
Insertion Heuristics for Central Cycle Problems

John D. Lamb
University of Aberdeen Business School, University of Aberdeen, AB24 3QY, UK

A central cycle problem requires a cycle that is
reasonably short and keeps a the maximum dis-
tance from any node not on the cycle to its near-
est node on the cycle reasonably low. The objec-
tive may be to minimise maximum distance or cy-
cle length and the solution may have further con-
straints. Most classes of central cycle problems
are NP-hard. This paper investigates insertion
heuristics for central cycle problems, drawing on
insertion heuristics for p-centres [7] and travel-
ling salesman tours [21]. It shows that a modified
farthest insertion heuristic has reasonable worst-
case bounds for a particular class of problem.
It then compares the performance of two far-
thest insertion heuristics against each other and
against bounds (where available) obtained by in-
teger programming on a range of problems from
TSPLIB [20]. It shows that a simple farthest in-
sertion heuristic is fast, performs well in practice
and so is likely to be useful for a general prob-
lems or as the basis for more complex heuristics
for specific problems.

keywords: tour, cycle, centre, eccentricity, cycle-
length

1. INTRODUCTION

In a central location problem we wish to locate a fa-
cility or service on a network so that the maximum
distance to it from any node is reasonably low. The
facility or service might be a fixed point (represented
by a single node) or might be an extensive facility
[16] represented by a subgraph with some specified
properties. One interesting class of problems are
those where the subgraph is a circuit or subtour. Ap-
plications include the design of mobile services such
as libraries, post offices and fishmongers, the design
of bus or train routes and touring problems for the-
atre productions. Such problems may contain con-
straints on the length of the circuit or subtour, the
number of nodes covered by it or the maximum or

average distance to it from other nodes. For exam-
ple, a mobile service typically has limits on the num-
ber of stops (nodes) and the total distance travelled
(tour length). Additionally the distance travelled to
get to the service should be kept reasonably small.
Often we can express problems like these as optimi-
sation problems and there are good integer program-
ming formulations when the subgraph is a circuit
and the objective is to minimise either the average
distance to the subgraph (cycle median problem [13])
or the maximum distance to the subgraph (cycle cen-
tre problem [8]). Problems like these are generally
NP-hard and so we want a simple method that can
be applied to a range of problems finding a solution
that meets the given constraints while giving good
performance on any variables that we might wish to
be small.

This paper restricts its attention to problems
where we seek a central (as opposed to median) cir-
cuit or subtour, and looks for simple fast heuristics
that should perform well on a range of problems. In
particular, it looks at insertion heuristics in which the
circuit or subtour is built up by inserting one node
at a time. The motivation is that such heuristics are
simple, fast and have been studied for two problems
that can be thought of as special cases of the prob-
lems we consider. The first of these is the travelling
salesman problem. This is a special case in which
we require the maximum distance from a node not
on the cycle to be zero. Rosenkrantz et. al. [21] show
performance bounds for several insertion heuristics.
The second problem is the p-centre problem. This
can be thought of as a special case with unbounded
cycle length. Dyer and Frieze [7] find performance
bounds for a farthest-neighbour insertion heuristic.

The next section defines various terms. Section 3
reviews the literature on the problems we discuss.
Then Section 4 derives some worst-case performance
bounds for the heuristics and Section 5 shows how
the heuristics perform on a selection of problems de-
rived from TSPLIB [20].

2. DEFINITIONS

Before we can discuss the problems investigated we
need some more precise terminology.

We consider a network represented by a graph G

with nonnegative edge weights given by w : E(G) →
R. For nodes u and v we define the distance d(u, v) to
be the length (sum of edge weights) of the shortest
path from u to v. More generally, for a subgraph H

and node u we define d(u, H) = min{d(u, v) : v ∈
V(H)}. The eccentricity e(H) of a subgraph H of G is

e(H) = max {d(u, H) : u ∈ V(G)} (1)

In particular, the eccentricity of a node v is the dis-
tance to a node farthest from v.

Given a collection H of subgraphs of G, an H-
centre is a subgraph H ∈ H of minimum eccentricity.
If H is the set of nodes of G, the H-centre is called a
1-centre or just centre. If H = {P ⊆ V(G) : |P| = p},
the H-centre is called a p-centre.

We focus on circuits and subtours. A cycle is a
graph in which every node has even degree. We de-
fine a subtour to be a connected cycle and use the
term circuit to mean a subtour in which every node
has degree at most 2. Thus we consider a single
node or two nodes joined by parallel edges to be cir-
cuits. The length l(S) of a cycle is the sum of its edge
weights. Circuits are often called cycles and a cy-
cle centre [8] is an H-centre where H is the collection
of circuits of G of length not more than some given
bound. Similarly we define the subtour centre to be
an H-centre where H is the collection of subtours of
G of length not more than some given bound. We
use the term subtour rather than connected cycle be-
cause it is shorter and emphasises the relationship to
the travelling salesman problem.

Centres are closely related to medians. Given a
collection H of subgraphs of G, an H-median is a sub-
graph H ∈ H that minimises

∑

u∈V(G)\V(H)

d(u, H).

We assume that distances obey the triangle in-
equality. That is, for x, y, z ∈ V(G), d(x, z) 6

d(x, y) + d(y, z). We note (following [21]) that if they
do not, we can add a sufficiently large constant C to
all edge weights to ensure that they do. Then we can
modify the problem to one of finding, for example,
a subtour centre where the length of the subtour T is
bounded by L−C|E(T)| where L is the original bound
on the subtour length.

Consider a circuit C. We can write it as a sequence
of nodes x1, . . . , xn in the order in which they are en-
countered. This representation is not unique: we
can choose a different starting node or reverse the

order of the nodes. However, in the following defi-
nitions we assume we have chosen a representation
x1, . . . , xn that is unique up to the choice of starting
node x1. We say that y follows x in the circuit if we
can write it as y, . . . , x. Note that x and y need not
be distinct. In the particular case where C contains
exactly one node x we have x follows x.

If C is a circuit in which x follows y we can write
C = x, . . . , y and we say we insert a node v between
y and x when we create a new circuit x, . . . , y, v. If
C = x, . . . , p, q, . . . , y is a circuit, we say we split C

on y, x and p, q when we create the circuits x, . . . , p
and q, . . . , y. If C and D are circuits that we can write
as C = x, . . . , p and D = {q, . . . , y} we say we join
C and D on x, y and p, q when we create the circuit
x, . . . , p, q, . . . , y. Note that x, . . . , p may be identical
to x and q, . . . , y may be identical to y so that, for ex-
ample, we split x, q, y on x, y and x, q to get x and
q, y.

Given a tree T on a subset of the nodes of G, and
an edge xy of G joining x and y we call the unique
path in T from x to y the corresponding path of T .
Given a subgraph H of G and an edge xy we denote
by H ∪ xy the subgraph (V(H) ∪ {x, y}, E(H) ∪ {xy})
and if x, y ∈ V(H) we denote by H \ xy the subgraph
(V(H), E(H) \ {xy}).

We consider problems where there are two vari-
ables of interest: eccentricity and cycle length. Thus
we are dealing with bi-criteria problems [8]. We fo-
cus mainly on subtour centres, but note that the re-
sults are relevant to finding cycle centres, to finding
minimum-length subtours subject to a bound on ec-
centricity, to finding subtours satisfying bounds on
both criteria or to finding subtours where decreasing
one variable is only possible by increasing the other
(Pareto efficient solutions).

3. BACKGROUND

There is now over 40 years of research on central
structures in networks. Early papers such as [9] con-
centrate on central nodes and find polynomial algo-
rithms. Perhaps the simplest way to find the centre is
to construct a distance matrix and find the row with
the least maximum entry. Later papers started to
look at extensive central structures such as p-centres
[6, 7, 2, 10, 17], paths [24], circuits [8, 13] and tours
[5]. Mesa and Boffey [16] provide a survey.

Current and Schilling [5] consider median tours
and formulate integer programming and heuristic
solution methods but do not consider subtour or cy-
cle centres. Labbé et. al. [13] consider a similar prob-
lem of locating median cycles on a network and for-
mulate integer programming solution methods, no-
tably testing their methods on instances from TSPLIB

2

[20]. Foulds et. al. [8] consider the problem of find-
ing cycle centres, cycle medians and a third problem,
which they call the cycle centroid, on unweighted
graphs. They formulate integer programmes for
these problems and test a number of problem in-
stances. They also report having tested tabu search
methods on the cycle centre problem. I use the inte-
ger programming formulations of [8] and [13] to gen-
erate integer programmes that generate optimum or
feasible solutions for some of the test problems in
Section 5.

The p-centre problem is known to be NP-
complete [12] and several papers describe heuristic
approaches to its solution. Dyer and Frieze [7] is
of particular interest because it describes a simple
farthest-neighbour insertion heuristic. They describe
a problem of locating p central points from n on a
metric space and show that farthest-neighbour in-
sertion (defined in Section 4) finds a solution whose
eccentricity is, at worst, twice the eccentricity of the
best solution. Their algorithm runs in time O(np).
We note that a set of points on a metric space de-
fines a complete graph with nodes corresponding to
the points and distances satisfying the triangle in-
equality. Drezner [6] also describes a simple heuris-
tic approach for finding p-centres. It is an improve-
ment heuristic rather than a construction heuristic
and no bounds are given for its performance. Sev-
eral more recent papers describe either more com-
plex heuristics [2, 10, 17] or heuristics for more con-
strained problems [11, 19, 22, 15, 18].

The travelling salesman problem (or TSP) [14] is
a well-known problem that is a special case of the
cycle centre or subtour centre problem in which ei-
ther the eccentricity of a solution is required to be
zero or the cycle length is large enough to allow a
tour covering all nodes and we seek a solution with
cycle-length as small as possible. The TSP is well
known to be NP-hard. Rosenkrantz et. al. [21] dis-
cuss insertion heuristics applied to the TSP on a net-
work with n nodes and distances satisfying the tri-
angle inequality. They show that a nearest or cheap-
est insertion heuristic (defined in Section 4) produces
a solution that has cycle length at most twice the
minimum tour length. They also show that a far-
thest insertion heuristic produces a solution whose
length is bounded by ⌈log2 n⌉+1 times the minimum
tour length and suggest the true bound may be much
smaller, perhaps four times the minimum. They note
that nearest insertion can be made to run in time
O(n2) and cheapest insertion in time O(n2 log n).
More recently, Cook et. al. [4] note that no example is
known for which farthest insertion produces a solu-
tion more than four times the minimum and report
that Johnson, Bentley, McGeoch and Rothberg find

farthest insertion gives a solution with an average of
1.16 times the minimum when tested on the TSPLIB
problems [20].

There are many other TSP heuristics that may be
of value for subtour centre or cycle centre problems.
One that is of particular note is Christofides heuristic
[3], which is reasonably simple, produces solutions
with cycle length at most 1.5 times the minimum and
runs in polynomial time.

4. BOUNDS ON INSERTION HEURISTICS

The purpose of this section is to show that the meth-
ods we test in the next are likely to be reasonable.

We do this by showing that one farthest inser-
tion heuristic produces a subtour S whose length
is at most twice the minimum length tour on V(S)

and whose eccentricity is at most twice the minimum
eccentricity among all subtours with at most |V(S)|

nodes.

An insertion heuristic is a heuristic that constructs
a sequence of subtours {S1, . . . , Sp} such that S1 con-
tains a single node and for i = 2, . . . , p, |V(Si)| =

|V(Si−1)|. Rosenkrantz et. al. [21] describe three in-
sertion heuristics for the TSP. Note that all three as-
sume G is complete so that each Si is a circuit, but
we can modify them, replacing edges with shortest
paths, so that they work on any network.

In nearest insertion, we construct Si from Si−1 as
follows. First, choose a node v ∈ V(G) \V(Si−1) min-
imising d(v, Si−1). Then choose nodes x and y such
that y follows x in Sk−1 and d(v, x)+d(v, y)−d(x, y)

is as small as possible. Then insert v between x and
y.

In farthest insertion, we construct Si from Si−1 as
follows. First, choose a node v ∈ V(G)\V(Si−1) max-
imising d(v, Si−1). Then choose nodes x and y such
that y follows x in Sk−1 and d(v, x)+d(v, y)−d(x, y)

is as small as possible. Then insert v between x and
y.

In cheapest insertion, we construct Si from Si−1

as follows. Choose nodes v ∈ V(G) \ V(Si−1) and
x and y such that y follows x in Sk−1 such that
d(v, x)+d(v, y)−d(x, y) is as small as possible. Then
insert v between x and y.

Although Rosenkrantz et. al. obtain better bounds
for the nearest and cheapest insertion heuristics, we
are interested in farthest insertion for two reasons.
First, as noted implicitly by Dyer and Frieze [7], the
sequence of improvements in eccentricity is nonin-
creasing. More precisely, if i > j > 1 then e(Si) −

e(Si+1) 6 e(Sj) − e(Sj+1). This means that in prob-
lems where eventually we are constrained by sub-
tour length not to insert a farthest neighbour, the
heuristic is still likely to be useful because we can be

3

confident that the first few steps will contribute most
to improving eccentricity. Second, although they do
not consider subtours, Dyer and Frieze show that a
heuristic that starts with a single node and chooses
at each step a node at farthest distance from the ex-
isting solution creates a set of nodes V such that e(V)

is at most twice the eccentricity of a |V |-centre. Thus
we have the following result.

Theorem 1 Let S be a subtour constructed using a far-
thest insertion heuristic starting from the centre of G.
Then e(S) 6 2e(S∗) and has length at most (⌈log2 n⌉ +

1)l(C∗) where S∗ is the least eccentric subtour on |V(S)|

nodes and C∗ is the shortest subtour on V(S).

It is easy to check that, like nearest insertion, farthest
insertion can be implemented in time O(n2).

We now describe a modified insertion heuristic
and show that when used with farthest insertion we
can reduce the bound on subtour length to that of
nearest insertion. We note that this heuristic can be
used for the TSP and may provide a practical way of
carrying out a single insertion step when other meth-
ods create too large an increase in subtour length.

FIG. 1. A tree and circuit.

The idea behind the modified insertion heuristic
is that if we can construct a circuit whose edges cor-
respond to paths on a tree, like the circuit and tree of
FIG. 1, so that as we trace the circuit we cross each
edge of the tree exactly twice then, by the triangle in-
equality, the circuit length will be at most twice the
sum of the weights of the tree edges. The heuristic
constructs a minimum-weight spanning tree on the
selected nodes step by step, maintaining just such a
circuit.

The modified insertion heuristic is the heuristic de-
scribed in FIG. 2. Modified insertion heuristics vary
in how the node v inserted at each stage is chosen
and in the criterion used to control when the heuris-
tic is finished. As before we assume G is complete
and note that we can modify the heuristic, replacing
edges with shortest paths, so that it works on any
network.

Choose an initial node v0.
Let C1 = v0 be the initial circuit.
Let T1 = ({v0}, ∅) be an initial tree.
Repeat until either |V(Tk)| = |V(G)| or some other
stopping criterion is met:

Choose a node v to insert into Ck.
If k = 1:

Let T2 = T1 ∪ v0v.
else:

Let x and y be nodes of Ck such that w(vx) 6

w(vy) 6 w(vz) for all z in Ck.
If w(vy) > w(e) for each edge e in the path of Tk

joining x to y:
If w(vy) > w(e) for each edge e in the path of
Tk joining x to y:

Let Tk+1 = Tk ∪ xv.
Let p be a neighbour of x in Ck.
Insert v between p and x in Ck to get Ck+1.

else:
Let e be the edge of largest weight in the
path of Tk joining x to y.
Let Tk+1 = (Tk ∪ vx ∪ vy) \ e.
Let Tx and Ty denote the components of
Tk \ e containing x and y.
Choose x1, x2 ∈ V(Tx) and y1, y2 ∈ V(Ty) so
that x1 follows y1 and y2 follows x2 in Ck.
Split Ck on y1, x1 and x2, y2 to get Cx and
Cy.
Let p follow x in Cx and let q follow y in
Cy.
Join Cx and Cy on y, x and p, q to get C.
Insert v between x and y in C to get Ck+1.

End if.
End if.

End if.
Let k = k + 1.

End repeat loop.

FIG. 2. Pseudocode for the modified insertion
heuristic.

Lemma 1 Let T be a tree and label its nodes v1, . . . , vk.
Let Pi denote the path from vi to vi+1 (i = 1, . . . , k − 1),
let Pk denote the path from vk to v1 and put P =

{P1, . . . , Pk}. Suppose each edge of T is contained in pre-
cisely two paths of P. Then any two paths in P have at
most two nodes in common.

Proof. First note that for any partition of V(T) into
nonempty sets Y and V P must contain at least two
paths joining a node of Y to a node of V .

Suppose P, Q ∈ P have three nodes in common
and choose common nodes x, y and z encountered
in order as we trace P and such that we encounter no
other node in Q as we trace P from x to z. Since T

is a tree the path from x to z is unique and so must

4

be a subpath of Q. Moreover, x and y must be ad-
jacent since any node between them in P would also
be a node of both P and Q. Similarly y and z must
be adjacent. Thus P and Q contain both xy and yz

twice.
Now let X be the set of nodes of the component

of T \ xy containing x, let Z be the set of nodes
of the component of T \ yz containing Z, and let
Z = V(T) \ (X∪Z). Then x ∈ X, y ∈ Y and z ∈ Z, and
so Z and V(T) \ Z are nonempty. No R ∈ P can join
a node of X to a node of Y. For, otherwise it would
contain xy. Similarly, no R ∈ P can join a node of Z

to a node of Y. Hence P contains no path from Z to
V(T) \ Z—a contradiction.

It follows that any two paths in P have at most
two nodes in common.

Define the weight w(H) of a subgraph H of G to be
the sum of the weights of its edges. Rosenkrantz et.
al. [21] show that minimum-weight spanning tree on
a complete graph H on k nodes whose edge weights
obey the triangle inequality has weight at most 2(1 −

1/k)w(C∗

k) where C∗

k is a a minimum-length circuit
on H.

Theorem 2 At each stage of a modified insertion heuris-
tic, we can select and replace neighbours of C as de-
scribed. Moreover, at each step C is a circuit and w(C) 6

2(1−1/k)w(C∗

k) where k is the number of nodes inserted
and C∗

k is a minimum length circuit on those nodes.

Proof. Let Hk be the complete graph on V(Tp).
We show first that Tk is a minimum-weight span-

ning tree on Hk. It is easy to see that this must be
true for k = 1 and k = 2. Suppose it is not true in
general and choose a counterexample Tk with k min-
imal. Then for some e ∈ E(Tk) and f ∈ E(Hk) \E(Tk),
w((Tk ∪ f) \ e) < w(Tk) and so w(f) < w(e). Let
v denote the last node inserted by the heuristic and
let x and y be its nearest neighbours on Tk−1 with
w(vx) 6 w(vy). If e = vx then Tk \ e = Tk−1 and so
Tk−1 ∪ f is a tree. But this is only possible if f = vy

contradicting the minimality of w(vx). If e = vy then
f joins two nodes of Tk−1, and (Tk ∪ f) \ e contains
Tk−1 ∪ f as a subgraph and so must contain a circuit.
If e is not incident with v then either (i)

w((Tk−1 ∪ f) \ e) = w((Tk ∪ f) \ e) − w(vx)

= w(Tk) − w(vx)

= w(Tk−1)

or (ii)

w((Tk−1 ∪ f) \ e) = w((Tk ∪ f) \ e)

−w(vx) − w(vy) + w(rs)

< w(Tk) − w(vx)

−w(vy) + w(rs)

= w(Tk−1),

in either case contradicting the minimality of k. It fol-
lows that at each step Tk is a minimum-weight span-
ning tree on Hk.

It is straightforward to check that each iteration
of the loop adds one new node to Ck and so Ck com-
prises k distinct nodes and must be a circuit.

We now show that, for any k, if we write Ck =

ck
1 , . . . , ck

k and put Pk = {Pk
1 , . . . , Pk

k} where for i =

1, . . . , k − 1 Pk
i is the path of Tk joining ck

i to ck
i+1 and

Pk
k is the path of Tk joining ck

k to ck
1 , then each edge

of Tk is contained in precisely two paths of Pk. The
result is trivially true for k = 1 and for k = 2 we have
C2 = c2

1, c2
2, P2

1 = c2
1, c2

2, P2
2 = c2

2, c2
1 and c2

1c
2
2 is the only

edge of T2. It follows easily that the result holds for
k = 2.

Suppose the result above does not hold in gen-
eral. Choose a counterexample Ck with k minimal.
Then the result holds for Ck−1.

We consider two cases. First, suppose Tk = Tk−1∪
xv. Then we may suppose without loss of gener-
ality that the neighbour of x in Ck−1, p = ck−1

1 so
that Ck = ck−1

1 , . . . , ck−1
k−1, v. Then Pk

i = Pk−1
i for

i = 1, . . . , k − 2, Pk
k−1 is Pk−1

k−1 followed by v, and

Pk
k = {v, x}. Tk has one new edge xv, which is con-

tained in precisely two paths, Pk−1
k and Pk

k . Each re-
maining edge of Tk is contained in Pk

i (i = 1, . . . , k−1)
whenever it is contained in Pk−1

i . It follows that each
edge of Tk is contained in precisely two paths of Pk

and so the result holds for Ck.

Suppose instead that Tk = (Tk−1 ∪ vx ∪ vy) \ e.
Construct Tx, Ty, Cx and Cy and choose x1, x2, y1,
y2, p and q as the algorithm does. Let x̂ and ŷ be
the nodes of e in Tx and Ty. Choose i and j so that
Pk−1

i and Pk−1
j are the paths of Pk−1 containing e.

Let I = {1, . . . , k} \ {i, j}.

Let Ri be the path in Tx from x1 to x2, let Rj be the
path in Ty from y1 to y2, and let Rt = Pk−1

t for t ∈ I.
Then, since Pk−1

i and Pk−1
j contain two nodes, x̂ and

ŷ in common and, by Lemma 1, have at most two
nodes in common, Ri follows Pk−1

i from x1 to x̂ and
then follows Pk−1

j to x2. Similarly, Rj follows Pk−1
i

from y1 to ŷ and then follows Pk−1
j to y2. Thus Ri and

Rj contain the same edges with the same multiplicity
as Pk−1

i and Pk−1
j except that they do not contain e.

It follows that R = {R1, . . . , Rk−1} contains each edge
of Tx and Ty precisely twice.

Choose a and b so that Ra is the path from x to p

and Rb is the path from y to q. Let J = {1, . . . , k} \

{a, b}. Let Pa = x, v, let Pb = v, y, let Pk be the
path from x to y composed of Ra followed by v fol-
lowed by Rb. And let Pt = Rt for t ∈ J. Then
P = {P1, . . . , Pk} contains each edge of Tx and Ty pre-
cisely twice and also contains xv and vy precisely
twice.

It is easy to check that we have constructed P so

5

that if t follows s in Ck then P contains a path from s

to t. Hence P = Pk and each edge of Tk is contained
in precisely two paths of Pk and so the result holds
for Ck.

We have shown that the result holds in either
case, contradicting the minimality of k. It follows
that, for any k, if we write Ck = ck

1 , . . . , ck
k and put

Pk = {Pk
1 , . . . , Pk

k} where, for i = 1, . . . , k − 1, Pk
i is

the path of Tk joining ck
i and ck

i+1, and Pk
k is the path

of Tk joining ck
k and ck

1 , then each edge of Tk is con-
tained in precisely two paths of Pk.

By applying the triangle inequality repeatedly,
we have that w(xy) 6 w(P) where P is the path in a
spanning tree T corresponding to xy. Applying this
for each pair of neighbours of Ck for any k we have

w(Ck) 6

k∑

i=1

w(Pk) = 2w(Tk) 6 2

(

1 −
1

n

)

w(C∗

k)

as required.

We now consider bounds on the time and space re-
quired to carry out a single iteration of a modified
insertion heuristic. For now we will ignore the cost
of finding a suitable v to insert and of checking stop-
ping conditions other than |V(Tk)| = |V(G)|, which
requires at most O(1) arithmetic operations.

We start by looking at the requirements for ma-
nipulating the circuits. We can record a circuit as an
array indexed on 1, . . . , k whose entries represent the
nodes in the order in which they are added to the cir-
cuit. For each node the array stores the predecessor
in the circuit, the successor in the circuit, a second in-
dex indicating which circuit the node belongs to (so
that we can use one array to store two circuits after
splitting) and a third index identifying which sub-
tree the node belongs to (so that we can easily iden-
tify Tx and Ty). The benefit of an array is that we can
use binary search to find any particular node, requir-
ing at most O(log2 k) operations. To insert a node
we need at most O(log2 k) operations to find x and
y and a further O(1) to modify the circuit. To split a
circuit we need O(log2 k) operations to find (within
the array) the nodes we on which we split and O(k)

to label the resulting circuits using the second index.
Similarly, to join two circuits we need O(log2 k) op-
erations to find the nodes on which we join and O(k)

operations for relabelling. We need O(1) operations
to find the node following or the node that a given
node follows.

To create Tk+1 from Tk we need O(1) operations,
whichever way we do it. We need O(k) operations
to identify x and y. We can find e (or show that
w(vy) > w(e) for each edge in the unique path in
Tk from x to y) using a depth-first search algorithm,
which requires O(k) operations and O(k) space.

We have shown that in each step in the iteration
to find Tk+1 and Ck+1 we need at most O(k) oper-
ations. It follows that, apart from choosing v and
testing a stopping condition, a modified insertion
heuristic time requirement is O(k) for the kth iter-
ation. The space requirement is also O(k) because
we need O(k) space to store the tree, the circuit array
and for depth-first search and no other step requires
more than O(1) storage.

Now consider farthest insertion. Following Dyer
and Frieze [7], we assume we can find distances from
a distance matrix and store the maximum distance
D(v) from node v to Ck as an array, which we can
update in time O(n − k) at each iteration. Since
e(Ck) = maxv∈V(G) D(v) and we can find l(Ck) in
time O(k), the time needed to check any simple stop-
ping criterion grows no faster than the time needed
for an iteration and so farthest modified insertion
needs at most O(np) time, where the network has
n nodes and the final circuit p. It is easy to check
that the original farthest insertion heuristic also runs
in time proportional to np, albeit the constant of pro-
portionality is much smaller for the original heuris-
tic. Thus we can expect the two heuristics to be prac-
tical for about the same range of problems.

5. COMPUTATIONAL RESULTS

We now look at how the farthest insertion heuris-
tics perform in practice. We consider two problems.
The first is to find a ‘good’ subtour that has p ver-
tices. Here we wish to find a subtour that has, at
the same time, reasonably small eccentricity and rea-
sonably short length. Since this problem is not well
defined we consider also a second problem, to find a
subtour with eccentricity as small as possible given
an upper bound on the subtour length. A third prob-
lem would be to find as short a subtour as possible
given an upper bound on the eccentricity. We do not
test the heuristics on this problem but note that the
heuristic of Dyer and Frieze [7] to identify a set of
nodes followed by Christofides [3] heuristic to find
a subtour on those nodes ought to perform better
(see [4]) while retaining much of the simplicity of our
heuristics.

We compare the different methods using prob-
lems derived from the standard TSPLIB [20] prob-
lems. We test each heuristic on each of the 29 TSPLIB
problems with 101 or fewer nodes using three in-
stances of problem bounds for each problem.

The heuristics were coded in C++ using the Boost
Graph Library [1, 23] to represent the networks, com-
piled with the GNU g++ compiler using identical
optimisation flags and run on a PC with a 3.0 GHz
Pentium 4 processor and 1 Gb RAM using the SuSE

6

Linux 10.1 operating system.

We compare first the performance of the origi-
nal and modified insertion heuristics on problems of
finding a subtour on a subset of p vertices. We test
both heuristics on three instances of each of the prob-
lems. The first instance has an objective of finding a
subtour containing all the nodes of the problem and
so is equivalent to the TSP. The second and third in-
stances seek subtours with number of nodes p equal
to the nearest integers to n/2 and n/3. For each
instance we test both heuristics starting each from
every possible node and recording the best result
found. Table 1. summarises the results of the tests.
Since the test results are very similar for similar sized
problems, the table reports results only 15 TSPLIB
problems covering the range of problem sizes.

The first column gives the problem name, which
includes the total number of nodes in the network.
More details can be found in TSPLIB [20]. The sec-
ond column gives the number of nodes p in the fi-
nal subtour. The ECC column gives the eccentricity
of the solution found. Since both heuristics choose
nodes in the same way they find solutions with the
same eccentricity. The UTIM and MTIM columns
report the approximate time in CPU seconds taken
by the unmodified and modified heuristics. This is
the total time for all tests on the given problem in-
stance; so, for example, The MTIM of 212 CPU sec-
onds for problem kroA100, represents an average of
2.12 CPU seconds for each of 100 possible starting
nodes. The ULEN and MLEN columns report the
subtour lengths for the best subtour found by the un-
modified and modified insertion heuristics. In one
instance (fri26, in boldface) ULEN was equal to the
TSP minimum tour length.

It is notable that the unmodified heuristic is not
only much faster, but in most cases actually finds a
better solution than the modified heuristic. I have
italicised the MLEN entries where modified farthest
insertion works at least as well as unmodified far-
thest insertion. The modified heuristic only performs
better on two instances of Ulysses16 and performs
less well on the 42 instances tested but not listed in
the table.

The reported times for the modified insertion
heuristic range from twice to several thousand times
as long for each starting node as the unmodified
heuristic. However, we note that the CPU time mea-
surements are only approximate and in some small
problem instances the reported CPU time was zero,
so that a comparison was not possible. The results
for the six problems with 100 nodes suggest that un-
modified insertion should typically be several hun-
dred times as fast as modified insertion.

TABLE 1. Comparison on problems requiring a
subtour on p nodes.

Problem p ECC UTIM MTIM ULEN MLEN

burma14 14 0 0.00 0.02 3381 4183
burma14 7 168 0.00 0.00 3455 3513
burma14 4 310 0.00 0.00 2752 2752
ulysses16 16 0 0.00 0.04 7726 7705
ulysses16 8 261 0.00 0.01 7224 6437
ulysses16 5 455 0.00 0.00 6010 6010
gr21 21 0 0.00 0.13 2753 3455
gr21 10 125 0.00 0.02 2395 3237
gr21 7 160 0.00 0.00 2047 2047
gr24 24 0.00 0.00 0.13 1319 1678
gr24 12 49 0.00 0.07 1198 1212
gr24 8 70 0.00 0.02 925 1156
fri26 26 0 0.00 0.17 937 1191
fri26 13 29 0.00 0.02 813 974
fri26 8 51 0.00 0.00 755 927
bayg29 29 0 0.00 0.96 1695 2092
bayg29 14 52 0.00 0.05 1319 1469
bayg29 9 71 0.00 0.01 1126 1318
dantzig42 42 0.00 0.01 3.46 777 968
dantzig42 21 15 0.02 2.36 779 850
dantzig42 14 22 0.02 1.06 621 646
att48 48 0 0.05 1.61 11304 14637
att48 24 183 0.02 1.59 10655 12711
att48 16 301 0.01 0.10 9326 10143
berlin52 52 0 0.04 13.8 8639 10535
berlin52 26 125 0.02 0.60 7887 9618
berlin52 17 188 0.03 1.92 7572 8960
brazil58 58 0 0.03 5.48 26803 31384
brazil58 29 287 0.05 6.27 25419 26561
brazil58 19 517 0.01 0.87 23682 25226
st70 70 0 0.12 37.0 763 999
st70 35 9 0.08 4.10 629 714
st70 23 13 0.06 0.99 538 677
eil76 76 0 0.05 59.9 604 805
eil76 38 7 0.04 37.8 460 576
eil76 25 10 0.04 20.0 370 486
gr96 96 0 0.15 203 61234 80069
gr96 48 520 0.16 32.4 58556 73901
gr96 32 759 0.21 27.8 51101 63810
kroA100 100 0 0.40 212 23247 32390
kroA100 50 216 0.22 47.8 21011 27513
kroA100 33 311 0.03 33.8 17489 21416
eil101 101 0 0.08 379 725 984
eil101 50 7 0.05 75.7 548 742
eil101 33 9 0.22 25.3 446 568

The second set of tests are for subtour centre
problems. In these the objective is to find a minimum
eccentricity subtour of length no greater than some
given bound. Again we use the 29 TSPLIB problems
with 101 or fewer nodes to construct suitable test
instances. For each TSPLIB problem we construct

7

three test instances. First, we use a bound on subtour
length equal to the TSP optimum tour length. This
gives a problem whose optimum solution is known
to have eccentricity zero. Then we consider instances
where the bound on subtour length is 1/2 or 1/3 of
the TSP optimum tour length. We test each prob-
lem instance using both the unmodified and modi-
fied farthest insertion heuristics. For both heuristics,
we insert at each iteration the farthest node whose
insertion does not create a subtour whose length ex-
ceeds the given bound, stopping only when no more
nodes can be inserted. This is a slight modification
of the heuristics described earlier that is very easy to
implement in practice, especially for the unmodified
heuristic. It gives a greater time penalty to the mod-
ified heuristic because in contrast to the unmodified
case, we have to construct a new subtour explicitly
to find if its length exceeds the given bound. As be-
fore, we test each heuristic with each possible start-
ing node.

We wish to compare the quality of solutions and
do this in two ways. First we compare the eccen-
tricity of each solution with the best known eccen-
tricity for the test instance. When we use the TSP
bound this is always zero. For the remaining prob-
lems I used a modified version of the integer pro-
gramming formulations of [8] and [13] implemented
in Ilog CPLEX 9.1 to look for optimum solutions,
stopping each search after 8 hours CPU time if the
best solution found had not been shown to be an op-
timum. A simple comparison with the best known
solution is not very instructive, especially when the
best solution has eccentricity zero. So we compare
with another solution, the best 1-centre, to get two
points of comparison.

Table 2. reports the results of the tests on the same
range of problems as used for Table 1. The remain-
ing problems show similar results and so are not pre-
sented. The Bound column reports the upper bound
on the subtour length. UFIH and MFIH report the
eccentricities of the best result obtained with the un-
modified and modified farthest insertion heuristics.
The Best column reports the best-known eccentric-
ity, which may come from either of the heuristics
or be determined by an integer programme. The fi-
nal colum reports a performance gap recorded to the
nearest percentage. It is calculated as (b−b∗)/(c−b∗)

where b is the eccentricity of the better of the so-
lutions found by the heuristics, c is the eccentric-
ity of the best 1-centre and b∗ is the eccentricity of
an optimum solution. Where no optimum solution
is known we substitute the best solution found and
write > next to the reported value.

TABLE 2. Comparison on subtour centre
problems.

Eccentricity
Problem Bound Best UFIH MFIH Gap %

burma14 3323 0 70 247 11
burma14 1661 400 400 400 0
burma14 1107 406 406 406 0
ulysses16 6859 0 287 237 16
ulysses16 3429 1122 1122 1122 0
ulysses16 2286 1387 1387 1387 0
gr21 1707 225 250 250 9
gr21 853 420 420 420 0
gr21 569 495 495 495 0
gr24 1272 0 31 49 16
gr24 636 74 82 109 7
gr24 424 122 136 136 21
fri26 937 0 9 26 6
fri26 468 71 81 81 11
fri26 312 93 95 95 3
bayg29 1610 0 36 49 17
bayg29 805 74 121 113 29
bayg29 536 121 151 151 35
dantzig42 699 0 12 17 12
dantzig42 349 45 45 49 > 0
dantzig42 233 52 59 59 > 13
att48 10628 0 139 236 10
att48 5314 569 569 618 > 0
att48 3542 739 739 807 > 0
berlin52 7542 0 127 151 13
berlin52 3771 390 402 475 > 2
berlin52 2514 426 584 606 > 31
brazil58 25395 0 209 287 6
brazil58 12697 1446 1620 1446 > 0
brazil58 8465 1991 1991 1991 > 0
st70 675 0 8 11 11
st70 337 24 24 26 > 0
st70 225 43 43 43 > 0
eil76 538 0 6 8 14
eil76 269 13 13 15 > 0
eil76 179 22 22 22 > 0
gr96 55209 0 480 697 9
gr96 27604 1800 1800 2015 > 0
gr96 18403 2805 2805 2875 > 0
kroA100 21282 0 179 289 8
kroA100 10641 621 635 702 > 1
kroA100 7094 1015 1015 1046 > 0
eil101 629 0 6 7 13
eil101 314 12 12 14 > 0
eil101 209 21 21 21 > 0

Table 2. emphasises in boldface whether the un-
modified or modified insertion heuristic performs
better. In some cases both heuristics produces sub-
tours with the same eccentricity. If there is a dif-
ference in length the eccentricity of the shorter sub-

8

tour is italicised. Table 2. does not report CPU times.
These range from 0 to 0.002 (kroA100) seconds of
CPU time per starting node for the unmodified in-
sertion heuristics and from 0.0002 (ulysses16) to 21.0
(rat99, not shown in table) seconds for the modified
insertion heuristic. The average CPU times for both
heuristics typically increase with problem size but
show substantial variation for problems with simi-
lar sizes. Typically the modified insertion heuristic
takes several hundred times as long as the unmodi-
fied heuristic.

Both heuristics perform well in practice. The per-
formance gap of 35% for bayg29 is the largest found
in any of the test instances and the unreported in-
stances show similar performance gaps. The unmod-
ified insertion heuristic typically performs better in
practice, finding a better solution than the modified
heuristic in 53 of the 87 test instances. Modified in-
sertion worked better in only 8 cases and in 26 cases
both heuristics produced solutions with the same ec-
centricity.

6. DISCUSSION

We have considered insertion heuristics applied to
central cycle problems. We chose to look at farthest
insertion heuristics because earlier research [21, 7]
suggests these might work well for problems where
both the eccentricity and the length of a solution are
of interest. The empirical results show that, in ad-
dition to being very fast, a simple farthest insertion
heuristic performs reasonably well in practice. Al-
though we can show better worst case bounds for
a modified version of the heuristic, in practice it is
slower and usually does not produce solutions as
good as the unmodified heuristic.

Rosenkrantz et. al. [21] suggest that a simple far-
thest insertion heuristic performs well because it pro-
duces the general outline subtour in the first few it-
erations and makes only minor modifications in the
later stages. We can observe that the modified inser-
tion heuristic may make large modifications to the
subtour at each iterations and these are not guaran-
teed to give a better subtour than that obtained by
a simple insertion. Large modifications occur if, in
Fig. 2, we have w(vy) < w(e) for some edge e in the
current spanning tree. Since we are using farthest in-
sertion it is reasonable to expect this happens often
and this is what I have observed in practice.

The main benefits of the unmodified farthest in-
sertion heuristic are that it is a simple, fast, easily im-
plemented method that can be adapted to a variety
of problems where we are concerned with both ec-
centricity and cycle length. These include problems
where we seek a solution that is a circuit, where G

is not complete, where there are constraints on the
number of nodes a solution may contain and where
there are weights on the nodes. Either of the heuris-
tics we have investigated could also be used as part
of a broader heuristic for a central cycle problem.

REFERENCES

[1] Boost, http://www.boost.org/ Accessed July
2006

[2] C. Caruso, A. Colorni and L. Aloi, Dominant, an
algorithm for the p-center problem, Eur J Oper
Res 149 (2003), 53–64

[3] N. Christofides, Worst-case analysis of a new
heuristic for the travelling salesman problem,
Report 388, Graduate School of Industrial Ad-
ministration, Carnegie Mellon University, 1976

[4] W.J. Cook, W.H. Cunningham, W.R. Pulley-
bank and A. Schrijver, Combinatorial optimiza-
tion, John Wiley and Sons, New York, 1998

[5] J.R. Current and D.A. Schilling, The median
tour and maximal covering tour problems: for-
mulations and heuristics, Eur J Operat Res 73
(1994), 114–126

[6] Z. Drezner, The p-centre problem—heuristic
and optimal algorithms, J Opl Res Soc 35 (1984),
741–748

[7] M.E. Dyer and A.M. Frieze, A simple heuristic
for the p-centre problem Oper Res Lett 3 (1985),
285–288

[8] L.R. Foulds, J.M. Wilson and T. Yamaguchi,
Modelling and solving central cycle problems
with integer programming, Compu and Operat
Res 32 (2004), 1083–1095

[9] S.L. Hakimi, Optimum location of switching
centers and the absolute centers and medians of
a graph, Oper Res 12 (1964), 450–459

[10] R. Hassin, A. Levin and D. Morad, Lexico-
graphic local search and the p-center problem,
Eur J Oper Res 151 (2003), 265–279

[11] D.S. Hochbaum and A. Pathria, Generalized
p-center problems: complexity results and ap-
proximation algorithms, Eur J Oper Res 100
(1997), 594–607

[12] W.L. Hsu and G.L. Nemhauser, Easy and hard
bottleneck location problems, Discrete Appl
Math 1 (1979), 209–216

9

[13] M. Labbé, G. Laporte, I. Rodrı́guez Martı́n and
J.J. Salazar González, Locating median cycles in
networks, Eur J Operat Res 160 (2005), 457–470

[14] E.L. Lawler, The traveling salesman problem,
John Wiley and Sons Ltd, 1985

[15] A. Lim, B. Rodrigues, F. Wang and Z. Xu,
k-center problems with minimum coverage,
Theor Comput Sci 332 (2005), 1–17

[16] J.A. Mesa and T.B. Boffey, A review of exten-
sive facility location in networks, Eur J Operat
Res 95 (1996), 592–603

[17] N. Mladenović, M. Labbé and P. Hansen, Solv-
ing the p-center problem with tabu search and
variable neighbourhood search, Networks 42
(2003), 48–64

[18] F.A. Özsoy and M.Ç. Pınar, An exact algo-
rithm for the capacitated vertex p-center prob-
lem, Comput Oper Res 33 (2006), 1420–1436

[19] R. Panigrahy and S. Vishwanathan, An
O(log∗ n) approximation algorithm for the

asymmetric p-centre problem, J Algorithm 27
(1998) 259–268

[20] G. Reinelt, TSPLIB, http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSP-
LIB95/ Accessed July 2006

[21] D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis
II, An analysis of several heuristics for the trav-
eling salesman problem, Siam J Comput 6 (1977)
563–581

[22] M.P. Scaparra, S. Pallottino and M.G. Scutellà,
Large-scale local search heuristics for the ca-
pacitated vertex p-center problem, Networks 43
(2004), 241–255

[23] J.G. Siek, L.-Q. Lee and A. Lumsdaine, The
boost graph library, Addison-Wesley, Boston,
2002

[24] P.J. Slater, Locating central paths in a graph,
Transport Sci 16 (1982), 1–18

10

