Collaborating to Refine Knowledge

Ciara Byrne
Department of Computing Science,
King’s College,
University of Aberdeen,
Scotland AB9 2UE
byrne@csd.abdn.ac.uk

1 Abstract

A group of intelligent agents may work together in order
to solve a problem or achieve a common goal. The group
may fail to achieve a goal due to the actions of one or
more agents. The agents should be able to adapt their
behaviour to ensure that such a failure is not repeated.
One way in which they can do this is by using machine
learning techniques to refine their knowledge. Our research
is concerned with how they can do this effectively.

What to Learn: Learning in an intelligent system
should improve the performance of that system. The per-
formance of a community of intelligent agents may be eval-
uated by its coherence or by the success of individual agents
in achieving their goals. “Coherence will refer to how
well the system behaves as a unit.” [1]. Cohesion may
be measured along several dimensions. Among these are
the quality of the solutions which the system produces,
the efficiency with which solutions are produced and how
gracefully performance degrades in the presence of failure
or uncertainty. The perspective from which performance
is evaluated will determine what it is useful to learn. In
some circumstances, agents may improve their performance
by learning to successfully compete for resources. On the
other hand, if the performance of a group of cooperating
agents is evaluated by its efficiency, the aim of learning
may be to improve the mechanisms used to coordinate the
actions of agents. When deciding what to learn, impor-
tant factors to consider are the behaviours which the agent
should exhibit (in order to perform well) and the charac-
teristics of the agent’s environment. The ability to learn
should be included in the design of an agent architecture as
a means of producing desirable behaviours. For example,
a useful behaviour may be the avoidance of conflicts with
other agents and an agent may learn to predict when a con-
flict is likely to occur. Fig.1 shows a behavioural ecology
triangle [2]. If the agent designer knows what behaviours
are required and the characteristics of the agent’s environ-
ment (two vertices are fixed) she can solve for an agent
design. The most obvious type of knowledge to learn from
another agent concerns that agent’s characteristics, i.e. its
capabilities, responsibilities, how it chooses goals and con-

Peter Edwards
Department of Computing Science,
King’s College,
University of Aberdeen,
Scotland AB9 2UE
pedwards@csd.abdn.ac.uk

Environmental Behaviours
Characteristics - planning
- dynamic - cooperation
- ongoing - conflict
- real time resolution
- unpredictable

Agent Design

Figure 1: Behavioural Ecology Triangle

structs plans, etc. An agent can use this kind of knowledge
to coordinate its activities with others by accurately pre-
dicting their behaviour, avoiding conflicts, deciding what
information to communicate to them, etc. The more an
agent interacts with another agent, the more it is likely to
benefit from learning about that agent.

How to Learn: How an agent can learn from another
will depend on several factors: the relationship between
the agents, the knowledge representation used by agents
and the type of knowledge to be learnt. If agents can-
not communicate then one agent can learn from another
only by observation. On the other hand if agents can com-
municate, they can share information directly. An agent
may provide “ready-made” knowledge, e.g. a list of its
own capabilities. It may also supply information which the
other agent can combine with its own knowledge in order
to learn, e.g. an example of a particular domain concept.
Agents must use the same knowledge representation or be
able to use some translation mechanism if the information
exchanged is to be understandable to them. For example,
KIF (Knowledge Interchange Format) [3] is an interlingua
which has been proposed as a means of sharing knowledge
between agents.



A Distributed Refinement System: The aim of our
refinement system [4] is the production of coordinated
and effective behaviour in an agent group. This can be
achieved by resolving incompleteness and inconsistency in
the agents’ knowledge bases. We would hope that the per-
formance of the agent group in achieving common goals
would be improved as a result. Extensive investigation of
techniques for refining the knowledge held in a single knowl-
edge base has already been carried out [5] [6] [7]. The pro-
cess of refining multiple related knowledge bases, such as
those of a group of agents, presents new challenges. The re-
finement of one agent’s knowledge may affect other agents
in the system. The organisation of the agent community,
the roles and expectations of individual agents, strategies
used in cooperation, etc. amounts to a new body of knowl-
edge that does not exist in a single-agent system, but which
may also need to be refined. Agents are autonomous or
semi-autonomous entities; their knowledge and reasoning
processes are not necessarily transparent to other agents.
Therefore, agents must volunteer information about their
internal processing. We believe that a group of agents can
more accurately determine the causes of a fault and im-
plement an effective set of refinements if they cooperate
by sharing their knowledge and different perspectives on a
failure.

What is Learnt: Agents in our system are written in
an Agent-Oriented Programming Language, AgentK* [§]
which is based on Agent-0 [9]. The state of an agent con-
sists of its current commitments, beliefs and capabilities. A
belief is a statement which the agent considers to be cur-
rently true or false, e.g. “it is raining”. Beliefs may change
over time. An agent’s capabilities are the actions which it
can perform. The formation of a commitment by an agent
obliges it to attempt to perform a particular action at a
given time. Agents written in Agent-K* have the following
basic types of knowledge:

e Capabilities: A list of the actions which the agent be-
lieves that other agents can perform.

e Commitment Rules: These are used to form appropri-
ate commitments in response to messages from other
agents.

e Goal Tree: Used to decompose the agent’s overall goal
into subgoals and eventually a sequence of primitive
actions. When an agent wants to achieve a group
goal, it requests the cooperation of appropriate agents.
If they agree to participate, it sends them instruc-
tions during cooperation and dissolves the group either
when the group goal has been achieved or cannot be
achieved. All agents except the agent which initiated
cooperation suspend their own goals during coopera-
tion.

e Group Goals: Definitions of goals whose achievement
requires the cooperation of several agents. Goals are
described by the number and types of agents whose

cooperation is needed and the actions which each of
these agents should perform.

e Precondition Sets: An action has one or more precon-
dition sets associated with it. At least one of these
must be satisfied before the action will be performed.

e Domain Hierarchies: Knowledge, in the form of a hi-
erarchy of Prolog predicates, about various aspects of
the agent’s environment or task domain which are used
when checking precondition sets.

Agents learn refinements to their own knowledge. The form
of a refinement will depend on the type of knowledge that
is being refined. For example, refining knowledge about ca-
pabilities could involve adding or removing the belief that
a particular agent can perform an action, whereas the def-
inition of a group goal could be changed by reallocating
an action to a different agent. To begin with, we are work-
ing on operators for generating refinements to precondition
sets.

How Knowledge is Refined: Any agent written in
Agent-K* can communicate with any other (provided it
knows the agent’s Universal Resource Locator). As all
agents have the same architecture, and therefore use the
same knowledge representation, they can exchange knowl-
edge without the need for translation. To provide an agent
with some information which it can use to generate re-
finements to precondition sets, Agent-K* allows agents to
record information about the circumstances in which ac-
tions have been taken in the past. This information con-
cerns the state of other agents as well as the state of the
environment. Each record of an action includes the time
it was performed, its arguments, who requested the action
(the agent performing the action or another one) and a
list of the agents with whom this agent was cooperating at
the time. These records, together with other information
about the state of the environment (e.g. current positions
of objects), are used to generate appropriate refinements.

To allow agents to effectively refine their collective
knowledge, we have introduced a new type of agent termed
a refinement facilitator. A facilitator coordinates interac-
tion between agents. For example, KQML [10] communica-
tion facilitators are used to manage message traffic among
other agents by routing messages to appropriate agents,
providing buffering and translation facilities, etc. There
are several stages in the refinement process:

1. One of the agents participating in cooperation, usually
the initiator, recognises that a failure has occurred. It
does this by observing the other agents participating
in cooperation and receiving information from them
concerning their performance. It sends a description
of the failure to the refinement facilitator.

2. The facilitator analyses the description of the failure
and identifies the possible failure points.



3. The facilitator requests refinements from appropriate
agents.

4. Agents propose refinements and send them to the fa-
cilitator.

5. The facilitator sorts the proposed refinements into
sets. Refinements may be equivalent, conflicting or
complementary. Two different refinements may have
the same effect with respect to correcting a fault, but
involve different changes to the knowledge of agents.
Such refinements are considered to be equivalent. Re-
finements conflict if they cancel each other’s effects and
complement each other if both (or several) are needed
to repair a fault. Each set of refinements consists of a
number of complementary refinements.

6. The facilitator calculates ratings for refinement sets. It
then chooses the highest rated refinement set and the
appropriate refinements are implemented by agents.

7. Finally, the facilitator informs relevant agents about
the refinements which have been made in order to
maintain consistency between agents’ knowledge bases
(where this is necessary).

The use of a facilitator allows the views of several agents
to be used in order to refine the collective knowledge of
the agent group. In this system, there are several ways in
which an agent could benefit from learning from another
agent:

e Agents may suggest refinements to another agent’s
knowledge. For example, Agentl needs to refine its
knowledge about the capabilities of Agent2 so Agent2
provides the appropriate knowledge.

e Agents may provide confidence ratings for refinements
proposed by other agents. As an example, if Agentl
failed to perform an agreed action during cooperation,
it may propose a refinement to the precondition set
associated with the action. Agent2, which requested
the help of Agent! in order to achieve a goal, may be
asked by the facilitator to calculate its confidence in
this refinement. This confidence factor can be used by
the facilitator when rating refinements.

e Agents could also exchange information in order to
generate better refinements. For example, if Agentl
has many records of the use of a particular action
and Agent2 does not, Agent! may share some of these
records with Agent2. Agent2 may use these records to
generate better refinements to its own knowledge.

Future Work: It should be emphasised that this is very
much work in progress and our ideas will develop as we
put them into practice. To date, we have concluded that
agents need information on the context in which they take
actions in order to generate refinements to precondition

sets. We have made a first attempt to facilitate the contin-
uous generation of such information by extending an exist-
ing agent language. We have implemented a basic hunter-
prey scenario by programming a group of agents in this
language. We are currently integrating refinement opera-
tors into agents. Our aims in the immediate future include
the development of a language for describing faults and re-
finements, and the construction of a prototype refinement
facilitator.

References

[1] Alan H. Bond and Les Gasser, editors. An Analysis of
Problems and Research in DAI pages 3-35. Morgan
Kaufmann, 1988.

[2] P.R. Cohen, M.L. Greenberg, D.M. Hart, and A.E.
Howe. Trial by Fire: Requirements for Agents in Com-
plex Environments. AI Magazine, pages 3348, 10(3),
1989.

[3] R. Fikes, M. Cutkosky, T. Gruber, and J. V. Baalen.
Knowledge Sharing Technology Project Overview.
Technical Report KSL-91-71, Knowledge Systems
Laboratory, Stanford University, 1991.

[4] C. Byrne and P. Edwards. Refinement in Agent
Groups. In Proceedings of the IJCAI-95 Workshop on
Learning and Adaptation in Multiagent Systems, 1995.

[5] D. Ourston and R.J. Mooney. Changing the Rules: A
Comprehensive Approach to Theory Refinement. In
Proceedings of the FEighth International Conference on
Machine Learning, pages 485-489, 1991.

[6] B.L. Richards and R.J. Mooney. Learning Relations
by Pathfinding. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 723-738,
1992.

[7] S. Craw and D. Sleeman. The Flexibility of Specula-
tive Refinement. In L. A. Birnbaum and G. C. Collins,
editors, Machine Learning: Proceedings of the Eighth
International Workshop, pages 28-32, 1991.

[8] W. Davies and P. Edwards. Agent-K: An Integra-
tion of AOP and KQML. In Y. Labrou and T. Finin,
editors, CIKM Workshop on Intelligent Information
Agents. National Institute of Standards and Technol-
ogy, Gaithersburg, Maryland, 1994.

[9] Y. Shoham. Agent-Oriented Programming. Technical
Report STAN-CS-1335-90, Department of Computer
Science, Stanford University, 1990.

[10] T. Finin, R. Fritzson, and D. McKay et al. An
Overview of KQML: A Knowledge Query and Manip-
ulation Language. Technical report, Department of
Computer Science, University of Maryland, 1992.



