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Abstract

We report drastically new physics associated with wave scattering in pseudospin-1 systems whose
band structure consists of a conventional Dirac cone and a topologically flat band. First, for
small scatterer size, we find a surprising revival resonant scattering phenomenon and identify a
peculiar type of boundary trapping profile through the formation of unusual fusiform vortices as
the physical mechanism. Second, for larger scatterer size, a perfect caustic phenomenon arises as
a manifestation of the super-Klein tunneling effect, leading to the scatterer’s being effectively as a
Vaselago lens. Third, in the far scattering field, an unexpected isotropic behavior emerges at low
energies, which can be attributed to the vanishing Berry phase for massless pseudospin-1 particles
and, consequently, to constructive interference between the time-reversed backscattering paths.
We develop an analytic theory based on the generalized Dirac-Weyl equation to fully explain these

phenomena and articulate experimental schemes with photonic or electronic systems.
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I. INTRODUCTION

Solid state materials whose energy bands contain a Dirac cone structure have been an
active area of research since the experimental realization of graphene [1, 2]. From the
standpoint of quantum transport, the Dirac cone structure and the resulting pseudospin
characteristic of the underlying quasiparticles can lead to unconventional physical proper-
ties/phenomena such as high carrier mobility, anti-localization, chiral tunneling, and neg-
ative refractive index, which are not usually seen in traditional semiconductor materials.
Moreover, due to the underlying physics being effectively governed by the Dirac equation,
relativistic quantum phenomena such as Klein tunneling, Zitterbewegung, and pair creations
can potentially occur in solid state devices and be exploited for significantly improving or
even revolutionizing conventional electronics. Uncovering/developing alternative materials
with a Dirac cone structure has also been extremely active [3, 4]. In this regard, the discovery
of topological insulators [5, 6] indicates that Dirac cones with a topological origin can be cre-
ated, leading to the possibility of engineering materials to generate remarkable physical phe-
nomena such as zero-field half-integer quantum Hall effect [7], topological magneto-electric
effect [8], and topologically protected wave transport [9, 10].

A parallel line of research has focused on developing photonic materials with a Dirac
cone structure, due to the natural analogy between electromagnetic and matter waves. For
example, photonic graphene [11, 12] and photonic topological insulators [13-18] have been
realized, where novel phenomena of controlled light propagation have been demonstrated.
Due to the much larger wavelength in optical materials as compared with the electronic
wavelength, synthetic photonic devices with a Dirac cone structure can be fabricated at
larger scales with great tunabilities through modulations. The efforts have led to systems
with additional features in the energy band together with the Dirac cones, opening possibil-
ities for uncovering new and “exotic” physics with potential applications that cannot even
be conceived at the present.

The materials assumed in our work are those whose energy bands consist of a pair of Dirac
cones and a topologically flat band, electronic or optical. For example, in a dielectric pho-
tonic crystal, Dirac cones can be induced through unusual accidental degeneracy that occurs
at the center of the Brillouin zone. This effectively makes the crystal a zero-refractive-index
metamaterial at the unusual Dirac point where the Dirac cones intersect with another flat
band [19-23]. Alternatively, configuring an array of evanescently coupled optical waveguides
into a Lieb lattice [24-27] can lead to a gapless spectrum consisting of a pair of common Dirac
cones and a perfectly flat middle band at the corner of the Brillouin zone. As demonstrated
more recently, loading cold atoms into an optical Lieb lattice provides another experimental
realization of the gapless three-band spectrum at a smaller scale with greater dynamical con-
trollability of the system parameters [28]. With respect to creating materials whose energy
bands consist of a pair of Dirac cones and a topologically flat band, there have also been
theoretical proposals on Dice or T3 optical lattices [29-34] and electronic materials such as
transition-metal oxide SrTiOs3/SrIrO3/SrTiO;3 trilayer heterostructures [35], 2D carbon or
MoS, allotropes with a square symmetry [36, 37|, SrCuy(BO3)s [38] and graphene-InyTe,
bilayer [39].

In spite of the diversity and the broad scales to realize the band structure that con-
sists of two conical bands and a characteristic flat band intersecting at a single point in



different physical systems, there is a unified underlying theoretical framework: a general-
ized Dirac-Weyl equation for massless spin-1 particles [31]. For convenience, we call such
systems pseudospin-1 Dirac cone systems. Comparing with the conventional Dirac cone sys-
tems with massless pseudospin/spin-1/2 quasiparticles (i.e., systems without a flat band),
pseudospin-1 systems can exhibit quite unusual physics such as super-Klein tunneling for
the two conical (linear dispersive) bands [23, 32, 40, 41], diffraction-free wave propagation
and novel conical diffraction [24-27], flat band rendering divergent dc conductivity with a
tunable short-range disorder [42], unconventional Anderson localization [43, 44], flat band
ferromagnetism [28, 45, 46], and peculiar topological phases under external gauge fields or
spin-orbit coupling [35, 47-49]. Especially, the topological phases arise due to the flat band
that permits a number of degenerate localized states with a topological origin (i.e., “caging”
of carriers) [50]. Most existing works, however, focused on the physics induced by the ad-
ditional flat band, and the scattering/transport dynamics in pseudospin-1 systems remains
largely unknown (except the super-Klein tunneling behavior). Our main question is the fol-
lowing: what types of transport properties can arise form pseudospin-1 systems whose band
structure is characterized by coexistence of a pair of Dirac cones and a flat band? To address
this question in the simplest possible setting while retaining the essential physics, we study
ballistic wave scattering against a circularly symmetric potential barrier. We note that for
conventional Dirac cone systems with pseudospin or spin-1/2 quasiparticles, there has been
extensive work on scattering [51-53] with phenomena such as caustics [54], Mie scattering
resonance [55], birefringent lens [56], cloaking [57], spin-orbit interaction induced isotropic
transport and skew scattering [58, 59|, and electron whispering gallery modes [60]. To our
best knowledge, prior to our work there were no corresponding studies for pseudospin-1
Dirac cone systems.

Our main findings are three: revival resonant scattering, super-Klein tunneling induced
perfect caustics, and universal low-energy isotropic transport without broken symmetries for
massless quasiparticles. First, for small scatterer size, the effective three-component spinor
wave exhibits revival resonant scattering as the incident wave energy is varied continuously
- a phenomenon that has not been reported in any known wave systems. Strikingly, the
underlying revival resonant modes show a peculiar type of boundary trapping profile in
their intensity distribution. While the profile resembles that of a whispering gallery mode,
the underlying mechanism is quite different: these modes occur in the wave dominant regime
through the formation of unusual fusiform vortices around the boundary in the corresponding
local current patterns, rather than being supported by the gallery type of orbits through total
internal reflections. Second, for larger scatterer size so that the scattering dynamics is in the
semiclassical regime, a perfect caustic phenomenon arises when the incident wave energy is
about half of the barrier height, as a result of the super-Klein tunneling effect. A consequence
is that the scatterer behaves as a lossless Vaselago lens with effective negative refractive
index resulting from the Dirac cone band structure. Compared with conventional Dirac cone
systems for pseudospin-1/2 particles, the new caustics possess remarkable features such as
significantly enhanced focusing, vanishing of the second and higher order caustics, and a
well-defined static cusp. Third, in the far scattering field, an unexpected isotropic behavior
arises at low energies. Considering that there is no broken symmetry so the quasiparticles
remain massless, the phenomenon is quite surprising as conventional wisdom suggests that
the scattering be anisotropic. In particular, by analyzing the characteristic ratio of the



transport to the elastic time as a function of the scatterer size, we find that the phenomenon
of scattering isotropy can be attributed to the vanishing of the Berry phase for massless
pseudospin-1 particles that results in constructive interference between the time-reversed
backscattering paths. Because of the isotropic structure, the emergence of a Fano-type
resonance structure in the function of the ratio versus the scatterer size can be exploited
to realize an effective switch of the wave propagation from a forward dominant state to
a backward dominant one, and vice versa. We develop an analytic theory with physical
reasoning to understand the three novel phenomena, and articulate experimental verification
schemes with photonic or electronic systems.

II. RESULTS

We consider scattering of pseudospin-1 particle from a circularly symmetric scalar poten-
tial barrier of height Vj defined by V(r) = Vi©(R — r), where R is the scatterer radius and
© denotes the Heaviside function. The band structure for the particle consists of a pair of
Dirac cones and a flat band. A comprehensive description of the Hamiltonian, its properties,
the boundary conditions, and detailed solutions of the scattering waves is given in Supple-
mentary Materials. To characterize the scattering dynamics quantitatively, we use the
scattering efficiency, defined as a ratio of the scattering to the geometric cross sections [55]:

where the scattering cross section o can be calculated through the far field radial reflected
current, as detailed in Supplementary Materials.

A. Near-field behavior 1: Revival resonant scattering

To uncover unusual physics, we calculate and analyze the scattering efficiency @) as a
function of the reduced barrier strength VoR and the relative incident energy FE/Vy. In
order to highlight the unique manifestations of the unconventional band structure, we focus
on the under barrier scattering process in which the particle energy is below the barrier
height: 0 < E/Vy < 1. To be concrete, we choose E/Vy = 0.01,0.1,0.9 and, for each
fixed value of E/Vj, we calculate the scattering efficiency @) versus the barrier strength VjR.
For the three chosen values of E/Vj, the results are shown by the respective red curves in
Figs. 1(a-c). We see that there are well-separated sharp resonances in @) for small values
of E/Vqy [e.g., Fig. 1(a)], while broadened and overlapping ripple structures occur for larger
values of E/Vj [e.g., Figs. 1(b) and 1(c)]. Using the characteristic size parameter kR, we can
generally classify two distinct scattering regimes: kR < 1 and kR > 1. In the former case
(kR < 1), the incident wavelength 27 /k is much larger than the range R of the scattering
potential. In this case, the wave effects dominate the scattering behavior with a remarkable
resonance characteristic, as shown in Figs. 1(a) and 1(b). The case kR > 1 corresponds to
the semiclassical limit where the classical ray picture is applicable. In this case, the scatterer
acts essentially as a Veselago reflector/lens due to an equivalent negative refractive index
arising from the particular band structure of Dirac cones and a flat band.
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FIG. 1: General behaviors of the scattering efficiency versus the scatterer strength. Scattering
efficiency @ as a function of the scatterer strength VR for a number of values of the relative incident
energy: (a) E/Vy =0.01, (b) E/Vy =0.1, and (¢) E/Vy = 0.9. The middle and bottom panels show the
corresponding probability density and local current density profiles, respectively. In (a-c), the blue curves
are for the conventional massless pseudospin/spin-1/2 case while the red ones are for the massless

pseudospin-1 wave system.

From the explicit summation form of () and the reflection coefficients A; (labeled by the
angular momentum /) obtained within the generalized partial-wave decomposition formalism
in Supplementary Materials, we see that the size parameter kR provides a general esti-
mate of the maximum number of angular momentum channels contributing to the scattering
process. Accordingly, we can obtain a closed form of @) in the limit of kR < 1, where only a
few lowest channels dominate for a given range of the barrier strength, say VoR € [0.01, 10].
Specifically, using the short-range (x < 1) behavior of the Bessel functions appearing in
the solutions of the scattering problem, we get a closed expression for the dependence of
the scattering efficiency @ on the effective barrier strength VoR for kR < 1 and E/Vy < 1,
which reads
2 I3 r?

Q==

+ 2 x , 2
kR |T2 4+ (VR — 20 + kR1n (ygkR/2))’ 12+ (VoR — 21 — kR)? @

where v is the constant appearing in the small value approximation of the Bessel function:
Yo(z) ~ (2/m)In(ygx/2)for x < 1 and the lowest |I| = 0,1 channels give the leading
contribution to and hence dominate the scattering process with well-separated symmetric
sharp resonances around VoR = x(, r; that correspond to the zeros of the Bessel functions



Jo and J;. The respective lifetimes are given by

1 2 1 2
— and —

Ty kR T, w(kR)®

From Eq. (2), we see that, for kR < 1 and E/V < 1, the resonances exhibit a Lorentzian
shape (also known as the Breit-Wigner distribution). Due to their longer lifetime: 1/T'; >
1/T, the resonances associated with the |[| = 1 channel are much narrower than those with
[ = 0. In the limit kR — 0, the resonant excitations are typically positioned at the zeros
of Ji(VoR) with an infinite lifetime (i.e., zero resonant widths) that physically correspond
to a bound state in the antidot potential profile without an incident wave. Further insights
can be gained by considering the local probability and current density distributions of one
particular excitation of the normal modes, e.g., the first resonance associated with the |I| = 1
channel, as indicated in Figs. 1(a2) and 1(a4). Analytically, we obtain the probability density
inside the scattering region (r < R) as

JE(Vor) + J3(Vor)
2

p< = |Bi|* | JF (Vor) + + (Jf = JoJ2) cos (20) |, (3)

together with the local current distribution

J< = —R(Bi{Bo) [2J7(Vor) + J5(Vor) — Jo(Vor) Jo(Vor)] cos 0é, )

+ R(B; Bo)Jo(Vor) [Jo(Vor) + J2(Vor)] sin 6é,
where R(BjBy) denotes the real part of (BfBy), and B; are the transmission coefficients
(Supplementary Materials). When a scattering resonance emerges, the magnitude of
the transmission coefficient behaves as

|By| ~ > 1,

1
kRJ,(VoR)
leading to a noticeable probability density concentration inside the scatterer, indicating the
occurrence of wave trapping/confinement. Moreover, it follows from Eq. (4) that, accompa-
nying the confinement, a vortex pattern symmetric with respect to the z—axis is formed. In
general, in the resonant scattering regime, the incident wave is confined/trapped in vortices
(as demonstrated in the bottom panel of Fig. 1) rather than through the conventional total
internal reflection mechanism.

Comparing with the conventional pseudospin-1/2 Dirac cone systems [cf., Figs. 1(al) and
1(a3), as well as the blue curve in Fig. 1(a)|, we see that there are common features in the
scattering curve and trapping mechanism but with different resonant wave/current patterns.
In particular, the trapping intensity distribution is radially symmetric for the pseudospin-
1/2 case, but for a pseudospin-1 particle, there is an angular dependence of the scattering
amplitude with a well-defined rotational symmetry, which can be analyzed for a specific
resonant mode using Eq. (3).

Given the particular range of the scattering strength VoR as set in Figs. 1(a-c), we see
that increasing E/Vj leads to larger values of kR and hence the scattering process involves
higher angular momentum channels. As a result, more quasi-bound modes can be excited,
generating overlapping and broadened resonances, as shown in Figs. 1(b) and 1(c). In the
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limit of kR > 1, say VoR > 1 for E/Vj ~ 1, we enter the semiclassical regime where the ray
picture is applicable. We obtain @ ~ 2[1 — wcos(2VoR — 7/4)/4Vy R] as a damped oscilla-
tory function of the scattering strength Vo R about a constant value, as shown in Fig. 1(c).
Distinct from the resonant scattering regime dominated by wave interference/diffraction, in
the semiclassical regime the scatterer acts as a Veselago reflector due to its effective nega-
tive refractive index. The associated local probability density and current density patterns
in typical situations for both the conventional massless pseudospin-1/2 and the massless
pseudospin-1 cases are shown in Figs. 1(b1-b4) and 1(c1)-(c4), respectively.
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FIG. 2: Scattering efficient () versus the scatterer strength VyR and the relative incident

energy E/V; for (a) massless pseudospin-1/2 and (b) massless pseudospin-1 wave systems.

To gain further insights into the scattering behaviors, we plot ) as a function of ViR
and E/Vp, as shown in Figs. 2(a) and 2(b). As expected, for the pseudospin-1/2 Dirac cone
system, the curve of @) versus ViR tends to be smooth as E/Vj is increased [Fig. 2(a)].
However, for the pseudospin-1 Dirac cone system shown in Fig. 2(b), the remarkable phe-
nomenon of revival resonant scattering emerges: the sharp resonances disappear, reappear
unexpectedly, and then disappear again with continuous increase in £/Vy. We emphasize
that this revival phenomenon is quite exceptional which, to our knowledge, has not been
reported in any other known wave systems. In the limit of VR < 1 (V,R > kR), we obtain

o[ P2 P2

~ — + 2 X ,
< PP+ (4+ Q1)?

L 5
kR | P2+ Q3 )

where

Py=7nkR, and
Qo =2 [kRIn(vgkR/2) — Jo(VoR — kR)/ 1 (Vo R — kR)],

with P; and Q; given by [Py, Q1] = kR[Py, Qo]. The first term of Eq. (5),

rg m R (WR—kR) (1 — E/V)?
P2+ Q2" 4J2(VoR — kR) 16

(kR)? ~ (VoR)*(kR)* < 1,



is off-resonance. Remarkably, the second term generates an additional resonance for 44+, =
0, which corresponds to the emerging revival resonance observed. Explicitly, the associated
revival resonant condition can be obtained from 4 +kRQy = 0 as E/V, ~ 1/2, which agrees
with the numerical results as displayed in Fig. 2(b).
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FIG. 3: Vortex-based wave trapping for massless pseudospin-1 scattering. (a-c) Schematic
illustration of three types of vortex-based wave trapping. (d) Wave pattern near the boundary for a
massless pseudospin-1/2 particle for E/Vy = 0.086. (e,f) Boundary wave patterns for the massless
pseudospin-1 case for E/Vy = 0.044 and E/V; = 0.487, respectively. The value of Vo R is set to be 4.5 for

all cases.

Certain remarkable features of the revival resonances can be revealed through the under-
lying revival resonant modes (RRMs) defined in terms of the associated local probability and
current density patterns. We find that the RRMs exhibit unusual boundary trapping pro-
files, where the higher the resonance frequency (energy) the more pronounced the trapping.
Examining the corresponding local current density distribution of a specific RRM, we find
that the incident wave is fed into fusiform vortices about the boundary and is trapped there.
In contrast, for conventional pseudospin-1/2 scattering, no such trapping phenomenon oc-
curs. Using the general vortex-based trapping mechanism, we can get an intuitive physical
picture for the unusual boundary trapping phenomenon through a qualitative analysis of
vortex formation in the local current distribution stipulated by the boundary conditions.
In particular, for a given local current configuration outside the scattering boundary, as



indicated by the light blue arrows in Figs. 3(a-c), we sketch the possible local current pat-
terns inside the boundary, denoted by the blue, green and red arrows, respectively. This
can be done with the boundary conditions defined in terms of the spinor wavefunction
U = [¢h1,1h9,3]T and their effect on the associated local current field j (see Supplemen-
tary Materials). Since continuity is the only constraint on the normal component of the
local currents at the boundary (the tangent component is in general discontinuous and can
even have opposite directions), there is an additional freedom to configure the correspond-
ing current pattern inside the potential region for a particular pattern outside. This leads
to the remarkable fusiform boundary vortices as illustrated in Fig. 3(c) with the dramatic
phenomenon of boundary trapping and, consequently, to the resonances in the curve of the
scattering efficiency. Note that, for the conventional scalar or spinor wave systems, the cur-
rent configuration is well-determined in the sense that, given a configuration on one side of
the boundary, that on the other side is then determined completely. This is due to the con-
tinuity in both components of the local currents at the boundary, as illustrated in Fig. 3(a).
As a concrete example, we demonstrate the full local current patterns as in Figs. 3(d-f),
where the former two represent the typical local current profiles underlying the conventional
low-order resonant modes excited in the massless pseudospin-1/2 and massless pseudospin-1
wave systems, respectively, while the last one is for that of the RRM that arises only for the
massless pseudospin-1 wave system.

For pseudospin-1 Dirac cone systems, a remarkable phenomenon is super-Klein tunneling
(see Supplementary Materials), which occurs when the energy of the incident particle
is about one half of the potential height. In this case, forward scattering is maximized. In
contrast, the revival scattering resonances are associated with fusiform vortices about the
boundary, creating perfect wave trappings there and eliminating any forward scattering.
Both super-Klein tunneling and revival resonant scattering depend on the scatterer strength
VoR and the relative incident energy E/V;. From an applied point of view, it is thus pos-
sible to switch the super-Klein-tunneling dominant forward scattering on and off efficiently
by tuning the parameters. In fact, the higher pseudospin degree of freedom and the flexi-
ble scattering boundary conditions render richer current patterns that can be manipulated
through parameter perturbation. This may find applications in novel photonic integrated
circuit design, as pseudospin-1 systems have been realized experimentally in a variety of
photonic crystals [19, 20, 23-26, 28].

While the RRMs uncovered appear similar to the well-known whispering gallery modes
(WGMs) in terms of the intensity profiles, we emphasize that the underlying mechanisms
are quite different. In particular, the WGMs are due to the total internal reflection within an
effective semiclassical ray regime, but the RRMs result from the formation of unusual, dom-
inant vortices locally attached to the boundary due to wave interference and can thus occur
for much smaller scatterer size kR, a regime in which the semiclassical ray approximation
fails.

B. Near-field behavior 2: perfect caustics
Caustics, a spatial region in which the density of light rays is singular, occurs in the semi-

classical regime. This phenomenon is quite common in daily life, mostly through geometric
optics. For a pseudospin-1/2 Dirac cone system, caustics can occur due to the tunable effec-
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tive negative refractive index and the Klein tunneling effect, as shown in Figs. 4(a) and 4(c).
For the pseudospin-1 Dirac cone system, the surprising phenomenon of perfect caustic/lens
behavior occurs, as shown in Figs. 4(b) and 4(d) for the same parameter as in Figs. 4(a) and
4(c), which emerges in the regime where the incident wavelength is much smaller than the
scatterer radius R. The caustic patterns for the massless pseudospin-1 system are “perfect”
in the sense that they are significantly more focused/concentrated than the pseudospin-1/2
counterparts. We find that perfect caustics are a result of the super-Klein tunneling effect
for the massless pseudospin-1 particle, where the transmission coefficient approaches unity
for any incident angle. Specifically, for a single straight scattering interface, we obtain the
transmission coefficient for incident angle 6 (17/2 < 0 < 7/2) as

477" cos @' cos 6

T = (6)

o820 + cos?0 + 277 cos O cos O’

with the refractive angle given by

1 |E/Vp|sind
VA= E Vo) — (B/VoRsin?6

0 =m—tan~

where 7 = sgn(E) and 7" = sgn(E — Vp). It follows from Eq. (6) that T'= 1 for E/V, = 1/2,
regardless of the incident angle, as shown by the thick red curve in Fig. 5, signifying a
super-Klein tunneling behavior. For comparison, the incident angle dependent transmission
probability for the conventional pseudospin-1/2 system is shown as the thick blue line in the
same figure.

Within the ray formalism and based on differential geometry [54], we obtain analytically
the following caustic envelope equation defining a curve r. = (., y.) as

r.(p,0) 1+2(p—1)8 .
7 m X (cos (O + (), —sin (O + 5))1(;)

where © = 6 + 2(p — 1)8, sin 8 = sinf/|1 — Vu/E|, and ' = cosf/+/(1 — Vy/E)? — sin® 0
with p being the number of chords inside the scattering region corresponding to p—1 internal
reflections. Intuitively, the caustics for p > 1 are less visible since the ray intensity decreases
after each internal reflection. However, for our pseudospin-1 Dirac cone system, the super-
Klein tunneling effect for £//Vy = 1/2 will suppress the p > 1 caustics completely, leading
to a perfect caustic for p = 1, which intuitively can be better seen from the corresponding
local current patterns in Figs. 4(c,d).

= (=)""! |(~cos O,sin ©) + cos B

C. Far-field behavior: isotropic scattering of massless pseudospin-1 quasiparticles
and control

Far away from the scattering center, i.e., r > R, for unit incident density, the spinor
wavefunction can be written as

1 e—if
1 ; 1 0) .
\I/>(7", Q) ~~ 5 \/§T ezkrcosé + 5 \/§T f\(/}) ezkr7 (8)
1 L
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FIG. 4: Caustic behavior in the semiclassical regime and perfect caustics in pseudospin-1
Dirac cone systems. The probability and local current density patterns, respectively, for (a,c)
conventional pseudo-1/2 and (b,d) pseudospin-1 Dirac cone systems. The probability density patterns in
(a) and (b) are plotted on a logarithmic scale. The corresponding local current density patterns in (c) and
(d) are color-coded with magnitude normalized by its maximum. The parameters are R = 300 and
E/Vy=1/2.

where f(0) denotes the 2D far-field scattering amplitude in the direction defined by the
angle 6 with the x axis. The differential and the total cross sections are given, respectively,
by

do

— = 0)|? 9

=IO, )

and )
;= T/ £(6)2d. (10)
0
In addition, we define the transport or momentum-relaxation cross section as

O = 7'/0 7rdt9|f(9)|2(1 —cos ). (11)

The three types of cross sections are experimentally measurable and can be used to quanti-
tatively characterize the basic scattering and transport physics for pseudospin-1 Dirac cone
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FIG. 5: Super-Klein tunneling in pseudospin-1 Dirac cone systems. Transmission probability:
red and blue curves are for the massless pseudospin-1 and pseudospin-1/2 particles, respectively, with
E/Vy = 0.5 (solid lines) and E/V; = 0.4 (dash lines). For the former (solid red line) the transmission is

unity, regardless of the incident angle.

systems. For example, consider such a system with randomly distributed identical scatterers
of low concentration, i.e., n, < 1/R?, the conductivity in units of the conductance quantum
G can be expressed as

G k
G_O B NcOtr B ngn—tr? (12>

where the sample size is assumed to be larger than the mean-free path L = v 7, with 7,
being the transport mean free time, and v, is the group velocity. The elastic scattering time
(the quantum lifetime) 7, can be determined from the total cross section through

1

— = nw,0. 13
- NeVgo (13)

The two time scales defines the following characteristic ratio:

Tw_ o __ $dofO)
T.  Ouw $.d0|f(0)]2(1 — cosh)’

= (14)
which can be used to characterize the far-field behavior of the scattering process. Through
a detailed analysis, we obtain the following formula (see Supplementary Materials):

_ 2 >, sin? 6
>, sin® (641 — &)

where ¢§; is the scattering phase shift associated with angular momentum /.

We present our finding of the general isotropic nature of low-energy scattering for massless
pseudospin-1 wave. To be concrete, we calculate from Eq. (15) the ratio £ as a function of
kR for a given barrier strength VoR = 5. The result is shown as the red curves in Fig. 6,

§ (15)
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FIG. 6: Isotropic scattering of massless pseudospin-1 quasiparticle. Ratio £ as a function of kR
for VoR = 5: the red and blue lines are for the massless pseudospin-1 and pseudospin-1/2 cases,

respectively.

where we see that there is a characteristic constant ratio & ~ 1 of the transport time to
the elastic time for kR < 1. For comparison, we calculate the corresponding ratio for
the massless pseudospin-1/2 wave, where low-energy scattering is universally anisotropic as
characterized by a constant ratio £ ~ 2 [53, 58]. Our result indicates that, for massless
pseudospin-1 particles back scattering is as pronounced as forward scattering. This finding
is quite counterintuitive as, if the massless nature of the quasiparticles is sustained, they
can penetrate through potential barriers of arbitrary strength via the mechanism of Klein
tunneling, making forward scattering more pronounced. While super-Klein tunneling can
occur for massless pseudospin-1 quasiparticles, the scattering in the system is isotropic at
low energies. This means that, to generate isotropic transport, it may not be necessary to
break symmetries to alter the massless nature of the quasiparticles through, e.g., additional
mechanisms such as spin-orbit interactions. Equivalently, an isotropic ratio £ for massless
quasiparticles does not necessarily imply any symmetry breaking leading to a finite mass.

To gain deeper insights into the physics underlying the counterintuitive phenomenon of
isotropic scattering for massless particles, we analyze the characteristic ratio £ in terms
of the scattering cross sections. The reflection coefficient associated with angular momen-
tum [ satisfies A; = A_;. Using this relation, we obtain the differential cross section as
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(Supplementary Materials)

do 271 9
@:E{|AO| +22|A| [1 4 cos (2n6)] +4Z®? (ApA;,) cos (nh) (16)

n=1 n=1
+38 Z R(A,A;,) cos (nd) cos (mb)}.
m>n=1

In the regime kR < 1 where the total angular momentum channels (I = 0,41) dominate
the scattering process, we have

do 2
d—g ~ W—T {140)% + 2| A1 21 + cos (260)]}, (17)

resulting in an isotropic ratio that agrees with the simulation result:

fdeda
$do% (1 — cosb)

¢ = ~ 1. (18)

A remarkable feature associated with the expression of do/df in Eq. (17) is the presence of
backscattering characterized by a finite differential cross section at 6 =

do

B loer UAO|2 + 4] A4 } ) (19)

which results from the constant term contributed by the { = 0 channel and the constructive
interference between the time-reversed scattering paths denoted by [ = 4+1. The underlying
physical picture can then be understood, as follows. Consider the pseudohelicity defined
ash =8 k/k. Tts eigenvalues are conserved during the scattering process because of
the commutation [ﬁ, H | = 0 in the massless pseudospin-1 system. In general, when the
time-reversal symmetry is taken into account, a typical backscattering process consists of
a pair scattering paths with a 27 relative rotation of the pseudospin between them. This
leads to a phase difference determined by the underlying Berry phase ¢/®2. For a massless
pseudospin-1 particle, we have &5 = 0. There is thus coherent interference for backscatter-
ing, which makes the low-energy scattering isotropic. When this general picture is applied
to a conventional pseudospin-1/2 Dirac cone system with &5 = 7, it is straightforward to
see that, for backscattering there is complete destructive interference and the zero total an-
gular momentum channel is absent. In particular, we have, for the differential cross section,
do/df ~ (14 cosf) for kR < 1. The ratio £ thus becomes § ~ 2/ § df(1 — cos 20) = 2. The
analysis agrees with the numerical results in Fig. 6.

Another remarkable phenomenon is the emergence of Fano-like resonance profile for larger
values of kR where higher angular momentum channels can be excited and interfere with the
lower ones, as manifested in the behavior of & versus kR. This provides a way to manipulate
the Klein-tunneling based scattering. In particular, for the conventional pseudospin-1/2
Dirac cone system (as illustrated by the blue curves in the insets (II) and (III) of Fig. 6), the
preferred scattering directions can be controlled through tuning of the quantity £R. However,
for such particles, since backscattering is typically totally suppressed, it is not possible to
switch between forward and backward scattering. Remarkably, controlled switching in the
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scattering dynamics from forward to backward and vice versa can be done for our pseudospin-
1 system. There are in fact a number of controllable scattering scenarios ranging from the
isotropic type (£ & 1), the backscattering dominant type (£j1), and the forward scattering
dominant type (£ > 2), and the switches among them can be realized by tuning the scattering
parameter kR. The feasibility of controlled scattering can be seen from the red curves in
the insets of Fig. 6. This capability of scattering control can have potential applications in
unconventional photonic/electronic circuit design.

III. DISCUSSION

Using a general Hamiltonian for pseudospin-1 systems whose energy band structure con-
stitutes a pair of Dirac cones and a topologically flat band, we investigate the basic problem
of wave scattering from a circularly symmetric potential barrier. In spite of its simplicity, the
system gives unusual and unexpected physics: revival resonant scattering, perfect caustics,
and isotropic scattering for massless quasiparticles. In particular, for small scatterer size,
the effective three-component spinor wave exhibits revival resonant (Mie) scattering features
as the incident wave energy is varied continuously - a surprising phenomenon which, to our
knowledge, has not been reported in any known wave systems. For larger scatter size ren-
dering semiclassical the underlying scattering dynamics, a super-caustic phenomenon arises
when the incident wave energy is about half of the barrier height, which is essentially a
manifestation of the super-Klein tunneling effect for massless pseudospin-1 particles. Be-
cause of Klein tunneling, intuitively the wave scattering should be anisotropic due to the
suppression of backward scattering, which is indeed the case for conventional pseudospin-1/2
particles. However, for a pseudospin-1 particle, the associated Berry phase can lead to con-
structive interference in the backward direction, leading to the counterintuitive phenomenon
of isotropic scattering even for massless quasiparticles. We develop an analytic theory and
physical understanding with extensive numerical support to substantiate our findings.

It is possible to conduct experimental test of the findings in this paper. For example, in
a recent work [23], it was demonstrated for a class of two-dimensional dielectric photonic
crystals with Dirac cones induced accidentally [19-22] that the Maxwell’s equations can lead
to an effective Hamiltonian description sharing the same mathematical structure as that for
massless pseudospin-1 particles. Especially, the photonic analogy of the gate potential in the
corresponding electronic system can be realized by manipulating the scaling properties of
Maxwell’s equations. Recent experimental realizations of photonic Lieb lattices consisting of
evanescently coupled optical waveguides implemented through the femtosecond laser-writing
technique [24-27] make them prototypical for studying the physics of pseudopsin-1 Dirac
systems. With a particular design of the refractive index profile across the lattice to re-
alize the scattering configuration, the findings in this paper can be experimentally tested.
In addition, loading ultracold atoms into an optical Lieb lattice fabricated by interfering
counter-propagating laser beams [28] provides another versatile platform to test our find-
ings, where appropriate holographic masks can be used to implement the desired scattering
potential barrier [32, 61]. In electronic systems, we note that the historically studied but
only recently realized 2D magnetoplasmon system [62] is described by three-component
linear equations with the same mathematical structure of massless pseudospin-1 particles,
which can serve as a 2D electron gas system to test our results.
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From an applied perspective, the phenomenon of revival resonant scattering can be a
base for articulating a new class of microcavity lasers based on the principles of relativistic
quantum mechanics. It may also lead to new discoveries in condensed matter physics through
exploiting the phenomenon in electronic systems. The phenomenon of perfect caustics can
have potential applications in optical imaging defying the diffraction limit as well as in
optical cloaking.
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