphic to Mp(K). Hence (gA)∗ has two p-dimensional irreducible representations,
which we denote by N+ and N−. Both have a basis {n0, . . . , np−1} with actions

γijnl = ζ ij+2ilnl+j, Bnl = ±nl.

The characters of the above representations are given by:

(4.17) ψN± =
1

p

∑

i,j

guiau
j
b±

1√
p

∑

i

gvia.
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4.5. Hopf automorphisms. The group of Hopf automorphisms of H is described
by the following result:

Proposition 4.4. The group AutHopf (H) is isomorphic to C2 × (C2 ⋉ Cp). Writing
C2 as {±1}, the Hopf automorphism φ of H corresponding to the triple (ǫ1, ǫ2, t) is:

φ(ua) = uǫ2a , φ(ub) = uǫ2b ,

φ(va) = vǫ2a , φ(vb) = ζtvǫ2b , φ(g) = g(e0 + ǫ1e1).

Proof. We know from (3.1) and (3.2) that H = A ⊕ gA as coalgebras and hence
H∗ = A∗⊕(gA)∗ as algebras. The algebra A∗ splits as a direct sum of matrix algebras
over K of dimension 1 or 4 (Subsections 4.4.1 and 4.4.2). On the other hand, the
algebra (gA)∗ is the direct sum of two matrix algebras of dimension p2 (Subsection
4.4.3). Let σ ∈ AutHopf (H). Since σ must preserve the Wedderburn decomposition
of H∗, it must hold that σ(A) ⊆ A. Thus σ|A is a Hopf automorphism of A. We are
so led to compute AutHopf (A). This gives a group morphism

Θ : AutHopf (H) → AutHopf (A), σ 7→ σ|A.
Using this morphism, we are going to compute AutHopf (H) in two steps:

Step 1. Hopf automorphisms of A. We know from Subsection 3.1 that A has an
algebra decomposition A = A0⊕A1, where A0 = K(Cp×Cp) and A1 = Kc(Cp×Cp).
Considering, as before, the dimensions of the simple components of the Wedderburn
decomposition of A0 and A1 we get σ(A0) = A0 and σ(A1) = A1. The group-like
elements of A are uia ± via with 0 ≤ i < p. Since σ preserves group-like elements and
the relations upa = e0 and vpa = e1, we must have σ(ua+va) = ura+v

r
a for some r 6= 0.

As σ(ua) ∈ A0 and σ(va) ∈ A1, we obtain

(4.18) σ(ua) = ura and σ(va) = vra.

On the other hand, σ(ub) = ukau
s
b for some k, s 6= 0 because σ induces a Hopf

automorphism on the quotient Hopf algebra A0 of A. We derive that k = 0 from
the equality µ∆σ(ub) = σµ∆(ub). Here µ stands for the multiplication of H. So
σ(ub) = usb. Using the equality ∆σ(ub) = (σ ⊗ σ)∆(ub) we arrive to σ(vb) = λvsb
for some λ ∈ K×. Moreover, λp = 1 because σ(vb)

p = e1. Put λ = ζt with
0 ≤ t < p. Applying σ to the relation vavb = ζvbva we get sr = 1 mod. p.
Then

(4.19) σ(ub) = usb and σ(vb) = ζtvsb , with s = r−1 mod. p.

Thus σ determines a pair (r, t) ∈ C×
p ×Cp. Conversely, one can check that any such

a pair together with (4.18) and (4.19) defines a Hopf automorphism of A. Finally,
by composing two automorphisms one sees that AutHopf (A) ≃ C×

p ⋉ Cp.

Step 2. Computing the kernel and image of Θ. We claim that KerΘ ≃ C2. Let
ν ∈ KerΘ. We know that H has a coalgebra decomposition H = A ⊕ gA, that ν
must preserve. Then ν(g) = gz for some z ∈ A. Since ν|A = idA, we have for every
x ∈ A:

gxg−1 = ν(gxg−1) = gzxz−1g−1.
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From this it follows that z ∈ Z(A). Recall that ∆(g) = (g ⊗ g)Ω, where Ω is given
in Equation 3.14. Using this and that ν is a coalgebra map we get:

(g ⊗ g)Ω∆(z) = ∆(gz) = ∆ν(g) = (ν ⊗ ν)∆(g) = (gz ⊗ gz)Ω.

We also used here that Ω ∈ A ⊗ A and ν|A = idA. Since z ∈ Z(A) and Ω and g
are invertible, the above equality implies that z is a group-like element of A. As
1 = ν(g)2 = gzgz, the only nontrivial option is z = e0 − e1. Conversely, one can
easily check that a map of this form defines an element of order 2 in KerΘ.

We claim now that ImΘ ≃ C2 ⋉ Cp. Let σ ∈ ImΘ. Assume that σ is given by
(r, t) ∈ C×

p ⋉Cp and equations (4.18) and (4.19). Then, arguing as before, σ(g) = gz
for some z ∈ A. We have:

ur
−1

b = σ(ub) = σ(guag
−1) = gzuraz

−1g−1 = urb .

From this, r2 = 1 mod. p and so r = ±1. Conversely, the Hopf automorphism τ of
A corresponding to (1, t) is given by conjugation by the group-like element uta + vta.
Conjugation by the same element defines τ̄ ∈ AutHopf (H) such that Θ(τ̄) = τ . Let
ϕ ∈ AutHopf (A) be corresponding to (−1, 0). One can check effortless that ϕ ∈ ImΘ
with preimage ϕ̄ defined by ϕ̄|A = ϕ and ϕ̄(g) = g.

Thus we have a short exact sequence

1 → C2 → AutHopf (H) → C2 ⋉ Cp → 1.

This sequence splits because ϕ̄ has order 2. The action on C2 is trivial (this is the
only possible action), and then

AutHopf (H) ≃ C2 × (C2 ⋉ Cp).

�

5. Orders of Nikshych’s Hopf algebra

In this section we will use the results of the previous sections to classify the orders
of Nikshych’s Hopf algebra. We will see that Nikshych’s Hopf algebra admits at most
one order over any number field.

We keep the conventions and notations of Section 3: ζ is a primitive p-th root of
unity; K is a number field containing ζ; R = OK is the ring of integers of K; H
denotes Nikshych’s Hopf algebra of dimension 4p2, and A stands for Masuoka’s Hopf
algebra of dimension 2p2, both defined over K.

Recall from Remark 3.3 that H is defined over Q(ζ). However, we will prove here
that H does not have orders over OQ(ζ), but only over the ring of integers of some
extension of Q(ζ). Set K = Q(ζ, ω), where ω is a primitive fourth root of unity. The
field Q(ζ) contains either

√
p or

√−p, depending on the value of p mod. 4. The
existence of ω allows us to assume that

√
p ∈ K and treat our computations in a

unified way avoiding the distinction of cases.

The proof of Theorem 2 is quite involved. We will divide it into several parts.
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5.1. Elements that must be in any Hopf order. Suppose that X is a Hopf
order of H over R. Our goal in this first part is to prove that several elements of H,
arising from (co)characters, must belong to X. This will be used later to show that
all basis elements of H, given in (4.1), must be in X.

We retain the notation of Section 3: e0, e1 are the units of A0 and A1 and εA, εgA
denote the counits of A and gA respectively. We start with the following:

Lemma 5.1. The elements e0, e1 are in X and εA, εgA are in X⋆.

Proof. We first show that e0, e1 ∈ X. The subalgebra Hb of H generated by ub and
vb is a Hopf subalgebra. Consider the algebra maps σ : Hb → K,ub 7→ ζ, vb 7→ 0 and
τ : Hb → K,ub 7→ 0, vb 7→ ζ. They are group-like elements of H∗

b and σ2 = τp = 1
and στ = τp−1σ. Then H∗

b ≃ K(C2 ⋉ Cp) as Hopf algebras and X ∩ Hb may be
viewed as a Hopf order of K(C2 ⋉ Cp)

∗ by Proposition 1.1(iii). According to the
proof of [1, Proposition 2.1], X ∩ Hb contains the idempotents t0, t1 (notation as
there). Let {νσiτ j}i,j ⊂ K(C2 ⋉ Cp)

∗ be the dual basis of {σiτ j}i,j . Recall that

t0 =
∑

j ντ j and t1 =
∑

j νστ j . One can verify directly that ντ j = 1
p

∑

k ζ
−jkukb

and νστ j =
1
p

∑

k ζ
(j−1)kvkb . Then t0 = e0 and t1 = e1.

For the second statement, take into account that H is self-dual by Proposition
4.2. The isomorphism between H and H∗ established there maps e0, e1 to εA, εgA
respectively, see (4.11). We now get that εA, εgA ∈ X⋆ from self-duality of H, the
above fact, and the first statement applied to X⋆ and H∗. �

Recall from (4.7) the element B used in describing H∗.

Lemma 5.2. The elements ge1 and B belong to X and X⋆ respectively.

Proof. We first prove that ge1 ∈ X. We know from Proposition 1.2 that characters
of H∗ are in X and characters of H are in X⋆. Using the previous lemma, (4.17)
and (4.14) we obtain that

Γ1 := e0ψN+ =
1

p

∑

i,j

guiau
j
b ∈ X,

Γ2 := εgAχM+ =
1√
p

∑

k

γkkB ∈ X⋆.(5.1)

Then (Γ2 ⊗R idX)∆(Γ1) ∈ X. We check that (Γ2 ⊗R idX)∆(Γ1) = ge1. Recall that
Γ2 vanishes on A0 ⊕ A1 ⊕ gA0, so we only need to compute the part of ∆(Γ1) in
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gA1 ⊗ gA1. It is:

1

p2

∑

i,j,k,l

(gvkav
l
b ⊗ gv−l

a vkb )(v
i
av

j
b ⊗ viav

−j
b )

=
1

p2

∑

i,j,k,l

ζ−i(k+l)gvk+i
a vl+j

b ⊗ gvi−l
a vk−j

b

=
1

p2

∑

i′,j′,k,l′

ζ(l
′−i′)(i′−k)gvi

′

a v
j′

b ⊗ gvl
′

a v
i′−j′−l′

b

putting i′ = k + i, j′ = l + j, and l′ = i− l,

=
1

p

∑

i,j,l

ζ(l−i)i
(1

p

∑

k

ζ(i−l)k
)

gviav
j
b ⊗ gvlav

i−j−l
b

putting i = i′, j = j′, and l = l′,

=
1

p

∑

i,j

gviav
j
b ⊗ gviav

−j
b .

Applying Γ2 ⊗R idX to this expression we get

1

p
√
p

∑

i,j,k

(γkkB)(gviav
j
b)gv

i
av

−j
b

(4.8)
=

1

p

∑

i,k

ζ ikgvia

=
∑

i

(1

p

∑

k

ζ ik
)

gvia

= ge1.

Therefore ge1 ∈ X.

We next show that B ∈ X⋆. From (4.14) and Proposition 1.2, we know that
χM+ = pt00 +

1√
p

∑

i γiiB ∈ X⋆. Using Lemma 5.1, we obtain εAχM+ = pt00 ∈ X⋆.

Now,

(5.2) (εgA ⊗ εgA)∆(pt00)
(4.6)
=

1

p

∑

k,l

γklB ⊗ γlkB ∈ X⋆ ⊗R X
⋆.

On the other hand, by (4.17) and Proposition 1.2, we have

ψN+ =
1

p

∑

i,j

guiau
j
b +

1√
p

∑

i

gvia ∈ X.

Using again Lemma 5.1, we get

e1ψN+ =
1√
p

∑

i

gvia ∈ X.

Finally, applying e1ψN+ ⊗R idX⋆ to (5.2) we obtain

1

p
√
p

∑

i,k,l

(γklB)(gvia)γlkB =
1

p

∑

i,k,l

ζ ilδl−k,0γlkB = γ00B = B.

So, B ∈ X⋆. �

Lemma 5.3. The elements ua, va,
1√
p

∑

i u
i
a, and 1√

p

∑

i v
i
a belong to X.
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Proof. By (4.15) and Proposition 1.2, ua + va ∈ X. Then e1(ua + va) = va ∈ X and
ua = (ua + va)− va ∈ X. We have just seen in the above proof that 1√

p

∑

i gv
i
a ∈ X.

Multiplying by ge1, we have 1√
p

∑

i v
i
a ∈ X. Let Ha be the Hopf subalgebra of H

generated by ua and va. Proposition 1.1(iii) entails that X ∩Ha is a Hopf order of
Ha. Then

∆
( 1√

p

∑

i

via

)

(3.1)
=

1√
p

∑

i

uia ⊗ via + via ⊗ uia ∈ (X ∩Ha)⊗R (X ∩Ha).

Consider the character ϕ of Ha given by ϕ(ua) = 0 and ϕ(va) = 1. By Proposition
1.2, ϕ ∈ (X ∩Ha)

⋆. Applying ϕ⊗R idX∩Ha to the above equality we conclude that
1√
p

∑

i u
i
a ∈ X. �

5.2. A special case. If we show that ge0 ∈ X, then it will follow from Lemmas 5.1,
5.2, and 5.3, that all elements of the basis B in (4.1) of H will be in any Hopf order
X. Unlike for other elements, this can not be shown directly. The strategy will be
to adjoin to K an element π such that π2 = ζ − 1, prove the statement in this case
and then derive it for K. So, in this subsection we assume that K contains such an
element π. The proof requires some preparations.

Lemma 5.4. The map T : A1 → gA0, v
i
av

j
b 7→ (B⊗R idX)∆(gviav

j
b) can be expressed

as

T (viav
j
b) =

1√
p

∑

k

ζjkgukau
i−k
b .

Moreover, T (X ∩A1) ⊆ X ∩ (gA0).

Proof. Since B vanishes on A0 ⊕A1 ⊕ gA0, only the part of ∆(gviav
j
b) in gA1 ⊗ gA0

is relevant for the computation. We have:

T (viav
j
b)

Th. 3.1
=

1

p

∑

k,l

ζk(k+l)B
(

gvk+l
a v

−(k+l)
b viav

j
b

)

guk+i
a ul−j

b

=
1

p

∑

k,l

ζ(k+i)(k+l)B
(

gvk+l+i
a v

−(k+l)+j

b

)

guk+i
a ul−j

b

(4.8)
=

1√
p

∑

k

ζ(k+i)jguk+i
a u−k

b

=
1√
p

∑

k

ζkjgukau
i−k
b .

Let now x ∈ X ∩ A1. By Lemma 5.2, we know that ge1 ∈ X and B ∈ X⋆. Then
gx = ge1x ∈ X and ∆(gx) ∈ X⊗RX. From here, T (x) = (B⊗RidX)∆(gx) ∈ X. �

Proposition 5.5. Let Z be an R-algebra and z, e ∈ Z. Assume that ze = ez = z.
Set z̃ = 1

π
(z − e). If z̃ ∈ Z, then

1√
p

∑

i

zi

is an R-linear combination of powers of z̃.
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Proof. Set

(πz̃ + e)p − e

πz̃
=

p
∑

k=1

(

p

k

)

(πz̃)k−1.

As in the proof of Lemma 2.3, the fractional expression is just symbolic. The left-
hand side equals

∑p−1
i=0 z

i. We obtain the result by dividing this equation by
√
p,

noticing that πp−1 = ξ
√
p for some invertible ξ ∈ R, and

(

p
k

)

is divisible by p for any
k = 1, . . . , p− 1. �

We are now ready to tackle the difficult point.

Lemma 5.6. The element ge0 belongs to X.

Proof. View A as a Hopf subalgebra of H and A0 as a quotient Hopf algebra of A
via projecting any element on its component in A0. Then X ∩ A0 is a Hopf order
of A0 in light of Proposition 1.1. Look now at the Hopf subalgebra of A0 generated
by ua. Lemma 5.3 shows that 1√

p

∑

i u
i
a ∈ X. Applying Corollary 2.9(ii), we have

1
π
(ua − e0) ∈ X ∩A0.

On the other hand, Lemmas 5.1 and 5.4 yield that

T (e1) =
1√
p

∑

k

gukau
−k
b ∈ X.

Put e = 1
p

∑

k u
k
au

−k
b . Observe that e is an idempotent and T (e1) =

√
p ge ∈ X. Let

G be the group generated by σ, τ subject to σ2 = τp = 1, στ = τσ. The assignments
e1 7→ 0;ua, ub 7→ τ ; g 7→ σ define a surjective algebra map f : H → KG. It is easy to
check that f is a Hopf algebra map and Ker f equals the ideal generated by e1 and
uau

−1
b −e0. By Proposition 1.1(iv), f(X) is a Hopf order of KG. The element σ must

be in f(X) because it can be received from characters of (KG)∗. Take x ∈ X ∩ A0

such that f(x) = σ. Then x− ge0 = h(uau
−1
b − e0) for some h ∈ H. Multiplying by√

p ge we arrive to
√
p (xge− e) = 0. Thus

√
p e = x(

√
p ge) ∈ X ∩A0. Consider the

Hopf subalgebra E of A0 generated by uau
−1
b . As

√
p e = 1√

p

∑

k u
k
au

−k
b ∈ X ∩ E,

Corollary 2.9(i) implies 1
π
(uau

−1
b − e0) ∈ X. Hence

1

π
(u−1

b − e0) = u−1
a

( 1

π
(uau

−1
b − e0)−

1

π
(ua − e0)

)

∈ X.

By Proposition 5.5, 1√
p

∑

i u
i
b ∈ X. Let Hb be the Hopf subalgebra of H generated

by ub and vb. Arguing as we did for Ha in the proof of Lemma 5.3, we obtain that
1√
p

∑

i v
i
b ∈ X. Applying Lemma 5.4, we have

T
( 1√

p

∑

i

vib

)

= ge0 ∈ X

and we are done. �

5.3. The necessary condition. We next derive that all basis elements of H must
be in the Hopf order X. This will be key to establish the necessary condition of our
main result and to prove later that a Hopf order of H, if exists, must be unique.

Proposition 5.7. All elements of the basis B in (4.1) of H belong to X.
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Proof. From Lemmas 5.1 and 5.3, we know that e0, e1, ua, va ∈ X. We next see that
g ∈ X. Take π ∈ C such that π2 = ζ − 1 and set L = K(π), S = OL. Then X ⊗R S
is a Hopf order of HL := H ⊗K L. Lemma 5.2 combined with Lemma 5.6 yields that
g ∈ X ⊗R S. We can identify H ⊗R L with HL via multiplication. Inside H ⊗R L
we have (X + Rg) ⊗R S ⊆ X ⊗R S + Rg ⊗R S = X ⊗R S ⊆ (X + Rg) ⊗R S. This
equality holds indeed in H⊗RS ⊂ H⊗RL. Since S is faithfully flat as an R-module,
we obtain X = X +Rg. Therefore g ∈ X.

It remains to prove that ub, vb ∈ X. We have that ubg = gua ∈ X. Then
ub = (ubg)g ∈ X and consequently ∆(ub) ∈ X ⊗R X. If follows from the latter that
vb ∈ X arguing for Hb as we did for Ha in the proof of Lemma 5.3. �

As a consequence of Lemma 5.3, we get

1√
p

∑

i

uia + via ∈ X.

Let E be the Hopf subalgebra of H generated by the group-like element h := ua+va.
Clearly, E ≃ KCp as Hopf algebras. Put Z = E ∩X and denote by Λ the set of left
integrals in the Hopf order Z of E.

Lemma 5.8. We have Λ = R
(

1√
p

∑

i h
i
)

.

Proof. Obviously, R( 1√
p

∑

i h
i) ⊆ Λ. For the reverse inclusion, let

∫

∈ Λ. There is

λ ∈ K such that
∫

= λ√
p

∑

i h
i. We will prove that λ ∈ R. Using Proposition 5.7,

̟ := (
∫

⊗
∫

)∆(g) ∈ X ⊗R X. Then (Γ2 ⊗R Γ2)(̟) ∈ R, with Γ2 being the element
defined in (5.1). We next show that (Γ2 ⊗R Γ2)(̟) = λ2.

Taking into account that Γ2 vanishes on A0⊕A1⊕ gA0, it suffices to compute the
part of ̟ in gA1 ⊗ gA1. We have:

(Γ2 ⊗R Γ2)(̟)
(5.1)
=

λ2

p3

∑

i,j,k,l

∑

r,s

(γrrB)(gvi+k
a vlb)(γssB)(gvj−l

a vkb )

(4.8)
=

λ2

p2

∑

i,j,k,l

∑

r,s

ζr(i+k)δl,0ζ
s(j−l)δk,0

= λ2.

So λ2 ∈ R and thus λ ∈ R. �

We can now establish the necessary condition in our main result from the previous
lemma and Corollary 2.9(i):

Proposition 5.9. Suppose that H admits a Hopf order over R. Then there is an
ideal I of R such that I2(p−1) = (p).

5.4. The Hopf order. Assume that there is an ideal I of R such that I2(p−1) = (p).
In this subsection we will construct from I a Hopf order of H which will turn out to
be the only Hopf order. Consider the fractional ideal J := I−1 = {α ∈ K : αI ⊆ R}.
By the unique factorization property in R, from I2(p−1) = (p) = (ζ − 1)p−1 = (

√
p)2,

it follows that I2 = (ζ − 1) and Ip−1 = (
√
p). Then J2 = ( 1

ζ−1) and Jp−1 = ( 1√
p
).

We need the following version of Proposition 5.5:
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Proposition 5.10. Let Z be an R-algebra and z, e ∈ Z. Assume that ze = ez = z.
If J(z − e) ⊂ Z, then

1√
p

∑

i

zi ∈ Z.

Proof. Put z̃ = z − e, proceed like in the other proof and use that 1√
p
z̃p−1 ∈ Z. �

Theorem 5.11. The R-subalgebra Y of H generated by e0, e1, g, J(ua − e0),
J(ub − e0), J(va − e1), and J(vb − e1) is a Hopf order of H.

Proof. We will first prove that Y is finitely generated as an R-module. Observe that
J is finitely generated. Write

xa = ua − e0, xb = ub − e0, ya = va − e1, yb = vb − e1.

We have that xa, xb, ya, yb ∈ Y because IJ = R. Since e0, e1 ∈ Y, we also have
ua, ub, va, vb ∈ Y . We next check that (Jxa)

n ⊂ ∑p−1
i=1 J

ixia for n ≥ p. The element

xa satisfy
∑p

i=1

(

p
i

)

xia = 0. As JpJp−2 = J2(p−1) = (1
p
), we get R = (Jpp)Jp−2.

Then Jpp = Ip−2 ⊂ R. Hence

(Jxa)
p = Jpxpa ⊂

p−1
∑

i=1

Jp

(

p

i

)

xia ⊂
p−1
∑

i=1

Rxia ⊂
p−1
∑

i=1

J ixia.

The same holds for xb, ya, and yb. Consider now the equality:

yayb = vavb − va − vb + e1
= ζvbva − va − vb + e1
= ζybya + (ζ − 1)(ya + yb + e1).

Then, for αa, αb ∈ J the coefficient of e1 in (αaya)(αbyb) belongs to R because
J2 = ( 1

ζ−1). Using the previous equality one can prove that any product of the form

(βay
k
a)(βby

l
b) with βa ∈ Jk, βb ∈ J l can be expressed as an R-linear combination of

elements in (J iyib)(J
jyja) with 0 ≤ i ≤ l, 0 ≤ j ≤ k. Notice that the coefficient of e1

always belong to R. All these facts, together with the relations among xa, xb, ya, yb,
and g inside H, show that Y is finitely generated as an R-module. More precisely,
using that J is finitely generated, the following elements generate Y over R:

e0, e1, ge0, ge1, J
i+j(xibx

j
a), J i+j(gxibx

j
a), J i+j(yiby

j
a), J i+j(gyiby

j
a),

i, j = 0, . . . , p− 1.

Removing the powers of J from these elements, we obtain a K-basis of H (we un-
derstand that i, j are not simultaneously zero). Hence Y is an order of H.

We next prove that Y is closed under comultiplication and antipode. It is easy to
check that the comultiplication of the e’s, x’s and y’s lie in Y ⊗R Y , the counits of
them lies in R, and S(Y ) ⊂ Y . For instance, for α ∈ J we have:

∆(αxa) = αxa ⊗ ua + αya ⊗ va + e0 ⊗ αxa + e1 ⊗ αya ∈ Y ⊗R Y,

∆(αxb) = αxb ⊗ ub + e0 ⊗ αxb + αyb ⊗ vp−1
b

+
p−1
∑

k=1

e1 ⊗
(

p−1
k

)

(αyb)y
k−1
b ∈ Y ⊗R Y.
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It only remains to show that ∆(g) ∈ Y ⊗R Y . For, we need to rewrite ∆(g) as an
R-linear combination of elements in Y ⊗R Y . Recall from Equation 3.2 that ∆(g)
consists of four summands. We treat each of them separately:

• Part in A0 ⊗A0. Consider the sum

1

p2

∑

i,j,k,l

ζjk−iluiau
j
b ⊗ ukau

l
b =

(1

p

∑

i,l

ζ−iluia ⊗ ulb

)(1

p

∑

j,k

ζjkujb ⊗ uka

)

.

We argue on the first factor, the second one being similar. Replace ua and ub by

xa + e0 and xb + e0 respectively and expand. The coefficient of xra ⊗ xsb equals ζ−1

p

if r = s = p− 1. Then

ζ−1

p
xp−1
a ⊗ xp−1

b =
ζ−1

√
p
xp−1
a ⊗ 1√

p
xp−1
b

belongs to Y ⊗R Y because 1√
p
∈ Jp−1. For either r or s different from p− 1 we use

the following argument. The coefficient of xra⊗xsb will be the same as the coefficient
of yra ⊗ ysb in the sum

1

p

∑

i,l

ζ−ilvia ⊗ vlb.

This in turn will be the same as the coefficient of yray
s
b in the sum

1

p

∑

i,l

ζ−ilviav
l
b =

1

p

∑

i,l

vlbv
i
a

=
1

p

(

∑

l

vlb

)(

∑

i

via

)

=
1

p

(yb + e1)
p − e1

yb

(ya + e1)
p − e1

ya
.(5.3)

We are using here the convention in the proof of Proposition 2.3 for these fractional
expressions. The coefficient of yray

s
b in this sum contains the binomial coefficient

(

p
k

)

for k = 1, . . . , p− 1. Therefore the first factor belong to Y ⊗R Y .

• Part in A0 ⊗A1. We have the summand

1

p

∑

k,l

ζ−(k+l)kukau
l
b ⊗ vk+l

a vk+l
b =

( 1√
p

∑

k

uka ⊗ vkb v
k
a

)( 1√
p

∑

l

ulb ⊗ vlav
l
b

)

.

We show that each of the sums belongs to Y ⊗R Y . We do it only for the first one.
For the second one proceed similarly. The coefficient of yra⊗ ysby

t
a in this sum will be

the same as the coefficient of xra ⊗ xsbx
t
a in the sum

(5.4)
1√
p

∑

k

uka ⊗ ukbu
k
a =

1√
p

∑

k

(ua ⊗ ubua)
k.

Observe that ua ⊗ ubua ∈ Y ⊗R Y and

J(ua ⊗ ubua − e0 ⊗ e0) = Jxa ⊗ xbxa + Jxa ⊗ xb + Jxa ⊗ xa + Jxa ⊗ e0

+ e0 ⊗ (Jxb)xa + e0 ⊗ Jxb + e0 ⊗ Jxa ∈ Y ⊗R Y.

This together Proposition 5.10 yields that the sum belongs to Y ⊗R Y .
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• Part in A1 ⊗A0. We argue as before with the summand

1

p

∑

k,l

ζ(k+l)kvk+l
a v

−(k+l)
b ⊗ ukau

l
b =

( 1√
p

∑

k

v
(p−1)k
b vka ⊗ uka

)( 1√
p

∑

l

vlav
(p−1)l
b ⊗ ulb

)

.

but using the following variation: vp−1
b = ȳb+e1 with ȳb =

∑p−1
j=1

(

p−1
j

)

yjb and J ⊂ J j

for j = 1, . . . , p − 1.

• Part in A1 ⊗A1. Consider the summand

1

p

∑

k,l

vkav
l
b ⊗ v−l

a vkb =
1

p

∑

k,l

vkav
l
b ⊗ v(p−1)l

a vkb .

Write it in H ⊗Hop as
( 1√

p

∑

k

vka ⊗ vkb

)( 1√
p

∑

l

vlb ⊗ v(p−1)l
a

)

and proceed as before. This finishes the proof. �

Proposition 5.12. The Hopf order Y is unique.

Proof. Let π ∈ C be such that π2 = ζ − 1 and set L = K(π). We will first prove
that HL admits a unique Hopf order over S = OL and derive the uniqueness for H
arguing as we did in Proposition 5.7. Write I = (π). Then I2(p−1) = (p). Let J ⊂ L
be the inverse of I, which is generated by 1

π
. We have seen in the precedent proof

that the order Y (over S) is generated as an algebra by e0, e1, g and the elements

x̃a :=
1

π
(ua − e0), x̃b :=

1

π
(ub − e0), ỹa :=

1

π
(va − e1), ỹb :=

1

π
(vb − e1).

Let X be any Hopf order of HL. By Lemma 5.3 and Corollary 2.9(ii), X must
contain the element 1

π
(ua+va−1). By Proposition 5.7, X contains all basis elements

of HL. Using multiplication by e0 and e1, conjugation by g and translation by the
character ρ : Hb → K,ub 7→ 0, vb 7→ 1, we see that X must contain x̃a, ỹa, x̃b, and ỹb.
Then Y ⊆ X and thus Y is a minimal Hopf order.

We know that HL is self-dual. Then H∗
L has also a minimal order, which we denote

by Z. This implies that Z⋆ is a maximal Hopf order of HL. Thus any Hopf order
of HL lies between Y and Z⋆. We will prove that Y = Z⋆. The R-submodule ΛY

of left integrals in Y is spanned by 1
p
(1 + g)

∑

i,j u
i
au

j
b. Then ε(ΛY ) = (2p). Using

self-duality of HL, we also have ε(ΛZ) = (2p). Since (dimH) = (4p2), by Proposition
1.3, ε(ΛZ⋆) = (2p). Proposition 1.4 yields Y = Z⋆.

Finally, let X,X ′ be two Hopf orders of H. The Hopf orders X⊗R S and X ′⊗R S
of HL must be equal. Then X ⊗R S = (X +X ′)⊗R S = X ′ ⊗R S. As S is faithfully
flat as an R-module, we obtain X = X +X ′ = X ′ and we are done. �

Remark 5.13. The precedent result shows that the behavior of orders for semisimple
Hopf algebras can be quite different to that of group algebras. When we take larger
number fields, the number of Hopf orders of the group algebra on Cp tends to infinity
whereas the number of orders of H is constantly 1.
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Remark 5.14. In [8, Theorem 1.8] the second author proved that every semisimple
Hopf algebra over a number field only admits finitely many Hopf orders over its ring
of integers.

5.5. Main result. We are finally in a position to prove our main result:

Theorem 5.15. Let p be an odd prime number and K a number field containing a
primitive p-th root of unity. Nikshych’s Hopf algebra admits a Hopf order over OK ,
which must be unique, if and only if there is an ideal I of OK such that I2(p−1) = (p).
In particular, K can not be neither a cyclotomic field nor an abelian extension of Q
if a Hopf orders exist.

Proof. The necessary condition was established in Proposition 5.9. The sufficient
condition and uniqueness were proved in Theorem 5.11 and Proposition 5.12.

We prove that K can not be a cyclotomic field if H admits a Hopf order over
OK . Let I ⊂ OK be the given ideal such that I2(p−1) = (p). Suppose that K is
a cyclotomic field, say K = Q(η) with η a primitive m-th root of unity. Since (p)
ramifies in OK , by [16, Proposition 2.3], p is a prime factor of m. Call n the exponent
with which p occurs. By [10, Theorem 4.40], there is a prime ideal P of OK appearing
in the factorization of (p) with exponent e := (p− 1)pn−1. The exponent of P in the
factorization of I2(p−1) will be 2l(p − 1) for some l ∈ N. Then p should be divisible
by 2, a contradiction.

That K can not be an abelian extension of Q in this case follows from the
Kronecker-Weber Theorem. �

6. On orders of forms

Let L/K be a Galois extension of fields with Galois group Γ. We have seen before
that it could happen that Nikshych’s Hopf algebra H over K does not admit an
order over any cyclotomic ring of integers, but could a L/K-form of H do? Namely,
could there be another Hopf algebra H ′ over K such that H ′ ⊗K L ≃ H ⊗K L and
H ′ admits an order over some cyclotomic ring of integers? We will show in this last
section that the answer to this question is affirmative.

We first recall from [2, Proposition 1.1] and [13, Proposition 1] some basics about
Galois descent in the Hopf algebra setting. Put HL = H ⊗K L. Given γ ∈ Γ, a Hopf
γ-automorphism of HL is a K-linear automorphism f : HL → HL which satisfies:

(1) f is γ-semilinear, i.e., f(αh) = γ(α)f(h) for all α ∈ L, h ∈ HL.
(2) f is compatible with the multiplication, comultiplication, and antipode.
(3) f(1HL

) = 1HL
.

(4) εf = γε.

According to Galois descent, L/K-forms of H correspond to group homomor-
phisms Φ : Γ → AutK(HL), γ 7→ Φγ such that Φγ is a Hopf γ-automorphism for all
γ ∈ Γ. For such a Φ the set of invariants (HL)

Γ is a Hopf algebra over K and the
natural map (HL)

Γ ⊗K L→ HL is an isomorphism of Hopf algebras.

Our goal is to prove the following:

Theorem 6.1. Let ζn ∈ C be a primitive n-th root of unity, with n divisible by p.
Consider Nikshych’s Hopf algebra H as defined over Q(ζn). Let w ∈ Z[ζn] and t ∈ C
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be such that w is invertible and t2 = w(ζp − 1). Assume that there is d ∈ Z[ζn] such
that 1

2(d + t) ∈ OQ(ζn,t). Then, H admits a Q(ζn, t)/Q(ζn)-form H ′ which in turn
admits an order over Z[ζn].

Proof. Set L = Q(ζn, t). We will construct H ′ and show that the unique order
Y of HL descents to an order of H ′ over Z[ζn]. The Galois group Γ of L/Q(ζn)
is isomorphic to Z/2Z. We denote the generator by γ. Bear in mind the Hopf
automorphism σ of H of order two given by

σ(uθ) = u−1
θ , σ(vθ) = v−1

θ for θ = a, b, and σ(g) = g.

We can define a Hopf γ-automorphism σ′ of HL by σ′(h ⊗ α) = σ(h) ⊗ γ(α) for all
h ∈ H,α ∈ L. Let Φ : Γ → AutK(HL) be the group morphism mapping γ to σ′.
Consider the form H ′ of H given by H ′ = (HL)

Γ.

We claim that the order Y of HL descents to an order Y ′ := Y Γ of H ′ over Z[ζn].
It is enough to check that the natural map ρ : Y Γ ⊗Z[ζn] OL → Y is an isomorphism

(this will ensure us that Y Γ is really a Hopf order). Since ρ is injective, it suffices
to check the surjectivity. We have seen in Proposition 5.12 that Y is generated over
OL by e0, e1, g, and

x̃a :=
1

t
(ua − e0), x̃b :=

1

t
(ub − e0), ỹa :=

1

t
(va − e1), ỹb :=

1

t
(vb − e1).

Clearly, e0, e1, g ∈ Im ρ as they are invariants. We will show that Im ρ contains
the rest of the generators. Since Im ρ is a subring of Y , this will give Im ρ = Y .
Let us show that x̃a ∈ Im ρ. The proof for the other generators is similar. The
element q := 1

t2
(2e0 − ua − u−1

a ) = −x̃2au−1
a belongs to Y Γ. Since γ(t) = −t, a

direct calculation reveals that σ′(x̃a) = x̃a + tq. Set z = x̃a +
1
2(d + t)q. One can

easily check that z ∈ Y Γ, and therefore z ∈ Im ρ. Finally, x̃a = z − 1
2(d + t)q, and

1
2(d+ t)q ∈ Im ρ, so x̃a ∈ Im ρ as well, as desired. �

With the previous theorem in hand, we will describe an example in which an order
of a form does exist.

Example. Consider the case p = 7 and n = 28. Let ζ := ζ28 be a primitive 28-th
root of unity. A computation done by Dror Speiser with the computer algebra system
MAGMA showed that if w is the inverse of the element

21747826028152ζ11 − 25061812676688ζ10 + 5371269408312ζ9 − 2754700868376ζ8

+21747826028152ζ7 − 22307111808312ζ6 + 4963799311635ζ4 + 12069132874072ζ3

−11153555904156ζ2 − 12069132874072ζ + 17343312496677

and d = 1, then the condition of the theorem holds. We take t such that
t2 = w(1− ζ4). We thus have an order over Z[ζ] of a form of H7.

Then H7, as defined over the complex numbers, admits an order over a cyclotomic
ring of integers.

The following questions remain open:

http://magma.maths.usyd.edu.au/magma/
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Questions. Does there exist a value of p for which Nikshych’s Hopf algebra Hp, as
defined over the complex numbers, does not admit an order over any cyclotomic ring
of integers? More generally, does there exist a complex semisimple Hopf algebra which
admits an order over a number ring but not over any cyclotomic ring of integers?
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