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Abstract

In this paper we provide a consumption-based explanation of risk in nominal US Treasury bond
portfolios. We use a consumption-CAPM with Epstein-Zin-Weil recursive preferences. Our model
introduces two sources of risk: uncertainty about current consumption (re�ected in contemporane-
ous consumption growth) and uncertainty about prospects of consumption in a long run (re�ected
in innovations to expectations about future consumption growth). We use a novel approach to
estimate pricing factors in our model: we employ a factor-augmented VAR model with common
factors, extracted from a large panel of macroeconomic and �nancial data, as state variables. We
�nd that the important source of risk in US bonds is related to uncertainty in prospects in future
consumption and it induces a positive and signi�cant risk premium. We �nd as well that covariance
risk related to innovations in expectations about future consumption growth is greater for long
term bond portfolios than for short term bond portfolios, which is consistent with a duration mea-
sure of risk and justi�es why long term bonds require greater premium than short term bonds. Our
model explains well the cross-sectional variation in average excess returns of bonds with di¤erent
maturities over the period 1975�2011 and compares favorably with competing models.
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1 Introduction

We investigate, using a consumption-based capital asset pricing model (C-CAPM) with Epstein�Zin�

Weil recursive utility, the cross-section of excess returns on portfolios of US Treasury bonds with

varying times to maturity. Speci�cally, we ask the following questions: what can we learn about bond

risk from consumption-based models? Is there a role for consumption risk to play in the explanation

of risk premia for nominal bonds with di¤erent maturities? More generally, we add to the literature

on consumption-based models for pricing bonds that is �surprisingly small, given the vast amount of

attention given to consumption-based models of equity pricing�(Campbell (2007)).

The evaluation of risks in nominal government bonds has attracted a considerable attention for

quite some time. Campbell et al. (2010), for example, point out that this can be done in many ways.

One of them is to measure the covariance of bond returns with a proxy of the marginal utility of the

consumers, like the return on market portfolio (as in the classical CAPM) or the aggregate consumption

growth (as in the C-CAPM). Indeed early attempts to evaluate the risks of nominal bonds followed

this approach (see for example Gultekin and Rogalski (1985)). More recently, Viceira (2012) �nds that

the consumption beta for bonds is negative, over the 1980s and 1990s, suggesting that nominal bonds

help investors hedge aggregate market risks.

Our work is in this spirit and builds on prior works but di¤ers in two important respects. First,

we use a consumption CAPM with Epstein�Zin�Weil utility rather than the standard power utility C-

CAPM. This allows us to extend a measure of investors�well-being to include not only contemporaneous

consumption growth but also to re�ect the future evolution of consumption and the fact that consumers

care about a long run risk in consumption as well, in the spirit of Bansal and Yaron (2004) model

for equities. We can investigate then whether long run consumption risk can explain positive on

average risk premia paid by government bonds. Second, our test assets, which are a set of government

bond portfolios with di¤erent maturities rather than a single index of government bonds, allow us to

study the variation of covariance risk across assets that may be imperfect substitutes. Speci�cally we

investigate whether consumption risk related to uncertainty in prospects in future consumption can

explain why bonds with greater maturities require greater excess returns.

Our C-CAPM has two risk factors: consumption growth and innovations to expectations about

future consumption growth. While consumption growth is directly measurable, the innovations to

expectations about future consumption growth are not and have to be estimated. It is usually done

using a Vector Autoregressive (VAR) model1 where speci�c state variables are selected that are known

to forecast consumption growth well. Our implementation of this methodology is, however, novel.

Instead of choosing speci�c predictor variables we use a set of common factors obtained, following

1Brunnermeier and Julliard (2008), Campbell and Vuolteenaho (2004), Lustig and Nieuwerburgh (2008).
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Stock and Watson (2002a,b), from a large panel of macroeconomic and �nancial time series. We then

estimate a factor-augmented VAR, in the spirit of Bernanke et al. (2005), and extract innovations to

expected future consumption growth. This approach has some advantages. First, we can be agnostic

in our choice of state variables thus mitigating to some extent concerns about the choice of speci�c

state variables (see for example Chen and Zhao (2009)). Second, there is an evidence (Stock and

Watson (2008)) that common factors have good forecasting properties in the presence of structural

breaks. We further add to that and demonstrate that extracted factors have good predictive power

for consumption growth in in- and out-of-sample tests, which forms the empirical basis for using them

as state variables in our VAR model. Third, the pre-estimation of the dynamic factors does not a¤ect

the consistency of Ordinary Least Squares (OLS) estimates in the VAR model (Bai and Ng (2008))

which is relevant in our application.

Our main group test assets are bond portfolios that are constructed using US Treasury bonds

with times to maturity ranging from over a year to longer than ten years. We use also bond indices

with di¤erent target maturities and zero coupon bonds as alternatives. The sample period is 1975�

2011. We use a covariance risk measure that re�ects how bond excess returns covary with consumption

growth and innovations to expectation in future consumption growth. We estimate Euler equation with

linearized stochastic discount factor (SDF) using Generalized Method of Moments (GMM) in order

to study how well our two-factor C-CAPM explains the cross-section of average excess returns on

government bonds. This methodology allows us also to estimate the coe¢ cient of relative risk aversion

and test the theoretical restrictions of our model. We estimate as well linearized Euler equation with

Fama-MacBeth approach. Finally, we compare our measure of long run risk in consumption growth

for bonds with a measure of Parker and Julliard (2005) and investigate how it is related to duration,

a classical measure of bond risk.

Our main results can be summarized as follows. We �nd that the risk related to long run uncertainty

in consumption plays an important role in pricing US government bonds and induces a risk premium

that is positive and signi�cant. We �nd as well that our two-factor C-CAPM explains well the cross-

section of average excess returns on portfolios of US Treasury bonds with di¤ering maturities (around

98.8% of the cross-sectional variation) over the sample period 1975�2011. We also demonstrate that

the covariance risk related to innovations to expectations about future consumption growth is greater

for portfolios of long term bonds than for portfolios of short term bonds. This provides a consumption

risk-based explanation on why long term bonds are paying on average greater returns than short

term bonds. We show as well that the covariance risk related to prospects in future consumption is

consistent with a classical measure of bond risk �duration and bonds with greater duration have as

well greater covariance risk. The estimates of risk aversion parameter implied by the model are lower

than for equities. Finally, we �nd that our model performs well relative to other linear factor models
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and prices well a joint portfolio of bonds and equities. Our results are robust to a battery of tests: use

of alternate test assets and sample period, alternate measures of consumption growth and estimation

methods.

The rest of the paper is organized as follows. Section 2 provides an overview of related research

while Section 3 provides the details of our model. Section 4 outlines key features of the applied

methodology and Section 5 describes the data. We discuss our empirical results including comparison

with other models and tests for robustness in Section 6. Section 7 concludes the paper. The Online

Appendix provides the relevant details related to theoretical aspects of our model, results of robustness

tests and the description of supplementary data used in the paper.

2 Related literature

Expositions of the canonical C-CAPM for equities are now a standard textbook material but appli-

cations in the context of bonds are not common; Wolman (2006) is an example of a pedagogic guide

to the consumption-based modelling of bonds. We �nd, as noted earlier, that there is surprisingly lit-

tle empirical research on the consumption-based explanation of the cross-section of government bond

returns.

Gultekin and Rogalski (1985) are possibly the �rst to study how well Ross�s APT model and the

CAPM price the cross-section of constant maturity US government bond portfolios over the 1960�1979

period.2 They �nd that average returns on bond portfolios are explained by at least two �priced�

factors obtained using factor analysis. Further, using tests for the CAPM available at that time,

they �nd that estimates of the factor risk premia on the market portfolio are all negative but not

signi�cantly di¤erent from zero. They conclude that �... [their] tests should be viewed simply as the

�rst empirical attempt to properly measure interest-rate risk for bonds using factor-generating models.

Our results in terms of the existence of priced risk premia are more favorable to multifactor models

than to single-factor models or the CAPM�. In a related study using corporate bond portfolios Chang

and Huang (1990) observe that the focus, in the literature,3 on stocks rather than bonds may be due

� [to] the lack of convincing empirical evidence. . . show[ing] that covariance risks are priced in bond

markets�.

We note here as well that there is a huge related literature on modelling the term structure of

interest rates (see Piazzesi (2009) for an excellent survey). This literature assumes that the price of

bonds is driven by a continuous time stochastic process, there are continuous trading opportunities

and the principle of �no arbitrage� holds. One can then obtain equilibrium term structure models

2Roll (1971) is an example of early e¤orts to apply the CAPM to zero coupon bond data.
3A more recent example that uses corporate bond data is Gebhardt et al. (2005).
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(as in Vasicek (1977) for example) that describe the prices, or equivalently, the yields, of di¤erent

maturity bonds as functions of one or more state variables. For example, in the Vasicek model the

single factor or source of uncertainty is the current level of the short rate. Later models assume that

bond prices are driven by multiple state variables. In many multifactor models the factors are latent

(unobserved) variables that are identi�ed by data on the yields of di¤erent maturity bonds. The factors

are further assumed to be �a¢ ne�functions of the state variables as in Du¢ e and Kan (1996). Ang and

Piazzesi (2003) link these factors to observed macroeconomic variables. Using the Epstein�Zin�Weil

framework, Piazzesi and Schneider (2007) consider a representative agent model with Epstein�Zin�

Weil recursive utility and solve it for average yields. Gallmeyer et al. (2007) also demonstrate how the

literature on a¢ ne models can be linked with a structural equilibrium model of investors�preferences

and opportunities using the Epstein�Zin�Weil utility framework.

In contrast to the vast literature on term structure models, our paper, in the spirit of Gultekin

and Rogalski (1985), studies the covariance risk of consumption growth with government bond returns

in a linearized factor pricing framework. The role of such linear factor models has been studied for

other asset classes including corporate bonds (Gebhardt et al. (2005)), commodity futures (Khan et al.

(2007)) as well as for options (Constantinides et al. (2009) and Coval and Shumway (2001)). Finally,

linear factor models for bonds potentially have considerable practical applications. For example, in

2008 out of US $10,349 billion invested in all mutual funds about US $1,552 billion (15%) was in

funds that invested exclusively in US government and related securities4 . The performance appraisal

of these funds is closely linked to a speci�cations of appropriate asset pricing models that enable the

identi�cation of di¤erential performance for investors.5

In a recent work Viceira (2012) �nds a considerable time variation, persistence and mean reversion in

bond market betas over the 1962�2007 period. He reports that CAPM and C-CAPM betas, estimated

using a single 5-year maturity bond portfolio, are time dependent. Our work di¤ers from it in two

important respects. First, we use a C-CAPM with Epstein�Zin�Weil utility rather than the standard

power utility C-CAPM which allows us to study the role of covariance risk related to long run prospects

in future consumption in pricing bonds. Secondly, we use, as test assets, bond portfolios with varying

times to maturity, which allows us to investigate the role of that risk in the cross section of bond

returns. While we recognize the importance of the time variation in covariance risk measures for

bonds, we do not undertake this in our work. With a sample relatively short for measuring long term

uncertainty of consumption growth and the nature of that risk such an exercise is beyond the scope of

this paper.

4Data from the 2009 Investment Company Institute Fact Book, Investment Company Institute
5The literature on the performance of bond mutual funds relies largely on models using ad hoc factors like the short

rate, term slope curvature, credit spreads, mortgage and liquidity spreads etc (see for example Chen et al. (2010) and
references therein).
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Our work is also related to the literature that examines whether stock returns are priced by their

exposure to consumption risk measured over di¤erent horizons. For example, Daniel and Marshall

(1997) �nd that the performance of a standard power utility C-CAPM improves if they use covariances

with consumption growth at the two-year horizon. In later works, Parker and Julliard (2005) and

Jagannathan and Wang (2007) also �nd that the power utility C-CAPM explains the cross-section of

average stock returns better when risk is measured by the covariances with consumption growth at

longer horizons. In this paper, in contrast, the uncertainty of consumption growth over long run is

measured as innovations to expectations in future consumption growth over in�nite period. Thus e.g.

the measure of Parker and Julliard (2005) can be regarded as the truncation of such an in�nite series

at economically sensible horizons. Given that, we discuss the relation between these measures in our

paper.

Finally, our work intersects with the burgeoning literature on long run consumption risk in the

C-CAPM using the framework of Epstein�Zin�Weil utility.6 Malloy et al. (2009), for example, study

the role of long run consumption risks for stockholders and non-stockholders using the Consumer

Expenditure Survey (CEX) data. They �nd that a C-CAPM with factors related to current and

future consumption growth, as used in this paper, provides a better �t and plausible estimates of the

coe¢ cient of risk aversion for households that own stocks. Finally, Boguth and Kuehn (2009) �nd that

consumption growth volatility plays an important role in pricing the cross-section of equity returns.

3 Consumption CAPM with Epstein�Zin�Weil preferences

In our theoretical setup we follow Hansen et al. (2005) and Malloy et al. (2009) who consider a repre-

sentative agent, in an endowment economy, with Epstein�Zin�Weil preferences over the consumption

stream. In equilibrium, asset prices are such that it is optimal for the agent to consume her endowment.

The preferences are represented by the recursive utility function of Epstein and Zin (1989), Epstein

and Zin (1991) and Weil (1989) of the form:

Vt =

�
(1� �)C1��t + �

h
Et(V

1�

t+1 )

i 1��
1�

� 1

1��

(1)

where Vt+1 is the continuation value, 
 is the coe¢ cient of relative risk aversion, 1
� represents the

elasticity of intertemporal substitution (EIS) and � is the time discount factor. When 
 = 1
� , the

expression in eq.(1) collapses to a familiar power utility function. With Epstein�Zin�Weil recursive

6See Bansal (2007) for an accessible review.
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utility the stochastic discount factor (SDF) Mt+1 is given by:

Mt+1 = �

�
Ct+1
Ct

��
 "
Vt+1

Et(V
1�

t+1 )

1
1�


#��

(2)

There are two crucial terms in this stochastic discount factor. The �rst is the consumption growth�
Ct+1
Ct

�
as in the classical power utility C-CAPM. The second term is related to the continuation value

Vt+1 and represents future utility. This is a forward looking term linked to a future consumption via

the recursion in eq.(1) and is present only when the coe¢ cients of EIS and risk aversion di¤er. This

term is unobservable and for the purpose of empirical implementation and in order to �nd a closed form

solution for the SDF above, we assume that the consumption growth follows some MA(1) process of

the general form as speci�ed below:

�ct+1 = �c + �(L)wt+1 = �c +

1X
s=0

�swt+1�s (3)

where �ct+1 � log(Ct+1Ct
), �(L) is a lag polynomial operator de�ned as �(L) =

P1
s=0�sL

s and !t+1 is

iid standard normal process (!t+1 � iid N(0; 1)). Such a speci�cation is quite broad and allows for a

wide range of possible models of consumption path over time as noted in Hansen et al. (2005).

We also focus on a special case where the EIS is equal to one since we are interested in studying

the cross-section of expected returns. Malloy et al. (2009) argue that higher EIS increases covariances

of all asset returns with log SDF by a roughly similar magnitude and they con�rm this empirically.

As a result in a cross-section the relative di¤erences between expected returns and the cross-sectional

price of risk will not be substantially in�uenced by the value of EIS.

Under the above assumptions, the expression for the log SDF in eq.(2) is given by:7

mt+1 = log � ��ct+1 + (1� 
)[�(�)!t+1]�
(1� 
)2

2
�(�)2 (4)

where mt+1 � log(Mt+1). Ignoring the log of time discount factor �, there are two components in the

above expression that are important in an asset pricing context. The �rst is the current consumption

growth �ct+1 and this is what is captured in the classical power utility C-CAPM. The second term

�(�)!t+1 equals

�(�)!t+1 =

 1X
s=0

�s�
s

!
wt+1 =

1X
j=0

�j(Et+1 � Et)�ct+1+j

and represents the innovation to expectations about the present value of consumption growth in all

future periods. In other words, this term re�ects the change in the expectations about future consump-

7The detailed derivation of the log SDF is provided in the Online Appendix.
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tion growth caused by shock !t+1. For estimation purposes we refer to this forward-looking element

as "c;t+1. The last term in eq.(4) is the variance of this innovation. In the above setup, this variance

is constant over time. The log SDF, given in eq.(4) can be rewritten as

mt+1 = log � ��ct+1 + (1� 
)
1X
s=0

�s(Et+1 � Et)(�ct+1+s) (5)

� (1� 
)
2

2
V art

" 1X
s=0

�s(Et+1 � Et)(�ct+1+s)
#

The Euler equation implies that the gross return on any asset i, Rit+1 should be such that

E
�
Mt+1R

i
t+1

�
= 1. The log-linearized version of the Euler equation for our model is the following:

E(rit+1 � r
f
t+1) +

1

2
V ar(rit+1)�

1

2
V ar(rft+1) = �Cov(mt+1; r

i
t+1 � r

f
t+1) (6)

E(rit+1 � r
f
t+1) +

1

2
V ar(rit+1)�

1

2
V ar(rft+1) = Cov(�ct+1; r

i
t+1 � r

f
t+1)

+ (
 � 1)Cov
 1X
s=0

�s(Et+1 � Et)(�ct+1+s); rit+1 � r
f
t+1

!

According to the above pricing equation, the expected excess returns are determined by, �rst, how the

excess returns covary with contemporaneous consumption growth and, second, how they covary with

innovations in expectations about future consumption growth. This is the main equation in our paper

and we evaluate the implications of this equation in empirical applications. We also test the theoretical

restriction this equation implies (i.e. the loading on Cov(�ct+1; rit+1 � r
f
t+1) should be equal to one)

and we estimate as well the value of the coe¢ cient of risk aversion 
.

From practical perspective, the forward-looking term "c;t+1 is unobservable and needs to be es-

timated. Our approach here is novel and we estimate the innovations in expectations about future

consumption growth from a factor-augmented VAR model for consumption growth.

4 Methodology

We proceed towards the evaluation of the empirical performance of Euler equation, given in (6) in the

following steps. First we estimate common factors from a large panel of macroeconomic and �nancial

variables and from the extracted factors we select those that have predictive power for consumption

growth. They are used in the factor-augmented VAR model as state variables. Next, we estimate

the factor-augmented VAR model and extract innovation to expectations about future consumption

growth. Finally, we estimate Euler equation and test its implications using two methodologies: linear

SDF approach with GMM estimation and Fama-MacBeth cross-sectional regressions.
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4.1 Estimation of common factors and their selection for VAR model

We estimate common factors from the panel of macroeconomic and �nancial variables using the

methodology of asymptotic principal components with the number of factors determined by the infor-

mation criteria in Bai and Ng (2002). This is a classical technique in factor analysis and we refer the

reader to Bai and Ng (2008) and Stock and Watson (2011) for full details.

In our application we focus on a subset of the common factors that have predictive power for future

consumption growth. We select those factors following the procedure detailed in Ludvigson and Ng

(2009). The selection is based on statistical measures: Bayesian Information Criterion (BIC) and

Akaike Information Criterion (AIC).

Brie�y, let r be the number of common factors as determined by information criteria in Bai and

Ng (2002). Let zkt denote the set of all possible subsets of common factors, with Fkt denoting the

elements of zkt, where k indicates the number of factors in each subset Fkt (k = 1; 2; :::; r). For

example z1t has r possible one-element sets of common factors: z1t = fff1tg; ff2tg; :::; ffrtgg, where

fit denotes the ith common factor. For each k, the optimal composition of common factors, F �kt, is

determined by BIC and AIC from the following predictive regressions:

�ct+1 = �k;0 + �
0
k;1Fkt + �k;t+1 8Fkt 2 zkt; k = 1; 2; :::; r (7)

By construction, all common factors included in F �kt are included as well in F
�
(k+1)t. Once the

optimal composition of factors F �kt is identi�ed for each k, we select from those optimal sets the one

that minimizes both the BIC and AIC from predictive regressions of the form as in (7). In cases

where information criteria do not coincide in the selection, we use the signi�cance of the log-likelihood

ratio as a decision tool. Intuitively, this test statistic allows to test whether additional common factor

in F �(k+1)t in above to F
�
kt, contributes signi�cantly to the predictability of consumption growth, given

the forecasting power of to F �kt.

4.2 Estimation of the factor-augmented VAR

There are two pricing factors in Euler equation (6): consumption growth and innovation to expectations

about future consumption growth. While consumption growth is directly measurable, innovation to

expectations about future consumption growth is not observable and needs to be estimated. We use

a VAR methodology for that purpose. A bene�t of using a VAR is that it allows for a time-variation

in conditional expectation of consumption growth. We can then extract a forward looking measure

of innovations to expectations in future consumption growth. This di¤ers from the approaches in

for example, Parker and Julliard (2005) or Jagannathan and Wang (2007), where forward looking
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measures related to consumption growth are truncated truncated at speci�c lag lengths. A cost to

this approach, that there is an element of estimation error in the VAR parameter estimates due to

mis-speci�cation of state variables used in the VAR, is mitigated with our use of common factors as

state variables in the VAR.

We now explain, in brief, the method used to extract the innovations in expectations about future

consumption growth, "c;t+1. Let Zt denote a vector which has log consumption growth �ct as its �rst

element. The other elements in this vector, denoted as xt, are state variables. Let this vector follow a

VAR(1) process:

Zt+1= AZt+�t+1 (8)

Speci�cally, we assume the following dynamics for �ct and xt:24 �ct+1

xt+1

35 =
24 A11 A12

A21 A22

3524 �ct

xt

35+
24 �c;t+1

�x;t+1

35 (9)

Let e1 be a vector with the �rst element equal to 1 and all others equal to zero. Using e1 we can

e.g. express consumption growth in terms of the elements of the VAR model: �ct = e01Zt. Given the

joint dynamics of consumption growth and state variables in eq.(9), the innovations to expectations

about future consumption growth, de�ned as "c;t+1 =
P1

j=0�
j(Et+1�Et)�ct+1+j , are the following:8

"c;t+1 = e
0
1(I� �A)�1�t+1 (10)

In most applications the VAR is estimated using a speci�c set of state (or predictive) variables.

For example, Campbell and Vuolteenaho (2004) use the yield spread, the price�earnings ratio and

the small-stock value-spread, to extract shocks or news about changes in expected cash �ows and

discount rates. These series are then used as pricing factors in a two-factor inter-temporal CAPM to

explain the di¤erence between value and growth portfolios. Campbell and Vuolteenaho (2004) note

that their results are sensitive to the inclusion of certain speci�c state variables and this point is

further elaborated by Chen and Zhao (2009). In contrast, in this paper, instead of speci�c predictive

variables, we use a set of selected common factors, in the spirit of Bernanke et al. (2005). Ludvigson

and Ng (2009) point out that the extracted factors are likely to contribute to the forming of investor�s

expectations since they re�ect a common set of underlying fundamentals and summarize information

included in a large panel of macro and �nancial variables. Our use of common factors in this context

is novel and has a number of advantages.9 First, we can avoid having to choose speci�c individual

8The detailed derivation of (10) is provided in the Online Appendix.
9There is a growing literature using a factor analysis in a VAR setting to study the macroeconomic e¤ects of policy

interventions or patterns of co-movements in economic activity and as inputs into dynamic stochastic general equilibrium
models (see, for example, Bernanke et al. (2005) for a speci�c application and the surveys by Bai and Ng (2008) and
Stock and Watson (2011) for other references).
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predictive variables and making our results sensitive to that choice. Second, as Bai and Ng (2008)

show, under the assumption that both N;T �! 1 while
p
T
N �! 0, the coe¢ cients obtained from

ordinary least squares (OLS) estimation of VAR model in eq.(9) are
p
T -consistent and asymptotically

normal. They also show that the asymptotic variance is such that any inference can proceed as if

the factors were observed rather than estimated. In other words, the pre-estimation of the common

factors using principal components analysis does not a¤ect the consistency of the OLS estimates or

the standard errors in the VAR system. This is of particular relevance in our case since the VAR in

eq.(9) is estimated equation-by-equation using OLS. The requirement that N needs to be large relative

to T is ful�lled in our case since we have N = 125 which is a size similar to that used in previous

work (for example, Ludvigson and Ng (2009)). Third, common factors are found to be robust to the

structural instability that plagues low-dimensional forecasting regressions (Stock and Watson (2008))

which is relevant in our application as our data span a 37-year period from 1975�2011. The intuition

for this result is that such instabilities average out in the construction of common factors if they are

su¢ ciently dissimilar from each other.

4.3 Estimation of the Euler equation

4.3.1 Linear SDF approach using GMM estimation

We estimate the Euler equation given in (6) using GMM method. This approach is a standard method-

ology in asset pricing literature. In our case it directly allows to test a theoretical restriction of the

model that the loading on consumption growth risk is equal to one and allows to estimate the pa-

rameter of risk aversion from the loading on risk related to innovations in expectations about future

consumption growth. The details of this methodology can be found in Cochrane (2005) and below we

give a brief summary of this approach.

Let mt+1 denote a log SDF as given in eq.(5). It can be written in a general form as mt+1 =

a�b0frt+1, where frt+1 =
h
�ct+1 "c;t+1

i0
and denotes the factors of risk in our model, coe¢ cients

b =
h
b�c b"c

i0
are the risk loadings and a is a scalar chosen based on the normalization of the mean

of the log SDF. The risk loadings indicate whether particular pricing factors in a proposed asset pricing

model are marginally useful in pricing test assets in the presence of other risk factors. If the test assets

are correctly priced by the proposed SDF, then the Euler equation implies that pricing errors will be

zero i.e. E(mt+1R
ei
t+1) = 0, where R

ei is the excess return on asset i. Such a form of Euler equation

suggests GMM estimation approach using pricing errors as moments. Since the mean of mt+1 cannot

be identi�ed from the zero pricing errors, we choose to normalize it to one, i.e. E(mt+1) = 1, which is a

common approach in asset pricing literature. As a result mt+1 = 1�b0[frt+1��fr]. This speci�cation

implies that the log SDF is a linear function of the demeaned risk factors as in Kan and Robotti (2008)
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and:

E(mt+1R
ei
t+1) = E(R

ei
t+1 �Reit+1(frt+1 � �fr)0b) = 0 (11)

The above can be written as

E(Reit+1) = E[R
ei
t+1(frt+1 � �fr)0]b (12)

= Cov(Reit+1; frt+1)b

This implies that GMM estimation is equivalent to a cross-sectional regression of average excess returns

on the covariances between excess returns and risk factors and it is directly related to Euler equation

in eq.(6). This is of special importance in our case as with estimated coe¢ cients b we can directly test

a theoretical restriction of the model in (6) that the risk loading on consumption growth is equal to

one, i.e. H0 : b�c = 1 and we can also estimate the risk aversion parameter as 
 = b"c + 1 and test its

signi�cance.

In terms of GMM estimation we consider the following N +K moment conditions:

g(b; �fr) = E

24 g1;t+1(b; �fr)

g2;t+1(�fr)

35 = E
24 Reit+1 �Reit+1(frt+1 � �fr)0b

(frt+1 � �fr)

35 = 0(N+K)�1 (13)

where N is the number of test assets and K is the number of risk factors. The �rst group of N moment

conditions represents pricing errors �the di¤erences between actual and predicted excess returns on

test assets. The second group of K moment conditions arises from the normalization and a need to

estimate the means of risk factors �fr. The sample equivalents of the above moment conditions are

the time series averages of relevant expressions: gT (b; �fr) = 1
T

PT�1
t=0 gt+1(b; �fr).

The GMM objective function is the following:

Min
fb;�frg

gT (b; �fr)0 �WgT (b; �fr) (14)

where �W is a weighting matrix that determines the importance of speci�c moment conditions and has

the following form:

�W =

26664
W 0N�1 0N�1

01�N h1 0

01�N 0 h2

37775
(N+K)�1

(15)

Parker and Julliard (2005) and Malloy et al. (2009) advocate setting h1 and h2 su¢ ciently large

numbers so that the estimates of �fr are approximately equal to the time series averages of risk factors
1
T

PT�1
t=0 frt+1. Alternatively Kan and Robotti (2008) impose the restriction �̂fr =

1
T

PT�1
t=0 frt+1,

12



derive a closed form solution for b̂, which is equivalent to the one from the GMM minimization using

large values of h1 and h2, and specify the asymptotic distribution of the parameter estimates and

sample moment conditions. We follow their paper in this respect. We also implement the approach of

Parker and Julliard (2005) and Malloy et al. (2009) and verify that this delivers qualitatively similar

results.

For the importance of moment conditions related to pricing errors, determined by weighting matrix

W , we use two common, pre-speci�ed matrices. First we use the identity weighting matrix, W = I. In

this case all test assets are treated symmetrically and parameters b are estimated by minimizing the

sum of equally weighted squared pricing errors. Second we use the inverse of the variance matrix of

the excess returns on test assets, i.e. W = (V arRe)�1 as suggested by Kan and Robotti (2008) for the

case of de-meaned log SDF. This is a modi�ed version of Hansen-Jagannathan (HJ) matrix which uses

the inverse of the second moment of the excess returns. Lettau and Ludvigson (2001b) point out, that

parameters can be poorly estimated using the HJ weighting matrix if the size of the available sample

T is small compared to the number of test assets N . As such, if the parameter estimates from GMM

with modi�ed HJ matrix di¤er greatly from those of GMM with identity matrix, this may be due to

the poor �nite sample estimate of the asymptotic covariance matrix of the pricing errors.

Finally, we test the null of whether pricing errors from the model are insigni�cant, using the JT

test with the usual test statistic:

JT = g
0
T (b; �fr)[V ar(gT (b; �fr))]

+gT (b; �fr) � �2N�K (16)

where []+ denotes the pseudo-inverse since the variance-covariance matrix of the gT is singular. The

�2 distribution has degrees of freedom equal to the di¤erence between the number of moments and

the number of estimated parameters.

Additionally, we also report some commonly used informal criteria that help assess the goodness-

of-�t of the model: root mean square pricing error (RMSE), mean absolute pricing error (MAE), R2,

adjusted-R2 and a plot of the actual versus the model-predicted excess returns.

4.3.2 Fama-MacBeth cross-sectional regressions

We estimate our model using also an alternative methodology: Fama-MacBeth cross-sectional regres-

sions with univariate betas. In the �rst stage we run the time-series regressions and estimate univariate

betas for each risk factor:

Reit+1 = �0;i;�c + �i;�c�ct+1 + ��c;i;t+1 (17)

Reit+1 = �0;i;" + �i;""c;t+1 + �";i;t+1 (18)

13



for i = 1; :::; N and t = 0; :::; T � 1. In the second stage, we run the cross-sectional regressions of

average excess returns on the estimated betas and we estimate the loadings related to risk factors,

lambdas �:

�Rei = ��c�̂i;�c + �"�̂i;" + �i (19)

Betas, estimated in the �rst stage represent the riskiness of the assets � the quantities of risk

related to speci�c risk factors and they are directly proportional to covariances of test assets excess

returns with risk factors. The factor loadings, estimated in the second stage, are interpreted as risk

prices associated with speci�c risk factors. We test here whether the prices of the two risk factors (i.e.

consumption growth risk and the risk related to innovations in expectations about future consumption

growth) are signi�cantly di¤erent from zero.

Alphas, �, represent pricing errors and their magnitude determines how well the model prices test

assets. We test the null of whether the pricing errors are jointly insigni�cant. The test statistic is given

by �0V ar(�)�1� and asymptotically follows the �2N�K distribution. We note, in this context, that the

null of zero pricing errors may not be rejected, not because of small pricing errors, but because of high

sampling error in the estimated betas as underlined by Lettau and Ludvigson (2001b).

We estimates the standard errors of factor loadings and pricing errors under a couple of assumptions.

We compute classical iid OLS errors and we also account for the errors-in-variable problem, i.e. that

the betas used in the second stage are estimates of the true unknown betas, by computing Shanken-

corrected standard errors of as suggested by Shanken (1992). Shanken-correction assumes that asset

returns are stationary and conditionally homoskedastic.10 However we note, as shown in Jagannathan

and Wang (1998), that conventional t-statistics in the presence of conditional heteroskedasticity do not

necessarily overstate the precision of the standard errors. Finally we estimate as well robust standard

errors . For that purpose we employ the GMM framework and estimate betas from the �rst stage and

lambdas from the second stage simultaneously. This is equivalent to the Fama-MacBeth two-stage

regressions in the sense that it produces the same estimates of the parameters. The advantage is that

it allows to estimate standard errors that not only account for the fact that betas are estimated, but

also allow for serial correlation and conditional heteroscedasticity. We follow Newey and West (1987)

and estimate heteroscedasticity and autocorrelation consistent standard errors of Newey-West style.

Finally, we report some commonly used informal criteria that help assess the goodness-of-�t of

the model: RMSE, MAE, R2, adjusted-R2. To reinforce the conclusions from the Fama-MacBeth

estimation results and to address the critique of relying too much on R2 measure, we estimate the

second stage regression given in eq.(19) with constant and test whether the true R2 of the model is

10The correction is directly related to the magnitude of each coe¢ cient and inversely related to the variability of the
pricing factors. Lettau and Ludvigson (2001b) point out that macro factors are not very volatile and as a result this
tends to �blow up� the Shanken correction factor so that the corresponding t-statistics are not signi�cant.
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signi�cantly di¤erent from zero (H0 : R2 = 1) and from one (H0 : R2 = 0). Kan et al. (2009) provide

a relevant theory to conduct these tests and we refer reader to the results in their paper for details.

5 Data

Our main set of test assets are ten US Treasury bond portfolios from the CRSP Fama Maturity Port-

folios Returns Files. These portfolios include bonds and notes with various characteristics: callable,

non-callable, non-�ower US government notes and bonds, but exclude partially or fully tax-exempt is-

sues. We compute quarterly portfolio returns using monthly holding period returns which are available

in the CRSP database and are equal weighted averages of the unadjusted ex-post one-month holding

period returns of each bond in the portfolio. Fama Maturity Portfolios (FMP) are sorted according to

maturity and in this paper we use FMP with the following maturities: from 13 to 18 months (FMP1),

from 19 to 24 months (FMP2), from 25 to 30 months (FMP3), from 31 to 36 months (FMP4), from

37 to 42 months (FMP5), from 43 to 48 months (FMP6), from 49 to 54 months (FMP7), from 55 to

60 months (FMP8) from 61 to 120 months (FMP9) and greater than 120 months (FMP10) from the

quote date. Our sample starts from the �rst quarter of 1975 (the �rst date from which a complete

set of returns for all the FMP is available) through to the fourth quarter of 2011, which gives us 148

quarterly observations. Excess returns on 10 FMP are in excess of 30-day Treasury bills obtained from

the CRSP database.

We also use two alternative sets of test assets. The �rst is the set of seven Fixed Term Indices (FI).

These indices were designed to plot a yield curve and each index is represented by a most recently

issued bond that is at least six months, but closest to the target maturity date. The target maturities

are the following: 1 year (FI1), 2 years (FI2), 5 years (FI5), 7 years (FI7), 10 years (FI10), 20 years

(FI20) and 30 years (FI30). The second set of test assets includes �ve Fama-Bliss Discount Bonds

(FB). These represent arti�cial zero-coupon bonds and were designed to re�ect the discount yield term

structure. The maturities of the FB discount bonds are the following: 1 year (FB1), 2 years (FB2), 3

years (FB3), 4 year (FB4), 5 years (FB5). Both alternate sets of test assets are used mainly for the

purpose of robustness check for our results related to 10 FMP.11

We obtain a balanced panel of 125 macroeconomic and �nancial time series from the Global Insights

Basic Economics and the Conference Board�s Indicators Databases. These series represent broad

categories of economic and �nancial variables such as: real output and income, employment and labor

market, housing market, orders and inventories, money and credit markets, stock market, interest

rates and bond yields, exchange rates, prices. We use quarterly data and, following Stock and Watson

11More details on US bond data used in this paper can be found at the following CRSP webpage:
http://www.crsp.com/products/documentation/supplemental-series
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(2002a) and Stock and Watson (2002b), standardize and transform the data where necessary to ensure

stationarity prior to the estimation of common factors. The detailed description of the data as well as

the relevant transformations are provided in the Online Appendix.

Finally, we construct the real consumption series using personal consumption expenditure on non-

durables and services, de�ated by a weighted average of price indices for nondurables and and for

services. This is then divided by population for the corresponding time period to obtain a real per

capita consumption measure. The consumption growth is de�ned as log change in real per capita

quarterly consumption of nondurables and services.12 The relevant data necessary for the above com-

putations is obtained from the US Department of Commerce, Bureau of Economic Analysis.

We also use, as a robustness check, data on quarterly consumption growth obtained using an

alternate procedure. We follow Piazzesi and Schneider (2007) who measure per capita consumption

growth as equal to the growth rate of the raw consumption NIPA data minus a constant and assume

that population growth is constant. This allows them to mitigate three issues; the large di¤erences in

the standard population series available from various data sources, the presence of very large spikes

at points where the census data is collected every decade and the related interpolation issues between

census years. The details of the consumption data construction are given in Piazzesi and Schneider

(2007).

6 Empirical results

6.1 Summary statistics

In contrast to the stylized facts for equity portfolios the features of the Fama Maturity Portfolios that

we use, are less well-known. We report, in table 1, basic summary statistics for excess returns on 10

FMP sorted on maturities, over the period 1975�2011.

We can observe that over the 37-year sample period, average excess returns on bond portfolios

increase with the maturity of the constituent bonds: the average excess return on the portfolio of

bonds with the shortest maturities (12�18 months) is 1.382% per annum and it increases in a monotonic

fashion to 4.433% per annum for the portfolio of the longest maturity bonds (more than 120 months).

The volatility of excess returns also increases with maturity but at a greater pace: from 2.5% for

the shortest-maturity portfolio up to 11.889% for the longest-maturity portfolio. This greater pace is

re�ected in the annualized Sharpe ratios, that are falling with maturity: from 0.552 for the shortest-

maturity portfolio up to 0.372 for the longest-maturity portfolio. It is worth noting that the magnitude

of Sharpe ratios for bond portfolios is similar to the Sharpe ratio of broad equity portfolio,represented

12We consider expenditure on nondurables and services, following a large literature on consumption-based models (see,
for example, Lettau and Ludvigson (2001a)).
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by S&P500 index, which is approximately 0.43 for the same period. We can also see from table 1

that there is little autocorrelation in quarterly excess returns for all the bond portfolios and in vast

majority it is not signi�cant. Our results are similar to those reported by Pilotte and Sterbenzr (2006)

using similar data.

6.2 Selection on common factors for VAR model and estimation of the

VAR

As discussed in earlier sections, the number of common factors well representing a large panel of data is

determined, using the information criteria in Bai and Ng (2002). In our case we �nd that the common

variation in the panel of 125 time series is well captured by eight common factors, which we denote as

f̂1t, f̂2t, f̂3t, f̂4t, f̂5t, f̂6t, f̂7t, f̂8t. In table 2 we report the results related to the selection of the common

factors that have a strong predictive power for consumption growth. According to BIC, the optimal

selection of factors for VAR model includes the following common factors: F̂ �5t = ff̂1t; f̂2t; f̂3t; f̂4t; f̂7tg

however the AIC points at F̂ �7t = ff̂1t; f̂2t; f̂3t; f̂4t; f̂5t; f̂7t; f̂8tg as the optimal selection. The LL-ratio

indicates that the marginal contribution of f̂5t and f̂8t to the predictability of consumption growth is

not signi�cant so the set of common factors that are carried forward and included in the VAR model

as state variables, is F̂ �5t.

A point of interest in including these factors in the VAR is whether they have any economic

interpretation. In general, interpretation of the factors as representing speci�c types of macroeconomic

or �nancial series is inappropriate since the construction of each one is a¤ected to some degree by all

the variables in our large dataset. As a result none of the common factors would correspond exactly

to a precise economic concept like output or unemployment especially when such series are naturally

correlated. With this caveat, but with a view to get some intuition of what the factors might represent,

we follow Stock and Watson (2002b) and Ludvigson and Ng (2009) in characterizing the factors as

they relate to the 125 variables in our panel dataset.13 We depict in �gure 1 the marginal R2 from

regressions of each of the 125 individual series from our panel data onto each of selected �ve factors

f̂1t, f̂2t, f̂3t, f̂4t and f̂7t, one at a time, using the full sample of data. Figure 1 displays the R2 statistics

as bars in the chart separately for each of the four factors we use. We can observe from this �gure that

the �rst factor f̂1t loads heavily measures related to real output, industrial production, employment

and manufacturing orders while displaying little correlation with stock indices and prices. The second

factor f̂2t on the other hand, appears to load most heavily on prices and measures of in�ation but

displays little correlation with macroeconomic measures. The third factor f̂3t appears to be largely

13While interesting, this analysis takes us away from the main theme of our paper and we refer the reader to Ludvigson
and Ng (2009) who have a detailed and an interesting analysis of this issue when using common factors in empirical
analysis.
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related to several interest spreads while the fourth factor f̂4t re�ects mainly housing market measures

and term structure of interest rates. Finally the last factor, f̂7t correlates mainly to foreign exchange

rates.

Finally, we report in table 3 the estimation results of the factor-augmented VAR model with

consumption growth and the �ve common factors as state variables. We can observe from this table

that the selected common factors indeed possess strong predictive power for consumption growth, even

in the presence of lagged consumption growth. They jointly explain more than 40% of the variation

in consumption growth, which is an impressive amount. It turns out that such a good quality of the

predictive model for consumption growth accounts partially for an explanation of the reasons that

drive our asset pricing tests as will be discussed in later sections.

6.3 Asset pricing results

Table 4 reports the GMM estimation results of the linear SDF representation of the model using

10 Fama Maturity Portfolios as test assets. We can observe that when the identity matrix is used to

weight moment conditions, the estimate of loading on risk factor related to innovations to expectations

about future consumption growth b̂" equals 50:703 and is statistically signi�cant which indicates that

this risk is an important source of variation in the cross-section of excess returns on bond portfolios

with di¤erent maturities. On the other hand the estimate of the loading related to contemporaneous

consumption growth risk b̂�c is equal to �66:742, but this value is not signi�cant in statistical terms

implying that this risk factor does not seem to play an important role in pricing the cross-section of

government bonds in our sample. However, high sampling error related to the estimate of b̂�c makes

it statistically indi¤erent from one so the theoretical restriction of the model cannot be rejected in

our data. The estimate of risk aversion parameter is equal to 51:703 and is statistically di¤erent from

zero. This value is quite high but most of the consumption-based asset pricing models produce high

estimates of risk aversion. Finally, the J statistic rejects the null of insigni�cant pricing errors in our

model. We suspect that the reason of that is high sampling variability of moment conditions. On

the other hand, the model explains well the cross-section of bond excess return on 10 Fama Maturity

Portfolios �98:8% of the cross-sectional variation in excess returns is explained by the variation in the

two risk factors. Also the RMSE is relatively low, 0:084% on annual basis comparing to the magnitude

of annualized excess returns that is between 1:382% and 4:433%. These results are robust to the use of

an alternate weighting matrix as speci�ed in panel B of this table. The striking di¤erences for informal

statistics like R2 or RMSE is quite common in these applications, when weighting matrix is di¤erent

that the identity matrix.

We report in table 5 the estimates of risk aversion when other bond portfolios are used as test
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assets. When Fixed Term Indices or Fama-Bliss Discount Bonds are used, the risk aversion estimates

are even lower, respectively 35:633 and 49:278. For comparison we report as well the risk aversion

estimates for equity portfolios or for the mixture of 10 Fama Maturity Portfolios and di¤erent equity

portfolios. In these cases the risk aversion estimates are higher, they have a magnitude of 64 � 123

and are mostly signi�cant.

In table 6 we report the results of the Fama-MacBeth regressions for 10 Fama Maturity Portfolios

as test assets. We �nd that the estimate of the price of risk related to innovations to expectations

about future consumption growth (�") is positive and statistically signi�cant, which indicates that

this source of risk is priced for bond portfolios and the factor risk premium equals 0:239. On the

other hand, the price of contemporaneous consumption growth risk is negative (�0:138), though not

signi�cantly di¤erent from zero. This makes this risk source unimportant for pricing bond portfolios

which further con�rms the conclusions from the linear SDF approach in the previous section. This

is also consistent with the well-documented poor performance of the standard C-CAPM for equity

portfolios (Hansen and Singleton (1982)). The tests of the hypothesis on joint insigni�cance of pricing

errors reject this hypothesis, again as in case of the linear SDF approach. In panel B of table 6 we

include the estimation results from the variation of Fama-MacBeth cross-sectional regression in which

there is a constant included in the second stage. As we can observe from the results, the constant is

not statistically signi�cant, as predicted by the theory and the other results are qualitatively the same

as in panel A where no constant is included in the second stage. Additionally, from the test of whether

the R2 is signi�cantly di¤eren from zero and one, we can conclude that the thue value of R2 is not

signi�cantly di¤erent from one, but we reject the null that is equal to zero. These further con�rm that

high values of R2 are not an e¤ect of model misspeci�cation or sampling errors.

Finally, we picture the performance of the model in �gure 2 where we plot the mean excess returns

predicted by the model vs the actual ones. The closer the bond portfolios lie to the 45 degree line

from the origin, the better model performance and the lower the pricing errors. It is clear from the

plot that our two-factor model provides a close �t to the data.

6.4 Discussion of the results

In this section we discuss what underlines our results and give some intuition on the importance of the

risk factor related to innovations in expectations in future consumption growth "c;t+1. We think there

are a couple of reasons that drive the results and allow our model to explain well the cross-section of

excess returns on bond portfolios.

First, we take a closer look at the measure of two risks in our model, expressed by the relevant

covariances cov(Reit+1;�ct+1) and cov(R
ei
t+1; "c;t+1). We can observe from �gure 3 that there is little

19



cross-sectional variation in covariances of excess returns with consumption growth and the relation

between them and average excess returns on 10 Fama Maturity Portfolios is almost �at. In contrast

the spread in covariances of excess returns with "c;t+1 is much greater. We can observe from the

�gure as well that these covariances are clearly increasing with with average excess returns. Thus

the portfolio of bonds with long maturity requires a greater return than a portfolio of short-maturity

bonds as a compensation for a greater risk related to uncertainty of consumption in all future periods

and the relevant expectations of this consumption stream. More importantly, we show in table 7

that the �ndings pictured in �gure 3 are statistically important rather than a matter of sampling

error. From Panel A of table 7 we can see that the covariances of excess returns with consumption

growth, although individually signi�cant, are small and there is a weak evidence that they are jointly

signi�cant or statistically di¤erent from each other (the highest covariance is -0.085 vs the lowest

-0.319). In striking contrast, the covariances of excess returns with innovations to expectations in

future consumption growth, reported in Panel B of table 7, are much larger, varying from 0.514 to

1.783. In comparison to covariances with consumption growth the spread between them is more than

�ve times greater. They are not only individually signi�cant but also jointly signi�cant and, what�s

more important, they are signi�cantly di¤erent from each other in statistical terms. This implies that

the covariance risk related to uncertainty in consumption growth over all future periods is signi�cantly

di¤erent for portfolios of bonds with di¤erent maturities: short-maturity bonds have low covariance

risk so are less risky and as a result pay low risk premium, the covariance risk increases with maturity

and long-term bonds have high covariance risk so they are less risky and as a result they pay high

risk premium. These �ndings are further con�rmed by the fact that innovations to expectations in

future consumption growth correlate more tightly with excess returns on all bond portfolios than the

consumption growth. We can observe from table 7 that the magnitude of correlations is roughly

0.50.vs 0.16 in absolute terms. Such a tighter co-movement of innovations to expectations in future

consumption growth and excess bond returns further con�rms the importance of long run risk in

consumption growth in pricing bond portfolios.

We now turn back our attention to the predictability of consumption growth by common factors,

given that the measure of "c is derived from factor-augmented VAR model. As have already pointed,

the selected set of common factors ff̂1t; f̂2t; f̂3t; f̂4t; f̂7tg have an extraordinary forecasting power for

consumption growth, even in the presence of lagged consumption growth. They explain jointly around

40% of the variation in consumption growth. More important is, however, that these common factors

retain their forecasting power in an out-of-sample prediction. Brie�y, the aim of the out-of-sample

prediction is to mimic the real-time forecasting and evaluate the power of candidate predictors in

situation when the forecast for the time t + 1 can be made using the data available only up to time

t. As a result any model used for a prediction can be also estimated with data up to time t, in
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contrast to a classical predictability exercise where the models are estimated and evaluated with a

full sample. In our case it means a recursive estimation of common factors at each time we make

a prediction for consumption growth. We compare the performance of the factor-augmented model

with a benchmark model that does not include common factors. We select two benchmark models: a

historical mean and and AR(1) model for consumption growth and we evaluate the relative performance

of the factor-augmented model for three di¤erent evaluation periods as speci�ed in table 8.14 We can

observe from this table that the factor-augmented forecasting model performs on average better than

the benchmark model (no matter which benchmark or evaluation period we select). It always produces

lower forecasting errors as can be observed e.g. from comparison of standard metrics like RMSE and

MSE. We also employ a set of standard statistical tools to compare the forecasting power of two nested

models: the MSE-t test of Diebold and Mariano (1995) and West (1996) (to test equal MSE of two

models), the MSE-F test of McCracken (2004) (to test for equal forecasting accuracy of two models),

the ENC-T test of Harvey et al. (1998) and the ENC-NEW test of Clark and McCracken (2001)

(both to test for forecast encompassing). We �nd that all the four test statistics are greater than the

critical values when constant benchmark is used, indicating that in each case we reject the null of

identical forecasting power of the two models. The results are slightly weaker when AR(1) is used as a

benchmark. This out-of-sample forecasting exercise further con�rms that the strong forecasting power

of common factors for consumption growth is indeed preserved in a real-like forecasting exercise.

An interesting and important question is how our measure of long run risk in consumption growth

is related to other forward looking measures used in the literature. Our approach is an alternative to

e.g. Parker and Julliard (2005) who express a long run risk in consumption as a consumption growth

over longer periods (with an optimal period of around 3 years). We show that, in spite of di¤erent

measurements, we capture similar aspects of the long run risk in consumption for bond portfolios. In

�gure 4 we plot the covariances of consumption growth over horizons of 1 up to 20 quarters with the

returns on a bond factor for three groups of bonds: Fama Maturity Portfolios, Fixed Term Indices

and Fama-Bliss Discount Bonds. The bond factor represents a di¤erence between the returns of the

highest and lowest maturities bonds and is constructed in a similar spirit as e.g. size or book-to-market

factors for stock portfolios. We can observe in �gure 4 that the covariances increase with a horizon

over which consumption growth is measured with a peak of around 15 quarters when they are of a

similar magnitude as the relevant covariances of innovations to expectations in future consumption

growth "c with the bond factor returns. Such a pattern is consistent for all three groups of bonds

that we consider. We conclude that innovations to expectations about future consumption growth are

similar, in terms of covariance risk measurement, to consumption growth over almost 4 years. In graph

14The out-of-sample forecasting is becoming a standard approach e.g. for predicting stock returns or equity premia.
The details of out-of-sample forecasting methodology can be found e.g. in Diebold and Mariano (1995), Harvey et al.
(1998), Clark and McCracken (2001), McCracken (2007).
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D of �gure 4 we plot the covariances of consumption growth over di¤erent horizons with our forward

looking measure of consumption risk "c and observe the peak for around 15 quarters, which further

con�rms our conclusions. Interestingly Parker and Julliard (2005) observe an equivalent pattern for

size and book-to-market factors as shown in the �gure 2 of their article. However, in contrast to our

�ndings, they demonstrate that the "optimal" horizon for consumption growth is 11 quarters when

equity portfolios are tested. What distinguishes our forward looking measure of consumption risk

from a simple consumption growth over longer periods is the correlation with bond returns. We can

observe in �gure 5 that the correlation coe¢ cients between innovations to expectations about future

consumption growth and bond factor returns for di¤erent groups of bonds are not only signi�cant in

statistical terms but also of a magnitude of 0.3�0.4, which is much greater than the magnitude of

relevant correlations with consumption growth over di¤erent horizons. These, on the other hand, are

pretty stable over di¤erent horizons and not greater that 0.07 in absolute terms.15 Our measure of

long run consumption risk co-moves then more tightly with bond returns on di¤erent maturities, which

explains why in the cross-section this type of risk has a positive price. We believe, this is another driver

of our good empirical results when pricing bond portfolios with di¤erent maturities.

Finally, we address the questions of whether the duration of bonds, a classical measure of bond

risk, is in any way related to the consumption-based measures of risk used in this paper. For that

reason we use Fixed Term Indices and Fama-Bliss Discount Bonds because their durations are simply

the relevant target maturities. We plot in �gure 6 the covariance risk measures vs duration for the two

groups of bonds. We �nd that covariance risk related to consumption growth is actually negatively

related to duration, which clearly contradicts the theory. On the other hand the covariance risk related

to long run uncertainty in consumption growth is increasing with duration. We �nd that not only the

covariances are individually signi�cant, but they are also jointly signi�cant and statistically di¤erent

from each other as can be viewed from the detailed estimation results included in the Online Appendix.

These �ndings con�rm that our consumption-based risk measure is in line with a traditional measure

of risk for bonds which is duration.

6.5 Comparisons with other models

We now present, in table 9, the results of the comparison showing how some prominent models per-

form in pricing the cross-section of government bond returns. We consider the following linear factor

models: the classical CAPM with market risk premium, the Fama�French three-factor model which

adds size and book-to-market factors and the �ve-factor model of Fama and French (1993) additionally

augmented over the three-factor mode with two bond market factors: term premium and default pre-

15The data used to create �gures 4 and 5 are available from authors upon request. We do not report them here to
conserve the space.
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mium. We measure term premium (UTS) as the yield spread between 20-year and 1-year US Treasury

bonds and default premium (UPR) as the yield spread between BAA-rated and AAA-rated corporate

bonds. We also compare the performance of our model with the linearized versions of the power utility

C-CAPM, the Parker and Julliard (2005) C-CAPM with ultimate consumption growth over 11 and 15

quarters and the Epstein and Zin (1991) C-CAPM with market risk and consumption growth as risk

factors.

We �nd that the classical CAPM model perform very poorly in pricing government bonds � it

has a negative R2 and very high RMSE. But when augmented with size and book-to-market factors,

or additionally with term and default premia, it improves signi�cantly on these statistics over the

simple CAPM. The inclusion of two bond market factors over the three-factor model decreases the HJ

distance but also introduces more sampling error for this statistics. Surprisingly in our sample only the

three-factor model produces the HJ distance that is not signi�cantly di¤erent from zero. The results

in table 9 suggest also that the two bond market factors are not statistically signi�cant when pricing

government bond portfolios. When we compare our model with other consumption-based models we

�nd that it produces the highest R2 of 99% and the lowest RMSE of 0.021% per quarter, though the

di¤erences are not of a great magnitude. The values of HJ distance are similar for all consumption-

based model as well. It is also interesting to observe that the Parker and Julliard (2005) model with

ultimate consumption growth seems to be sensitive to a choice of period over which consumption

growth is taken. Just by increasing the growth period from 11 to 15 quarters, the model improves

signi�cantly on all the statistics e.g. the R2 increases from 70% to 95%.

Overall, we conclude that our consumption-based model compares reasonably well with other re-

lated models in pricing the cross-section of average government bond returns.

6.6 Tests for robustness

As a main robustness check for our model, we investigate whether our model prices well the cross-

section of return on two groups of assets: stocks and bonds. While there literature on pricing the

cross-section of equities is huge, it has become a standard now to evaluate empirical performance of

asset pricing models for a mixture of bond and stock portfolios. We employ this as well and assess the

performance of our model for the following four groups of test assets: 10 Fama Maturity Portfolios

mixed with (i) market portfolio (ii) 10 size portfolios, (iii) 10 book-to-market portfolios and (iv) 25

Fama-French portfolios. The visualization of the performance is presented in �gure 7, along with the

R2 values marked in relevant graphs. We �nd that our model also prices well the equity portfolios

and has slightly more explanation power for joint bond and size portfolios (98.9%) than for joint bond

and book-to-market portfolios (95.8%). We can observe as well from this �gure that excess returns on
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bond and stocks account for a complementary picture with bond excess returns up to 1.5% per quarter

and stock excess returns of 2%�4% per quarter.

We also perform several other tests to assess the robustness of our results. Here we describe only

the conclusions of these tests and provide full details in the Online Appendix.

First, we use two alternate sets of test assets. The �rst includes Fixed Term Indices and the

second set comprises of Fama-Bliss Discount Bonds. Our results for these two groups of test assets

are qualitatively similar to those obtained using the Fama Maturity portfolio returns. Speci�cally, the

innovations to expectations about future consumption growth in an important risk factor when pricing

the cross-section of quarterly returns on these assets.

Next, we estimate the model using a di¤erent consumption measure in extracting the innovations

to expectations about future consumption growth following Piazzesi and Schneider (2007) and test the

model for 10 Fama Maturity Portfolios. The results, detailed in the Online Appendix, again support

the main results in our paper obtained using the classical measure of consumption growth.

We also stress test our model using a sub-sample of our data. Our full sample period, 1975�2011 is

dictated by the availability of non-missing data on the Fama Maturity Portfolios. We therefore test the

model using data over the sub-period 1982�2011 �a period marked by a large decline in volatility of

major macroeconomic variables like GDP growth or in�ation rate, known as the Great Moderation. As

a result, we can test the model during a period characterized by a common macroeconomic environment

while at the same time avoid exacerbating the problem of small sample size given the span of data

points available to us. We �nd, again, that there is strong support for our main conclusions obtained

using the full sample of data.

Finally we report the relevant estimation results for the model in which we include the third pricing

factor: the variance of expected future consumption growth shock, V ar("c;t) estimated as a square

of innovations to expectation about future consumption growth. Bansal and Yaron (2004) assign a

crucial role for a conditional volatility of consumption growth and we take that on board in our paper

as well. The conclusion from these results is that the volatility factor is not statistically important in

pricing the cross-section of government bonds during our sample period.

7 Summary and conclusion

In this paper we use a consumption-based asset pricing model with Epstein�Zin�Weil recursive pref-

erences to explain the di¤erences between the average excess returns on portfolios of nominal US

Treasury bonds with di¤erent times to maturity, ranging from one year to more than ten years. In

other words we investigate whether consumption-based asset pricing models provide any explanation

of risk premia in bond markets. Our consumption-CAPM has two risk factors: contemporaneous con-
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sumption growth, as in case of classical power utility CAPM, and innovations to expectations about

future consumption growth, a forward looking measure of uncertainty in long run prospects in future

consumption.

We use a VAR model to estimate the forward looking measure of uncertainty in consumption. A

novelty of our application of VAR is that, instead of speci�c predictive variables, we use common

factors obtained from a large panel of macroeconomic and �nancial time series. We show in this paper

that selected common factors possess very good forecasting abilities for consumption growth and, along

with lagged consumption growth, are able to explain more than 40% of the variation in consumption

growth. What�s more, we �nd that such a good forecasting power of common factors is preserved in an

out-of-sample prediction as well. This further justi�es the use of common factor in VAR as the quality

of prediction of consumption growth determines the quality of measure of innovations in expectations

about future consumption growth.

Our main �nding is that consumption-based models, like ours, can provide a coherent story of the

riskiness of government bonds. We �nd that, for our sample, the risk related to long run prospects

in future consumption plays a crucial role in pricing nominal US government bonds. Risk premium

related to that source or risk if found to be positive and statistically signi�cant. Further, we explain

why long term government bonds pay on average greater returns than short term government bonds:

because they are more risky. And the risk that is rewardable, is the one related to long run prospects

in future consumption growth. Speci�cally, we measure that risk by covariances of portfolios returns

with innovations in expectations about future consumption growth and we demonstrate that long

term bond portfolios have signi�cantly greater covariances, thus risk, than short term bond portfolios.

Our two-factor model explains around 98.8% of the cross-sectional variation in average excess returns

of portfolios of bonds with di¤erent maturities, over the period 1975�2011. We show as well that

covariance risk related to innovations in expectations about future consumption growth, is consistent

with a standard measure of risk in bonds �duration. Bonds with greater duration have as well greater

covariance risk related to long run risk in prospects in future consumption. We �nd also, that the

estimates of the coe¢ cient or relative risk aversion are lower when bond portfolios are used as test

assets, rather than equity portfolios, though the values are still high comparing to the values implied

by economic theory. Our model is also robust when pricing jointly bond and equity portfolios. Finally,

we �nd that our model does well, in terms of pricing the cross-section of government bond excess

returns, when compared to several competing CAPM and consumption-based CAPM models and our

conclusions remain robust to a variety of checks for robustness. Overall the results imply that investors

must be rewarded to hold government bond portfolios which are risky rather than safe assets and which

may not be useful in hedging against risk related to long run prospects in consumption growth.
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Tables

Table 1: Summary statistics of excess returns for Fama Maturity Portfolios

FMP1 FMP2 FMP3 FMP4 FMP5 FMP6 FMP7 FMP8 FMP9 FMP10
Mean 1.382 1.567 1.866 2.132 2.398 2.509 2.608 2.719 3.117 4.433
St dev 2.500 3.208 3.987 4.538 4.961 5.511 5.902 6.515 7.680 11.889
Sharpe Ratio 0.552 0.488 0.468 0.469 0.483 0.455 0.442 0.417 0.405 0.372
Skewness 1.438 1.031 0.921 0.769 0.534 0.567 0.455 0.621 0.481 0.687
Kurtosis 10.123 6.846 6.141 4.625 2.588 2.318 1.611 2.525 1.515 1.606
Minimum -18.215 -22.065 -27.849 -31.405 -30.174 -32.351 -33.414 -37.828 -44.577 -64.325
Maximum 31.150 36.293 44.200 46.738 44.444 48.775 48.687 60.582 59.905 86.356
�1 -0.132 -0.118 -0.118 -0.112 -0.090 -0.076 -0.072 -0.096 -0.037 -0.044
�2 0.034 0.006 0.013 0.011 0.019 -0.015 -0.010 -0.017 -0.022 -0.069
�3 0.144 0.162* 0.132 0.133 0.146 0.151 0.144 0.103 0.106 0.079
�4 0.010 0.036 0.040 0.035 0.050 0.040 0.053 0.041 0.032 -0.005

Notes: Table 1 presents summary statistics for excess returns (annualized % excess returns) on Fama
Maturity Portfolios over the quarterly 30-day Treasury bill rates. The quarterly holding period returns
on the Fama Maturity Portfolios are computed using monthly returns obtained from the CRSP US
Treasury Database. Quarterly T-bill rates are obtained from the CRSP US Treasury Database. The
Fama Maturity Portfolios consist of non-callable, non-�ower notes and bonds and are de�ned by six-
month maturity intervals. In this table, FMP1 represents excess returns on a portfolio of bonds that
mature from 13 to 18 months from the quote date, FMP2 includes bonds with maturity from 19 to 24
months from the quote date. The other portfolios are: FMP3 �maturity from 25 to 30 months, FMP4
�maturity from 31 to 36 months, FMP5 �maturity from 37 to 42 months, FMP6 �maturity from 43
to 48 months, FMP7 �maturity from 49 to 54 months, FMP8 �maturity from 55 to 60 months, FMP9
�maturity from 61 to 120 months, and FMP10 �maturity greater than 120 months. The data span
the period 1975Q1�2011Q4. Also reported in this table are autocorrelations up to 4 quarters: those
marked with asterisk are signi�cant, exceeding the 95% con�dence interval of �1:96=

p
T � �0:161.
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Table 2: Selection of common factors for VAR model

LL-Ratio R2 �R2 BIC AIC
F�1t={f4t} 0.000 0.125 0.120 1.313 1.297
F�2t={f1t;f4t} 22.349* 0.214 0.206 1.231 1.199
F�3t={f1t,f3t,f4t} 21.328* 0.291 0.281 1.153 1.105
F�4t={f1t,f2t,f3t,f4t} 19.839* 0.356 0.343 1.083 1.019
F�5t={f1t,f2t,f3t,f4t,f7t} 7.644* 0.379 0.364 1.072 0.992
F�6t={f1t,f2t,f3t,f4t,f5t,f7t} 4.639 0.393 0.375 1.076 0.979
F�7t={f1t,f2t,f3t,f4t,f5t,f7t,f8t} 3.993 0.404 0.383 1.082 0.969
F�8t={f1t,f2t,f3t,f4t,f5t,f6t,f7t,f8t} 0.150 0.405 0.381 1.107 0.978

Notes: Table 2 presents the relevant steps of the selection procedure that aims to select an optimal
set of common factors with predictive power for consumption growth for a VAR model. F�kt denotes
an optimal set of k common factors out of eight possible, in terms of highest predictive power for
consumption growth. For each of such optimal sets (i.e. for k = 1; 2; :::; 8) we report R2, adjusted-R2

( �R2), BIC and AIC information criteria. The log-likelihood ratio (LL-Ratio) re�ects the marginal
contribution of F �(k+1)t with respect to F

�
kt to the predictability of consumption growth. Asterisks *

indicate statistical signi�cance at 1% signi�cance level. The data span the period 1975Q1�2011Q4.
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Table 3: Estimation of factor-augmented VAR model

R2 BIC
�ct�1 �f1;t�1 �f2;t�1 �f3;t�1 �f4;t�1 �f7;t�1 R̄2 AIC

�ct 0.241 0.078 0.111 0.113 0.154 -0.051 0.411 1.019
se OLS (0.072)** (0.033)** (0.026)** (0.027)** (0.027)** (0.027)** 0.397 0.938
se BOOT [0.073]** [0.033]** [0.027]** [0.026]** [0.027]** [0.026]**
�f1t 0.213 0.624 0.153 0.291 0.265 0.027 0.680 1.829
se OLS (0.109)** (0.050)** (0.040)** (0.041)** (0.041)** (0.041) 0.672 1.749
se BOOT [0.106]** [0.048]** [0.040]** [0.041]** [0.042]** [0.043]
�f2;t -0.076 0.202 -0.311 0.035 0.200 0.112 0.185 2.766
se OLS (0.174) (0.080)** (0.064)** (0.065) (0.065)** (0.066)** 0.164 2.686
se BOOT [0.177] [0.079]** [0.063]** [0.066] [0.064]** [0.067]**
�f3;t 0.245 -0.441 0.036 0.668 -0.056 -0.028 0.630 1.975
se OLS (0.117)** (0.054)** (0.043) (0.044)** (0.044)* (0.044) 0.621 1.894
se BOOT [0.113]** [0.051]** [0.045] [0.043]** [0.044]* [0.043]
�f4;t 0.238 0.231 0.069 -0.182 0.269 -0.166 0.246 2.688
se OLS (0.167)* (0.077)** (0.062) (0.063)** (0.063)** (0.063)** 0.227 2.607
se BOOT [0.169]* [0.073]** [0.062] [0.060]** [0.061]** [0.062]**
�f7;t -0.512 0.211 -0.279 0.194 0.153 0.185 0.233 2.663
se OLS (0.165)** (0.076)** (0.061)** (0.062)** (0.062)** (0.062)** 0.214 2.582
se BOOT [0.162]** [0.076]** [0.060]** [0.062]** [0.062]** [0.059]**

Notes: Table 3 presents the estimation results of a factor-augmented VAR(1) model, for consumption
growth and �ve optimal common factors, of the following form:.Zt+1 = AZt + wt+1, where Zt =�
�ct f̂1t f̂2t f̂3t f̂4t f̂7t

�
, �ct is real per capita consumption growth and f̂1t; f̂2t; f̂3t; f̂4t; f̂7t

denote estimated common factors, selected for the VAR model. The series of consumption growth
�ct have been multiplied by 100 for convenience. Each row in the table corresponds to a relevant,
single equation in the VAR(1) model. We report in the table the coe¢ cient estimates for matrix
A, two types of standard errors for coe¢ cient estimates: OLS standard errors in parentheses and
bootstrapped standard errors in square brackets, R2 and adjusted-R2 (R̄2), BIC and AIC information
criteria. Asterisks indicate statistical signi�cance of the coe¢ cient estimates at *10% and ** 5% levels.
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Table 4: GMM estimation of Euler equation with linear SDF for Fama Maturity Portfolios

Panel A: W=I b̂�c b̂" H0:b�c=1 
̂ JT stat p-value
estimates -66.742 50.703 51.703 RMSE 0.021
pv HAC(0) [0.291] [0.084] [0.288] [0.080] 26.110 [0.001] MAE 0.018
pv HAC(6) [0.287] [0.100] [0.284] [0.096] 39.688 [0.000] R2 0.988
pv HAC(auto) [0.288] [0.100] [0.285] [0.097] 19.045 [0.014] �R2 0.986
Panel B:
W=Var(Re)�1 b̂�c b̂" H0:b�c=1 
̂ JT stat p-value
estimates 50.755 50.393 51.393 RMSE 0.252
pv HAC(0) [0.217] [0.022] [0.222] [0.020] 21.918 [0.005] MAE 0.240
pv HAC(6) [0.257] [0.051] [0.261] [0.049] 35.714 [0.000] R2 -0.489
pv HAC(auto) [0.221] [0.027] [0.225] [0.025] 18.817 [0.015] �R2 -0.862

Notes: Table 4 presents the results of the GMM estimation of Euler equation with linear SDF with
weighting matrix W = I (in Panel A) and W = V ar(Re)�1 (in Panel B) for 10 Fama Maturity
Portfolios. We report the estimates of coe¢ cients b along with p-values for individual signi�cance,
related to the following types of standard errors: Newey-West with 0 and 6 lags and with auto-lag
selection (HAC). We also report p-values related to testing the theoretical restriction of H0 : b�c =
1 and the estimate of risk aversion parameter 
̂ along with the p-values related to its statistical
signi�cance. We present as well the JT statistics, used for testing a joint zero pricing errors hypothesis
along with relevant p-values. Finally, we report the goodness-of-�t statistics like R2, adjusted-R2 (R̄2),
RMSE and MAE (in % per quarter). All the p-values are reported in square brackets. The data span
the period 1975Q1�2011Q4.
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Table 5: Risk aversion estimates for di¤erent groups of test assets

10FMP 7FI 5FB 10Size 10BM 25FF 10FMB 10FMB 10FMB
+10Size +10BM +25FF


̂ 51.703 35.633 49.278 103.004 64.438 123.441 84.617 84.931 91.397
pv HAC(0) [0.080] [0.167] [0.148] [0.075] [0.171] [0.024] [0.008] [0.009] [0.005]
pv HAC(6) [0.096] [0.183] [0.193] [0.104] [0.175] [0.055] [0.032] [0.036] [0.028]
pv HAC(auto) [0.097] [0.178] [0.177] [0.075] [0.162] [0.024] [0.032] [0.031] [0.008]

Notes: Table 5 presents the estimates of the risk aversion parameter from GMM estimation of Euler
equation with linear SDF with identity weighting matrix for di¤erent groups of test assets. These are
the following: 10 Fama Maturity Portfolios (10FMP), 7 Fixed Term Indices (7FI), 5 Fama-Bliss Dis-
count Bonds (5FB), 10 equity size portfolios (10Size), 10 equity book-to-market portfolios (10BM), 25
Fama-French equity portfolios (25FF). We report as well the p-values (in square brackets) of statistical
signi�cance of estimated parameters, related to the following types of standard errors: Newey-West
with 0 and 6 lags and with auto-lag selection (HAC). The data span the period 1975Q1�2011Q4.
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Table 6: Fama-MacBeth regressions for Fama Maturity Portfolios

Panel A ��c �" �2 p-value
estimates -0.138 0.239 RMSE 0.021
pv OLS [0.304] [0.095] 38.397 [0.000] MAE 0.018
pv Shanken [0.316] [0.110] 33.526 [0.000] R2 0.988
pv HAC(0) [0.291] [0.077] 26.110 [0.001] �R2 0.986
pv HAC(6) [0.293] [0.057] 39.688 [0.000]
pv HAC(auto) [0.293] [0.057] 13.959 [0.082]

Panel B const ��c �" �2 p-value
estimates 0.026 -0.119 0.237 RMSE 0.020
pv OLS [0.436] [0.273] [0.114] 22.211 [0.002] MAE 0.017
pv Shanken [0.439] [0.285] [0.128] 19.672 [0.006] R2 0.990
pv HAC(0) [0.429] [0.266] [0.097] 16.592 [0.020] �R2 0.987
pv HAC(6) [0.419] [0.277] [0.069] 25.302 [0.000] H0:R2=1 [0.185]
pv HAC(auto) [0.419] [0.277] [0.069] 11.519 [0.117] H0:R2=0 [0.027]

Notes: Table 6 presents the estimation results of cross-sectional regression using the second stage
of Fama-MacBeth methodology without constant (in Panel A) and with constant (in Panel B) for
10 Fama Maturity Portfolios. We report the estimates of factor risk prices � along with p-values
for individual signi�cance, related to the following types of standard errors: OLS, Shanken-corrected,
Newey-West with 0 and 6 lags and with auto-lag selection (HAC). The values of � are multiplied by 100
for convenience. We also report the �2 statistics, used for testing a joint zero pricing errors hypothesis
with relevant p-values. Finally, we report the goodness-of-�t statistics like R2, adjusted-R2 (R̄2),
RMSE and MAE (in % per quarter) and p-value related to testing the following nulls: H0:R2=1 and
H0:R2=0. All the p-values are reported in square brackets. The data span the period 1975Q1�2011Q4.
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Table 7: Covariances of excess returns on Fama Maturity Portfolios with risk factors

Panel A FMP1 FMP2 FMP3 FMP4 FMP5 FMP6 FMP7 FMP8 FMP9 FMP10
cov(Re;�c) -0.085 -0.119 -0.149 -0.176 -0.185 -0.209 -0.234 -0.266 -0.253 -0.319
pv HAC(0) [0.168] [0.132] [0.129] [0.109] [0.098] [0.096] [0.080] [0.088] [0.117] [0.154]
pv HAC(6) [0.096] [0.063] [0.057] [0.041] [0.035] [0.035] [0.024] [0.026] [0.040] [0.053]
pv HAC(auto) [0.051] [0.025] [0.020] [0.012] [0.012] [0.010] [0.006] [0.004] [0.013] [0.012]

Wald stat (joint eq of cov) p-value Wald stat (joint sign of cov) p-value
pv HAC(0) 14.302 [0.111] 14.464 [0.152]
pv HAC(6) 15.843 [0.070] 16.109 [0.096]
pv HAC(auto) 13.887 [0.126] 14.251 [0.161]
corr(Re;�c) -0.150 -0.163 -0.164 -0.170 -0.164 -0.166 -0.174 -0.179 -0.144 -0.117

Panel B FMP1 FMP2 FMP3 FMP4 FMP5 FMP6 FMP7 FMP8 FMP9 FMP10
cov(Re; "c) 0.514 0.632 0.752 0.825 0.850 0.934 0.939 1.049 1.227 1.783
pv HAC(0) [0.003] [0.002] [0.003] [0.002] [0.002] [0.001] [0.002] [0.003] [0.001] [0.000]
pv HAC(6) [0.034] [0.034] [0.035] [0.034] [0.030] [0.030] [0.030] [0.033] [0.025] [0.016]
pv HAC(auto) [0.045] [0.045] [0.046] [0.045] [0.041] [0.041] [0.040] [0.042] [0.034] [0.022]

Wald stat (joint eq of cov) p-value Wald stat (joint sign of cov) p-value
pv HAC(0) 30.783 [0.000] 31.954 [0.000]
pv HAC(6) 24.114 [0.004] 24.171 [0.007]
pv HAC(auto) 21.484 [0.010] 21.575 [0.017]
corr(Re; "c) 0.598 0.573 0.548 0.529 0.498 0.493 0.462 0.468 0.464 0.436

Notes: Table 7 presents the estimates of the covariances of excess returns on 10 Fama Maturity
Portfolios with consumption growth cov(Re;�c) (in Panel A) and with innovations to expectations
in future consumption growth cov(Re; "c) (in Panel B) along with p-values for individual signi�cance,
related to the following types of standard errors: OLS, Shanken-corrected, Newey-West with 0 and
6 lags and with auto-lag selection (HAC). Covariances are multiplied by 10,000 for convenience. We
also report the Wald statistics with relevant p-values to test joint equality of covariances (joint eq of
cov) and joint signi�cance of covariances (joint sign of cov). Finally, we report as well the correlation
coe¢ cients. All the p-values are reported in square brackets. The data span the period 1975Q1�
2011Q4.
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Table 8: Predictiability of consumption growth in an out-of-sample exercise

Panel A: benchmark model �ct+1 = �0 + �t+1
MSE-F MSE-t ENC-NEW ENC-t MSEu

MSEr
RMSEu
RMSEr

Evaluation period: test stat. 80.613 2.665 88.788 4.073 0.647 0.804
1975Q1�2011Q4 95% CV (0.459) (0.081) (4.542) (1.465)

99% CV (3.783) (0.677) (7.495) (2.154)
Evaluation period: test stat. 50.066 2.535 47.477 3.362 0.683 0.826
1985Q1�2011Q4 95% CV (1.396) (0.335) (3.407) (1.466)

99% CV (4.350) (0.989) (5.633) (2.168)
Evaluation period: test stat. 56.933 2.765 48.578 3.123 0.544 0.737
1995Q1�2011Q4 95% CV (2.238) (0.780) (2.537) (1.550)

99% CV (4.452) (1.371) (3.971) (2.209)

Panel B: benchmark model �ct+1 = �0 + �1�ct + �t+1
MSE-F MSE-t ENC-NEW ENC-t MSEu

MSEr
RMSEu
RMSEr

Evaluation period: test stat. 34.370 1.634 54.062 3.461 0.811 0.900
1975Q1�2011Q4 95% CV (0.459) (0.081) (4.542) (1.465)

99% CV (3.783) (0.677) (7.495) (2.154)
Evaluation period: test stat. 6.576 0.564 18.017 2.675 0.942 0.970
1985Q1�2011Q4 95% CV (1.396) (0.335) (3.407) (1.466)

99% CV (4.350) (0.989) (5.633) (2.168)
Evaluation period: test stat. 7.850 0.784 14.872 2.276 0.896 0.946
1995Q1�2011Q4 95% CV (2.238) (0.780) (2.537) (1.550)

99% CV (4.452) (1.371) (3.971) (2.209)

Notes: Table 8 presents the estimation results on the evidence of out-of-sample predictability of con-
sumption growth by common factors f̂1t; f̂2t; f̂3t; f̂4t; f̂7t. We compare a performance of the factor-
augmented (unrestricted) forecasting model for consumption growth relative to the benchmark (re-
stricted) model which is either a simple constant model (Panel A) or an AR(1) model (Panel B). For
each forecast of �ct+1 with factor-augmented model, the factors f̂1t; f̂2t; f̂3t; f̂4t; f̂7t are recursively
estimated using data up to time t. The relative model evaluation is conducted for di¤erent sample
periods, speci�ed in the �rst column of each panel. We report the values of four test statistics along
with their 95% and 99% asymptotic critical values (in parentheses). The test statistics are the follow-
ing: the MSE-t test of Diebold and Mariano (1995) and West (1996), the MSE-F test of McCracken
(2004), the ENC-T test of Harvey et al. (1998) and the ENC-NEW test of Clark and McCracken
(2001). They are used to test equal mean square errors of the two models (MSE-t), equal forecast-
ing accuracy (MSE-F) and for forecast encompassing (ENC-T and ENC-NEW). Asymptotic critical
values are obtained from Clark and McCracken (2001) and McCracken (2007). We report as well
in the table the ratios of forecasting errors of the factor-augmented model vs the benchmark model
(MSEu=MSEr; RMSEu=RMSEr).The data span the period 1960Q1�2011Q4.
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Table 9: Model comparison for Fama Maturity Portfolios

MODEL Rm �Rf SMB HML UTS UPR R2 RMSE HJ-dist
�R2 MAE

CAPM 33.260 -7.628 0.607 0.386
pv HAC(6) [0.267] -8.586 0.475 [0.022]
FF-3f 14.952 -23.056 12.665 0.982 0.027 0.337
pv HAC(6) [0.073] [0.173] [0.206] 0.975 0.018 [0.234]
FF-5f -10.821 33.265 -14.860 164.705 329.848 0.991 0.019 0.287
pv HAC(6) [0.395] [0.380] [0.395] [0.320] [0.272] 0.982 0.014 [0.096]

MODEL �c Rm �cS "c

C-CAPM -306.862 0.885 0.069 0.382
pv HAC(6) [0.099] 0.873 0.050 [0.035]
PJ2005 (S=11) 77.385 0.703 0.093 0.333
pv HAC(6) [0.197] 0.670 0.077 [0.056]
PJ2005 (S=15) 48.319 0.947 0.033 0.319
pv HAC(6) [0.107] 0.941 0.029 [0.074]
EZ model -306.961 1.723 0.889 0.068 0.380
pv HAC(6) [0.101] [0.426] 0.862 0.047 [0.029]
Our model -66.742 50.703 0.988 0.021 0.380
pv HAC(6) [0.287] [0.100] 0.986 0.018 [0.040]

Notes: Table 9 presents the results of the comparison of the performance of our model with di¤erent
asset pricing models: CAPM with market risk premium (Rm-Rf ) as a risk factor, Fama-French three-
factor and �ve-factor models (FF-3f with two additional factors: size SMB and value HML, and FF-5f
respectively with two more risk factors: term premium UTS and default premium UPR), C-CAPM
with consumption growth �c, Parker and Julliard (2005) model with ultimate consumption growth
�cS over 11 and 15 quarters (PJ2005 (S=11) and PJ2005 (S=15) respectively), Epstein-Zin model
with market return and consumption growth as risk factors. For comparison we also include our model.
Test assets are 10 Fama Maturity Portfolios. We report in this table the estimates of coe¢ cients b
along their p-values (in square brackets) of individual signi�cance related to Newey-West standard
error with 6 lags, estimated by GMM with identity weighting matrix. We also show the goodness-
of-�t statistics: R2, adjusted-R2 (R̄2), RMSE and MAE (in % per quarter). Finally, we report the
values of HJ-distance with the associated p-values (in square brackets). The data span the period
1975Q1�2011Q4.
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Figures

Figure 1: Marginal R2 for selected common factors
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Notes: Figure 1 plots marginal R2 (on the y-axes) from regressing each of macroeconomic or �nancial
series, denoted by a series number (on the x-axes) on each of the following common factors: f̂1, f̂2,
f̂3, f̂4, f̂7 (A for f̂1, B for f̂2, C for f̂3, D for f̂4, E for f̂7). The series are grouped into the following
categories: Real Output and Income (1�19), Employment and Labor Market (20�49), Housing Market
(50�59), Orders and Inventories (60�71), Money and Credit Markets (72�79), Stock Market (80�83),
Interest Rates and Bond Yields (84�100), Exchange Rates (101�105), Prices (106�125). The series
numbers for speci�c series are given in the Online Appendix. The data span period 1960Q1�2011Q4.
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Figure 2: Predicted vs actual excess returns on Fama Maturity Portfolios
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Notes: Figure 2 plots average excess returns predicted by the model against actual average excess
returns on 10 Fama Maturity Portfolios (in % per quarter) over the period 1975Q1�2011Q4. We
report as well the goodness-of-�t measure R2.

Figure 3: Covariances vs actual excess returns for Fama Maturity Portfolios
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Notes: Figure 3 plots the covariances of excess returns on 10 Fama Maturity Portfolios with consump-
tion growth Cov(Ret+1;�ct+1) and with innovations to expectations in future consumption growth
Cov(Ret+1; "c;t+1) against the actual average excess returns on these portfolios. We plot as well two
standard error bands for covariances, calculated using Newey-West standard errors with 6 lags. The
data span the period 1975Q1�2011Q4.
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Figure 4: Covariances with consumption growth over di¤erent horizons.
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Notes: Figure 4 plots the covariances of consumption growth over S quarters and of innovations to
expectations in future consumption growth with returns on High-Minus-Low (HML) bond factors for
three groups of bond portfolios, along with two standard error bands. Respectively Cov(lnCt+S=Ct; RHML;t+1)
are plotted in red line with relevant bands in dashed lines and Cov("c;t+1; RHML;t+1) is plotted in blue
horizontal line with relevant bands in dotted lines. The three groups of bond portfolios are: Fama
Maturity Portfolios (A), Fixed Term Indices (B) and Fama-Bliss Discount Bonds (C). The returns on
HML bond factors RHML are computed as follows: RFMP10 �RFMP1 for Fama Maturity Portfolios,
RFI30 �RFI1 for Fixed Term Indices and RFB5 �RFB1 for Fama-Bliss Discount Bonds. In graph D
we plot the following covariances Cov(lnCt+S=Ct; "c;t+1). Two standard error bands are calculated
using Newey-West standard errors with 6 lags. The data span the period 1975Q1�2011Q4.
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Figure 5: Correlations with consumption growth over di¤erent horizons.
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Notes: Figure 5 plots the correlations of consumption growth over S quarters and of innovations to
expectations in future consumption growth with returns on High-Minus-Low (HML) bond factors for
three groups of bond portfolios, along with two standard error bands. Respectively Corr(lnCt+S=Ct; RHML;t+1)
are plotted in red line with relevant bands in dashed lines and Corr("c;t+1; RHML;t+1) is plotted in
blue horizontal line with relevant bands in dotted lines. The three groups of bond portfolios are: Fama
Maturity Portfolios (A), Fixed Term Indices (B) and Fama-Bliss Discount Bonds (C). The returns on
HML bond factors RHML are computed as follows: RFMP10 �RFMP1 for Fama Maturity Portfolios,
RFI30 �RFI1 for Fixed Term Indices and RFB5 �RFB1 for Fama-Bliss Discount Bonds. In graph D
we plot the following correlations Corr(lnCt+S=Ct; "c;t+1). Two standard error bands are calculated
using Newey-West standard errors with 6 lags. The data span the period 1975Q1�2011Q4.
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Figure 6: Consumption-based risk measures vs duration
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Notes: Figure 6 plots the covariances of excess returns on 7 Fixed Term Indices with consumption
growth (Cov(Ret+1;�ct+1), graph A) and with innovations to expectations in future consumption
growth (Cov(Ret+1; "c;t+1), graph B) and the covariances of excess returns on 5 Fama-Bliss Discount
Bonds with consumption growth (graph C) and with innovations to expectations in future consumption
growth (graph D) against duration. We plot as well two standard error bands for covariances, calculated
using Newey-West standard errors with 6 lags, the linear trend line (in green) along with the relevant
estimated equation of the form Covi = �0 + �1D + "i, OLS standard errors (in parentheses) and
goodness of-�t-measure R2. The data span the period 1975Q1�2011Q4.

Figure 7: Predicted vs actual excess returns on Fama Maturity Portfolios combined with equity port-
folios
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Notes: Figure 7 plots average excess returns predicted by the model against actual average excess
returns (in % per quarter) for the following groups of assets: 10 Fama Maturity Portfolios + S&P500
Index (A), 10 Fama Maturity Portfolios + 10 Size portfolios (B), 10 Fama Maturity Portfolios + 10
Boon-to-Market portfolios (C), 10 Fama Maturity Portfolios + 25 Fama-French portfolios (D). In each
�gure bond portfolios are denoted as red triangles, while equity portfolios are denoted as blue circles.
We report as well the goodness-of-�t measure R2. The data span the period 1975Q1�2011Q4.
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