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Co-evolution between plants and parasites, including herbivores and pathogens, has arguably 26 generated much of Earth's biological diversity. Within an ecosystem, co-evolution of plants 27 and pathogens is a stepwise reciprocal evolutionary interaction: epidemics result in intense 28 selection pressures on both host and pathogen populations, ultimately allowing long-term 29 persistence and ecosystem stability. Historically, plants and pathogens evolved in unique 30 regional assemblages, largely isolated from other assemblages by geographical barriers. 31 When barriers are broken, non-indigenous pathogenic organisms are introduced into new 32 environments, potentially finding suitable hosts lacking resistance genes and environments 33 favouring pathogenic behaviour; this process may result in epidemics of newly emerging 34 diseases. Biological invasions are tightly linked to human activities and have been a constant 35 feature throughout human history. Several pathways enable pathogens to enter new 36 environments, the great majority being human mediated.  37 The fossil record provides evidence that diseases commonly affected plants some 250 million 38 years ago (Dark & Gent, 2001). The recurrence of wheat rust outbreaks is reported by Roman 39 authors such as Cicero, Varro and Columella (2100-1950 BP). Rust outbreaks were so feared 40 that there was a god/goddess of rust (Robigus/Robigine) to whom processions, sacrifices and 41 feasts were dedicated in order to prevent crop destruction. 42 During the last 200 years the incidence of plant diseases has increased exponentially in terms 43 of both numbers and severity (Santini et al, 2013).  Alien pathogen introductions can lead to 44 novel host-pathogen associations or novel pathogen-pathogen combinations, with no 45 previous co-evolutionary history. 46 Why are so many invasive plant pathogens now appearing? The aim of this paper is to 47 increase understanding of the means of introduction and spread of these pathogens, which, as 48 with most invasive species, can be traced to human behaviour, societal development, 49 
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technological change, and geopolitical trends. We believe that reviewing historical 50 developments enhances our ability to anticipate future developments. 51 
Prehistory  52 
Limited information exists about the impact and spread of plant diseases before the onset of 53 major human migrations, although some evidence suggests that pathogens played an active 54 role in shaping the composition of prehistoric forests and other vegetation (Davis, 1981). 55 Pollen analysis from the mid Holocene suggests two catastrophic declines occurred in 56 Northern Hemisphere forests: a hemlock (Tsuga) decline in eastern North America and an elm 57 (Ulmus) decline in western, central and northern Europe. Decline of Tsuga spp. was recorded 58 at 60 sites and dated around 5500 BP (Bennett & Fuller, 2002), while elm decline occurred 59 6347 – 5281 BP based on a comprehensive review of 139 dated sites (see Waller, 2013 and 60 references therein). Both declines are characterised by the same specific features, such as 61 strong synchrony of events over wide regions (Eastern North America and central, north-west 62 Europe); rapidity of the decline; long periods in which these trees were largely absent. These 63 features suggest an invasion by a non co-evolved pathogen that eliminated the majority of 64 hosts. The eventual re-emergence of these tree species may have been associated with a 65 gradual development of resistance. Mid-Holocene pollen records associated with these events 66 resemble those arising during modern epidemics of forest pathogens, including chestnut 67 blight and Dutch elm disease (see Waller, 2013 and references therein).  68 In addition to these massive declines, evidence exists of forest declines at more local or 69 regional levels, ranging from temporary decreases in tree species richness, to full extinctions 70 of specific tree taxa appearing in the Holocene pollen stratigraphy. Although many different, 71 and sometimes contrasting, hypotheses have been advanced for the causes of these declines, 72 
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most recent accounts (Waller, 2013) adopt a multi-factor hypothesis in which disease 73 pandemics likely played a role along with climate changes and impacts from human activities.  74 
A starting date 75 
Though early intercontinental raft voyages and migrations over land bridges could have 76 transported certain organisms, for most purposes, we can consider the starting point for plant 77 pathogen invasions to coincide with the “Columbian Exchange”, ~1500 CE, which marked the 78 beginning of large-scale human movement between Europe and the Americas (Crosby 2006). 79 This time corresponded with initial European colonial activities which often involved trans-80 oceanic movement of plants and animals for cultivation in colonies, for consumption in 81 Europe (Crosby, 2006) and for collection of botanical specimens aboard ships. Maize, Zea 82 
mays, for example, was probably initially domesticated via hybridization of native species in 83 the Balsas River Valley of south-central Mexico by indigenous people (Piperno, 2011). As part 84 of the Columbian Exchange it was brought to Europe in the 1500s and ultimately distributed 85 further for cultivation in Asian and African colonies. 86 For these reasons invasion biologists use 1500 to divide alien plants in Europe into 87 “archaeophytes”, introduced before 1500, and “neophytes” introduced later. However, it is 88 widely recognised that the spread of plants and their associated pathogens began much 89 earlier. 90 
Human migrations 91 
Human migrations approximately 85000 years BP likely caused the earliest spread of invasive 92 species following the migration of Homo sapiens out of central Africa (Cavalli-Sforza & 93 Feldman, 2003) (Figure 1). Europe, for example was colonized between 9000 to 4500 BP by 94 
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Neolithic farmers, moving from the Fertile Crescent of Mesopotamia. Indigenous populations 95 settled in North America after crossing the Bering Strait to Alaska during milder periods in 96 the midst of the last ice age (15000-14000 BP). Expanding Neolithic farming cultures 97 probably carried plant material over considerable distances (Diamond and Bellwood 2003). 98 In addition, transport by sea began as far back as the Pleistocene (2588000 to 11700 BP). 99 The earliest archaeological evidence of maritime trade between Mesopotamia and the Persian 100 Gulf was dated to the seventh and eighth millennia BP (Carter, 2006). Though not impossible, 101 extraction of fungal DNA from archaeological artifacts is challenging and, to our knowledge, 102 there are few reports of such analyses. However, it can be speculated that seed-borne fungi 103 survived long periods of transport and storage, at least as long as the useful life of the seed 104 (Maude, 1996). Dark and Gent (2001) suggest that the increased incidence of plant diseases 105 during the late Iron Age and Roman periods could have been due to increasing trade in seeds, 106 especially within the Roman Empire. 107 Humans have a long history of migrations and conquests during which select plants and 108 animals were deliberately introduced to new global regions for domestication. For example, 109 so-called English elm (Ulmus procera Salisb.) was introduced to Britain by the Romans for use 110 in vineyards (Gil et al, 2004). The largest Euro-Asian chestnut (Castanea sativa Mill.) glacial 111 refuge is in the Caucasian-Armenian area. By the 11-9th Century BP humans were cultivating 112 chestnuts between the Caspian and Black Sea. Chestnut cultivation quickly spread from Asia 113 Minor to Greece and the Balkans. The Romans quickly discovered the practical potential of 114 chestnut cultivation and since the 1st Century, Italy has been the European centre of chestnut 115 culture (Adua, 1999). A number of crop species including cereals, legumes and trees such as 116 tamarind and baobab were moved from Africa to the Indian subcontinent during prehistory 117 (Bell et al, 2015 and references therein). Humans have long moved plants both to satisfy food 118 needs, and also for ornamental purposes (Supplementary material S1). 119 
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Nearly every individual of any wild plant species can be expected to host hundreds of species 120 of endophytic and plant pathogenic fungi, so it is certain that many fungal species have 121 accompanied human movements of plants. For centuries, the time taken to travel long 122 distances probably limited survival of potentially harmful propagules of many invasive 123 pathogen species, but increasing speed of transport has improved the probability of 124 propagule survival, sometimes with disastrous consequences for invaded ecosystems. For 125 example, wheat has been cultivated in Europe and China since 6000–7000 BP; when 126 European farmers moved into the Americas, Australia, and South Africa during the past 500 127 years, they introduced wheat as well as its pathogens Phaeosphaeria nodorum and 128 
Mycosphaerella graminicola (Stukenbrock et al, 2006). 129 Invasive pathogen species may not be simply a consequence of human migrations: they have 130 also forced humans to move. Plant disease outbreaks that trigged famines and, as a 131 consequence, mass human migrations have been reported since the beginning of history and 132 are still a major cause of this phenomenon (Supplementary material S1). 133 
Technological progress 134 
Over the last 500 years, transport technology has progressively improved, decreasing trans-135 oceanic shipping times and facilitating the rapid movement of living plants, some of which 136 transport plant pathogens. The S.S. Savannah, the first steamboat to cross the Atlantic Ocean 137 (1819), represented an important milestone in transport technology and consequently in 138 rapid plant movement. Previously, crossing the Atlantic by sailing ship required 8-12 weeks, 139 so transport of living plants was impossible without the use of elaborate portable 140 greenhouses, where plants needed to be potted and often re-potted during transit, using 141 foreign soil and consequently spreading soil-borne pathogens. Continuous progress in naval 142 and aeronautical engineering has enabled incremental improvement in the ease of trans-143 
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oceanic transport of live plants. This technology has allowed increases in numbers of plants 144 transported in a single trip, resulting in an equivalent increment in viable pathogen inoculum 145 arriving at final destinations, and increasing chances of infections occurring on new hosts. 146 The use of maritime containers, including refrigerated containers, has greatly 147 facilitated large-scale movement of plants and other potential vectors of plant pathogens. The 148 first commercial container ship, the Clifford J. Rogers, was launched in Seattle in 1955 and 149 carried 58 metal containers. Modern container ships can carry up to 18,000 twenty-foot 150 equivalent units (TEUs). World container port throughput was estimated at 651.1 million 151 TEUs in 2013 (Clarkson Research Services 2014; Fig. 2). International commerce in 152 agricultural products, has increased four-fold from US$ 414.723 million in 1990, to US$ 153 1.765.405 million in 2014 (www.wto.org/statistics). 154 Among agricultural products, imports of live plants probably represent the most 155 important pathway for transport of plant pathogens (Liebhold et al, 2012, Santini et al, 2013). 156 Given advances in transport technologies, a complex network of global commerce in live 157 plants has developed (Fig. 2). Favourable climates and labour costs provide incentives for 158 production of many types of plants in tropical regions. Billions of plants consumed in North 159 America are produced in Central America, and Europe receives large numbers of plants from 160 Africa and Asia (Fig. 3).  161 
Geopolitics and regulation of trade 162 
Legislation limiting plant diseases was born more than 300 years ago in France where laws 163 were enacted requiring destruction of barberry (Berberis spp.) to control the spread of stem 164 rust in wheat. Prior to the mid-1800s, however, there was little recognition of the potential 165 dangers associated with accidental movement of plant pathogens on live plants and other 166 objects. The first attempt at regulating international movement of plants took place in Europe 167 
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in 1878, as a reaction to massive damage to the viticulture industry caused by the grape 168 Phylloxera; seven European countries agreed to implement the “International Convention on 169 Measures to be taken against Phylloxera vastatrix” (now Daktulosphaira vitifolia). The 170 convention specified procedures for exporting countries to certify disease- and insect-free 171 plant material for export along with plant import inspection procedures. During this era, 172 several European countries (MacLeod et al, 2010), initiated their own measures to stem the 173 flow of dangerous plant pests. In the USA, importation of live plants was not regulated until 174 the passage of the Plant Quarantine Act in 1912 (Liebhold & Griffin, 2016). Previously, large 175 numbers of live plants were imported without limits and many damaging insects and plant 176 pathogens were accidentally introduced with such shipments. 177 World War II represented a turning point in the global movement of plant pathogens. 178 Allied army supplies provided a pathway for movement of at least three important forest 179 pathogens: Seiridium cardinale; Ceratocystis platani and Heterobasidion irregulare (Santini et 180 al, 2013). But it was the aftermath of the war that brought massive geopolitical changes, 181 laying the foundation for our modern globalized economy. Economists argued for the 182 elimination of barriers to free trade ultimately leading to the General Agreement on Tariffs 183 and Trade (GATT) in 1948. 184 In addition, GATT also led to important agreements that shaped international plant 185 quarantine policy. Unjustified quarantines placed by countries on the importation of 186 agricultural and other goods were identified as barriers to free trade. In 1994, GATT 187 promoted the Agreement on the Application of Sanitary and Phytosanitary Measures (the SPS 188 Agreement), which designated standards for regulatory measures implemented by member 189 countries for the protection of plant, animal, and human life and health.  The organization 190 recognized in the agreement as the standard-setting body for plants was the International 191 
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Plant Protection Convention (IPPC), a multilateral treaty overseen by the Food and 192 Agriculture Organization (FAO) of the United Nations.  193 The SPS agreement states that each country can set a desired level of risk for damaging 194 pests associated with imports and outlines a science-based procedure for managing risk. 195 Some countries, notably New Zealand and Australia, maintain very stringent regulations on 196 plant imports in order to minimize risk (Eschen et al, 2015). In contrast, the European Union 197 enforces much less strict import regulations; many plants may be imported without a permit 198 and soil associated with plants is often allowed. The presence of soil represents a particularly 199 significant opportunity for transport of invasive pathogens (Migliorini et al, 2015).  The 200 creation of the European Union and fall of the “Iron Curtain” resulted in much more open 201 trade among European countries. These open borders increased movement among countries, 202 potentially increasing movement of plant pests (Roques et al, 2016).  203 Following the passage of the Plant Quarantine Act in 1912, the US Department of 204 Agriculture implemented “Quarantine 37” in 1919, which greatly curtailed plant imports and 205 established a system of inspection and other quarantine practices (Liebhold & Griffin, 2016). 206 These regulations resulted in a downward trend in numbers of plant pathogen introductions 207 during the mid 20th Century (Liebhold & Griffin, 2016). The trend was the opposite in Europe 208 – i.e. increasing rates of establishment (Santini et al, 2013) – suggesting that the 1912 209 Quarantine Act has been reasonably effective in reducing numbers of new introductions to the 210 USA. 211 The IPPC aims to harmonize phytosanitary measures among countries. Nevertheless, 212 some countries lack adequate financial recourses necessary for implementing strict plant 213 quarantine regulations, which poses a risk even to countries that maintain high quarantine 214 standards. Countries with more “porous” borders serve as bridgeheads where pathogens may 215 establish, become abundant and then invade other world regions (Early et al, 2016).  216 
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Another significant problem facing effective plant quarantine programs is the high 217 percentage of invasive pathogens of unknown origin (Santini et al, 2013; Xu et al, 2006). A 218 major problem in managing invasion pathways utilized by fungi and Oomycetes is the 219 difficulty in recognizing organisms at the species level. Many ‘new’ species are cryptic, 220 resembling already known species, but with minor genetic differences which may create 221 considerably higher virulence when exposed to host plants. The extent of this problem 222 increases when the pathogens are endophytic or have an extended latent period before 223 causing symptoms (Sakalidis et al, 2013). 224 Certain pathogen invasion pathways can be directly identified. For example, good 225 evidence exists that Karnal bunt of wheat entered the United States across the land border 226 with Mexico, inadvertently transported in private automobiles, trucks, and railway cars rather 227 than with commercial cargo (Marshall et al, 2003). However because of the difficulty in 228 identifying pathogens and the characteristically long delay between pathogen arrival and 229 discovery, invasion pathways for many species can only be inferred rather than observed. 230 In the USA, Europe and China, the main pathway for plant pest and pathogen 231 introductions is by far imports of living plants, (Liebhold et al, 2012; Santini et al, 2013; Xu et 232 al, 2006). In Australia and New Zealand, where international trade in plants is more strictly 233 regulated, the arrival of pathogens is mainly linked to contamination of traded goods other 234 than live plants. 235 The ‘plants-for-planting’ pathway is difficult to control for various reasons. Horticulture is a 236 major global industry: in 2013, for example, 84,500 tonnes of live plants were imported into 237 Europe, compared with exports of 400,000 tonnes (Eurostat Comext 238 http://epp.eurostat.ec.europa.eu/newxtweb). Faced with such huge volumes, only a small 239 percentage of plants can realistically be inspected at ports of entry (Liebhold et al, 2012). 240 Moreover, markets in live plants, especially ornamentals, are constantly changing. Imported 241 
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species and geographical sources for obtaining a given species can change rapidly. This 242 problem exacerbates the risk of introducing new pests from different exotic locations. 243 
Conclusions 244 
Since pre-history, humans have dramatically changed their living environment, for example 245 by exploiting natural resources until depletion, or via movement and cultivation of plant 246 species outside their natural range. Agricultural and forestry practices frequently rely on non-247 indigenous plant species. This human-mediated globalization of plant ranges has steadily 248 increased throughout the history of human civilization. The trend for globalization has 249 consequences that reach beyond impacts on individual humans and their societies, also 250 including impacts on ecosystems. In many parts of the world, invasions of plant pests and 251 pathogens have transformed managed and natural areas, often with cascading effects on 252 ecosystem services (Lovett et al, 2016) as, for example, Phytophthora ramorum in UK, Ireland 253 and US.  254 This paper describes how historical developments in human civilization and geopolitics have 255 driven trends of increasing movement and impacts of plant pathogens. Even before the 256 modern era of globalization, technological developments and societal changes facilitated new 257 plant disease epidemics that adversely affected society and shaped social development. It is 258 also evident that during the modern era of globalization we are poised to continue that trend, 259 with potentially catastrophic effects on society and global ecosystems. 260 We argue here for closer integration of invasion biology with history and sociology, to 261 significantly advance understanding of the causes of biological invasions and to limit future 262 damage. Learning from this history it can be deduced that the solution to these increasing 263 impacts lies not in halting the trend of globalization, which is neither realistic nor necessarily 264 desirable, but to better capitalize on scientific knowledge. Implementation of scientifically-265 
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based policies will allow globalization to proceed while simultaneously minimizing movement 266 of plant pathogens, thus preventing further economic and ecological disasters. History is not 267 merely a list of dates and names of famous people, but, as Cicero claimed in De Oratore 268 “Historia vero testis temporum, lux veritatis, vita memoriae, magistra vitae, nuntia vetustatis…”. 269 In short ‘history is life’s teacher’. 270 
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Captions for figures 340 Figure 1. Migrations of modern Homo sapiens (Adapted by permission from Macmillan 341 Publishers Ltd: [Nature Genetics] (L. Luca Cavalli-Sforza, Marcus W. Feldman, 2003. The 342 application of molecular genetic approaches to the study of human evolution 33:266-275), 343 copyright 2003. 344 Figure 2. Trend of European agricultural imports per year (1980-2014) expressed in USD 345 (UNCTAD, 2014). In the box: World seaborne trade by type of cargo per year (1970-2011) 346 Plants fall into the dry cargo category (UNCTAD, 2014). 347 Figure 3. Trade of plants and plant parts among principle trading countries. For each country 348 flow widths are proportional to 2015 import and export values. Colours correspond to 349 exports from a single country, coded by the colour of the outer band. Imports are represented 350 by different colours flowing into each country (Commodity code 0602: Live trees, including 351 roots, cuttings, slips and mushroom spawn). Source UN Comtrade Database 352 http://comtrade.un.org/. 353  354 
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A starting date 75 
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Neolithic farmers, moving from the Fertile Crescent of Mesopotamia. Indigenous populations 95 settled in North America after crossing the Bering Strait to Alaska during milder periods in 96 the midst of the last ice age (15000-14000 BP). Expanding Neolithic farming cultures 97 probably carried plant material over considerable distances (Diamond and Bellwood 2003). 98 In addition, transport by sea began as far back as the Pleistocene (2588000 to 11700 BP). 99 The earliest archaeological evidence of maritime trade between Mesopotamia and the Persian 100 Gulf was dated to the seventh and eighth millennia BP (Carter, 2006). Though not impossible, 101 extraction of fungal DNA from archaeological artifacts is challenging and, to our knowledge, 102 there are few reports of such analyses. However, it can be speculated that seed-borne fungi 103 survived long periods of transport and storage, at least as long as the useful life of the seed 104 (Maude, 1996). Dark and Gent (2001) suggest that the increased incidence of plant diseases 105 during the late Iron Age and Roman periods could have been due to increasing trade in seeds, 106 especially within the Roman Empire. 107 Humans have a long history of migrations and conquests during which select plants and 108 animals were deliberately introduced to new global regions for domestication. For example, 109 so-called English elm (Ulmus procera Salisb.) was introduced to Britain by the Romans for use 110 in vineyards (Gil et al, 2004). The largest Euro-Asian chestnut (Castanea sativa Mill.) glacial 111 refuge is in the Caucasian-Armenian area. By the 11-9th Century BP humans were cultivating 112 chestnuts between the Caspian and Black Sea. Chestnut cultivation quickly spread from Asia 113 Minor to Greece and the Balkans. The Romans quickly discovered the practical potential of 114 chestnut cultivation and since the 1st Century, Italy has been the European centre of chestnut 115 culture (Adua, 1999). A number of crop species including cereals, legumes and trees such as 116 tamarind and baobab were moved from Africa to the Indian subcontinent during prehistory 117 (Bell et al, 2015 and references therein). Humans have long moved plants both to satisfy food 118 needs, and also for ornamental purposes (Supplementary material S1). 119 
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Nearly every individual of any wild plant species can be expected to host hundreds of species 120 of endophytic and plant pathogenic fungi, so it is certain that many fungal species have 121 accompanied human movements of plants. For centuries, the time taken to travel long 122 distances probably limited survival of potentially harmful propagules of many invasive 123 pathogen species, but increasing speed of transport has improved the probability of 124 propagule survival, sometimes with disastrous consequences for invaded ecosystems. For 125 example, wheat has been cultivated in Europe and China since 6000–7000 BP; when 126 European farmers moved into the Americas, Australia, and South Africa during the past 500 127 years, they introduced wheat as well as its pathogens Phaeosphaeria nodorum and 128 
Mycosphaerella graminicola (Stukenbrock et al, 2006). 129 Invasive pathogen species may not be simply a consequence of human migrations: they have 130 also forced humans to move. Plant disease outbreaks that trigged famines and, as a 131 consequence, mass human migrations have been reported since the beginning of history and 132 are still a major cause of this phenomenon (Supplementary material S1). 133 
Technological progress 134 
Over the last 500 years, transport technology has progressively improved, decreasing trans-135 oceanic shipping times and facilitating the rapid movement of living plants, some of which 136 transport plant pathogens. The S.S. Savannah, the first steamboat to cross the Atlantic Ocean 137 (1819), represented an important milestone in transport technology and consequently in 138 rapid plant movement. Previously, crossing the Atlantic by sailing ship required 8-12 weeks, 139 so transport of living plants was impossible without the use of elaborate portable 140 greenhouses, where plants needed to be potted and often re-potted during transit, using 141 foreign soil and consequently spreading soil-borne pathogens. Continuous progress in naval 142 and aeronautical engineering has enabled incremental improvement in the ease of trans-143 
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oceanic transport of live plants. This technology has allowed increases in numbers of plants 144 transported in a single trip, resulting in an equivalent increment in viable pathogen inoculum 145 arriving at final destinations, and increasing chances of infections occurring on new hosts. 146 The use of maritime containers, including refrigerated containers, has greatly 147 facilitated large-scale movement of plants and other potential vectors of plant pathogens. The 148 first commercial container ship, the Clifford J. Rogers, was launched in Seattle in 1955 and 149 carried 58 metal containers. Modern container ships can carry up to 18,000 twenty-foot 150 equivalent units (TEUs). World container port throughput was estimated at 651.1 million 151 TEUs in 2013 (Clarkson Research Services 2014; Fig. 2). International commerce in 152 agricultural products, has increased four-fold from US$ 414.723 million in 1990, to US$ 153 1.765.405 million in 2014 (www.wto.org/statistics). 154 Among agricultural products, imports of live plants probably represent the most 155 important pathway for transport of plant pathogens (Liebhold et al, 2012, Santini et al, 2013). 156 Given advances in transport technologies, a complex network of global commerce in live 157 plants has developed (Fig. 2). Favourable climates and labour costs provide incentives for 158 production of many types of plants in tropical regions. Billions of plants consumed in North 159 America are produced in Central America, and Europe receives large numbers of plants from 160 Africa and Asia (Fig. 3).  161 
Geopolitics and regulation of trade 162 
Legislation limiting plant diseases was born more than 300 years ago in France where laws 163 were enacted requiring destruction of barberry (Berberis spp.) to control the spread of stem 164 rust in wheat. Prior to the mid-1800s, however, there was little recognition of the potential 165 dangers associated with accidental movement of plant pathogens on live plants and other 166 objects. The first attempt at regulating international movement of plants took place in Europe 167 
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in 1878, as a reaction to massive damage to the viticulture industry caused by the grape 168 Phylloxera; seven European countries agreed to implement the “International Convention on 169 Measures to be taken against Phylloxera vastatrix” (now Daktulosphaira vitifolia). The 170 convention specified procedures for exporting countries to certify disease- and insect-free 171 plant material for export along with plant import inspection procedures. During this era, 172 several European countries (MacLeod et al, 2010), initiated their own measures to stem the 173 flow of dangerous plant pests. In the USA, importation of live plants was not regulated until 174 the passage of the Plant Quarantine Act in 1912 (Liebhold & Griffin, 2016). Previously, large 175 numbers of live plants were imported without limits and many damaging insects and plant 176 pathogens were accidentally introduced with such shipments. 177 World War II represented a turning point in the global movement of plant pathogens. 178 Allied army supplies provided a pathway for movement of at least three important forest 179 pathogens: Seiridium cardinale; Ceratocystis platani and Heterobasidion irregulare (Santini et 180 al, 2013). But it was the aftermath of the war that brought massive geopolitical changes, 181 laying the foundation for our modern globalized economy. Economists argued for the 182 elimination of barriers to free trade ultimately leading to the General Agreement on Tariffs 183 and Trade (GATT) in 1948. 184 In addition, GATT also led to important agreements that shaped international plant 185 quarantine policy. Unjustified quarantines placed by countries on the importation of 186 agricultural and other goods were identified as barriers to free trade. In 1994, GATT 187 promoted the Agreement on the Application of Sanitary and Phytosanitary Measures (the SPS 188 Agreement), which designated standards for regulatory measures implemented by member 189 countries for the protection of plant, animal, and human life and health.  The organization 190 recognized in the agreement as the standard-setting body for plants was the International 191 
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Plant Protection Convention (IPPC), a multilateral treaty overseen by the Food and 192 Agriculture Organization (FAO) of the United Nations.  193 The SPS agreement states that each country can set a desired level of risk for damaging 194 pests associated with imports and outlines a science-based procedure for managing risk. 195 Some countries, notably New Zealand and Australia, maintain very stringent regulations on 196 plant imports in order to minimize risk (Eschen et al, 2015). In contrast, the European Union 197 enforces much less strict import regulations; many plants may be imported without a permit 198 and soil associated with plants is often allowed. The presence of soil represents a particularly 199 significant opportunity for transport of invasive pathogens (Migliorini et al, 2015).  The 200 creation of the European Union and fall of the “Iron Curtain” resulted in much more open 201 trade among European countries. These open borders increased movement among countries, 202 potentially increasing movement of plant pests (Roques et al, 2016).  203 Following the passage of the Plant Quarantine Act in 1912, the US Department of 204 Agriculture implemented “Quarantine 37” in 1919, which greatly curtailed plant imports and 205 established a system of inspection and other quarantine practices (Liebhold & Griffin, 2016). 206 These regulations resulted in a downward trend in numbers of plant pathogen introductions 207 during the mid 20th Century (Liebhold & Griffin, 2016). The trend was the opposite in Europe 208 – i.e. increasing rates of establishment (Santini et al, 2013) – suggesting that the 1912 209 Quarantine Act has been reasonably effective in reducing numbers of new introductions to the 210 USA. 211 The IPPC aims to harmonize phytosanitary measures among countries. Nevertheless, 212 some countries lack adequate financial recourses necessary for implementing strict plant 213 quarantine regulations, which poses a risk even to countries that maintain high quarantine 214 standards. Countries with more “porous” borders serve as bridgeheads where pathogens may 215 establish, become abundant and then invade other world regions (Early et al, 2016).  216 
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Another significant problem facing effective plant quarantine programs is the high 217 percentage of invasive pathogens of unknown origin (Santini et al, 2013; Xu et al, 2006). A 218 major problem in managing invasion pathways utilized by fungi and Oomycetes is the 219 difficulty in recognizing organisms at the species level. Many ‘new’ species are cryptic, 220 resembling already known species, but with minor genetic differences which may create 221 considerably higher virulence when exposed to host plants. The extent of this problem 222 increases when the pathogens are endophytic or have an extended latent period before 223 causing symptoms (Sakalidis et al, 2013). 224 Certain pathogen invasion pathways can be directly identified. For example, good 225 evidence exists that Karnal bunt of wheat entered the United States across the land border 226 with Mexico, inadvertently transported in private automobiles, trucks, and railway cars rather 227 than with commercial cargo (Marshall et al, 2003). However because of the difficulty in 228 identifying pathogens and the characteristically long delay between pathogen arrival and 229 discovery, invasion pathways for many species can only be inferred rather than observed. 230 In the USA, Europe and China, the main pathway for plant pest and pathogen 231 introductions is by far imports of living plants, (Liebhold et al, 2012; Santini et al, 2013; Xu et 232 al, 2006). In Australia and New Zealand, where international trade in plants is more strictly 233 regulated, the arrival of pathogens is mainly linked to contamination of traded goods other 234 than live plants. 235 The ‘plants-for-planting’ pathway is difficult to control for various reasons. Horticulture is a 236 major global industry: in 2013, for example, 84,500 tonnes of live plants were imported into 237 Europe, compared with exports of 400,000 tonnes (Eurostat Comext 238 http://epp.eurostat.ec.europa.eu/newxtweb). Faced with such huge volumes, only a small 239 percentage of plants can realistically be inspected at ports of entry (Liebhold et al, 2012). 240 Moreover, markets in live plants, especially ornamentals, are constantly changing. Imported 241 
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species and geographical sources for obtaining a given species can change rapidly. This 242 problem exacerbates the risk of introducing new pests from different exotic locations. 243 
Conclusions 244 
Since pre-history, humans have dramatically changed their living environment, for example 245 by exploiting natural resources until depletion, or via movement and cultivation of plant 246 species outside their natural range. Agricultural and forestry practices frequently rely on non-247 indigenous plant species. This human-mediated globalization of plant ranges has steadily 248 increased throughout the history of human civilization. The trend for globalization has 249 consequences that reach beyond impacts on individual humans and their societies, also 250 including impacts on ecosystems. In many parts of the world, invasions of plant pests and 251 pathogens have transformed managed and natural areas, often with cascading effects on 252 ecosystem services (Lovett et al, 2016) as, for example, Phytophthora ramorum in UK, Ireland 253 and US.  254 This paper describes how historical developments in human civilization and geopolitics have 255 driven trends of increasing movement and impacts of plant pathogens. Even before the 256 modern era of globalization, technological developments and societal changes facilitated new 257 plant disease epidemics that adversely affected society and shaped social development. It is 258 also evident that during the modern era of globalization we are poised to continue that trend, 259 with potentially catastrophic effects on society and global ecosystems. 260 We argue here for closer integration of invasion biology with history and sociology, to 261 significantly advance understanding of the causes of biological invasions and to limit future 262 damage. Learning from this history it can be deduced that the solution to these increasing 263 impacts lies not in halting the trend of globalization, which is neither realistic nor necessarily 264 desirable, but to better capitalize on scientific knowledge. Implementation of scientifically-265 
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based policies will allow globalization to proceed while simultaneously minimizing movement 266 of plant pathogens, thus preventing further economic and ecological disasters. History is not 267 merely a list of dates and names of famous people, but, as Cicero claimed in De Oratore 268 “Historia vero testis temporum, lux veritatis, vita memoriae, magistra vitae, nuntia vetustatis…”. 269 In short ‘history is life’s teacher’. 270 
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Captions for figures 340 Figure 1. Migrations of modern Homo sapiens (Adapted by permission from Macmillan 341 Publishers Ltd: [Nature Genetics] (L. Luca Cavalli-Sforza, Marcus W. Feldman, 2003. The 342 application of molecular genetic approaches to the study of human evolution 33:266-275), 343 copyright 2003. 344 Figure 2. Trend of European agricultural imports per year (1980-2014) expressed in USD 345 (UNCTAD, 2014). In the box: World seaborne trade by type of cargo per year (1970-2011) 346 Plants fall into the dry cargo category (UNCTAD, 2014). 347 Figure 3. Trade of plants and plant parts among principle trading countries. For each country 348 flow widths are proportional to 2015 import and export values. Colours correspond to 349 exports from a single country, coded by the colour of the outer band. Imports are represented 350 by different colours flowing into each country (Commodity code 0602: Live trees, including 351 roots, cuttings, slips and mushroom spawn). Source UN Comtrade Database 352 http://comtrade.un.org/. 353  354 
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