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Abstract 

Signed languages are natural human languages using the visual-motor modality. 

Previous neuroimaging studies based on univariate activation analysis show that a 

widely overlapped cortical network is recruited regardless whether the sign language is 

comprehended (for signers) or not (for non-signers). Here we move beyond previous 

studies by examining whether the functional connectivity profiles and the underlying 

organizational structure of the overlapped neural network may differ between signers 

and non-signers when watching sign language. Using graph theoretical analysis (GTA) 

and fMRI, we compared the large-scale functional network organization in hearing 

signers with non-signers during the observation of sentences in Chinese Sign Language. 

We found that signed sentences elicited highly similar cortical activations in the two 

groups of participants, with slightly larger responses within the left frontal and left 

temporal gyrus in signers than in non-signers. Crucially, further GTA revealed 

substantial group differences in the topologies of this activation network. Globally, the 

network engaged by signers showed higher local efficiency (t(24) = 2.379, p = 0.026), 

small-worldness (t(24) = 2.6042, p = 0.016) and modularity (t(24)  = 3.513, p = 0.002), 

and exhibited different modular structures, compared to the network engaged by non-

signers. Locally, the left ventral pars opercularis served as a network hub in the signer 

group but not in the non-signer group. These findings suggest that, despite overlap in 

cortical activation, the neural substrates underlying sign language comprehension are 

distinguishable at the network level from those for the processing of gestural action.   
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1. Introduction  

Signed languages are natural human languages expressed through movements of hands, 

face and body. On the surface, signed languages look similar to non-linguistic 

communicative actions such as gestures and pantomimes. In contrast to gestural actions, 

signed languages have an intricate compositional structure identified at the levels of 

phonology, morphology, syntax and discourse (Emmorey, 2002; Tang, 2006; Valli & 

Lucas, 2000). Studying how sign language is processed in the brain could provide 

important insights into understanding to what extent language processing builds upon 

the general human action perception system, which encompasses a wide range of 

human actions including imitation, social intent, and human language (Corina & Knapp, 

2006; MacSweeney et al., 2008; Rizzolatti & Arbib, 1998).  

Based on univariate activation analyses of neuroimaging data, previous studies using 

MEG (Levanen et al., 2001), PET (Corina et al., 2007) or fMRI (Emmorey et al., 2010; 

MacSweeney et al., 2004, 2006; Newman et al., 2015) have revealed both extensive 

overlap and linguistic-specific cortical activations between sign language 

comprehension and gestural action observation. Overlaps in cortical activation are 

mainly observed in the superior and middle temporal cortex, the inferior frontal cortex, 

the superior/inferior parietal lobe, and the fusiform gyrus. For example, MacSweeney 

et al. (2004) compared neural correlates of viewing British sign language and a manual-

brachial code in deaf signers, hearing signers and hearing no-signers. A very high 
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similarity in brain activation relative to a low baseline (viewing the model at rest) 

between the two conditions was found regardless the hearing status or sign language 

knowledge of subjects. Studies comparing signers and non-signers viewing sign 

language have also revealed extensive overlap in cortical activation (Levanen et al., 

2001; MacSweeney et al., 2004, 2006). In this paradigm, as non-signers have no access 

to the linguistic meaning of signs, signs are likely to be processed in a similar way as 

non-linguistic gestural actions (Levanen et al., 2001; MacSweeney et al., 2004). 

Therefore, the differences between signers and non-signers can be considered to reflect 

the differences between sign language comprehension and gestural action observation 

(Levanen et al., 2001), meanwhile perceptual level discrepancies between language and 

non-linguistic stimuli are ideally controlled. These overlapped cortical activations are 

suggested to reflect the processing for visual motor sequences and communication 

intent that are involved in both sign language comprehension and gestural action 

observation. Beyond these shared neural correlates, sign-specific cortical activation 

was also revealed in previous studies (Corina et al., 2007; Emmorey et al., 2015; 

Newman et al., 2015), mostly at the left posterior perisylvian cortex. For example, 

Newman et al., (2015) found that the left inferior frontal gyrus (IFG) and the middle 

superior temporal gyrus (STS) in deaf native signers were more strongly activated by 

American sign language (ASL) than gestures expressing approximately the same 

content. In the same study, deaf signers also showed stronger activation for ASL than 

hearing non-signers in the anterior/middle STS bilaterally and in the left IFG. 
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While studies based on univariate activation analysis have delivered rich insights into 

the cortical localization for sign language comprehension versus gestural action 

perception, whether and how the two types of processing would differ at neural network 

level remain poorly understood. As accumulating evidence confirms that complex 

cognitive functions are supported by dynamic interactions and integrative processes 

across multiple distributed regions (Park and Friston 2013; van den Heuvel and Sporns 

2013), it is possible that the configurations of the neural network involved in the 

comprehension of sign language by signers is different from the one involved in the 

observation of sign language by non-signers, despite the overlap in cortical activation. 

Here we move beyond previous studies by examining the network configuration of 

neural circuitry involved in the comprehension of sign language by signers versus the 

observation of sign language by non-signers using fMRI and GTA, which provides 

insights into neural substrates underlying sign language comprehension versus gestural 

action perception. In GTA, brain networks are mathematically characterized as graphs, 

essentially comprising sets of nodes (brain regions, voxels or other neuronal elements) 

and edges (their interactions). The arrangement of nodes and edges defines the 

network’s topology (He & Evans, 2010; Martijn P. van den Heuvel & Olaf Sporns, 

2013). It is widely accepted that functional segregation and functional integration are 

the key organizational principles of brain network (Sporns, 2013). In GTA, functional 

segregation can be characterized by network local efficiency and modularity, and 

functional integration can be characterized by network global efficiency. The balance 

between functional segregation and functional integration is essential for the operation 
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of networks underlying cognitive functions, and it can be characterized by the graph 

property of small-worldness (Rubinov & Sporns, 2010). Furthermore, it is proposed 

that important integrative functions are enabled by a specific set of regions that are 

often referred to as network hubs, which are generally characterized by a high degree 

of connections with other nodes and a central placement in the network (van den Heuvel 

& Sporns, 2013).  

In the present study, we compared brain activities and functional organization of the 

activated network between a group of hearing signers (bimodal bilinguals proficient in 

Chinese Sign Language and spoken Chinese) and a matched group of hearing non-

signers (monolinguals proficient in spoken Chinese) during the perception of Chinese 

Sign Language (CSL). In the first step analysis, cortical activations that were elicited 

by sign language relative to a static model baseline condition were examined for the 

signer and non-signer groups. Based on prior literature (Corina et al., 2007; Levanen et 

al., 2001; MacSweeney et al., 2004, 2006), we expected that sign language would yield 

similar activations for the two groups in a widely distributed set of brain areas, 

including the occipital-parietal regions and regions within the perisylvian cortex, with 

differential activations in focal regions of the temporal and frontal cortices. In the 

second step analysis, we applied GTA to test whether the commonly activated network 

would be differentially organized in signers compared to non-signers. At global level, 

we examined network efficiency, modularity and small-worldness. At local level, we 

examined nodal degree, nodal efficiency and nodal betweenness. Through these 

measures, we comprehensively explored the functional segregation and functional 
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integration aspects of the network, and identified regions that playing a central role in 

the network. Considering that the CSL is linguistically meaningful for the signers, but 

linguistically meaningless for the non-signers, we expected that the network engaged 

by signers would present different topologies from that engaged by non-signers. We 

also performed two control analyses including the examination of the topological 

properties of the network in signers versus non-signers either during the baseline phase 

(in which no linguistic processing was involved) or during passive spoken Mandarin 

comprehension (in which common linguistic processing was engaged). The 

preprocessing strategy, nodes components and thresholds adopted were identical to the 

main analyses. 

2. Results 

2.1 Local activations  

Using conventional activation analysis, we observed highly similar cortical activations 

in signers and non-signers in response to the signed sentences (see Figure 2). Those 

activated regions included the inferior frontal gyrus, the inferior parietal, posterior 

temporal and occipital regions and the cerebellum in both hemisphere, as well as several 

sub-cortical regions including the putamen and thalamus. For the between group 

contrast, no region survived multiple comparison corrections (p < 0.05, FDR corrected). 

However, at a more lenient threshold of p < 0.005 without correction, we observed 

enhanced activation in focal areas within the left superior/middle temporal gyrus, left 
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precentral gyrus and the bilateral supplementary motor area for signer group than for 

the non-signer group (see table 1 in supplementary material).  

2.2 Network topologies 

2.2.1 Global network properties 

Networks consisting of regions that were activated to the same extent in the signer and 

the non-signer groups were subjected to graph theoretical analysis. In both groups, the 

networks displayed significant small-world (expressed by σ > 1)  and modular 

(expressed by z-score of modularity > 2.58) organization. There was no significant 

group difference in global network efficiency at any point of the threshold range (0.3 ≤

 T ≤ 0.6). However, the network engaged by signers exhibited significantly higher local 

efficiency (for 0.3 ≤ T ≤ 0.34 and 0.38 ≤ T ≤ 0.52), modularity (for 0.3 ≤ T ≤ 0.6) 

and small-worldness (for 0.3 ≤ T ≤ 0.6) than that engaged by non-signers. T-tests on 

the sparsity-integrated measures revealed similar results, with the network engaged by 

signers showing significantly higher local efficiency [∫ E(local)
0.6

0.3
, t(24) = 2.379, p = 

0.026, Cohen’s d = 0.933], modularity [ ∫ Q
0.6

0.3
, t(24)  = 3.513, p = 0.002, Cohen’s d 

=1.378] and small-worldness [∫ σ
0.6

0.3
, t(24) = 2.6042, p = 0.016, Cohen’s d = 1.022], while 

the network global efficiencies (∫ E(glob)
0.6

0.3
) did not differ between the two groups (t(24 ) 

= − 0.255, p = 0.801, Cohen’s d = 0.100). See Figure 3 for a summary of those findings. 

The results of permutation test were highly consistent with these derived from the t-

tests (see supplementary information). 
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2.2.2 Network modules 

The modularity analysis was further performed in group-level networks to determine 

the modular structures in signers and non-signers. Figure 4 (left) shows the module 

assignments over a range of thresholds. We identified a modular partition that showed 

the highest similarity with other modular partitions obtained across the thresholds as 

the representative modular structure of the network. In the signer group, module 

partitions obtained at thresholds ranging from 0.36 to 0.46 had identical nodal 

assignments, and showed the highest similarity (NMI = 0.84) with other modular 

partitions across the threshold range. This representative modular structure consisted of 

three modules. The first module was located in frontal and parietal cortices, including 

bilateral middle frontal gyrus, bilateral precentral gyrus, left supplementary motor area, 

bilateral inferior and superior parietal lobule, and supramarginal gyrus. The second 

module was composed of anatomically distributed regions, including bilateral inferior 

frontal gyrus, inferior and middle temporal regions, occipital regions, putamen, right 

thalamus and right cerebellum. The third module consisted of the bilateral pars 

triangularis in the inferior frontal gyrus and the left superior occipital gyrus. For the 

non-signer group, the representative modular structure was the partitions obtained at 

thresholds ranging from 0.48 to 0.60, with a NMI value of 0.84. This representative 

modular structure consisted of two modules that have very similar nodal assignment to 

the first two modules in the signer group. Figure 4 (right) shows the representative 

modular structures mapped onto the brain surface for the signer and non-signer groups. 
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2.2.3 Network hubs 

Based on the group-mean nodal degree, efficiency, and betweenness, we identified hubs 

in networks engaged by signers and non-signers separately. In the signer group, network 

hubs were located in the left middle temporal gyrus (MNI coordinates for the center: 

−24, −91, 13), the left superior occipital gyrus (MNI coordinates for the center: −24, 

−76, 37) and the left ventral pars opercularis (MNI coordinates for the center: −51, 11, 

4). In the non-signer group, the left middle temporal gyrus and the left superior occipital 

gyrus also served as hubs, and an additional hub was located in the right precentral 

gyrus (MNI coordinates for the center: 45, 5, 34). The hub regions are illustrated in 

Figure 4, highlighted in larger size. Figure 5 plots the node-specific values in efficiency, 

betweenness, and degree. For the convenience of visualization, raw scores for each 

nodal property were transformed into z scores. The z score was calculated as (nodei − 

nodem) / nodestd, where nodei was the degree (efficiency or betweenness) of node i, 

and nodem and nodestd  were the mean and standard deviation of degree (efficiency 

or betweenness) across all nodes within the network.  

2.2.4 Node-specific analysis 

When FDR correction for multiple comparisons was applied (p < 0.05), there was no 

node showing significant group differences in node-specific properties. We then 

performed a targeted analysis for the left ventral pars opercularis, which was identified 

as a hub in the signer group but not in the non-signer group in the above analysis. One-
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tailed t-test showed that the left ventral pars opercularis in the signer group presented 

significantly higher nodal betweenness (t(24) = 1.790, p = 0.043, Cohen’s d = 0.702) and 

a tendency of higher nodal degree (t(24) = 1.405, p = 0.086, Cohen’s d = 0.551) and 

higher nodal efficiency (t(24)  = 1.489, p = 0.075, Cohen’s d = 0.584) than that in the 

non-signer group. These results may suggest that, compared with the non-signer group, 

the left ventral pars opercularis in the signer group tend to have more connections with 

other regions in the network, and make a greater contribution to facilitating 

communication among other regions, but these post-hoc findings will need future 

replication.  

2.3 Results of control analyses 

During the baseline condition where no linguistic processing was involved, there was 

no significant group differences (p < 0.05, two-tailed t-test) in either network local 

efficiency, global efficiency, modularity, or small-worldness at any point of the pre-

selected sparsity thresholds. In addition, in the spoken Mandarin comprehension 

condition, where common linguistic processing was engaged, no significant group 

difference was found for the above network properties at any point of the pre-selected 

sparsity thresholds. The absence of between-group differences for the two control 

conditions indicates that the differences in network configuration between signers and 

non-signers when viewing signed sentences is generated by the different processing 

they engaged (linguistic processing versus gestural action perception). 
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2.4 Results of validation analyses 

Given that weighted matrix carries different information about network organization 

(Rubinov & Sporns, 2010), we re-performed GTA on weighted networks to assess the 

reliability of the main results based on binary networks. With one-tailed t-tests, we 

found that the network engaged by signers displayed significantly higher modularity 

(∫ Q,
0.6

0.3
 t(24) = 2.185, p = 0.019, Cohen’s d = 0.857), small-worldness (∫ σ

0.6

0.3
, t(24) = 2.386, 

p = 0.013, Cohen’s d = 0.936) and local efficiency (∫ E(local)
0.6

0.3
, t(24) = 1.906, p = 0.034, 

Cohen’s d = 0.748) than non-signers. However, we also found significantly higher 

global efficiencies (∫ E(glob)
0.6

0.3
 , t(24) = 1.946, p = 0.032, Cohen’s d = 0.763) in the 

network engaged by signers than non-signers, and this effect was not found in the main 

analyses. This finding may suggest that taking into account the strength of functional 

connectivity in GTA can improve the sensitivity of measurement.  

For the network constructed based on fewer time courses, similar results as the main 

analyses were obtained. The network engaged by signer group exhibited  significantly 

higher local efficiency [∫ E(local)
0.6

0.3
, t(24) = 2.838, p = 0.009, Cohen’s d = 1.113], 

modularity [ ∫ Q
0.6

0.3
, t(24)  = 4.316, p < 0.001, Cohen’s d = 1.693] and small-worldness 

[∫ σ
0.6

0.3
, t(24) = 4.176, p < 0.001, Cohen’s d = 1.217] than that engaged by non-signers, 

while the network global efficiencies(∫ E(glob)
0.6

0.3
) did not differ between the two groups 

(t(24 ) = 1.227, p = 0.232, Cohen’s d = 0.481). The hub analysis also yielded the same 

pattern as the main analyses, with the left ventral pars opercularis being a hub in the 
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signer group but not in the non-signer group. Together, these results demonstrated the 

reliability of our main findings. 

3. Discussion 

In this study, we investigated how the large-scale functional brain network is organized 

in hearing signers in contrast to hearing non-signers when viewing sign language. Using 

conventional activation analysis, we observed that the sign language elicited highly 

similar activation patterns in signers and non-signers, with focal differential activations 

within the left frontal and temporal regions. Next, GTA revealed that the overlapped 

activation network was differentially organized in the two groups. Specifically, at the 

global level, the network engaged by signers presented higher local efficiency, small-

worldness and modularity, and exhibited different modular structure as compared to the 

network engaged by non-signers. At the regional level, the left ventral pars opercularis 

served as a hub in the network engaged by the signer group, but not in the non-signer 

group. Implications of these findings are discussed below. 

3.1 Similar cortical activations in signers and non-signers  

The activation analysis revealed highly similar activation patterns in signers and non-

signers in response to sign language relative to the baseline. Regions commonly 

activated in the two groups included the inferior parietal, posterior temporal, occipital 

regions and the cerebellum, which are implicated in visual-spatial encoding of moving 

stimuli. More interestingly, a part of the classical language areas including the left 



14 

 

inferior opercularis and middle temporal gyrus were also activated in both groups. 

These findings are in line with previous studies (Andric et al., 2013; Courtin et al., 2011; 

Levanen et al., 2001; Xu et al., 2009), suggesting anatomically shared neural substrates 

for sign language comprehension and gestural action perception and supporting a tight 

link between the language and action systems (Arbib, 2005). With a lenient threshold, 

we observed that focal regions within the perisylvian cortex as well as the bilateral 

supplementary motor area were more strongly activated in signers than in non-signers. 

These results are largely consistent with previous findings (Levanen et al., 2001; 

Newman et al., 2015), though the between-group effect is weaker in our study. This 

weaker between-group effect might be attributed to the fact that in the present study 

hearing non-native signers (bimodal bilinguals) are recruited. Native deaf signers 

recruited in previous studies have sign language as their dominant language and are 

more fluent in sign language than bimodal bilinguals, Thus, native deaf signers may 

have a much stronger activation network and differ more greatly from non-signers than 

that of bimodal bilinguals. Another possible reason for stronger between-group 

activation difference revealed in previous studies than in this study is that, high 

baselines (e.g. backward-played video stimuli in Newman et al., 2015) were adopted in 

previous studies, which might be more sensitive to detect focal differential brain 

activations associated linguistic processing. In contrast, in the current study, only a low-

level baseline was adopted and the activation pattern due to biological motion 

perception or other non-linguistic aspects of the stimuli was not controlled. Therefore, 
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the effects of linguistic processing might be small compared to the overall strength of 

activation, and could be masked in particular in a between-subjects design.  

3.2 Different network topology between signers and non-signers 

While sign language elicited highly similar cortical activations in signers and non-

signers, these activated regions were organized differently. The functional network 

consisting of the commonly activated regions presented higher small-worldness and 

modularity in signers than in non-signers. Crucially, both small-world and modularity 

topologies are thought to reflect optimal network configuration (Pan and Sinha 2007, 

Rubinov and Sporns 2010). The small-world topology features higher local clustering 

coefficient than random networks, yet comparable characteristic path length as random 

networks, reflecting an optimal balance between functional segregation and integration 

(Rubinov & Sporns, 2010). The modularity topology is characterized by the presence 

of intensive intramodular connections and sparse intermodular connections. Such a 

configuration allows for efficient local processing while reducing interdependence of 

modules, which leads to enhanced robustness and specificity (Bassett & Gazzaniga, 

2011). No previous study has established the significance of small-worldness or 

modularity property of functional brain network for linguistic processing compared 

with other cognitive processes. Nonetheless, evidence from other domains shows that 

a brain network with higher small-worldness and modularity is associated with 

cognitive advantages. For example, greater network small-worldness and modularity 

are associated with better short-term memory capacity (Stevens et al., 2012). There has 
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also been evidence for aging-related and disease-related decreases in network small-

worldness and modularity (He et al., 2009; Onoda & Yamaguchi, 2013). In the context 

of this study, we assume that the signed sentences evoke automatic linguistic operations 

in the signer group, such as to unify the movements of hands, faces and other parts of 

body into larger units and to map them onto lexical and syntactic representations 

according to grammatical rules. These computations may demand a high level of both 

local specificity and global integration in the brain network of signers.  

Yet, more investigation is required to identify how different components of linguistic 

processing produce specific network configuration. The different network topology in 

the signer group compared to the non-signer group, together with their shared cortical 

activation, supports the idea that high-level cognitive systems could emerge from a 

fixed anatomy via a reconfiguration of its connections (Park & Friston, 2013). Whether 

changes in functional connectivity in the brain of signers are preceded by changes in 

structural connectivity remains an open question.  

3.3 A unique module in signers and the modules shared between signers and non-

signers  

Based on the group-level modular analysis, we observed two modules (sub-networks) 

that were similar in the networks engaged by signers and non-signers. The first module 

was consisting of the bilateral middle frontal gyrus, bilateral precentral gyrus, left 

supplementary motor area, bilateral inferior and superior parietal lobule, and 

supramarginal gyrus. This sub-network corresponds well to the frontal-parietal mirror 
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neuron system (Molnar-Szakacs et al., 2006; Rizzolatti & Craighero, 2004) and is 

probably involved in the representation of complex action sequences. Another module 

was composed of anatomically distributed regions, including the bilateral inferior 

frontal gyrus, inferior and middle temporal regions, occipital regions, putamen, right 

thalamus and right cerebellum. The role of this module is less clear. The inferior frontal 

gyrus, putamen, and cerebellum have been implicated in spoken language production 

(Price, 2012), while inferior and middle temporal regions are related to meaning 

processing (Price, 2012). The presence of this module may reflect the process of trying 

to derive the meaning in the sign language stimuli (rather than actually finding the 

correct meaning) and to translate signs into spoken words.  

We further observed a unique module in the network engaged by signers, which had 

constant nodal assignment across the sparsity thresholds but not presented in the non-

signer group. This module consisted of the bilateral pars triangularis, the left dorsal 

opercular of the inferior frontal gyrus, and the left superior occipital gyrus. The bilateral 

pars triangularis and dorsal opercular regions have long been revealed to play a crucial 

role in lexicosemantic integration (Price, 2012) and syntactic processing (Caplan, 2001; 

Caplan et al., 2000). The left superior occipital gyrus is usually engaged in tasks 

involving the process of visual motion (Emmorey et al., 2010; Sadato et al., 2005). The 

presence of this unique module in the signer group may highlights the interaction 

between high-level linguistic areas and visual-motion perception area for sign language 

comprehension.  
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To summarize, the presence of similar functional modules may be related to visual-

motor representation of signs and the processing for communicative intention, which 

are shared by sign language comprehension and gestural action observation. The 

presence of the unique module may be involved in lexicosemantic integration and 

syntactic processing, which are specific to sign language comprehension. 

3.4 Differential role of the left ventral pars opercularis for signers and non-signers 

The left ventral pars opercularis was identified as a hub in the network engaged by 

signers but a periphery node in the network of non-signers. In graph theory, hubs are 

proposed to play a crucial role in integrating information and coordinating the 

communication across different subsystems (van den Heuvel & Sporns, 2013). Lesions 

to hub nodes could significantly disrupt modularity structure (van den Heuvel & Sporns, 

2013), reduce network efficiency (Hwang et al., 2013), and have pronounced effects on 

behavioral performance (Liu et al., 2014; Merkley et al., 2013; Pandit et al., 2013). The 

dissociable role of the left ventral pars opercularis for language and gestural action 

processing revealed by GTA is in concordance with neuropsychological studies 

showing that patients with lesion to the Broca’s area suffer language loss but preserve 

action function (Corina et al., 1992; Goschke et al., 2001; Kean, 1977), though the exact 

locations between our study and the previous ones may differ. Two recent studies 

applying GTA explored semantic networks of spoken language and identified the left 

triangular of the inferior frontal gyrus as one of their network hubs (Vandenberghe et 

al., 2013; Xu et al., 2016). However, since the left ventral pars opercularis was not 
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included in their analyses, it remains unknown about whether this region plays a similar 

role for sign and spoken languages. The homogeneity and heterogeneity between the 

functional networks underlying sign language and spoken language should be further 

investigated. It is worth noting that, unlike the left ventral pars opercularis, the left 

dorsal pars opercularis of the inferior frontal gyrus did not show significant group 

differences in nodal degree or nodal efficiency. This region displayed relatively high 

nodal degree, efficiency and betweenness in the networks of both groups (see Fig. 5), 

suggesting that it might be equally important for sign language and gestural action 

processing. The dissociable roles of left ventral pars opercularis and dorsal pars 

opercularis in sign language and gestural action processing provides novel evidence 

supporting the functional segregation within the left pars opercularis of the inferior 

frontal gyrus (Fedorenko et al., 2012; Molnar-Szakacs et al., 2005). 

3.5 Limitations 

Several limitations of this study should be noted. First, participants recruited in this 

study are hearing bimodal bilinguals. While the recruitment of bimodal bilinguals 

allows us to match the hearing status as well as other factors such as the level of 

education and native language background between signers and non-signers, 

bilingualism per se could introduce potential confounding effect on our results. Indeed, 

previous studies have shown that second language experience could produce changes 

in brain functional connectivity (Li et al., 2015; Zou et al., 2012), though neural 

plasticity expressed at the complex network level is still undetermined. Thus, it is 

javascript:void(0);
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possible that the changes in network configuration we observed in the signer group 

relative to the non-signer group are joint effects of linguistic processing and neural 

plasticity associated with bilingualism. However, considering that signers and non-

signers did not differ in network topologies either when engaging no linguistic 

processing (the baseline condition), or engaging common linguistic processing (the 

condition of spoken Mandarin comprehension), we infer that the between-group 

differences revealed in the main analysis is dominated by the linguistic effect of sign 

comprehension versus gestural action perception. Nevertheless, the addition of a 

bilingual control group that is naive to signing, and the addition of non-hearing 

monolingual signers, are required to tease apart the effect of bilingualism from 

linguistic effect. Secondly, the surrogate group studied reported that they were aware 

that the videos of signing contained information and that they attempted to extract 

information while viewing signs. This would suggest that both signer and non-signer 

groups were engaging in linguistic processes. Therefore, the differences in network 

topology between groups may reflect the degree of linguistic processing, rather than 

pure linguistic versus non-linguistic processing. Besides, since both groups were trying 

to comprehend signing, but at different skill levels, the between-group differences in 

network topology might also reflect effort-related effects. Third, by applying the 

conjunction analysis to define the network nodes, brain regions with differential 

activation were excluded priorly. While guaranteeing that the nodes were unbiasedly 

chosen for signers and non-signers, this approach risks missing regions which might 

carry important information differentiating networks subserving the processing of sign-
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language versus gestural observation. Richer information will be obtained by including 

a more complete set of relevant regions into the network analysis. Finally, we removed 

weak, spurious connections at individual level, and set the number of network nodes 

and connection density identical across all subjects. While this approach can eliminate 

the effect of network size and density, it may lead to a modification of the network by 

ignoring significant connections (Van Wijk et al., 2010). Further study adopting a 

different thresholding strategy is needed to validate our findings. 

 

4. Conclusions 

The present study revealed that hearing signers and non-signers presented similar 

cortical activations when viewing sign language. However, the commonly activated 

network was differently organized in the two groups. Specifically, the network engaged 

by signers displayed a higher degree of small-worldness and modularity than that of 

non-signers, with the left ventral pars opercularis playing a central role in the network. 

Our study suggests that while a shared anatomical network is engaged by 

comprehension of sign language and observation of gestural action, this network is 

differently configured for the two types of processing. Our study also shows that GTA 

can provide an important complementary perspective to the activation analysis on the 

neural basis underlying cognition. 
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5. Experimental Procedure 

5.1 Participants 

Fourteen hearing signers (3 males, aged 33 – 65 years old, mean age = 49 years) and 

fifteen hearing non-signers (3 males, aged 31– 67 years old, mean age = 48 years) took 

part in the experiment. The signers were spoken-sign bimodal bilinguals who taught 

CSL at schools for the deaf. They acquired CSL, on average, at the age of 19, and they 

were highly proficient in sign language. They use CSL for at least 3.3 hours each day 

and have a mean CSL experience of 30 years. In addition, a self-rating scale of 1 to 5 

was administered to assess sign language proficiency, with 5 signifying highly 

proficient. The mean scores of the hearing signer group were 4.5 (standard deviation = 

0.52). The non-signer group was monolingual speakers who had no knowledge of a 

sign language. They were administrative staff of Beijing Normal University. Both 

groups acquired Mandarin as their native language. The two groups were matched in 

age (t(27) = 0.204, p = 0.84), and education level (t(27) = 0.144, p = 0.89). No participants 

reported history of neurological or psychiatric disorders. 

5.2 Stimuli and experimental design 

Twenty short declarative sentences produced by a deaf native CSL signer were used in 

this study (see Figure 1 and supplementary material). Hand movement and facial 

articulations required by CSL were involved in these signed sentences. There were four 

task blocks alternating with four baseline blocks, each block lasting about 30 seconds. 
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During each task block, a silent video of five signed sentences were presented. 

Participants were told to watch and comprehend these signed sentences, and no explicit 

response was required. During the baseline blocks, videos showing the same CSL 

model standing still were presented. Note that using such a low-level baseline can avoid 

“washing out” domain-general regions and regions supporting sensory-perception. 

Those regions might constitute a periphery of language network (Fedorenko & 

Thompson-Schill, 2014). The presentation of experimental stimuli was fixed across 

participants. The complete scanning session included another two experiments which 

involves passive spoken language listening and passive written sentence viewing. 

These two experiments were not reported in this study. After the scanning session, 

participants were given an unexpected recognition test, where they were asked to 

indicate how familiar a signed sentence was on a 4-point scale, with 1 as definitely new 

and 4 as definitely old. Our analysis showed the signer group scored significantly higher 

than the non-signer group (M(signer) = 2.85, SD = 1.18; M (non-signer) = 1.68, SD =1.12; p 

< 0.05).  

To gain insights into the mental processes in hearing non-signers when viewing sign 

language, we conducted one additional post-hoc experiment. A new group of hearing 

non-signers (including 10 college students and 4 people aged above 50 years) were 

recruited to view the same videos as used in the above experiment, and then we carried 

out a short interview about their experience viewing the sign language videos. These 

participants reported that their attention was primarily focused on the movement of 

hands and secondly the movement of lip of the signer. They thought that the gestures 
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in the video were communicative rather than meaningless. They attempted to extract 

the meaning conveyed by the signer but failed. Given that the reports were highly 

consistent across the 14 participants, we assumed that similar mental processes could 

be involved for those participants in the fMRI experiment.  

5.3 Image acquisition 

Scans were acquired with a 3T Siemens Trio Scanner at the MRI Center of the Beijing 

Normal University. For functional scans, a gradient echo planar imaging (EPI) sequence 

was applied with the following parameters: time repetition = 2000 ms, time echo = 30 

ms, flip angle = 90°, FOV = 200 mm, matrix size = 64×64, 32 interleaved slices per 

volume and slice thickness = 4.8 mm, and voxel size = 3.12×3.12×4.8 mm. Parameters 

for anatomical images were: MPRAGE sequence, time repetition = 2530 ms, time echo 

= 3.39 ms, flip = 7°, FOV = 256 mm, scan order = interleaved, matrix size = 256×256, 

slice thickness = 1.33 mm, and voxel size = 1.0×1.0×1.33 mm. 

5.4 Image preprocessing 

Image preprocessing was conducted using SPM8 (statistical parametric mapping) 

(www.fil.ion.ucl.ac.uk/spm/). First, slice-timing correction was performed to correct for 

varied sampling time of slices, with the middle slice in time being used as a reference 

slice. Second, all functional images were spatially realigned and co-registered to their 

corresponding anatomical images. The resultant images were then spatially normalized 

to Montreal Neurological Institute (MNI) space. After normalization, all images were 
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resampled into 3×3×3 mm voxel size, and were further spatially smoothed using a 

Gaussian kernel with 8 mm full-width at half maximum (FWHM). The dataset of one 

non-signer and one signer were deleted for excessive head motion (> 3 mm or 3 degree).  

5.5 Activation analysis 

An activation analysis was performed to locate cortical regions that were engaged when 

signers and non-signers viewed the signed sentences. The effect of task versus baseline 

was first assessed for individual participants, using a general linear model (GLM) by 

convolving the design matrix with the canonical hemodynamic response function, with 

six motion parameters regressed out. Next, a second level analysis was carried out to 

assess the group mean of brain activation. A one-sample t-test was conducted for the 

signer group and non-signer group separately to identify regions significantly activated 

in the CSL task relative to baseline. Then a two-sample t-test was used to examine to 

what extent the two groups differed in cortical activations.  

5.6 Graph theoretical analysis 

5.6.1 Node definition  

To avoid potential bias caused by group differences in regional activation, we confined 

the network node definition to brain regions that showed comparable activations 

between the signers and non-signers. For this purpose, we performed a conjunction 

analyses for the effect of task relative to baseline in signers and non-signers using the 

SPM8, with the “conjunction null hypothesis”. This approach identified cortical regions 
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that were activated in both groups and excluded regions for which activation differed 

significantly between the two groups (Price & Friston, 1997). For the conjunction 

analysis, we applied a relatively lenient threshold, with p < 0.005 at voxel level 

combined with a cluster size of > 20 voxels. Then, local maxima that were located at 

least 15 mm apart from each other were extracted from the conjunction map, and 

spheres with a radius of 5 mm centered on each local maxima were drawn 

(Vandenberghe et al., 2013). We thus identified 33 regions (nodes) of interest (see Table 

1). 

5.6.2 Network construction  

To calculate functional connectivity, three additional processes were performed on the 

pre-processed datasets: (1) high-pass filtering with a cutoff of 1/128 Hz; (2) removal of 

linear trends; and (3) regression to remove potential sources of head motion. Mean 

nodal BOLD time series from the task blocks were extracted (shifting 6 seconds to 

account for the hemodynamic lag) (Aguirre et al., 1998). The time series in 

discontinuous task blocks were normalized within blocks, with a mean of zero and a 

deviation of 1, and were then concatenated (Ekman et al., 2012), yielding a total of 57 

time points. While concatenating data from different blocks could cause discontinuities 

in the time series, a previous study on the “resting state” functional connectivity 

suggests that the connectivity pattern obtained from concatenated data are similar with 

that of continuous data (Fair et al., 2007). For each participant, Pearson’s correlation 

coefficients were calculated for every possible pair of time series. The resultant 
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correlation matrices were thresholded to generate binary brain graphs, using a set of 

sparsity thresholds ranging from 0.3 to 0.6 with a step of 0.02 (0.3 ≤ T ≤ 0.6), where 

sparsity is defined as the proportion of actual number of edges to the maximum possible 

number of edges in a network. The lowest threshold (T = 0.3) was determined to ensure 

that the resultant networks were not severely fragmented: on average across all 

participants, 98.48% of the nodes in the network were connected with other nodes by 

direct or indirect paths. The highest threshold (T = 0.6) was set to remove weak 

connections: for each participant, all possible connections in the correlation matrix were 

subjected to a t-test, and only connections that were significantly stronger than zero (p 

< 0.05) were retained (Liang et al., 2015). We then computed the network sparsity of 

each participant and set the mean of network sparsity across all participants as the 

highest threshold. As most graph theoretic measure are contingent on the number of 

nodes and connections of a graph, we set an equal number of nodes and sparsity 

between signers and non-signers to make their network topologies comparable (Fornito 

et al., 2013) 

5.6.3 Network measures 

The graph theoretical analysis was performed using the GRETNA toolbox (Graph 

theoretical network analysis: http://www.nitrc.org/projects/gretna) (Wang et al., 2015). 

For each participant, we calculated graph properties characterizing the global-level 

network organization, including global and local efficiency, small-worldness, and 

http://www.nitrc.org/projects/gretna/
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modularity. We also examined the graph properties of each region (node), including 

nodal degree, nodal betweenness and nodal efficiency. 

Global network properties 

Global network efficiency (Eglob): the global network efficiency measures how 

efficiently information transmits across the global network, which is computed as 

Eglob(G) =
1

N(N − 1)
∑

1

dij
i≠j∈G

 

 

 

(1) 

Where N is the total number of nodes in network G, and dij is the shortest path length 

between node i and node j (Latora & Marchiori, 2001). 

Local network efficiency (Eloc): local network efficiency shows how efficient the 

communication is among the neighbors of each node. In a network with high local 

efficiency, nodes tend to cluster together to form connected local structures. Local 

efficiency is computed as 

Eloc(G) =
1

N
∑ Eglob

i∈G

(Gi) 

 

 

Where Gi is the subgraphs (neighbors) of node i, Eglob (G i ) is the global efficiency of  

G i (Latora & Marchiori, 2001). 

Small-worldness (σ): Small-world networks are characterized by higher local clustering 

coefficient than random networks, yet comparable characteristic path length as random 

networks (Watts & Strogatz, 1998). The small-worldness of a network can be measured 

as: 

σ =
C/Crand

L/Lrand
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Where C and C rand are the clustering coefficients, and L and Lrand are the characteristic 

path lengths of the tested and the random networks respectively. In this study, 1000 

equivalent random graphs with the same number of nodes and edges and the same 

degree distribution as the real network were sampled. A network with σ > 1  is 

generally accepted as ‘small-world’ (Sporns & Honey, 2006). 

Modularity (Q): Modularity quantifies the degree to which a network can be partitioned 

into densely connected subgroups, with only sparse connections between subgroups. 

Unlike most other network measures, modularity is typically assessed with 

optimization algorithms, rather than with exact computations (Danon et al., 2005; 

Rubinov & Sporns, 2010). Here, we used the modified greedy optimization algorithm 

to identify modules in the functional network that optimize the modularity value 

(Clauset et al., 2004; Danon et al., 2006; Guimera & Sales-Pardo, 2006; Newman & 

Girvan, 2004). For a given partition p, the modularity is calculated as: 

Q(p) = ∑  [ 
ls

L

N

s=1

− (
ds

2L
)2] 

 

(4) 

Where N is the number of modules, L is the sum of connections in the network, ls is 

the number of connections in module s, and ds is the sum of the node degrees in 

module s (Chen et al., 2008). To test whether the observed modular structure arises 

from random interactions, we calculated the z score of the maximum modularity as 

(Qreal − Qrand) / Qstd, where Qreal is the maximum modularity of the brain network, and 

Qrand and Qstd are the mean and the standard deviations of the maximum modularity of 
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1000 randomized networks (Chen et al., 2008). The randomized networks had the same 

number of nodes and edges and the same degree distribution as the real network. 

The modularity analysis was first conducted for each individual network. Considering 

the between-participants variance in module assignment and module numbers, we also 

conducted the modularity analysis at the group level to determine modular structures in 

the signer and the non-signer groups (Liang et al., 2015). To obtain the group-level 

brain networks, we first averaged all connectivity matrices across participants in each 

group and then binarized the group-mean matrices using the pre-selected sparsity 

thresholds (0.3 ≤ T ≤ 0.6). After the group-level modularity analysis, we calculated the 

similarity between modular partitions across thresholds using normalized mutual 

information (NMI) (Danon et al., 2005). The value of NMI ranges from 0 to 1, where 0 

signifies that the two modular partitions are totally independent, and 1 signifies that 

they are identical. For the modular partition obtained at each threshold, we computed 

the averaged NMI of this modular partition with any other modular partitions obtained 

across the threshold range. Then, the modular partition with the highest NMI was 

defined as the representative modular structure of the network.  

Regional nodal properties 

Nodal degree (𝑑𝑖): for a network G with N nodes, the degree for node i is defined as 

the sum of the edges connected to it. 

𝑑𝑖 = ∑ 𝑑𝑖𝑗

𝑁

𝑗∈𝑁
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Nodal efficiency (ei): Nodal efficiency is defined as the shortest path length between a 

given node i and other nodes in the network. 

𝑒𝑖 =
1

𝑁 − 1
∑

1

𝑑𝑖𝑗
𝑖≠𝑗

 

Nodal betweenness (𝑏𝑖): Nodal betweenness is defined as the fraction of the shortest 

paths between any pair of nodes that travel through the node. 

𝑏𝑖 =
1

(𝑛 − 1)(𝑛 − 2)
∑

𝑔𝑗𝑘(𝑖)

𝑔𝑗𝑘
𝑘,𝑗,𝑖∈𝑁,𝑘≠𝑗≠𝑖

 

Where gjk is the number of shortest paths between node j and k, and gjk(i) is the number 

of shortest paths between j and k that pass through i. A higher nodal betweenness 

indicates greater contribution to facilitating the communication between other regions. 

Identification of hubs 

Efficient communication and integration across distributed regions are enabled by a set 

of specific regions that serve as network hubs (Martijn P van den Heuvel & Olaf Sporns, 

2013). Typically, network hubs are characterized by high degree, efficiency and 

betweenness (Rubinov & Sporns, 2010). In this study, hubs were identified by the 

following procedures outlined in (van den Heuvel et al., 2010). First, node-specific 

degree, efficiency and betweenness were calculated for each participant, and then these 

values were averaged across all participants in each group. Next, all nodes were sorted 

according to their values in the group-mean nodal degree, nodal efficiency and nodal 

betweenness, respectively. Finally, nodes that fulfilled two of the following criteria 

were identified as hubs: (1) those belonging to the top 10% of nodes showing the 

highest degree; (2) those belonging to the top 10% of nodes showing the highest 
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betweenness; or (3) those belonging to the top 10% of nodes showing the highest global 

efficiency. 

5.6.4 Statistical analysis 

We tested the null hypothesis of no difference between signers and non-signers in any 

measures of global or regional network properties. The global-level network properties 

including local efficiency, global efficiency, small-worldness and modularity were first 

tested over a range of sparsity values (0.3 ≤  T ≤ 0.6) (Fornito et al., 2013). Two-

sample t-tests (two-tailed, p < 0.05) were applied to examine group differences in these 

sparsity-integrated measures, and Cohen’s d (Cohen, 1988) was calculated to measure 

effect size. Since tests conducted at neighboring sparsity are strongly dependent, we did 

not perform corrections for multiple tests at individual sparsity points (Fornito et al., 

2013). Instead, integrated network measures over the sparsity range were estimated by 

calculating the area under the curve (AUC) and statistical inferences were further 

performed on the AUC. The AUC provides a summary measure that is independent of 

a single threshold, and avoids the need for multiple comparisons correction (Fornito et 

al., 2013). Given the exploratory nature of GTA, we also applied a nonparametric 

permutation test (N=1000) to assess the statistical significance of between-group 

differences in global network properties (see supplementary material for details).  

For node-specific analysis, statistical inferences were performed only on the sparsity-

integrated measures, as ∫ di
0.6

0.3
 for nodal degree, ∫ bi

0.6

0.3
 for nodal betweenness, and 
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∫ ei
0.6

0.3
 for nodal efficiency. A significant level of p < 0.05 (FDR corrected for multiple 

tests performed on 33 nodes) were used.  

5.7 Control analyses  

Two control analyses were performed to test the causal link between sign language 

processing and brain network organization. First, we examined the topological 

properties of the network in signers versus non-signers during the baseline phase, in 

which no linguistic processing was involved. Second, we examined the topological 

properties of the network in the same participant groups during passive spoken 

Mandarin comprehension, in which common linguistic processing was engaged. The 

preprocessing strategy, nodes components and thresholds adopted were identical to the 

main analyses. Then we tested group differences in overall graph properties including 

local network efficiency, global network efficiency, modularity, and small-worldness.  

5.8 Validation analysis 

We performed the validation analysis on weighted networks to assess the reliability of 

our main analysis. In this approach, the individual connectivity matrices were 

thresholded by the same set of sparsity thresholds as in the main analyses (0.3 ≤ T ≤

 0.6), and values below the threshold were set to zero, whereas values above the 

threshold kept their original values.  

A previous study suggests that scan length can have an effect on the estimate of resting-

state functional connectivity (Birn et al., 2013). However, no study has examined the 
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vulnerability of task-state functional connectivity to scan length. In order to estimate 

the effect of scan length on our main results, we computed the functional connectivity 

matrices using the scans from the first three task blocks (45 volumes, with the last task 

block removed) and re-performed the network analysis.    
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8.Table 

Table 1. Regions of interest used to define nodes in the network analysis, and their 

corresponding module assignment. 

  MNI coordinate 
Module Assignment 

Signer Non-signer 

Occipital_Mid_L -24，-91，13 Module 1 Module 1 

Fusiform_L -42，-55，-17 Module 1 Module 1 

Cerebelum_6_R 21，-67，-20 Module 1 Module 1 

Occipital_Mid_L -33，-88，-2 Module 1 Module 1 

Temporal_Mid_R 48，-73，4 Module 1 Module 1 

Temporal_Sup_L -54，-1，-8 Module 1 Module 1 

Temporal_Mid_L -45，-67，10 Module 1 Module 1 

Putamen_L -21，2，10 Module 1 Module 1 

Putamen_R 21，5，10 Module 1 Module 1 

Thalamus_R 18，-16，7 Module 1 Module 1 

Temporal_Inf_R 48，-58，-8 Module 1 Module 1 

Temporal_Mid_R 57，-58，7 Module 1 Module 1 

Occipital_Inf_L -39，-73，-11 Module 1 Module 1 
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Temporal_Sup_L -57，-46，16 Module 1 Module 1 

Frontal_Inf_Tri_R 33，29，1 Module 1 Module 1 

Frontal_Inf_Tri_R 51，20，1 Module 1 Module 1 

vFrontal_Inf_Oper_L -51，11，4 Module 1 Module 1 

Parietal_Inf_R 33，-43，52 Module 2 Module 2 

Precentral_R 45，5，34 Module 2 Module 2 

Frontal_Mid_R 42，-4，52 Module 2 Module 2 

Frontal_Mid_L -24，-4，49 Module 2 Module 2 

Precentral_L -39，-4，55 Module 2 Module 2 

Supp_Motor_Area_L -9，11，52 Module 2 Module 2 

Supp_Motor_Area_L -12，2，64 Module 2 Module 2 

Precentral_L -18，-16，70 Module 2 Module 2 

Parietal_Inf_L -36，-43，49 Module 2 Module 2 

Parietal_Sup_L -24，-61，55 Module 2 Module 2 

SupraMarginal_L -57，-22，34 Module 2 Module 2 

dFrontal_Inf_Oper_L -48，8，25 Module 3 Module 2 

Frontal_Inf_Tri_R 51，14，22 Module 3 Module 2 

Frontal_Inf_Tri_L -51，26，10 Module 3 Module 1 

Frontal_Inf_Tri_L -39，29，19 Module 3 Module 2 

Occipital_Sup_L -24，-76，37 Module 3 Module 2 
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9. Figure captions 

 

Figure 1. Stimuli and experimental design. Both hearing signers and non-signers 

viewed silent videos showing a native deaf signer producing signed sentences during 

the task phase and standing still during the baseline phase. No explicit response was 

required. 

 

 

 

Figure 2. Cortical activations in the hearing signer group and the non-signer group 

during sign language observation relative to the baseline. Threshold: p < 0.05, FDR 

corrected.  
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Figure 3. Between-group comparisons in graph properties including local efficiency 

(A), global efficiency (B), modularity (C) and small-worldness (D). The left column: 

results for the graph properties that were obtained over a range of thresholds (0.3 - 0.6). 

Right column: results for the sparsity-integrated graph properties.  
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Figure 4. Group–wise modular structure. Left: module assignments in signer and non-

signer groups over a set of sparsity thresholds (0.3 - 0.6). Right: representative modules 

mapped onto the brain surface. The representative modules for signer and non-signer 

groups corresponded to the partitions obtained at the sparsity thresholds ranging from 

0.36 to 0.46 and ranging from 0.48 to 0.6 for each group, respectively. Note: nodes with 

larger size signify network hubs. The numeric coding for modules is in agreement with 

that in table 1. The 3D surface visualizations of the results were implemented using the 

BrainNet Viewer (www.nitrc.org/projects/bnv) (Xia, Wang, & He, 2013). 

http://www.nitrc.org/projects/bnv
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Figure 5. Node-specific values in efficiency, degree and betweenness. The nodes were 

sorted by efficiency in descending order for each group. The top three nodes in each 

plot were regions identified as hubs. For the convenience of visualization, the raw 

values for each nodal property were transformed into z scores. 

 

 

 


