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Summary

Peripheral nuclear localization of chromosomal loci correlates with late replication in yeast and metazoan cells. To test whether peripheral
positioning can impose late replication, we examined whether artificial tethering of an early-initiating replication origin to the nuclear
periphery delays its replication in budding yeast. We tested the effects of three different peripheral tethering constructs on the time of
replication of the early replication origin ARS607. Using the dense-isotope transfer method to assess replication time, we found that
ARS607 still replicates early when tethered to the nuclear periphery using the Yifl protein or a fragment of Sir4, whereas tethering
using a Yku80 construct produces only a very slight replication delay. Single-cell microscopic analysis revealed no correlation between
peripheral positioning of ARS607 in individual cells and delayed replication. Overall, our results demonstrate that a replication origin
can initiate replication early in S phase, even if artificially relocated to the nuclear periphery.

Key words: Replication timing, Subnuclear organization, Time-lapse imaging

Introduction

DNA replication in eukaryotic cells is normally initiated from a
large number of origins located at intervals along the linear
chromosomes. Individual origins initiate replication according to a
temporal program, with some origins initiating early and others later
in S phase (Friedman et al., 1995). In metazoan cells, replication
timing correlates with subnuclear localization and gene activity of
chromosomal domains. Inactive chromatin regions usually replicate
late and are frequently located at the nuclear periphery or close to
a nucleolus (Cimbora and Groudine, 2001). The establishment of
the replication-timing program occurs in early G1 phase, coincident
with the re-establishment of the spatial organization of chromatin
following mitosis (Raghuraman et al., 1997; Dimitrova and Gilbert,
1999; Li et al., 2001). The established late replication context of a
peripherally positioned chromosomal locus can be maintained
during S phase, even if the sequence was released from the nuclear
periphery in late G1 phase (Heun et al., 2001).

In the budding yeast Saccharomyces cerevisiae, origin activation
time appears to depend on chromosomal context. Replication
origins near telomeres are a typical class of late-replicating origins
in yeast (Ferguson and Fangman, 1992) and the telomeres are
localized to the nuclear periphery during most of interphase.
Moreover, disruption of the telomere-binding protein complex Ku
effects not only telomere localization (Laroche et al., 1998), but
also replication-timing control (Cosgrove et al., 2002). Despite these
observations, there is no clear evidence that peripheral localization
directly causes late replication.

The histone modification state of chromatin surrounding an origin
does influence replication timing of the origin. For example,
establishment of silent chromatin has been shown to cause

hydroxyurea sensitivity of replication initiation, which is
characteristic of late origins (Zappulla et al., 2002). Acetylation of
histones close to a normally late-replicating origin makes the origin
initiate earlier (Vogelauer et al., 2002; Goren et al., 2008; Knott et
al., 2009). However, manipulating histone acetylation causes fairly
small changes in replication timing. There is moreover no clear
correlation between origin initiation time in S. cerevisiae and
acetylation level of the surrounding nucleosomes (Nieduszynski et
al., 2006), highlighting our limited understanding of the controls
over the replication-timing program.

These potential mechanisms that might influence replication
timing are not mutually exclusive, and one mechanism could
positively or negatively affect the others. To obtain a full
understanding of the molecular control(s) over replication timing,
it is necessary to dissect the effects of the potential control
mechanisms. To test the possibility that localization at the nuclear
envelope delays origin firing, we artificially tethered the early
replicating origin ARS607 to the nuclear envelope and examined
the replication time of the repositioned origin. Here, we show that
peripheral positioning of ARS607 is not sufficient to delay firing
of this origin. Therefore, peripheral positioning of an origin is not
sufficient to establish a late-replicating chromosomal region.

Results and Discussion

Tethering of a replication origin to the nuclear periphery
To examine whether perinuclear localization affects the temporal
program of replication origin activation, we used a system designed
to allow ARS607, an early-replicating origin on chromosome VI,
to be artificially tethered to the nuclear periphery. ARS607 is located
on the right arm of chromosome VI, approximately 51 kb from
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CENG6 and 71 kb from the right telomere (Shirahige et al., 1993),
and shows largely random subnuclear positioning (Taddei et al.,
2004). ARS607 is efficiently active (initiating replication in >85%
of cells) and replicates early in S phase (Friedman et al., 1997;
Yamashita et al., 1997). To enable controlled tethering of ARS607
to the nuclear periphery, we used a strain in which four copies of
the lexA operator sequence (lexA%) are inserted 0.7 kb from ARS607
(Fig. 1A) (Taddei et al., 2004). This insertion allows the ARS607
locus to be directed to the nuclear periphery by expressing a
‘tethering construct’ in which the LexA DNA-binding domain is
fused to a protein moiety that can mediate peripheral positioning
[such as fragments of the Ku and Sir proteins implicated in
telomere tethering (Taddei et al., 2004)]. The locus was visualized
by inserting an array of lacO operator sequences (centered 5.9 kb
from ARS607) and expressing GFP fused to Lacl repressor protein
(LacI-GFP) (Straight et al., 1996). In vivo, 5.9 kb corresponds to
separation of less than 50 nm (Bystricky et al., 2004); because this
distance is much shorter than the ~200 nm resolution limit of light
microscopy, the position of the /acO array can be considered to
reflect the position of ARS607. The strain additionally expresses
the nuclear pore protein Nup49 fused to either GFP or mCherry
protein (Iwase et al., 2006), allowing microscopic assessment of
ARS607 location relative to the nuclear envelope.

We employed three different LexA fusion tethering constructs:
LexA-Sir4™P, LexA—Yku80-9 and LexA-Yifl, all of which were
previously shown to mediate nuclear peripheral localization (Taddei
et al., 2004). LexA-Sir4™AP contains a fragment of the Sir4 protein.
Sir4 forms part of the telomeric transcriptional silencing machinery,
but because the Sir4™P fragment lacks the domain required for
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Fig. 1. Perinuclear tethering of a replication origin. (A) Schematic diagram
of the tethering construct used in this study. Integrated next to ARS607 are four
copies of the Lex4 DNA-binding sequence and an array of /acO sites. (B) The
origin activity of ARS607 in asynchronous cultures was compared using two-
dimensional gel electrophoresis of strains expressing LexA only (strain
HE114), and LexA-Sird™P (HE115), LexA-Yku80-9 (HE116) and LexA-Yifl
(HER®7) tethering constructs.

interaction with other Sir proteins, it cannot nucleate silent
heterochromatin when tethered to a chromosomal locus (Ansari and
Gartenberg, 1997; Taddei et al., 2004). Another tethering construct,
LexA-Yku80-9, is formed from LexA fused to an allele of the
telomere-binding Yku80 protein (Taddei et al., 2004). We also tested
a construct containing LexA fused to the inner nuclear membrane
protein Yifl, which can tether ARS607 to the nuclear periphery
independent of proteins involved in telomere clustering (Taddei et
al., 2004). Importantly, none of these LexA fusions induces
transcriptional silencing at the ARS607 locus (supplementary
material Fig. S1), although LexA—Yku80-9 was previously shown
to induce moderate silencing at a crippled silencer (Taddei et al.,
2004). All three LexA fusions mediate tethering of the ARS607 locus
to the nuclear periphery in G1 and early S phase cells (data not
shown), as previously reported (Taddei et al., 2004; Hiraga et al.,
2006; Ebrahimi and Donaldson, 2008). Yeast chromatin is highly
mobile and it should be noted that the 4ARS607 locus remains
dynamic, even when positioned at the periphery by one of these
constructs. Therefore, we observe 4RS607 at the periphery in 60-
70% of cells in a population snapshot (compared to 33% of cells
for a randomly positioned locus). This observation is consistent with
previous data showing that endogenous perinuclear chromosome
domains, such as telomeres, are peripheral in 60-70% of cells
(Hediger et al., 2002; Brickner and Walter, 2004).

We first checked that peripheral tethering does not repress origin
activity, using neutral/neutral two-dimensional gel electrophoresis
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Fig. 2. Replication timing of the ARS607 locus is unchanged when
peripherally tethered. (A) Results of dense-isotope transfer experiments to
measure replication timing in strains in which the ARS607 locus was not
peripherally tethered (LexA) or was tethered to the nuclear periphery (LexA-
Sird4™P| LexA-Yku80-9, LexA-Yif1). The replication kinetics of the ARS607
locus are compared with those of ARS306 (early marker) and chrXIV-internal
(late marker). (B) RI was calculated for ARS607 in each of the four strains
relative to very early and late replicating sequences (ARS306 and chrXIV-
internal, set to 0 and 1, respectively).
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(Fig. 1B) (Friedman and Brewer, 1995). A bubble arc indicative of
ARS607 origin activation was detected in the LexA-expressing
strain. The presence of a similar bubble arc in the strains expressing
LexA-Sird™P, LexA-Yku80-9 and LexA-Yifl indicated that
ARS607 remains active when tethered to the nuclear periphery.

Tethering does not affect average replication time

Next, we examined the effect of perinuclear tethering on replication
timing of ARS607 using the dense-isotope transfer method. In this
technique, the replication kinetics of specific sequences are
monitored in a synchronized culture, by tracking the shift in density
of genomic DNA fragments caused by the incorporation of specific
carbon and nitrogen isotopes into nascent DNA (McCarroll and
Fangman, 1988). The graphs in Fig. 2A show the replication
kinetics of three different sequences: the early-replication origin

Fig. 3. Subnuclear positioning does not correlate with ARS607 replication
time in live-cell imaging experiments. (A) Images illustrating representative
time points from a single time-lapse series. The gray-scale panels show DIC
images of the cell at indicated time points. The position of ARS607 (green GFP
dot) within the nuclear rim (red mCherry) is shown in the colored insets. At
each time point, the data sets collected consisted of 16 planes in each channel
through the z-axis. At the time points shown, ARS607 was close to the
equatorial plane of the nucleus. The full data set for this cell is given in the
bottom left plot in B. Scale bars: 2 um. (B) ARS607 positioning and intensity
data measured every 2 minutes in nine cells expressing LexA (HE114).
Fluorescence intensity of the GFP-tagged ARS607 locus (green circles) is
plotted (left y-axis). Open diamonds show bud size (right y-axis). Red triangles
indicate time points at which 4RS607 was localized to the nuclear periphery
(measured by calculating the three-dimensional distance between ARS607 and
the center of the nucleus, allowing estimation of dot-to-periphery distance).
Graphs are aligned at the last time point when each cell was observed to be
unbudded (vertical blue line). Graphs are sorted from top to bottom according
to the degree of localization in each cell at the three time points preceding
ARS607 replication. (C) ARS607 positioning and intensity data in nine cells
expressing LexA-Sir4™P (HE115), displayed as in B. (D) ARS607 positioning
and intensity data in nine cells expressing LexA—Yku80-9 (HE116), displayed
as in B.

ARS306; a late marker sequence, ‘chrXIV-internal’, centered at
approximately 223 kb on chromosome XIV; and the ARS607 locus.
As expected, in the control strain (expressing LexA alone), ARS607
replicated early in S phase, shortly after ARS306, which is one of
the earliest-replicating sequences in the genome (Fig. 2A).
Expression of either the LexA-Sird™P or LexA-Yifl localization
constructs did not result in any noticeable change in the replication
kinetics of ARS607 (Fig. 2A, right hand graphs). Expression of
LexA—Yku80-9 caused a very slight delay in the replication time
of ARS607 relative to the early marker ARS306 (Fig. 2A, lower
left panel), but this change might not be significant because it lies
within the margins of error typically seen for this type of experiment
(Friedman et al., 1996).

Replication time in these experiments is defined as the time at
which a sequence has replicated in half of the cycling cells. The
‘replication index’ (RI) is the replication time of a sequence
expressed relative to the early and late markers (whose replication
times are assigned as 0 and 1, respectively). Calculating the RI
normalizes the differences in the speed with which different cultures
release from synchronization and proceed through S phase. Fig. 2B
shows RI values for ARS607 in the four experiments, and confirms
that expressing LexA-Sir4™P or LexA-Yifl caused no significant
change in replication time, whereas LexA—Yku80-9 caused only a
very slight change.

Single-cell analysis of replication timing

The results in Fig. 2 do not support the idea that perinuclear
positioning mediates late replication. However, the replication
timing values measured by the density-transfer method represent
an average (mean) for all the cells in the population. Because the
LexA fusion proteins typically cause perinuclear tethering in only
60-70% of cells at any moment (Taddei et al., 2004; Hiraga et al.,
2006; Ebrahimi and Donaldson, 2008), it is conceivable that a delay
to replication time caused by perinuclear localization could be
obscured because ARS607 is not localized in 30-40% of cells. To
investigate this possibility, we examined the replication of the
ARS607 locus microscopically in individual cells, by monitoring
the doubling of GFP fluorescence intensity (Kitamura et al., 2006;
Ebrahimi and Donaldson, 2008). Briefly, time-lapse experiments
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were carried out to measure three parameters in cells undergoing
bud emergence: GFP fluorescence intensity of the lacO-lexA%-
ARS607 locus, position of the locus relative to the nuclear envelope
and bud size. Representative images are shown in Fig. 3A. The
plots in Fig. 3C-D show the results for a series of individual cells.
In these plots, the open diamonds show bud size at successive time
points and red triangles indicate time points at which the ARS607
locus was at the nuclear periphery. Measuring the midpoint of the
increase in GFP fluorescence (filled green circles) allows assignment
of the ARS607 replication time in each cell.

In the control strain expressing LexA, the ARS607 locus was
consistently replicated 2-6 minutes after bud emergence (Fig. 3B,
Fig. 4A). Replication time of the 4RS607 locus was also measured
in cells expressing LexA-Sir4™P (Fig. 3C) and LexA—Yku80-9 (Fig.
3D). In neither case did we observe any consistent delay in
replication timing relative to bud emergence. Importantly, even
when examining these individual cells, no relationship was observed
between ARS607 replication time and its localization status at
immediately preceding time points (Fig. 4A). Specifically, the
ARS607 locus showed no tendency to replicate later when it was
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Fig. 4. Replication timing relative to bud emergence is not affected by
perinuclear tethering. (A) Scatter plot showing ARS607 replication time
relative to bud emergence time, in live cells expressing LexA, LexA-Sir4™P
or LexA—Yku80-9. Each data point represents ARS607 replication time in one
of the single cells shown in Fig. 3. Negative values indicate cells in which
ARS607 replicated prior to bud emergence. The horizontal red lines show
mean replication time relative to bud emergence for each strain (LexA=3.52
minutes, LexA-Sir4*AP=2 23 minutes, LexA—Yku80-9=1.65 minutes). P
values determined by Welch’s #-test are 0.35 and 0.11 for LexA versus LexA-
Sir4™P and LexA versus LexA—Yku80-9, respectively, indicating no
significant difference in mean replication time. The fill pattern of data points
indicates the degree of peripheral localization of ARS607 at the three time
points immediately prior to replication. Black circles indicate perinuclear
localization at all three time points; grey circles indicate localization at two
time points; hatched circles indicate localization at one time point; open circles
indicate no perinuclear localization at the three time points before replication.
(B) Box plot showing bud size at the time of ARS607 replication for the three
strains in A. Bud size at time of replication for a late marker sequence
(telomere VI-R) is shown for comparison (Ebrahimi and Donaldson, 2008).

localized at the periphery immediately before replication (Fig. 4A,
grey and black circles do not cluster towards the top of the chart).
Tethering of ARS607 to the nuclear periphery by LexA-Sir4™P or
LexA—Yku80-9 did result in replication timing that appears slightly
more scattered relative to bud emergence than observed for the
control strain (Fig. 4A), but the variation in replication timing
relative to budding (s.d. less than 4 minutes) was much smaller
than the length of S phase (15-20 minute difference in replication
time between earliest and latest origins). Moreover, the 4ARS607
locus replicated at a very similar average bud size, whether or not
it was tethered to the nuclear periphery (Fig. 4B). To summarize,
the results of single-cell analysis also indicated that peripheral
localization of ARS607 has no major impact on its replication time.

The density-transfer method allows precise, standardized
comparison of average replication times in a population, whereas
single-cell imaging enables the simultaneous recording of replication
time and locus subnuclear position in individual living cells.
Assessing replication time using either technique revealed that
perinuclear positioning of the origin does not impact its initiation
time. In summary, our findings suggest that subnuclear localization
is not the main determinant of replication timing in budding yeast.
This reveals the reason for previous observations that telomeric
origins can replicate late even when the origin is not properly
localized to the nuclear periphery (Heun et al., 2001; Hiraga et al.,
2000).

Materials and Methods

Yeast strains and plasmids

Yeast strains are described in supplementary material Table S1. Primer sequences
used in strain construction are available on request. Plasmids pAT4, pAT4-Sir2, pAT4-
Sird™P pAT4-Yku80-9 and pAT4-Yifl were described previously (Taddei et al.,
2004).

Microscopy

Quantitative measurements of microscopic images were performed as described
(Ebrahimi and Donaldson, 2008). To determine the time point at which 4ARS607
replicated, a curve is fitted over the intensity data points; the midpoint of the intensity
increase on the fitted curve is assigned as the replication time.

Density transfer
The replication timing analyses shown in Fig. 2 were carried out using the dense-
isotope transfer technique, as previously described (Donaldson et al., 1998).

Two-dimensional gel

Genomic DNA was prepared as described (Huberman et al., 1987; Brewer et al.,
1992). DNA fragments digested using Ncol and EcoRI were separated by
neutral/neutral two-dimensional agarose gel electrophoresis (Friedman and Brewer,
1995) and transferred to neutral membrane (Qbiogene) by Southern blotting. The
1633-bp fragment containing ARS607 was detected using a suitable >*P-labeled probe.
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Bonny Brewer for helpful comments. This research was supported by
the Wellcome Trust (grant 082377), the Association for International
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