GROUPS OF UNSTABLE ADAMS OPERATIONS ON p-LOCAL COMPACT GROUPS

RAN LEVI AND ASSAF LIBMAN

Abstract

A p-local compact group is an algebraic object modelled on the homotopy theory associated with p-completed classifying spaces of compact Lie groups and p-compact groups. In particular plocal compact groups give a unified framework in which one may study p-completed classifying spaces from an algebraic and homotopy theoretic point of view. Like connected compact Lie groups and pcompact groups, p-local compact groups admit unstable Adams operations - self equivalences that are characterised by their cohomological effect. Unstable Adams operations on p-local compact groups were constructed in a previous paper by F. Junod and the authors. In the current paper we study groups of unstable operations from a geometric and algebraic point of view. We give a precise description of the relationship between algebraic and geometric operations, and show that under some conditions unstable Adams operations are determined by their degree. We also examine a particularly well behaved subgroup of operations.

Let G be a connected compact Lie group. An unstable Adams operation of degree $k \geq 1$ on $B G$ is a self equivalence $f: B G \rightarrow B G$ which induces multiplication by k^{i} on $H^{2 i}(B G ; \mathbb{Q})$ for every $i>0$. In JMO unstable Adams operations for compact connected simple Lie groups G were classified. The analysis is centred around studying suitable self equivalences of the p-completion $B G_{p}^{\wedge}$. Later on, after p-compact groups were introduced by Dwyer and Wilkerson, their classification by Andersen-Grodal AG09 and Andersen-Grodal-Møller-Viruel AGMV08 relied on studying a suitable notion of unstable Adams operation of p-compact groups.

In this paper we study unstable Adams operations on p-local compact groups and their classifying spaces. In light of BLO7, Theorem A] and the definition of unstable Adams operations for compact Lie groups, it is natural to define a geometric unstable Adams operation of degree $\zeta \in \mathbb{Z}_{p}^{\times}$on a p-local compact group $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ as a self equivalence f of $B \mathcal{G} \stackrel{\text { def }}{=}|\mathcal{L}|_{p}^{\wedge}$ which induces multiplication by ζ^{k} on $H_{\mathbb{Q}_{p}}^{2 k}(B \mathcal{G})$ for every $k \geq 1$. Here $H_{\mathbb{Q}_{p}}^{*}(X)=H^{*}\left(X ; \mathbb{Z}_{p}\right) \otimes \mathbb{Q}$.

This definition differs from the one we gave in JLL. Recall that $\psi \in \operatorname{Aut}(S)$ is called an Adams automorphism if it induces multiplication by some $\zeta \in \mathbb{Z}_{p}^{\times}$, called the degree of ψ, on the identity component S_{0} of S. We say ψ is normal if it induces the identity on S / S_{0}. In [JLL, Def. 3.4] we define a geometric Adams operation on \mathcal{G} as a self equivalence f of $B \mathcal{G}$ which renders the following square homotopy-commutative for some normal Adams automorphism ψ.

The two definitions of "geometric unstable Adams operations" we have given above coincide under the assumption that T is self-centralising in S (and hence \mathcal{F}-centric) in which case we say that \mathcal{F} is weakly connected. This is the content of [BLO7, Proposition 3.2]. We will write $\mathrm{Ad}^{\text {geom }}(B \mathcal{G})$ for the group of the homotopy classes of the geometric unstable Adams operations as defined in JLL.

Following JLL Definition 3.3], replicated as 4.2 in this paper, an (algebraic) unstable Adams operation on $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ is a pair (Ψ, ψ) of an automorphism Ψ of the small category \mathcal{L} and a fusion preserving

Key words and phrases. p-local compact groups, unstable Adams operations.
normal Adams automorphism ψ of S such that: (a) $\pi \circ \Psi=\psi_{*} \circ \pi$ where $\pi: \mathcal{L} \rightarrow \mathcal{F}$ is the projection and ψ_{*} is the automorphism of \mathcal{F} induced by ψ and, (b) for every \mathcal{F}-centric $P, Q \leq S$ and every $s \in N_{S}(P, Q)$ we have $\Psi(\hat{s})=\widehat{\psi(s)}$. We notice in Remark 4.3 that ψ is determined by Ψ.

In this paper we will investigate the relationship between the algebraic and the geometric Adams operations. When we will write "Adams operation" we will always mean "algebraic Adams operation". Throughout, we will use the following notation. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group.

- $\operatorname{Ad}(S) \leq \operatorname{Aut}(S)$ is the group of all the normal Adams automorphisms of S (Definition 3.3).
- $\operatorname{Ad}_{\text {fus }}(S)=\operatorname{Aut}_{\text {fus }}(S) \cap \operatorname{Ad}(S)$.
- $\operatorname{OutAd}_{\mathrm{fus}}(S)$ is the image of $\operatorname{Ad}_{\mathrm{fus}}(S)$ in $\operatorname{Out}_{\mathrm{fus}}(S)=\operatorname{Aut}_{\mathrm{fus}}(S) / \operatorname{Aut}_{\mathcal{F}}(S)$. See Definition 3.4.
- $\operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \leq \operatorname{Out}(B \mathcal{G})$ is the group of the homotopy classes of the geometric unstable Adams operations on $B \mathcal{G}$.
- $\operatorname{Ad}(\mathcal{G}) \leq \operatorname{Aut}_{\text {typ }}^{I}(\mathcal{L})$ is the group of algebraic unstable Adams operation of \mathcal{G} as defined in JLL, where $\operatorname{Aut}_{\text {typ }}^{I}(\mathcal{L})$ is the group of inclusion preserving isotypical self equivalences of \mathcal{L} AOV, Lemma 1.14].
- $\operatorname{Inn}_{T}(\mathcal{G}) \leq \operatorname{Ad}(\mathcal{G})$ for the subgroup of operations $\left(c_{\widehat{t}}, c_{t}\right)$ of degree 1 where $c_{t} \in \operatorname{Inn}(S)$ is conjugation by t and $c_{\hat{t}} \in \operatorname{Aut}(\mathcal{L})$ is "conjugation" by $\widehat{t} \in \operatorname{Aut}_{\mathcal{L}}(S)$. See equation (4.5) for more details.

Let G be a discrete group. We say that G is \mathbb{Z} / p^{∞}-free (Definition 3.1) if it contains no subgroup isomorphic to \mathbb{Z} / p^{∞}. We say that G has a maximal discrete p-torus if it contains a subgroup $T \leq G$ isomorphic to a discrete p-torus such that any discrete p-torus $U \leq G$ is conjugate to a subgroup of T. This subgroup of G is normal if and only if it is the unique maximal discrete p-torus in G, and in this case we denote it by G_{0}. Since an extension of two discrete p-tori is a discrete p-torus (this follows easily from BLO3, Lemma 1.3]), it is clear that G / G_{0} is \mathbb{Z} / p^{∞}-free.

We say that G has a Sylow p-subgroup if it contains a subgroup P isomorphic to a discrete p-toral group such that any discrete p-toral subgroup of G is conjugate to a subgroup of P. See BLO3, Section 8]. Clearly, if G is \mathbb{Z} / p^{∞}-free then its Sylow p-subgroup, if it exists, is a finite p-group. The next result is closely related to BLO3, Proposition 7.2].
1.2. Proposition. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group. Then $\operatorname{Ad}^{\text {geom }}(B \mathcal{G})$ is \mathbb{Z} / p^{∞}-free and contains a normal Sylow p-subgroup. In addition there is a short exact sequence

$$
1 \rightarrow{\underset{\mathcal{O}}{ }}_{\lim ^{c}(\mathcal{F})}^{1} \mathcal{Z} \rightarrow \operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \rightarrow \operatorname{OutAd}_{\mathrm{fus}}(S) \rightarrow 1
$$

If p is odd then $\operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \cong \operatorname{OutAd}_{\text {fus }}(S)$. In addition $\operatorname{Ad}^{\text {geom }}(B \mathcal{G})$ is solvable, in fact, $\operatorname{OutAd}_{\text {fus }}(S)$ is solvable of class ≤ 2.

Geometric realisation gives rise to a homomorphism from the group of algebraic Adams operations to the group of geometric Adams operations, see (4.4)

$$
\gamma: \operatorname{Ad}(\mathcal{G}) \xrightarrow{(\Psi, \psi) \mapsto|\Psi|_{p}^{\wedge}} \operatorname{Ad}^{\text {geom }}(B \mathcal{G})
$$

Let $D(\mathcal{F})$ be the subgroup of \mathbb{Z}_{p}^{\times}consisting of the degrees of all $\varphi \in \operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)$. In fact, $D(\mathcal{F})$ is a subgroup of the group U_{p} of the roots of unity in \mathbb{Z}_{p} which, by [RO, Sec. 6.7, Prop. 1,2], is isomorphic to the cyclic group C_{p-1} if p is odd and to C_{2} if $p=2$.
1.3. Theorem. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a weakly connected p-local compact group (Definition 3.8). Let T denote the maximal torus of S. Then
(i) $\operatorname{Ad}(\mathcal{G})$ has a normal maximal discrete p-torus denoted $\operatorname{Ad}(\mathcal{G})_{0}$. It contains a Sylow p-subgroup which is normal if $p=2$.
(ii) $\operatorname{Ad}(\mathcal{G})_{0}$ is contained in the kernel of γ (see (4.4)) and there is a short exact sequence

$$
1 \rightarrow D(\mathcal{F}) \rightarrow \operatorname{Ad}(\mathcal{G}) / \operatorname{Ad}(\mathcal{G})_{0} \xrightarrow{\bar{\gamma}} \operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \rightarrow 1
$$

(iii) $\operatorname{Ad}(\mathcal{G})_{0}=\operatorname{Inn}_{T}(\mathcal{G}) \cong T / Z(\mathcal{F})$ where $Z(\mathcal{F})$ is the centre of \mathcal{F}.

A natural question is whether an unstable Adams operation is determined by its degree. Such a question is too naïve. Looking at Diagram (1.1), and taking into account [BLO3, Theorem 6.3(a)], it is clear that ψ is only determined modulo $\operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)$. Hence, the degree of a geometric unstable Adams operation is, at best, only determined modulo $D(\mathcal{F})$. Also, all elements of $\operatorname{Inn}_{T}(\mathcal{G})$ are (distinct) algebraic unstable Adams operations of degree 1. The best we can hope for is to address the question of the injectivity of

$$
\operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \xrightarrow{\text { deg }} \mathbb{Z}_{p}^{\times} / D(\mathcal{F}) \quad \text { and } \quad \operatorname{Ad}(\mathcal{G}) / \operatorname{Ad}(\mathcal{G})_{0} \xrightarrow{\text { deg }} \mathbb{Z}_{p}^{\times}
$$

The next result will be proven in section 5
1.4. Proposition. Suppose that $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ is weakly connected and let $W=\operatorname{Aut}_{\mathcal{F}}(T)$ be its Weyl group. If $H^{1}(W, T)=0$ then $\operatorname{OutAd}_{\mathrm{fus}}(S) \xrightarrow{\operatorname{deg}} \mathbb{Z}_{p}^{\times} / D(\mathcal{F})$ is injective and there are exact sequences

$$
\begin{align*}
& 1 \rightarrow \underset{\mathcal{O}\left(\mathcal{F}^{c}\right)}{\lim ^{1}} \mathcal{Z} \rightarrow \operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \xrightarrow{\text { deg }} \mathbb{Z}_{p}^{\times} / D(\mathcal{F}) \tag{1}\\
& 1 \rightarrow \underset{\mathcal{O}\left(\mathcal{F}^{c}\right)}{\lim ^{1} \mathcal{Z}} \rightarrow \operatorname{Ad}(\mathcal{G}) / \operatorname{Ad}(\mathcal{G})_{0} \xrightarrow{\text { deg }} \mathbb{Z}_{p}^{\times} \tag{2}
\end{align*}
$$

If $p \neq 2$ and $H^{1}(W, T)=0$, then the degree maps in (1) and (2) are injective.
In Proposition 5.8 we will present conditions under which $H^{1}(W, T)=0$. For example, if p is odd and $D(\mathcal{F}) \neq 1$ then $H^{1}(W, T)=0$ and as a consequence $\operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \xrightarrow{\text { deg }} \mathbb{Z}_{p}^{\times} / D(\mathcal{F})$ is injective.

The next natural question to ask is what the possible degrees of unstable Adams operation of a given $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ are. This is closely related to the problem of constructing unstable Adams operations which was our main goal in JLL. We will call an unstable Adams operation (Ψ, ψ) special relative to a collection \mathcal{R} of \mathcal{F}-centric subgroups of S if for every $P \in \mathcal{R}$ there exists $\tau_{P} \in T$ and for every $\varphi \in \mathcal{L}(P, Q)$, where $P, Q \in \mathcal{R}$, there exists some $\tau_{\varphi} \in Q_{0}$ such that the following hold. First, $\psi(P)=\tau_{P} P \tau_{P}^{-1}$ for every $P \in \mathcal{R}$. Next, $\Psi(\varphi)=\widehat{\tau_{Q}} \circ \widehat{\tau_{\varphi}} \circ \varphi \circ \widehat{\tau_{P}}-1$. See Definition 7.1. We will denote the group of all such Adams operations by $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$. It turns out that all the unstable Adams operations we constructed in JLL are special, and in this paper we will study this more general class of operations.

Of course $\operatorname{SpAd}(\mathcal{G} ; \emptyset)=\operatorname{Ad}(\mathcal{G})$. It is reasonable that "a minimum requirement" from \mathcal{R} is to have the property that $\left|\mathcal{L}^{\mathcal{R}}\right|_{p}^{\wedge} \simeq B \mathcal{G}$ where $\mathcal{L}^{\mathcal{R}}$ is the full subcategory of \mathcal{L} with object set \mathcal{R}.

In section 6 we introduce a category $\mathcal{L}_{/ 0}^{\mathcal{R}}$ whose objects are the elements of \mathcal{R} and morphisms are $\mathcal{L}_{/ 0}^{\mathcal{R}}(P, Q)=\mathcal{L}(P, Q) / Q_{0}$ for any $P, Q \in \mathcal{R}$ and where Q_{0} acts on $\mathcal{L}(P, Q)$ by post-composition with the elements of $\widehat{Q_{0}} \leq \operatorname{Aut}_{\mathcal{L}}(Q)$. There is a naturally defined functor $\Phi: \mathcal{L}_{/ 0}^{\mathcal{R}} \rightarrow \mathbf{A b}$ defined by $P \mapsto P_{0}$. By utilising a theory of extensions of categories, see e.g. [H0, we show that the category $\mathcal{L}^{\mathcal{R}}$ corresponds to a well defined element $\left[\mathcal{L}^{\mathcal{R}}\right]$ in $H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Psi\right)$.

For every $k \geq 0$ set

$$
\begin{equation*}
\Gamma_{k}(p)=\operatorname{Ker}\left(\mathbb{Z}_{p}^{\times} \xrightarrow{x \mapsto\left(x \bmod p^{k}\right)}\left(\mathbb{Z} / p^{k}\right)^{\times}\right) \tag{1.5}
\end{equation*}
$$

This group has finite index in \mathbb{Z}_{p}^{\times}, of course. Note that $\Gamma_{0}(p)=\mathbb{Z}_{p}^{\times}$.
The following result, Theorem 1.6, is the content of Lemma 7.17, Proposition 7.19 and Proposition 7.2, Observe that $\operatorname{Inn}_{T}(\mathcal{G})$ is a discrete p-torus and that under the hypotheses of the theorem $H^{1}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$ is discrete p-toral because $\mathcal{L}_{/ 0}^{\mathcal{R}}$ has finitely many isomorphism classes of objects and morphisms and therefore the cobar construction $C^{*}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$ consists of discrete p-tori.
1.6. Theorem. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a weakly connected p-local compact group. Suppose that a collection $\mathcal{R} \subseteq \mathcal{F}^{c}$ has finitely many \mathcal{F}-conjugacy classes. Then $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ is a normal subgroup of $\operatorname{Ad}(\mathcal{G})$ of finite index. The quotient group is solvable of class at most 3 .

If in addition, $\mathcal{R} \supseteq \mathcal{H}^{\bullet}(\mathcal{F})$, see BLO3, Sec. 3], then there is an exact sequence

$$
H^{1}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right) \rightarrow \operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) / \operatorname{Inn}_{T}(\mathcal{G}) \xrightarrow{\text { deg }} \Gamma_{m}(p) \rightarrow 1
$$

where p^{m} is the order of $\left[\mathcal{L}^{\mathcal{R}}\right]$ in $H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$. In particular, $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ has a normal Sylow p-subgroup with $\operatorname{Inn}_{T}(\mathcal{G})$ as its maximal discrete p-torus.

A corollary of this theorem is that the image of deg: $\operatorname{Ad}(\mathcal{G}) \rightarrow \mathbb{Z}_{p}^{\times}$contains $\Gamma_{m}(p)$ where p^{m} is the order of $\left[\mathcal{L}^{\mathcal{R}}\right]$ in $H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$. This gives a more precise result than the one obtained in [JLL, Theorem A].

Even though $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ has finite index in $\operatorname{Ad}(\mathcal{G})$, it is usually a proper subgroup. In fact, in Proposition 8.7 we give an example of a geometric unstable Adams operation that is not the geometric realisation of a special unstable Adams operation relative to the collection \mathcal{R} of the \mathcal{F}-centric \mathcal{F}-radical subgroups.

The paper is organised as follows. In Section 2 we recall some definitions and useful facts on p-local compact groups. In Section 3 we discuss geometric unstable operations and prove Proposition 1.2 Section 4 is dedicated to the proof of Theorem [1.3] and in Section 5 we prove Proposition 1.4 and find conditions for the vanishing of $H^{1}(W, T)$. In Section 6 we recall some basic theory of extensions of categories and introduce the category $\mathcal{L}_{/ 0}$. Sections 7 is dedicated to what we call special Adams operations, and the proof of Theorem 1.6. Finally in Section 8 we show that there exist unstable Adams operations which are not special. We end with two appendices containing proofs of statements from Section 6 and the observation that the operations constructed in JLL are all special.

2. RECOLLECTIONS OF p-LOCAL COMPACT GROUPS

This section briefly introduces p-local compact groups and collect some results about them that we will use. The reference is BLO3].

Fix a prime p. Recall that $\mathbb{Z} / p^{\infty} \stackrel{\text { def }}{=} \cup_{n \geq 1} \mathbb{Z} / p^{n}$. This is a divisible group. A discrete p-torus of rank n is a group T isomorphic to $\bigoplus^{n} \mathbb{Z} / p^{\infty}$. A group P is called discrete p-toral if it contains a discrete p-torus T as a normal subgroup and P / T is a finite p-group. In this case T is characteristic in P and we write $T=P_{0}$ and call it the identity component of P. Every sub-quotient of P is a discrete p-toral group by [BLO3, Lemma 1.3]. Also, an extension of discrete p-toral groups is a discrete p-toral group. The order of a discrete p-toral group P is the pair $\left(\operatorname{rk}\left(P_{0}\right),\left|P / P_{0}\right|\right)$. These pairs are ordered lexicographically.

A fusion system \mathcal{F} over a discrete p-toral group S is a category whose objects are all the subgroups of S. Morphisms between $P, Q \leq S$ are group monomorphisms and $\operatorname{Hom}_{\mathcal{F}}(P, Q)$ always contains $\operatorname{Hom}_{S}(P, Q)$, namely the homomorphisms $P \rightarrow Q$ induced by conjugation by elements of S. In addition every morphism in \mathcal{F} can be factored as an isomorphism in \mathcal{F} followed by an inclusion homomorphism. See BLO3, Definition 2.1]

We say that $P, Q \leq S$ are \mathcal{F}-conjugate if they are isomorphic as objects of \mathcal{F}. A subgroup $P \leq S$ is called fully centralised (resp. fully normalised) if for every $P^{\prime} \leq S$ which is \mathcal{F}-conjugate to P, the order of $C_{S}\left(P^{\prime}\right)\left(\right.$ resp. $\left.N_{S}\left(P^{\prime}\right)\right)$ is at most the order of $C_{S}(P)\left(\right.$ resp. $\left.N_{S}(P)\right)$.

A fusion system \mathcal{F} over S is called saturated if
(1) Every fully normalised $P \leq S$ is fully centralised, $\operatorname{Out}_{\mathcal{F}}(P) \stackrel{\text { def }}{=} \operatorname{Aut}_{\mathcal{F}}(P) / \operatorname{Inn}(P)$ is finite and contains Out $_{S}(P)$ as a Sylow p-subgroup.
(2) If $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, S)$ and if $\varphi(P)$ is fully centralised, then φ extends to $\psi \in \operatorname{Hom}_{\mathcal{F}}\left(N_{\varphi}, S\right)$ where

$$
N_{\varphi}=\left\{g \in N_{S}(P): \varphi \circ c_{g} \circ \varphi^{-1} \in \operatorname{Aut}_{S}(\varphi(P))\right\}
$$

(3) If $P_{1} \leq P_{2} \leq \ldots$ is an increasing sequence of subgroups of S and $\varphi \in \operatorname{Hom}\left(\bigcup_{n} P_{n}, S\right)$ is a homomorphism such that $\left.\varphi\right|_{P_{n}} \in \operatorname{Hom}_{\mathcal{F}}\left(P_{n}, S\right)$ then $\varphi \in \operatorname{Hom}_{\mathcal{F}}\left(\bigcup_{n} P_{n}, S\right)$.
A subgroup P of S is called \mathcal{F}-centric if $C_{S}\left(P^{\prime}\right)=Z\left(P^{\prime}\right)$ for every P^{\prime} which is \mathcal{F}-conjugate to P. It is called \mathcal{F}-radical if $O_{p}\left(\operatorname{Out}_{\mathcal{F}}(P)\right)=1$ where $O_{p}(K)$ denotes the largest normal p-subgroup of a finite group K.

If $P \leq S$ is \mathcal{F}-centric then it must contain $Z(S)$. The centre of \mathcal{F} is defined by:

$$
Z(\mathcal{F})=\left\{x \in Z(S): \varphi(x)=x \text { for every } P \in \mathcal{F}^{c} \text { and every } \varphi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\right\}
$$

In light of Alperin's fusion theorem [BLO3, Theorem 3.6] this is the same as the subgroup of $x \in Z(S)$ such that $\varphi(x)=x$ for any $P \leq S$ which contains x and every $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, S)$.

The orbit category of \mathcal{F} denoted $\mathcal{O}(\mathcal{F})$ has the same objects as \mathcal{F} and morphism sets $\operatorname{Hom}_{\mathcal{O}(\mathcal{F})}(P, Q)=$ $\operatorname{Hom}_{\mathcal{F}}(P, Q) / \operatorname{Inn}(Q)$. The full subcategory on the \mathcal{F}-centric subgroups is denoted $\mathcal{O}\left(\mathcal{F}^{c}\right)$. In BLO3, proof of Theorem 7.1] the functor $\mathcal{Z}: \mathcal{O}\left(\mathcal{F}^{c}\right)^{\mathrm{op}} \rightarrow \mathbb{Z}_{(p)}$-mod was defined:

$$
\mathcal{Z}: P \mapsto Z(P)=C_{S}(P)
$$

A linking system \mathcal{L} associated to a saturated fusion system \mathcal{F} over S is a small category whose objects are the \mathcal{F}-centric subgroups of S. It is equipped with a surjective functor $\pi: \mathcal{L} \rightarrow \mathcal{F}^{c}$ which is the identity on objects and with monomorphisms of groups $\delta_{P}: P \rightarrow \operatorname{Aut}_{\mathcal{L}}(P)$, one for each $P \in \mathcal{F}^{c}$ such that the following hold.
(A) For each $P, Q \in \mathcal{L}$ the group $Z(P)$ acts freely on $\mathcal{L}(P, Q)$ via $\delta_{P}: P \rightarrow \operatorname{Aut}_{\mathcal{L}}(P)$ and precomposition of morphisms, and $\pi: \mathcal{L}(P, Q) \rightarrow \operatorname{Hom}_{\mathcal{F}}(P, Q)$ is the quotient map by this action.
(B) For any $P \in \mathcal{L}$ and $g \in P, \pi\left(\delta_{P}(g)\right)=c_{g} \in \operatorname{Aut}_{\mathcal{F}}(P)$.
(C) For any $\varphi \in \mathcal{L}(P, Q)$ and $g \in P$, the following diagram commutes in \mathcal{L}

The morphisms $\delta_{P}(g)$ will be denoted \widehat{g}.
A p-local compact group is a triple $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ where \mathcal{F} is a saturated fusion system over S and \mathcal{L} is an associated centric linking system. The classifying space of \mathcal{G} denoted $B \mathcal{G}$ is by definition $|\mathcal{L}|_{p}^{\wedge}$.

It is shown in JLL Proposition 1.5] that the monomorphisms δ_{P} can be extended to monomorphisms $N_{S}(P) \xrightarrow{g \mapsto \widehat{g}}$ Aut $_{\mathcal{L}}(P)$ which satisfy (B), and more generally to injective functions $\delta_{P, Q}: N_{S}(P, Q) \xrightarrow{g \mapsto \widehat{g}}$ $\mathcal{L}(P, Q)$ which satisfy (B). Moreover $\widehat{g} \circ \widehat{h}=\widehat{g h}$ whenever $h \in N_{S}(P, Q)$ and $g \in N_{S}(Q, R)$. Thus, the identity element $e \in S$ give rise to morphisms $\iota_{P}^{Q} \in \mathcal{L}(P, Q)$ for any $P \leq Q$ where $\iota_{P}^{Q}=\widehat{e}$.

By [JLL, Corollary 1.8] the category \mathcal{L} has the property that every morphism in \mathcal{L} is both a monomorphism and an epimorphism (but in general not an isomorphism). This allows us, by JLL Lemma 1.7(i)], to define "restrictions": if $\varphi \in \mathcal{L}(P, Q)$ and $P^{\prime} \leq P$ and $Q^{\prime} \leq Q$ are \mathcal{F}-centric subgroups such that $\pi(\varphi)\left(P^{\prime}\right) \leq Q^{\prime}$ then there exists a unique morphism $\psi \in \mathcal{L}\left(P^{\prime}, Q^{\prime}\right)$ such that $\varphi \circ \iota_{P^{\prime}}^{P}=\iota_{Q^{\prime}}^{Q} \circ \psi$. We write $\left.\varphi\right|_{P^{\prime}} ^{Q^{\prime}}$ for this unique morphism and call it the restriction of φ.

In BLO3, Section 3] a collection of subgroups of S denoted $\mathcal{H}^{\bullet}(\mathcal{F})$ was constructed. We will not recall the precise details of its construction here. The full subcategory of \mathcal{F} on this set of objects is denoted \mathcal{F}^{\bullet}. There is a functor $\mathcal{F} \rightarrow \mathcal{F}^{\bullet}$ where $P \leq P^{\bullet}$ for any $P \leq S$. This functor is left adjoint to the inclusion $\mathcal{F}^{\bullet} \subseteq \mathcal{F}$. In addition $\mathcal{H}^{\bullet}(\mathcal{F})$ contains the collection $\overline{\mathcal{F}}^{c r}$ of all $P \leq S$ which are both \mathcal{F}-centric and \mathcal{F}-radical.

The functor $P \mapsto P^{\bullet}$ "lifts" to a functor $\mathcal{L} \rightarrow \mathcal{L}^{\bullet}$ such that $\widehat{g}^{\bullet}=\widehat{g}$ for any $g \in N_{S}(P, Q)$. See JLL, Proposition 1.12].

3. Geometric unstable Adams operations

In this section we recall the the concept of geometric unstable Adams operations and make some basic observations, ending with the proof of Proposition 1.2,

3.1. Groups with maximal discrete p-tori.

3.1. Definition. A group G is called \mathbb{Z} / p^{∞}-free if it contains no subgroup isomorphic to \mathbb{Z} / p^{∞}, or equivalently if every homomorphism $\mathbb{Z} / p^{\infty} \rightarrow G$ is trivial. We say that $T \leq G$ is a maximal discrete p-torus in G if $T \cong \bigoplus^{n} \mathbb{Z} / p^{\infty}$ and any other subgroup of G isomorphic to a discrete p-torus is conjugate to a subgroup of T. We say that $S \leq G$ is a Sylow p-subgroup if every discrete p-toral subgroup of G is conjugate to a subgroup of S.
3.2. Lemma. Let $1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1$ be an exact sequence of group.
(i) If H and K are \mathbb{Z} / p^{∞}-free then G is \mathbb{Z} / p^{∞}-free.
(ii) If G is \mathbb{Z} / p^{∞}-free and K is finite then H is \mathbb{Z} / p^{∞}-free.

Proof. (ii). Suppose $T \leq G$ is a discrete p-torus. Its image in H must be trivial by assumption. Hence $T \leq K$ which implies $T=1$.
(iii). Assume that H is not \mathbb{Z} / p^{∞}-free. Then there exists a sequence $x_{1}, x_{2}, x_{3}, \ldots$ of non-identity elements in H such that $x_{i}=\left(x_{i+1}\right)^{p}$ for all $i \geq 1$. The preimages of these elements in G are cosets $X_{1}, X_{2}, X_{3}, \ldots$ of K and hence finite subsets of G. The function (not a homomorphism) $G \xrightarrow{x \mapsto x^{p}} G$ restricts to functions $X_{i+1} \xrightarrow{x \mapsto x^{p}} X_{i}$ for all i and we obtain a tower

$$
\cdots \rightarrow X_{i+1} \xrightarrow{x \mapsto x^{p}} X_{i} \xrightarrow{x \mapsto x^{p}} \ldots \xrightarrow{x \mapsto x^{p}} X_{2} \xrightarrow{x \mapsto x^{p}} X_{1} .
$$

Since the sets X_{i} are finite, $\lim X_{i}$ is not empty. An element in $\lim _{i} X_{i}$ is a sequence $g_{1}, g_{2}, g_{3}, \ldots$ of non-identity elements of G such that $g_{i}=g_{i+1}{ }^{p}$. These elements generate a copy of \mathbb{Z} / p^{∞} in G which is a contradiction.
3.2. Adams automorphisms of discrete p-toral groups and fusion systems. Let S be a discrete p-toral group and let T denote its maximal torus. Recall that $\operatorname{Aut}(T) \cong \mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$ where $r=\operatorname{rk}(T)$. It contains a copy of \mathbb{Z}_{p}^{\times}in its centre (the diagonal matrices).
3.3. Definition. An $A d a m s$ automorphism of S of degree $\zeta \in \mathbb{Z}_{p}^{\times}$is an automorphism φ of S such that $\left.\varphi\right|_{T}$ is multiplication by ζ. We say that φ is a normal Adams automorphism if it induces the identity on the set of components S / T. Set

$$
\operatorname{Ad}(S)=\{\text { all normal Adams automorphisms of } S\}
$$

This is a normal subgroup of $\operatorname{Aut}(S)$. Restriction $\operatorname{Aut}(S) \rightarrow \operatorname{Aut}(T)$ induces a "degree homomorphism"

$$
\operatorname{deg}: \operatorname{Ad}(S) \rightarrow \mathbb{Z}_{p}^{\times}
$$

Let $\operatorname{Ad}^{1}(S)$ or $\operatorname{Ad}^{\{\operatorname{deg}=1\}}(S)$ be the subgroup of the normal Adams automorphisms of degree 1.
Recall that if \mathcal{F} is a fusion system over S, then $\alpha \in \operatorname{Aut}(S)$ is called fusion preserving if $\alpha \circ \varphi$ is a homomorphism in \mathcal{F} for every $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, S)$. The group of fusion preserving automorphisms is denoted $\operatorname{Aut}_{\text {fus }}(S)$. It clearly contains $\operatorname{Aut}_{\mathcal{F}}(S)$ as a normal subgroup. We define (see [BLO3, Section 7])

$$
\operatorname{Out}_{\mathrm{fus}}(S)=\operatorname{Aut}_{\mathrm{fus}}(S) / \operatorname{Aut}_{\mathcal{F}}(S) .
$$

3.4. Definition. Let \mathcal{F} be a saturated fusion system over S. Set

$$
\operatorname{Ad}_{\mathrm{fus}}(S)=\operatorname{Ad}(S) \cap \operatorname{Aut}_{\mathrm{fus}}(S)
$$

Let $\operatorname{OutAd}_{\text {fus }}(S)$ be the image of $\operatorname{Ad}_{\text {fus }}(S)$ in $\operatorname{Out}_{\text {fus }}(S)$.
The goal of this subsection is to prove
3.5. Proposition. Let \mathcal{F} be a saturated fusion system over S and let T be the identity component of S. Then
(i) $\operatorname{OutAd}_{\text {fus }}(S)$ is \mathbb{Z} / p^{∞}-free and solvable of class at most 2.
(ii) It contains a normal Sylow p-subgroup which is abelian if p is odd or if $p=2$ and the order of the extension class of S in $H^{2}(S / T ; T)$ is at least 4.

Proof. The torsion elements in \mathbb{Z}_{p}^{\times}form the group U_{p} of roots of unity in \mathbb{Z}_{p}, and by Ro, Sec. 6.7, Prop. 1,2]

$$
U_{p} \cong \begin{cases}C_{2}=\{ \pm 1\} & \text { if } p=2 \\ C_{p-1} & \text { if } p>2\end{cases}
$$

In particular U_{p} is finite and therefore \mathbb{Z}_{p}^{\times}is \mathbb{Z} / p^{∞}-free, hence so are all of $\Gamma_{m}(p)$. In fact, if $p>2$ then $\Gamma_{k}(p)$ contains no finite p-subgroup, and if $p=2$ then $\Gamma_{k}(2)$ contains no finite 2 -subgroup if $k \geq 2$. By [JLL, Proposition 2.8] there is a short exact sequence

$$
1 \rightarrow H^{1}(S / T ; T) \rightarrow \operatorname{Ad}(S) / \operatorname{Aut}_{T}(S) \xrightarrow{\operatorname{deg}} \Gamma_{m}(p) \rightarrow 1
$$

where p^{m} is the order of the extension class of S in $H^{2}(S / T, T)$. Since S / T is a finite p-group, $H^{1}(S / T, T)$ is a finite abelian p-group by a transfer argument. It follows that $\operatorname{Ad}(S) / \operatorname{Aut}_{T}(S)$ is solvable of class ≤ 2, and from Lemma 3.2(ii) that it is \mathbb{Z} / p^{∞}-free. Let P be the preimage of the normal Sylow p-subgroup of $\Gamma_{m}(p)$. Then P is a normal Sylow p-subgroup of $\operatorname{Ad}(S) /$ Aut $_{T}(S)$ and it is abelian if either p is odd or if $p=2$ and $m \geq 2$ since in this case $U_{p} \cap \Gamma_{m}(p)=1$, hence $P \cong H^{1}(S / T, T)$.

Observe that $\operatorname{Aut}_{\mathcal{F}}(S) \leq \operatorname{Aut}_{\text {fus }}(S)$ and that $\operatorname{Aut}_{T}(S) \leq \operatorname{Ad}(S)$. Hence $\operatorname{Ad}_{\text {fus }}(S) \cap \operatorname{Aut}_{\mathcal{F}}(S)=\operatorname{Ad}(S) \cap$ Aut $_{\mathcal{F}}(S)$ and by Definition 3.4 we obtain the short exact sequence

$$
1 \rightarrow \frac{\operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)}{\operatorname{Aut}_{T}(S)} \rightarrow \frac{\operatorname{Ad}_{\mathrm{fus}}(S)}{\operatorname{Aut}_{T}(S)} \rightarrow \operatorname{OutAd}_{\mathrm{fus}}(S) \rightarrow 1
$$

From the results above about $\operatorname{Ad}(S) / \operatorname{Aut}_{T}(S)$ it follows that $\operatorname{OutAd}_{\text {fus }}(S)$ is solvable of class at most 2 . The first group in this exact sequence is finite since it is a subgroup of $\operatorname{Aut}_{\mathcal{F}}(S) / \mathrm{Aut}_{T}(S)$ which is finite since S / T is finite and $\operatorname{Out}_{\mathcal{F}}(S)=\operatorname{Aut}_{\mathcal{F}}(S) / \operatorname{Inn}(S)$ is finite by BLO3, Lemma 2.5]. Lemma 3.2(iii) now implies that OutAd $\mathrm{fus}^{(S)}$ is \mathbb{Z} / p^{∞}-free and this completes the proof of (ii). Recall that $\operatorname{Ad}(S) / \operatorname{Aut}_{T}(S)$ has a normal Sylow p-subgroup. Let P be the normal Sylow p-subgroup of $\operatorname{Ad}_{\text {fus }}(S) / \operatorname{Aut}_{T}(S)$ and let \bar{P} be its image in $\operatorname{OutAd}_{\text {fus }}(S)$. Then \bar{P} is normal and it is abelian if either p is odd or if $p=2$ and $m \geq 2$ namely if the extension class of S in $H^{2}(S / T, T)$ has order at least 4. It remains to show \bar{P} is a Sylow p-subgroup of $\operatorname{OutAd}_{\mathrm{fus}}(S)$. If $Q \leq \operatorname{OutAd}_{\mathrm{fus}}(S)$ is a discrete p-toral group, it is finite since $\operatorname{OutAd}_{\mathrm{fus}}(S)$ is \mathbb{Z} / p^{∞}-free and its preimage H in $\operatorname{Ad}_{\text {fus }}(S) / \operatorname{Aut}_{T}(S)$ is therefore finite. If $H_{p} \in \operatorname{Syl}_{p}(H)$ then $H_{p} \leq P$ since P is normal and its image in $\operatorname{OutAd}_{\text {fus }}(S)$ is Q. Hence $Q \leq \bar{P}$ as needed.
3.3. Geometric Adams operations. The goal of this subsection is to prove Theorem 1.3 Let $\mathcal{G}=$ $(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group.
3.6. Definition (Compare JLL, Definition 3.4]). A geometric unstable Adams operation of degree $\zeta \in \mathbb{Z}_{p}^{\times}$ is a self equivalence $f: B \mathcal{G} \rightarrow B \mathcal{G}$ such that there exists $\varphi \in \operatorname{Ad}(S)$ of degree ζ which renders the following diagram commutative

We will write

$$
\operatorname{Ad}^{\text {geom }}(B \mathcal{G})
$$

for the group of homotopy classes of geometric unstable Adams operations.
This definition differs slightly from JLL where we wrote $\operatorname{Ad}^{g}(\mathcal{G})$ for the topological group of unstable Adams operations and used $\pi_{0} \operatorname{Ad}^{g}(\mathcal{G})$ for what we now denote by $\mathrm{Ad}^{\text {geom }}(B \mathcal{G})$.

At this point the reader may wonder about the restriction to normal Adams automorphisms of S (by virtue of $\operatorname{Ad}(S)$). Indeed, in general there are fusion preserving Adams automorphisms which are not normal. Recall that \mathcal{F} is called connected if every element of S is \mathcal{F}-conjugate to an element of T.
3.7. Definition. Let \mathcal{F} be a saturated fusion system over S. We say that \mathcal{F} is connected if every element of S is \mathcal{F}-conjugate to an element of its maximal torus S_{0}. A p-local compact group $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ is connected if its underlying fusion system \mathcal{F} is connected.
3.8. Definition. A saturated fusion system \mathcal{F} over S is weakly connected if S_{0} is self-centralising in S, namely $C_{S}\left(S_{0}\right)=S_{0}$.

The definitions are motivated by the fact that a compact Lie group G is connected if and only if every element of G is conjugate to an element of its maximal torus and in this case the maximal torus is self-centralising.
3.9. Lemma. If \mathcal{F} is connected then it is weakly connected, namely S_{0} is self centralising. If S_{0} is self centralising in S then every Adams automorphism of S is normal.

Proof. The second assertion is [JLL, Lemma 2.5]. To prove the first, we first claim that any $x \in S \backslash T$ is not fully centralised, namely the subgroup it generates is not fully centralised. If it is, then by assumption there is some $t \in T$ and a morphism $\varphi \in \mathcal{F}$ such that $\varphi(t)=x$. By the extension axiom φ extends to $\psi: C_{S}(T) \rightarrow S$. But $T \subseteq C_{S}(T)$ and $\psi(T)=T$ which is impossible since $\psi(t)=\varphi(t)=x$.

Now suppose that $x \in C_{S}(T) \backslash T$. Then there is a morphism $\varphi \in \mathcal{F}$ such that $\varphi(x)=t \in T$ is fully centralised. By the extension axion φ extends to $\psi: C_{S}(T) \rightarrow S$ which carries x to $t \in T$. But ψ must induce an isomorphism of T, a contradiction. Hence $C_{S}(T)=T$ as claimed.

We recall the following from BLO3. For any discrete p-toral group Q define an equivalence relation on the set $\operatorname{Hom}(Q, S)$ where $\rho \sim \rho^{\prime}$ if there exists some \mathcal{F}-isomorphism $\chi: \rho(Q) \rightarrow \rho^{\prime}(Q)$ such that $\rho^{\prime}=\chi \circ \rho$. Set $\operatorname{Rep}(Q, \mathcal{L})=\operatorname{Hom}(Q, S) / \sim$. Notice that $\operatorname{Rep}(S, \mathcal{L})=\operatorname{Aut}(S) / \operatorname{Aut} \mathcal{F}_{\mathcal{F}}(S)$. Recall from [BLO3, Theorem 6.3] that there is a natural bijection $[B Q, B \mathcal{G}] \cong \operatorname{Rep}(Q, \mathcal{L})$. In particular there is a natural bijection of sets

$$
\begin{equation*}
\left.[B S, B \mathcal{G}] \cong \operatorname{Aut}(S) / \operatorname{Aut}_{\mathcal{F}}(S) \quad \text { (left cosets of } \operatorname{Aut}_{\mathcal{F}}(S)\right) \tag{3.10}
\end{equation*}
$$

The map Res: $[B \mathcal{G}, B \mathcal{G}] \rightarrow[B S, B \mathcal{G}]$ therefore gives a homomorphism

$$
\begin{equation*}
\operatorname{Out}(B \mathcal{G}) \xrightarrow{\mu} \operatorname{Out}_{\mathrm{fus}}(S) \tag{3.11}
\end{equation*}
$$

and by [BLO3, Proposition 7.2, Proposition 5.8] there is an exact sequence

$$
\begin{equation*}
0 \rightarrow{\underset{\mathcal{O}}{ }}_{\lim ^{c}(\mathcal{F})}^{1} \mathcal{Z} \rightarrow \operatorname{Out}(B \mathcal{G}) \xrightarrow{\mu} \operatorname{Out}_{\text {fus }}(S) \rightarrow \underset{\mathcal{O}^{c}(\mathcal{F})}{\lim ^{2}} \mathcal{Z} \tag{3.12}
\end{equation*}
$$

where the groups at the ends are finite abelian p-groups by [BLO3, Proposition 5.8] and since $\mathcal{O}^{c}(\mathcal{F})$ is equivalent to a finite subcategory.

Proof of Proposition 1.2. As we have seen above, by BLO3] there is a commutative square

Hence, if $f: B \mathcal{G} \rightarrow B \mathcal{G}$ is a geometric unstable Adams operation then by definition there exists $\varphi \in \operatorname{Ad}(S)$ such that the diagram in Definition 3.6 commutes up to homotopy and since the right arrow in the diagram above is injective, $\mu([f])=[\varphi]$. In particular φ is fusion preserving and hence $\mu([f]) \in \operatorname{OutAd}_{\text {fus }}(S)$. Conversely, suppose that $f: B \mathcal{G} \rightarrow B \mathcal{G}$ is a self equivalence such that $\mu([f]) \in \operatorname{OutAd}_{\text {fus }}(S)$. Then there exists some $\varphi \in \operatorname{Ad}_{\text {fus }}(S)$ such that $\mu([f])=[\varphi]$. Since the bottom arrow in the diagram above is bijective it follows that the diagram in Definition 3.6 commutes up to homotopy and therefore f is a geometric unstable Adams operation. We have thus shown that

$$
\operatorname{Ad}^{\text {geom }}(B \mathcal{G})=\mu^{-1}\left(\operatorname{OutAd}_{\mathrm{fus}}(S)\right)
$$

By [LL, Theorem B] for any p-local compact group ${\underset{\mathcal{O}}{\mathcal{O}^{c}(\mathcal{F})}}_{\lim ^{2}}^{\mathcal{Z}}=0$ and, if p is odd then $\underset{\mathcal{O}^{c}(\mathcal{F})}{\lim ^{1}} \mathcal{Z}=0$. In light of (3.12), the vanishing of $\lim ^{2} \mathcal{Z}$ implies the exactness of the sequence in the statement of this proposition. The vanishing of $\lim _{\leftarrow}^{1} \mathcal{Z}$, provided p is odd, establishes the isomorphism $\operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \cong \operatorname{OutAd}_{\text {fus }}(S)$.

It follows from Proposition 3.5 that $\operatorname{OutAd}_{\text {fus }}(S)$ is solvable of class at most 2 and since ${\underset{\mathcal{O}}{ }{ }^{c}(\mathcal{F})}_{\lim ^{1} \mathcal{Z}}$ is a finite abelian p-group, $\mathrm{Ad}^{\text {geom }}(B \mathcal{G})$ has a normal Sylow p-subgroup. Lemma 3.2(i) shows that it is also \mathbb{Z} / p^{∞}-free.

4. Algebraic unstable Adams operations

In this section we will prove Theorem 1.3. Throughout we will fix a p-local compact group $\mathcal{G}=$ $(S, \mathcal{F}, \mathcal{L})$.
4.1. Definition (Compare JLL Definition 1.11]). Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and $\phi: S \rightarrow S$ be a fusion preserving automorphism. Let $\mathcal{L}^{\prime}, \mathcal{L}^{\prime \prime}$ be subcategories of \mathcal{L} and $\Phi: \mathcal{L}^{\prime} \rightarrow \mathcal{L}^{\prime \prime}$ be a functor. We say that Φ covers ϕ if the following square is commutative

and if for every $P, Q \in \mathcal{L}^{\prime}$ and every $g \in N_{S}(P, Q)$ the morphisms $\widehat{g} \in \mathcal{L}(P, Q)$ and $\widehat{\phi(g)} \in \mathcal{L}(\phi(P), \phi(Q))$ belong to \mathcal{L}^{\prime} and $\mathcal{L}^{\prime \prime}$ respectively, and moreover $\Phi(\widehat{g})=\widehat{\phi(g)}$.
4.2. Definition (JLL, Definition 3.3]). An algebraic unstable Adams operation on \mathcal{G}, or simply an unstable Adams operation on \mathcal{G}, is a pair (Ψ, ψ), where $\psi \in \operatorname{Ad}_{\text {fus }}(S)$ and $\Psi: \mathcal{L} \rightarrow \mathcal{L}$ is a functor which covers ψ. In other words,
(a) The following diagram is commutative where ψ_{*} is the automorphism of \mathcal{F} induced by ψ

(b) For every \mathcal{F}-centric $P, Q \leq S$ and every $g \in N_{S}(P, Q)$ we have $\Psi(\widehat{g})=\widehat{\psi(g)}$.

Define

$$
\operatorname{Ad}(\mathcal{G})=\{\text { all unstable Adams operations }(\Psi, \psi) \text { on } \mathcal{G}\}
$$

If $H \leq \mathbb{Z}_{p}^{\times}$we will write $\operatorname{Ad}^{H}(\mathcal{G})$ for those (Ψ, ψ) such that $\operatorname{deg}(\psi) \in H$.
4.3. Remark. Recall that the inclusion $B S \xrightarrow{\text { incl }} B \mathcal{G}$ is induced by the geometric realisation of the inclusion of categories $\mathcal{B} S \subseteq \mathcal{B A u t}{ }_{\mathcal{L}}(S) \subseteq \mathcal{G}$ via $s \mapsto \hat{s}$. By definition of an unstable Adams operation (Ψ, ψ), upon taking geometric realisations the following diagram commutes on the nose

hence $|\Psi|_{p}^{\wedge}$ is a geometric unstable Adams operation (Definition 3.6). We obtain a homomorphism

$$
\begin{equation*}
\gamma: \operatorname{Ad}(\mathcal{G}) \xrightarrow{(\Psi, \psi) \mapsto|\Psi|_{p}^{\wedge}} \operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \tag{4.4}
\end{equation*}
$$

Recall from [BLO3, Section 7] that an automorphism $\Phi: \mathcal{L} \rightarrow \mathcal{L}$ is called isotypical if for every \mathcal{F} centric subgroup $P \leq S$ the isomorphism $\operatorname{Aut}_{\mathcal{L}}(P) \rightarrow \operatorname{Aut}_{\mathcal{L}}(\Phi(P))$ induced by Φ carries $\delta(P)$ to $\delta(\Phi(P))$. The collection of all isotypical self equivalences of \mathcal{L} that preserve inclusions is a group AOV, Lemma 1.14], and we denote it here by $\operatorname{Aut}_{\text {typ }}(\mathcal{L})$ (The notation in AOV is $\operatorname{Aut}_{\text {typ }}^{I}(\mathcal{L})$). It is clear from the
definition that if (Ψ, ψ) is an unstable Adams operation then $\Psi \in \operatorname{Aut}_{\text {typ }}(\mathcal{L})$. Moreover, ψ is completely determined by Ψ because for every $s \in S$ we have $\Psi(\hat{s})=\widehat{\psi(s)}$ and since $\delta: S \rightarrow \operatorname{Aut}_{\mathcal{L}}(S)$ is injective. Therefore

$$
\operatorname{Ad}(\mathcal{G}) \xrightarrow{(\Psi, \psi) \mapsto \Psi} \operatorname{Aut}_{\mathrm{typ}}(\mathcal{L}) .
$$

is injective and we can, and will, identify $\operatorname{Ad}(\mathcal{G})$ with a subgroup of $\operatorname{Aut}_{\text {typ }}(\mathcal{L})$.
Geometric realisation of isotypical equivalences gives rise to a homomorphism [BLO3, Section 7]

$$
\Omega: \operatorname{Aut}_{\text {typ }}(\mathcal{L}) \xrightarrow{\Phi \mapsto\left[|\Phi|_{p}^{\wedge}\right]} \operatorname{Out}(B \mathcal{G})
$$

By Remark 4.3 the restriction of Ω to $\operatorname{Ad}(\mathcal{G})$ is the map γ in (4.4). Among all isotypical equivalences of \mathcal{L} there are the ones that are induced by "conjugation" by automorphisms of S. To be precise, there is a homomorphism

$$
\begin{equation*}
\tau: \operatorname{Aut}_{\mathcal{L}}(S) \rightarrow \operatorname{Aut}_{\text {typ }}(\mathcal{L}) \tag{4.5}
\end{equation*}
$$

defined for every $\varphi \in \operatorname{Aut}_{\mathcal{L}}(S)$ as follows. On object, $\tau(\varphi)(P)=\pi(\varphi)(P)$ where $\pi: \mathcal{L} \rightarrow \mathcal{F}$ is the projection. If $\alpha \in \mathcal{L}(P, Q)$ is a morphism, set $\tau(\varphi)(\alpha)=\left(\left.\varphi\right|_{Q} ^{\varphi(Q)}\right) \circ \alpha \circ\left(\left.\varphi\right|_{P} ^{\varphi(P)}\right)^{-1}$ where we write $\varphi(P)$ instead of $\pi(\varphi)(P)$ etc. It is easy to check, using the axioms of linking systems, that $\tau(\varphi)$ is isotypical. In fact, $\operatorname{Aut}_{\mathcal{L}}(S) \unlhd \operatorname{Aut}_{\text {typ }}(\mathcal{L})$ and the quotient group is denoted $\operatorname{Out}_{\text {typ }}(\mathcal{L})$. It is shown in BLO3, Theorem 7.1] that there is an isomorphism

$$
\begin{equation*}
\operatorname{Out}_{\text {typ }}(\mathcal{L}) \cong \operatorname{Out}\left(|\mathcal{L}|_{p}^{\wedge}\right) \tag{4.6}
\end{equation*}
$$

via the assignment $[\Phi] \mapsto\left[|\Phi|_{p}^{\wedge}\right]$. The definition of $\operatorname{Out}_{\text {typ }}(\mathcal{L})$ in BLO 3 and our definition coincide by AOV, Lemma 1.14].
4.7. Lemma. Let \mathcal{F} be a weakly connected fusion system over S. If $\psi \in \operatorname{Aut}_{\mathcal{F}}(S)$ is an Adams automorphism of degree 1 , then ψ is conjugation by t for some $t \in T$.

Proof. Since \mathcal{F} is weakly connected, T is \mathcal{F}-centric. Now, $\left.\psi\right|_{S}=\left.\mathrm{id}_{S}\right|_{T}$ and therefore BLO3, Prop. 2.8] implies that ψ is conjugation by t for some $t \in Z(T)=T$.
4.8. Lemma. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a weakly connected p-local compact group, and suppose that

$$
\left(\Psi, I d_{S}\right) \in \operatorname{Ker}\left(\gamma: \operatorname{Ad}(\mathcal{G}) \rightarrow \operatorname{Ad}^{\text {geom }}(\mathcal{G})\right)
$$

Then $\Psi=\tau(\hat{t})$ for some $t \in T$.
Proof. By [BLO3, Theorem 7.1] the map γ is the restriction to $\operatorname{Ad}(\mathcal{G})$ of the composition of homomorphisms

$$
\operatorname{Aut}_{\text {typ }}(\mathcal{L}) \xrightarrow{\text { proj }} \operatorname{Out}_{\text {typ }}(\mathcal{L}) \xrightarrow{\cong} \operatorname{Out}(B \mathcal{G})
$$

Note that $\Psi(P)=\operatorname{Id}_{S}(P)=P$ for every \mathcal{F}-centric $P \leq S$ and that given any $\varphi \in \operatorname{Mor}_{\mathcal{L}}(P, Q)$ the images of φ and $\Psi(\varphi)$ in $\operatorname{Hom}_{\mathcal{F}}(P, Q)$ are equal because Ψ covers $\left(\operatorname{Id}_{S}\right)_{*}=\operatorname{Id} \mathcal{F}_{\mathcal{F}}$. Also, since $\left(\Psi, \operatorname{Id}_{S}\right) \in \operatorname{Ker}(\gamma)$, Ψ is conjugation by some $\rho \in \operatorname{Aut}_{\mathcal{L}}(S) \cong \operatorname{Aut}_{\mathcal{L}}(S)$. In particular for every $\varphi \in \operatorname{Aut}_{\mathcal{L}}(S), \Psi(\varphi) \circ \rho=\rho \circ \varphi$

Since $\left(\Psi, \operatorname{Id}_{S}\right)$ is an Adams operation, $\Psi(\hat{s})=\hat{s}$ for every $s \in S$, and so $\rho_{S} \in C_{\operatorname{Aut}_{\mathcal{L}}(S)}(S)=Z(S)$, where S is considered as a subgroup of $\operatorname{Aut}_{\mathcal{L}}(S)$ via the canonical inclusion. Since \mathcal{F} is weakly connected $T=C_{S}(T) \geq Z(S)$, and therefore $\rho=\hat{t}$ for some $t \in Z(S) \leq T$. Thus, by the definition of τ in (4.5), $\Psi=\tau(\hat{t})$ as claimed.

We will now consider the following subgroup of $\operatorname{Aut}_{\mathcal{L}}(S)$

$$
\operatorname{Aut}_{\mathcal{L}}^{\operatorname{Ad}}(S)=\left\{\varphi \in \operatorname{Aut}_{\mathcal{L}}(S): \pi(\varphi) \in \operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)\right\}
$$

Recall that the centre of \mathcal{F} is the subgroup $Z(\mathcal{F})$ of $Z(S)$ of all $x \in Z(S)$ such that $\varphi(z)=z$ for any \mathcal{F}-homomorphism which contains x in its domain. Equivalently, since $Z(S)$ is contained in every \mathcal{F}-centric subgroup it follows from [BLO3, Theorem 3.6] that $Z(\mathcal{F})$ is the set of all $x \in Z(S)$ such that $\varphi(x)=x$ for any \mathcal{F}-centric $P \leq S$ and any $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, S)$.
4.9. Lemma. There is an exact sequence

$$
1 \rightarrow Z(\mathcal{F}) \xrightarrow{z \mapsto \hat{z}} \operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S) \xrightarrow{\tau} \operatorname{Ad}(\mathcal{G}) \xrightarrow{\gamma} \operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \rightarrow 1
$$

Proof. The homomorphism γ defined in (4.4) is surjective by (JLL, Prop. 3.5]. We have seen above that if $\varphi \in \operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S)$ then $\tau(\varphi)$ is an unstable Adams operation whose geometric realisation is homotopic to the identity, so $\operatorname{im}(\tau) \leq \operatorname{ker}(\gamma)$. Consider some (Ψ, ψ) in the kernel of γ. We will show that Ψ is in the image of τ. The bijection (4.6) and by the definition of $\operatorname{Out}_{\text {typ }}(\mathcal{L})$ it follows that there exists a natural isomorphism $\rho: \operatorname{Id}_{\mathcal{L}} \rightarrow \Psi$. In particular, at the object $S \in \mathcal{L}$ we obtain a morphism $\rho_{S}: S \rightarrow S$ in \mathcal{L}, i.e. $\rho_{S} \in \operatorname{Aut}_{\mathcal{L}}(S)$. In fact, ρ_{S} determines ρ completely because for every $P \in \mathcal{L}$ we have the following commutative square

Since $\iota_{P}^{S}=\widehat{e}$ where $e \in N_{S}(P, S)$ and since $\Psi(\widehat{e})=\widehat{e}$, we see that $\Psi\left(\iota_{P}^{S}\right)=\iota_{\psi(P)}^{S}$. Since ι_{P}^{S} is a monomorphism we deduce that ρ_{P} is determined by ρ_{S}, in fact $\rho_{P}=\left.\rho_{S}\right|_{P} ^{\psi(P)}$ for any $P \in \mathcal{L}$. For every $s \in S$ we obtain the following commutative square

It follows from Axiom (C) of linking systems [BLO3, Def. 4.1] that $\pi\left(\rho_{S}\right)=\psi$, in particular $\rho_{S} \in$ $\operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S)$. Now we claim that $\Psi=\tau\left(\rho_{S}\right)$ First, for every \mathcal{F}-centric $P \leq S$,

$$
\Psi(P)=\psi(P)=\pi\left(\rho_{S}\right)(P)=\tau\left(\rho_{S}\right)(P)
$$

So Ψ and $\tau\left(\rho_{S}\right)$ agree on objects of \mathcal{L}. Next, suppose that $\alpha \in \operatorname{Mor}_{\mathcal{L}}(P, Q)$. Since ρ is a natural transformation there is a commutative diagram

Since ρ_{P} and ρ_{Q} are restrictions of ρ_{S} we get

$$
\Psi(\alpha)=\rho_{Q} \circ \alpha \circ \rho_{P}^{-1}=\left(\left.\rho_{S}\right|_{Q} ^{\psi(Q)}\right) \circ \alpha \circ\left(\left.\rho_{S}\right|_{P} ^{\psi(P)}\right)^{-1}=\tau\left(\rho_{S}\right)(\alpha)
$$

This completes the proof the the sequence is exact at $\operatorname{Ad}(\mathcal{G})$.
We now show exactness at $\operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S)$. If $z \in Z(\mathcal{F})$ then for any $\varphi \in \operatorname{Mor}_{\mathcal{L}}(P, Q)$ we have $z \in Z(S) \leq$ P, Q and

$$
\tau(\hat{z})(\varphi)=\left.\hat{z}\right|_{Q} ^{Q} \circ \varphi \circ\left(\left.\hat{z}\right|_{P} ^{P}\right)^{-1}=\left.\hat{z}\right|_{Q} ^{Q} \circ\left(\left.\widehat{(\varphi)(z)}\right|_{Q} ^{Q}\right)^{-1} \circ \varphi=\left.\hat{z}\right|_{Q} ^{Q} \circ\left(\left.\widehat{z}\right|_{Q} ^{Q}\right)^{-1} \circ \varphi=\varphi
$$

Therefore $Z(\mathcal{F}) \rightarrow \operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S) \xrightarrow{\tau} \operatorname{Ad}(\mathcal{G})$ is trivial. Now suppose $\alpha \in \operatorname{Ker}(\tau)$. Then in particular $\alpha \in$ $C_{\operatorname{Aut}_{\mathcal{L}}(S)}(S)=Z(S)$, namely $\alpha=\hat{z}$ for some $z \in Z(S)$. In addition for any $\varphi \in \operatorname{Mor}_{\mathcal{L}}(P, Q)$ we must have $\left.\hat{z}\right|_{Q} ^{Q} \circ \varphi \circ\left(\left.\hat{z}\right|_{P} ^{P}\right)^{-1}=\varphi$. Axiom (C) of linking systems and the fact that φ is an epimorphism in \mathcal{L} imply that $\pi(\varphi)(z)=z$. It follows that $z \in Z(\mathcal{F})$ and this shows the exactness at Aut ${ }_{\mathcal{L}}^{\mathrm{Ad}}(S)$.

Composition of the degree map with the projection $\pi: \mathcal{L} \rightarrow \mathcal{F}$ gives rise to a degree homomorphism

$$
\operatorname{deg}: \operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S) \xrightarrow{\pi} \operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S) \xrightarrow{\operatorname{deg}} \mathbb{Z}_{p}^{\times}
$$

Recall that $\operatorname{Out}_{\mathcal{F}}(S)$ is finite, hence every element of $\operatorname{Aut}_{\mathcal{F}}(S)$ has finite order. Therefore the image of $\operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)$ under the degree map deg: $\operatorname{Ad}(S) \rightarrow \mathbb{Z}_{p}^{\times}$must be contained in the group U_{p} of the roots of unity in \mathbb{Z}_{p}. We will set

$$
\begin{equation*}
D(\mathcal{F})=\operatorname{Im}\left(\operatorname{Ad}(S) \cap \operatorname{Aut}_{\mathcal{F}}(S) \xrightarrow{\operatorname{deg}} U_{p}\right) \tag{4.10}
\end{equation*}
$$

4.11. Lemma. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a weakly connected p-local compact group. There is a short exact sequence

$$
1 \rightarrow T \rightarrow \operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S) \xrightarrow{\operatorname{deg}} D(\mathcal{F}) \rightarrow 1
$$

Proof. By definition, deg is onto $D(\mathcal{F})$. Also $T \leq \operatorname{Ker}(\mathrm{deg})$ since T is abelian so $\operatorname{Aut}_{T}(S) \leq \operatorname{Ad}^{\mathrm{deg}=1}(S)$. Suppose that $\varphi \in \operatorname{Ker}(\mathrm{deg})$. Lemma 4.7 shows that $\pi(\varphi)$ is conjugation by some $t^{\prime} \in T$. Since $Z(S) \leq$ $C_{S}(T)=T$ and T is \mathcal{F}-centric by the assumption of weak connectedness, $\varphi=\hat{t}$ for some $t \in T$.

Proof of Theorem 1.3. Clearly $T \leq \operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S)$, since $\operatorname{Aut}_{T}(S) \leq \operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)$. Since $Z(\mathcal{F}) \leq Z(S) \leq$ T, The exact sequences in Lemmas 4.11 and 4.9 yield the exact sequence

$$
1 \rightarrow D(\mathcal{F}) \xrightarrow{\tau} \operatorname{Ad}(\mathcal{G}) / \tau(T) \xrightarrow{\bar{\gamma}} \operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \rightarrow 1
$$

Since $D(\mathcal{F})$ is finite and $\operatorname{Ad}^{\text {geom }}(B \mathcal{G})$ is \mathbb{Z} / p^{∞}-free by Proposition 1.2, Lemma 3.2(i) implies that $\operatorname{Ad}(\mathcal{G}) / \tau(T)$ is \mathbb{Z} / p^{∞}-free. It follows that $\tau(T)$ is a normal maximal discrete p-torus in $\operatorname{Ad}(\mathcal{G})$ denoted $\operatorname{Ad}(\mathcal{G})_{0}$.

Let P be the unique Sylow p-subgroup of $\operatorname{Ad}^{\text {geom }}(B \mathcal{G})$ guaranteed in Proposition 1.2 and let H be its preimage in $\operatorname{Ad}(\mathcal{G}) / \operatorname{Ad}(\mathcal{G})_{0}$. If $p=2$ then $D(\mathcal{F}) \leq U_{p} \cong C_{2}$, so H is a finite 2 -group and it is clearly the Sylow 2-subgroup of $\operatorname{Ad}(\mathcal{G}) / \operatorname{Ad}(\mathcal{G})_{0}$. In particular $\operatorname{Ad}(\mathcal{G})$ has a normal Sylow 2-group. If p is odd, any Sylow p-subgroup of (the finite) group H is a Sylow p-subgroup of $\operatorname{Ad}(\mathcal{G}) / \operatorname{Ad}(\mathcal{G})_{0}$. This completes the proof.

5. The degree of an unstable Adams operation (uniqueness)

Unstable Adams operations of connected compact Lie groups have the pleasant property that their degree determines them completely up to homotopy. That is, given a connected compact Lie group G and an integer k, up to homotopy there is at most one unstable Adams operation on $B G$ of degree k. This was shown in JMO, Theorem 1]. In the set up of p-local compact groups, Proposition 1.2 makes it clear that this does not hold in general. First, at least when $p=2$, any non-trivial element in $\lim ^{1} \mathcal{Z}$ gives rise to a geometric unstable Adams operation whose underlying automorphism of S is the identity. Secondly, since $\operatorname{OutAd}_{\text {fus }}(S) \cong \operatorname{Ad}_{\text {fus }}(S) /\left(\operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)\right)$, the degree can only be defined modulo $D(\mathcal{F})$. That is, the degree map that we must consider is

$$
\operatorname{deg}: \operatorname{Ad}^{\text {geom }}(B \mathcal{G}) \rightarrow \operatorname{OutAd}_{\mathrm{fus}}(S) \xrightarrow{\text { deg }} \mathbb{Z}_{p}^{\times} / D(\mathcal{F})
$$

From the algebraic point of view we can define a degree homomorphism

$$
\operatorname{deg}: \operatorname{Ad}(\mathcal{G}) \xrightarrow{(\Psi, \psi) \mapsto \psi} \operatorname{Ad}_{\mathrm{fus}}(S) \xrightarrow{\operatorname{deg}} \mathbb{Z}_{p}^{\times}
$$

But observe that every $t \in T \backslash Z(\mathcal{F})$ gives an unstable Adams operation $\tau(\widehat{t})$ of degree 1 , hence the kernel of this degree map is in general not trivial. In this section we find conditions which guarantee that the degree does determine the unstable Adams operation in a suitable sense.
5.1. Definition. Let \mathcal{F} be a saturated fusion system over S. The Weyl group of \mathcal{F} is $W(\mathcal{F})=\operatorname{Aut}_{\mathcal{F}}(T)$.

Recall that $\operatorname{Aut}_{\mathcal{L}}{ }_{\mathcal{L}}(S)$ is the subgroup of $\operatorname{Aut}_{\mathcal{L}}(S)$ of the morphisms which project to $\operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)$. There is therefore a degree homomorphism deg: $\operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}^{2}}(S) \rightarrow \operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S) \xrightarrow{\text { deg }} \mathbb{Z}_{p}^{\times}$. Its image is $D(\mathcal{F})$ by 4.10).
5.2. Lemma. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a weakly connected p-local compact group, and suppose that $H^{1}(W, T)=$ 0 . Then there is a short exact sequence

$$
1 \rightarrow T \xrightarrow{\left.\delta\right|_{T}} \operatorname{Aut}_{\mathcal{L}}^{\mathrm{Ad}}(S) \xrightarrow{\mathrm{deg}} D(\mathcal{F}) \rightarrow 1
$$

Proof. Clearly $\left.\delta\right|_{T}$ is injective and the degree map is surjective. Also deg $\left.\circ \delta\right|_{T}$ is the trivial homomorphism since T is abelian. Suppose that $\varphi \in \operatorname{Ker}(\operatorname{deg})$. Then $\left.\psi(\varphi)\right|_{T}=\mathrm{id}_{T}$ and since T is \mathcal{F}-centric, it follows from [BLO3] Proposition 2.8] that $\pi(\varphi)=c_{z}$ for some $z \in Z(T)=T$. Since $Z(S) \leq T$ we now deduce that $\varphi=\hat{t}$ for some $t \in T$.
5.3. Lemma. The homomorphism

$$
\operatorname{Ad}(\mathcal{G}) \xrightarrow{(\Psi, \psi) \mapsto \psi} \operatorname{Ad}_{\text {fus }}(S)
$$

is surjective.
Proof. Consider some $\varphi \in \operatorname{Ad}_{\text {fus }}(S)$ and let $[\varphi]$ denote its class in $\operatorname{OutAd}_{\text {fus }}(S)$. The exact sequences in Proposition 1.2 and Theorem 1.3 show that there exists $(\Psi, \psi) \in \operatorname{Ad}(\mathcal{G})$ such that $[\varphi]=[\psi]$. Hence $\varphi=\alpha \circ \psi$ for some $\alpha \in \operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)$. Let $\tilde{\alpha} \in \operatorname{Aut}_{\mathcal{L}} \operatorname{Ad}^{\prime}(S)$ be a lift for α. Then $\tau(\tilde{\alpha}) \circ \Psi$ is an unstable Adams operation with an underlying automorphism ψ.
5.4. Lemma. Let \mathcal{F} be weakly connected and assume that $H^{1}(W, T)=0$ where $W=W(\mathcal{F})$. Then OutAd $_{\text {fus }}(S) \xrightarrow{\text { deg }} \mathbb{Z}_{p}^{\times} / D(\mathcal{F})$ is injective.

Proof. Consider some $\varphi \in \operatorname{Ad}_{\text {fus }}(S)$ such that $\operatorname{deg}(\varphi) \in \mathcal{D}(\mathcal{F})$. We will show it represents the identity element in OutAd $\operatorname{dus}(S)$, namely $\varphi \in \operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)$. By the definition of $\mathcal{D}(\mathcal{F})$ in (4.10), there is $\psi \in \operatorname{Aut}_{\mathcal{F}}(S) \cap \operatorname{Ad}(S)$ such that $\operatorname{deg}(\psi)=\operatorname{deg}(\varphi)$. Therefore $\varphi \circ \psi^{-1}$ is a normal Adams automorphism of S of degree 1 , namely is induces the identity on T and on S / T. Since \mathcal{F} is weakly connected T is \mathcal{F}-centric and we set $G=\operatorname{Aut}_{\mathcal{L}}(T)$. Notice that $W=\operatorname{Aut}_{\mathcal{F}}(T) \cong G / T$. By [JLL, Lemma 2.2] there is an isomorphism $\operatorname{Aut}\left(G ; \operatorname{Id}_{T}, \operatorname{Id}_{S / T}\right) / \operatorname{Aut}_{T}(G) \cong H^{1}(W ; T)$ which vanishes by assumption. Therefore $\varphi=c_{t} \circ \psi$ for some $t \in T$ and in particular $\varphi \in \operatorname{Ad}(S) \cap \operatorname{Aut}_{\mathcal{F}}(S)$.

Proof of Proposition 1.4. The exact sequence (1) follows from the exact sequence in Proposition 1.2 and Lemma 5.4 Lemma 4.9 together with Lemma 4.11 and the fact that the image of $T \xrightarrow{\tau} \operatorname{Ad}(\mathcal{G})$ is $\operatorname{Ad}(\mathcal{G})_{0}$ by Theorem 1.3, give rise to the following commutative diagram with short exact rows

The snake lemma together with the exact sequence (1) yield the exact sequence (2). If $p \neq 2$ then by $\left[\mathrm{LL}\right.$ the group $\lim ^{1} \mathcal{Z}$ vanishes and therefore the degree maps in (1) and (2) are injective.

We are led to find conditions under which $H^{1}(W, T)=0$. Recall that $U_{p} \leq \mathbb{Z}_{p}^{\times}$is the group of p-adic units. It acts in the natural way on any discrete p-torus T via central automorphisms.
5.5. Lemma. Let $1 \neq G \leq U_{p}$ be a subgroup which acts on a discrete p-torus T or rank $r \geq 1$ in the natural way. If $p \neq 2$ then $H^{n}(G, T)=0$ for all $n \geq 0$. If $p=2$ then $H^{2 n}(G, T)=(\mathbb{Z} / 2)^{r}$ and $H^{2 n+1}(G, T)=0$ for all $n \geq 0$.

Proof. If $p \neq 2$ then $U_{p} \cong C_{p-1}$ and T is p-torsion, hence $H^{* \geq 1}(G, T)=0$. Choose some $1 \neq \zeta \in G$. Then $\zeta \bmod p \neq 1$ so $\zeta-1$ is an invertible element in \mathbb{Z}_{p} and therefore it must act without fixed points on T. This show that $H^{0}(G, T)=0$.

Now suppose that $p=2$. Then $G=U_{p}=C_{2}$. If $t \in G$ is the non-trivial element, a projective resolution of \mathbb{Z} is given by

$$
\cdots \rightarrow \mathbb{Z}[G] \xrightarrow{1-t} \mathbb{Z}[G] \xrightarrow{1+t} \mathbb{Z}[G] \xrightarrow{1-t} \mathbb{Z}[G] \rightarrow \mathbb{Z}
$$

Applying $\operatorname{Hom}_{\mathbb{Z} G}(-, T)$, one obtains the cochain complex

$$
T \xrightarrow{\cdot 2} T \xrightarrow{0} T \xrightarrow{2} T \xrightarrow{0} \cdots
$$

whose homology groups are $H^{*}(G, T)$. The description of $H^{*}(G, T)$ now follows.

We recall that $\mathbb{Q}_{p}=\mathbb{Z}_{p} \otimes \mathbb{Z}\left[\frac{1}{p}\right]$. We obtain a short exact sequence

$$
1 \rightarrow \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p} \rightarrow \mathbb{Z} / p^{\infty} \rightarrow 1
$$

We also recall that $\operatorname{Aut}\left(\mathbb{Z} / p^{\infty}\right) \cong \mathbb{Z}_{p}^{\times}$where every $\zeta \in \mathbb{Z}_{p}$ acts on $\mathbb{Z} / p^{k} \subseteq \mathbb{Z} / p^{\infty}$ via multiplication by ζ $\bmod p^{k}$. Using the inclusion $\mathbb{Z}\left[\frac{1}{p}\right] \leq \mathbb{Q}_{p}$ it is easy to check that for any $\zeta \in \mathbb{Z}_{p}^{\times}$, multiplication by ζ in \mathbb{Q}_{p} induces the automorphism ζ on \mathbb{Z}_{p}. Thus the sequence is a short exact sequence of \mathbb{Z}_{p}^{\times}-modules. More generally, if T is a discrete p-torus of rank $r>0$, any decomposition $T \cong \oplus_{r} \mathbb{Z} / p^{\infty}$ gives rise to a short exact sequence of \mathbb{Z}_{p}-modules

$$
\begin{equation*}
1 \rightarrow L \rightarrow V \rightarrow T \rightarrow 1 \tag{5.6}
\end{equation*}
$$

where $V=\oplus_{r} \mathbb{Q}_{p}$ and $L=\oplus_{r} \mathbb{Z}_{p}$. Also, $\operatorname{Aut}(T) \cong \mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$ which acts naturally on L and V, and the sequence becomes a short exact sequence of $\mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$-modules. We notice that different decompositions of T give rise to isomorphic $\mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$-modules V and L.
5.7. Lemma. Let T be a discrete p-torus, and let $G \leq \operatorname{Aut}(T) \cong \mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$ be a finite subgroup. Let V and L be the associated \mathbb{Q}_{p} representation and the corresponding integral lattice respectively as above. Then

$$
H^{i}(G, L) \cong \begin{cases}H^{i-1}(G, T) & i>1 \\ \operatorname{Coker}\left(H^{0}(G, V) \rightarrow H^{0}(G, T)\right) & i=1\end{cases}
$$

Proof. Since G is finite and V is a rational vector space, $H^{i}(G, V)=0$ for all $i>0$. Thus the claim follows at once from the standard dimension shifting argument (see for instance [Br, III.7]).

Recall that an element $w \in \mathrm{GL}_{r}\left(\mathbb{Q}_{p}\right)$ is called a pseudo-reflection if $\operatorname{rk}(w-1)=1$, namely w fixes a hyperplane of dimension $r-1$. A subgroup $W \leq \mathrm{GL}_{r}\left(\mathbb{Q}_{p}\right)$ is called a pseudo-reflection group if it is generated by pseudo-reflections.

We notice that $\operatorname{Ad}(S) \xrightarrow{\operatorname{deg}} \mathbb{Z}_{p}^{\times} \hookrightarrow Z(\operatorname{Aut}(T))$ is a factorisation of the restriction map $\operatorname{Ad}(S) \xrightarrow{\left.\varphi \mapsto \varphi\right|_{T}}$ $\operatorname{Aut}(T)$. In light of (4.10), we see that $\mathcal{D}(\mathcal{F})$ can be identified with a subgroup of $Z(\operatorname{Aut} \mathcal{F}(T))$ which acts in the natural way on T considered as as a subgroup of $U_{p} \leq \mathbb{Z}_{p}^{\times}$.
5.8. Proposition. Let \mathcal{F} be a weakly connected saturated fusion system and let $W=\operatorname{Aut}_{\mathcal{F}}(T) \leq \mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$ be its Weyl group. Assume that either one of the following conditions holds:
(a) p is odd and $D(\mathcal{F}) \neq 1$, or
(b) $p=2, D(\mathcal{F}) \neq 1$ and $H^{1}\left(W / D(\mathcal{F}), T^{D(\mathcal{F})}\right)=0$, or
(c) p is odd and the Weyl group $W=\operatorname{Out}_{\mathcal{F}}(T)$ is a pseudo-reflection group.

Then $H^{1}(W, T)=0$.
Proof. By the remarks above there is a central extension

$$
1 \rightarrow D(\mathcal{F}) \rightarrow W \rightarrow W / D(\mathcal{F}) \rightarrow 1
$$

and $D(\mathcal{F}) \leq U_{p}$ acts on T in the natural way. The associated Lyndon-Hochschild-Serre spectral sequence takes the form

$$
E_{2}^{i, j}=H^{i}\left(W / D(\mathcal{F}), H^{j}(D(\mathcal{F}), T)\right) \Rightarrow H^{i+j}(W, T)
$$

If $p \neq 2$ and $D(\mathcal{F}) \neq 1$ then Lemma 5.5 implies that $H^{j}(D(\mathcal{F}), T)=0$ for all $j \geq 0$, and hence that $E^{i, j}=0$ for all i, j. Thus $H^{k}(W, T)=0$ for all $k \geq 0$.

If $p=2$ and $D(\mathcal{F}) \neq 1$ and $H^{1}\left(W / D(\mathcal{F}), T^{D(\mathcal{F})}\right)=0$ then $E_{2}^{i, j}=0$ for j odd since in this case $H^{j}(D(\mathcal{F}), T)=0$ by Lemma 5.5. Hence the only, potentially non-zero contribution to $H^{1}(W, T)$ come from $H^{1}\left(W / D(\mathcal{F}), H^{0}(D(\mathcal{F}), T)\right)=H^{1}\left(W / D(\mathcal{F}), T^{D(\mathcal{F})}\right)=0$ so $H^{1}(W, T)=0$.

Finally, suppose that $p \neq 2$ and $W \leq \operatorname{Aut}(T) \cong \mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$ is a pseudo-reflection group. Let L and V be the associated p-adic lattice and \mathbb{Q}_{p}-vector space associated to T as in (5.6). This is a short exact sequence of $\mathbb{Z}_{p}[W]$-modules. Now, $W \leq \mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$ acts faithfully on L so A. Theorem 3.3] applies and it follows that $H^{2}(W, L)=0$. Hence, $H^{1}(W, T)=0$ by Lemma 5.7.

6. Extensions of categories

In this section we will study extensions of categories and their automorphisms. A large portion of the content of this section is contained in a different form in Ho.
6.1. Definition. Let \mathcal{C} be a small and let $\Phi: \mathcal{C} \rightarrow \mathbf{A b}$ be a functor. An extension of \mathcal{C} by Φ is a small category \mathcal{D} with the same object set as that of \mathcal{C}, together with a functor $\mathcal{D} \xrightarrow{\pi} \mathcal{C}$, and for every $X \in \mathcal{C}$ a "distinguished" monomorphism $\delta_{X}: \Phi(X) \rightarrow \operatorname{Aut}_{\mathcal{D}}(X)$, such that the following hold.
(1) The functor π is the identity on the objects and is surjective on morphism sets. Furthermore, for each $X, Y \in \mathcal{C}$, the action of $\Phi(Y)$ on $\operatorname{Mor}_{\mathcal{D}}(X, Y)$ via δ_{Y} by left composition is free, and the projection

$$
\operatorname{Mor}_{\mathcal{D}}(X, Y) \rightarrow \operatorname{Mor}_{\mathcal{C}}(X, Y)
$$

is the quotient map by this action.
(2) For any $d \in \operatorname{Mor}_{\mathcal{D}}(X, Y)$ and any $g \in \Phi(X)$ the following square commutes in \mathcal{D}.

We will write $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ for the extension.
To simplify notation throughout, if d is a morphism in \mathcal{D}, then $\pi(d) \in \mathcal{C}$ will be denoted by [d]. If $g \in \Phi(X)$, we denote $\delta_{X}(g)$ by $\llbracket g \rrbracket$. In addition for any $c \in \mathcal{C}(X, Y)$ we will write $c_{*}: \Phi(X) \rightarrow \Phi(Y)$ for the homomorphism $\Phi(c)$. Thus, the relation in Definition 6.1](2) can be written

$$
\begin{equation*}
d \circ \llbracket g \rrbracket=\llbracket \Phi([d])(g) \rrbracket \circ d \quad \text { or simply } \quad d \circ \llbracket g \rrbracket=\llbracket[d]_{*}(g) \rrbracket \circ d \tag{6.2}
\end{equation*}
$$

We remark that the restriction to functors $\Phi: \mathcal{C} \rightarrow \mathbf{A b}$ is only made for the sake of simplification. In fact, we could have considered functors into the category of groups in which case we would have recovered Hoff's results [Ho in full generality.
6.3. Example. Let $N \xrightarrow{i} G \xrightarrow{\pi} H$ be an extension of groups with N abelian. Thus, N becomes an H-module. Every group Γ gives rise to a category $\mathcal{B} \Gamma$ with one object whose set of automorphisms is Γ. We then obtain an extension of categories $\mathcal{E}=(\mathcal{B} G, \mathcal{B} H, \Phi, \mathcal{B} \pi, \mathcal{B} i)$ where $\Phi: \mathcal{B} H \rightarrow \mathbf{A b}$ is the functor representing the H-module N.
6.4. Example. Let $(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group. Let \mathcal{F}^{c} be the full subcategory of \mathcal{F} of the \mathcal{F}-centric subgroups. There is a functor $\mathcal{Z}: \mathcal{F}^{c o \mathrm{p}} \xrightarrow{P \mapsto Z(P)} \mathbf{A b}$. Also the distinguished homomorphisms $\delta_{P}: P \rightarrow \operatorname{Aut}_{\mathcal{L}}(P)$ restrict to $\delta_{P}: \mathcal{Z}(P) \rightarrow \operatorname{Aut}_{\mathcal{L}^{\circ \mathrm{p}}}(P)$. It follows directly from the definitions of linking systems that $\mathcal{L}^{\text {op }}$ is an extension of $\mathcal{F}^{\text {cop }}$ by \mathcal{Z} with structure maps $\mathcal{L}^{\text {op }} \xrightarrow{\pi^{\mathrm{op}}} \mathcal{F}^{\text {cop }}$ and $\delta_{P}: \mathcal{Z}(P) \rightarrow$ Aut $\mathcal{L}^{o p}(P)$. Here we used the fact that if Γ is an abelian group then $B \Gamma \cong \mathcal{B} \Gamma^{\mathrm{op}}$ via the identity on objects and morphisms.

The next example is the one that the next sections will build on. Due to its importance we give it as Definition 6.5] Let $(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group. Let P, Q be subgroups of S and suppose that $f: P \rightarrow Q$ is a homomorphism. Then $f\left(P_{0}\right) \leq Q_{0}$ because $f\left(P_{0}\right)$ is a discrete p-torus.
6.5. Definition. Let $(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group. Define the category $\mathcal{L}_{/ 0}$ as follows. First, $\operatorname{Obj}\left(\mathcal{L}_{/ 0}\right)=\operatorname{Obj}(\mathcal{L})$. For any $P, Q \in \mathcal{L}$ set

$$
\operatorname{Mor}_{\mathcal{L} / 0}(P, Q)=\operatorname{Mor}_{\mathcal{L}}(P, Q) / \widehat{Q_{0}}
$$

where $\widehat{Q_{0}}=\delta_{Q}\left(Q_{0}\right)$ acts on $\operatorname{Mor}_{\mathcal{L}}(P, Q)$ by postcomposition. We will write $\bar{\varphi}$ for the equivalence class (orbit) of $\varphi \in \mathcal{L}(P, Q)$. We write

$$
\pi_{/ 0}: \mathcal{L} \rightarrow \mathcal{L}_{/ 0}
$$

for the projection functor.

This defines a category because for any $P \xrightarrow{\alpha} Q \xrightarrow{\beta} R$ and any $t \in Q_{0}$ and $u \in R_{0}$ we have

$$
\hat{u} \circ \beta \circ \hat{t} \circ \alpha=\hat{u} \cdot \widehat{\pi(\beta)(t)} \circ \beta \circ \alpha
$$

and $\pi(\beta)(t) \in R_{0}$ by the observation above.
Any homomorphism $f \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$ restricts to $\varphi: P_{0} \rightarrow Q_{0}$ of the maximal tori. Also, if $t \in Q_{0}$ then c_{t} induces the identity on Q_{0} and therefore $\left.\varphi\right|_{P_{0}} ^{Q_{0}}=\left.\left(c_{t} \circ \varphi\right)\right|_{P_{0}} ^{Q_{0}}$. This justifies the following definition. 6.6. Definition. Let $\Phi: \mathcal{L}_{/ 0} \rightarrow \mathbf{A b}$ be the functor which on objects is defined by $\Phi: P \mapsto P_{0}$. For a morphisms $\bar{\varphi} \in \mathcal{L}_{/ 0}(P, Q)$ set $\Phi(\bar{\varphi})=\left.\pi(\varphi)\right|_{P_{0}} ^{Q_{0}}$.
6.7. Proposition. Let $(S, \mathcal{F}, \mathcal{L})$ be a p-local finite group. Then \mathcal{L} is an extension (6.1) of $\mathcal{L} / 0$ by the functor $\Phi: \mathcal{L}_{/ 0} \rightarrow \mathbf{A b}$. The structure maps are given by $\pi_{/ 0}: \mathcal{L} \rightarrow \mathcal{L}_{/ 0}$ and $\left.\delta_{/ 0} \stackrel{\text { def }}{=} \delta_{P}\right|_{P_{0}}: P_{0} \rightarrow \operatorname{Aut}_{\mathcal{L}}(P)$.

Proof. The functor $\pi_{/ 0}: \mathcal{L} \rightarrow \mathcal{L}_{/ 0}$ is clearly the identity on objects and is surjective on morphism sets. The group $\delta_{Q}\left(Q_{0}\right) \leq \operatorname{Aut}_{\mathcal{L}}(Q)$ acts freely on $\mathcal{L}(P, Q)$ because all morphisms in \mathcal{L}, in particular the morphisms in $\mathcal{L}(P, Q)$, are epimorphisms by [JLL, Corollary 1.8]. So condition (1) of Definition 6.1 holds. Condition (2) follows from axiom (C) of linking systems.
6.8. Definition. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ and $\mathcal{E}^{\prime}=\left(\mathcal{D}^{\prime}, \mathcal{C}^{\prime}, \Phi^{\prime}, \pi^{\prime}, \delta^{\prime}\right)$ be extensions. A morphism $\mathcal{E} \rightarrow \mathcal{E}^{\prime}$ is a functor $\Psi: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ such that there exists a functor $\bar{\Psi}: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ which satisfies $\pi^{\prime} \circ \Psi=\bar{\Psi} \circ \pi$.

An automorphism of extensions is therefore an isomorphism of categories $\alpha: \mathcal{D} \rightarrow \mathcal{D}$ such that both α and α^{-1} are morphisms of the extension \mathcal{E}. Among these there are the inner automorphisms of the extension \mathcal{E}.
6.9. Definition. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ be an extension. Given a choice of elements $u(X) \in \Phi(X)$ for every $X \in \mathcal{C}$, we obtain an equivalence $\tau_{u}: \mathcal{E} \rightarrow \mathcal{E}$ where τ_{u} is the identity on objects and for any $d \in \mathcal{D}(X, Y)$ we define

$$
\tau_{u}(d)=\llbracket u(Y) \rrbracket \circ d \circ \llbracket u(X) \rrbracket^{-1} .
$$

An automorphism of \mathcal{E} is called inner if it is equal to some τ_{u}. The collection of all the inner automorphisms of \mathcal{E} is denoted $\operatorname{Inn}(\mathcal{E})$.

We remark that the functor $\bar{\Psi}: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ in Definition 6.8 if it exists then it is unique because π and π^{\prime} are surjective. In addition there is no condition on the functors Φ and Φ^{\prime} in the definition of morphisms because of Lemma 6.10 below.
6.10. Lemma. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ and $\mathcal{E}^{\prime}=\left(\mathcal{D}^{\prime}, \mathcal{C}^{\prime}, \Phi^{\prime}, \pi^{\prime}, \delta^{\prime}\right)$ extensions. Then any morphism $\Psi: \mathcal{E} \rightarrow$ \mathcal{E}^{\prime} gives rise to a unique natural transformation

$$
\eta(\Psi): \Phi \rightarrow \Phi^{\prime} \circ \bar{\Psi}
$$

which takes an object $X \in \mathcal{C}$ to the homomorphism $\eta_{X}: \Phi(X) \rightarrow \Phi^{\prime} \circ \bar{\Psi}(X)$ which is determined by the formula

$$
\begin{equation*}
\llbracket \eta_{X}(g) \rrbracket=\Psi(\llbracket g \rrbracket) \tag{6.11}
\end{equation*}
$$

for any $g \in \Phi(X)$. (Here η denotes $\eta(\Psi)$.

Proof. For every object $X \in \mathcal{C}$ the functors Ψ and $\bar{\Psi}$ give rise to a morphism of exact sequences

This defines η_{X}, which satisfies (6.11) by definition. It remains to prove that the homomorphisms η_{X} define a natural transformation $\eta: \Phi \rightarrow \Phi^{\prime} \circ \bar{\Psi}$. For any $c \in \operatorname{Mor}_{\mathcal{C}}(X, Y)$, we need to show that

Choose $d \in \mathcal{D}(X, Y)$ such that $c=[d]$. By (6.11) and (6.2)

$$
\begin{aligned}
\Psi(d) \circ \llbracket \eta_{X}(g) \rrbracket=\Psi(d) \circ \Psi(\llbracket g \rrbracket)=\Psi(d \circ \llbracket g \rrbracket)=\Psi(\llbracket \Phi(c)(g) \rrbracket \circ d)= \\
\Psi(\llbracket \Phi(c)(g) \rrbracket) \circ \Psi(d)=\llbracket \eta_{Y}(\Phi(c)(g)) \rrbracket \circ \Psi(d) .
\end{aligned}
$$

On the other hand, by applying (6.2) directly to the left hand side of this equality and noticing that $[\Psi(d)]=\bar{\Psi}(c)$ we get

$$
\Psi(d) \circ \llbracket \eta_{X}(g) \rrbracket=\llbracket \Phi^{\prime}(\bar{\Psi}(c))\left(\eta_{X}(g)\right) \rrbracket \circ \Psi(d)
$$

By comparing the right hand sides of these equalities and using the free action of $\Phi^{\prime}(Y)$ on $\mathcal{D}^{\prime}(X, Y)$ where $\Psi(d)$ belongs, we see that $\eta_{Y}(\Phi(c)(g))=\left(\Phi^{\prime} \circ \bar{\Psi}\right)(c)\left(\eta_{X}(g)\right)$ as needed.
6.12. Lemma. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ be an extension. Then any $\Theta \in \operatorname{Inn}(\mathcal{E})$ induces the identity on \mathcal{C} and $\eta(\Theta)=I d$.

Proof. Using the notation of Definition 6.9 we write $\Theta=\tau_{u}$. Then τ_{u} induces the identity on \mathcal{C} because $\left[\llbracket u(Y) \rrbracket \circ \varphi \circ \llbracket u(X)^{-1} \rrbracket\right]=\left[\llbracket u(Y) \cdot \varphi_{*}\left(u(X)^{-1}\right) \rrbracket \circ \varphi\right]=[\varphi]$. This shows that $\overline{\tau_{u}}=\operatorname{Id}_{\mathcal{C}}$. By Lemma 6.10, for any $X \in \mathcal{C}$ and any $x \in \Phi(X)$ we have $\llbracket \eta\left(\tau_{u}\right)(x) \rrbracket=\tau_{u}(\llbracket x \rrbracket)=\llbracket u(X) \rrbracket \circ \llbracket x \rrbracket \circ \llbracket u(X)^{-1} \rrbracket=\llbracket x \rrbracket$ because $\Phi(X)$ is abelian. This shows that $\eta\left(\tau_{u}\right)=\mathrm{Id}$.

At this stage it is useful to remark about which functors $\Psi: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ give rise to a morphism of extensions $\mathcal{E} \rightarrow \mathcal{E}^{\prime}$ as in Definition 6.8.
6.13. Definition. Let $F:$ Gps \rightarrow Gps be a functor such that $F(G) \leq G$ for any group G and these inclusions induce a natural transformation of functors $F \rightarrow \mathrm{Id}$. An extension $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ is called F-rigid if δ_{X} induces an isomorphism $\Phi(X) \cong F\left(\operatorname{Aut}_{\mathcal{D}}(X)\right)$ for every $X \in \operatorname{Obj}(\mathcal{D})$.

Here is an example of a functor F as in the definition above which will play a role in this paper.
6.14. Definition. Let $\Lambda: \mathbf{G p s} \rightarrow \mathbf{G p s}$ be the functor which assigns to every group G the subgroup $\Lambda(G)$ generated by the images of all homomorphisms $\varphi: \mathbb{Z} / p^{\infty} \rightarrow G$.

Recall that a group G is called virtually discrete p-toral if it is an extension of a finite group by a discrete p-torus. In this case $\Lambda(G)=G_{0}$ is the identity component of G and is a discrete p-torus. Hence, the restriction of Λ to the full subcategory of virtually discrete p-toral groups factors through the category Ab.

The reason we consider F-rigid extension is that morphisms between them (Definition 6.8) are just functors between the categories. This is the content of the next proposition.
6.15. Proposition. Suppose that $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ and $\mathcal{E}^{\prime}=\left(\mathcal{D}^{\prime}, \mathcal{C}^{\prime}, \Phi^{\prime}, \pi^{\prime}, \delta^{\prime}\right)$ are F-rigid extensions. Then any functor $\Psi: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ is a morphism of extensions $\mathcal{E} \rightarrow \mathcal{E}^{\prime}$.

Proof. For any $C \in \operatorname{Obj}(\mathcal{D})$ the functor Ψ induces a homomorphism $\Psi: \operatorname{Aut}_{\mathcal{D}}(C) \rightarrow \operatorname{Aut}_{\mathcal{D}^{\prime}}(\Psi(C))$. By applying F and using the natural transformation $\operatorname{Id} \rightarrow F$ we get

$$
\Psi(\Phi(C))=\Psi\left(F\left(\operatorname{Aut}_{\mathcal{D}}(C)\right) \leq F\left(\operatorname{Aut}_{\mathcal{D}^{\prime}}(\Psi(C))\right)=\Phi^{\prime}(\Psi(C))\right.
$$

In view of this we define $\psi: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ as follows. On objects $\psi: C \mapsto \Psi(C)$. Fix $c \in \mathcal{C}\left(C_{0}, C_{1}\right)$ and choose a lift $d \in \mathcal{D}\left(C_{0}, C_{1}\right)$. Define $\psi: c \mapsto[\Psi(d)]$. Now, ψ is well defined on morphisms since if d^{\prime} is another lift for c then $d^{\prime}=\llbracket x \rrbracket \circ d$ for some $x \in \Phi(C)$ and therefore

$$
[\Psi(\llbracket x \rrbracket \circ d)]=[\Psi(\llbracket x \rrbracket)] \circ[\Psi(d)]=[\Psi(d)]
$$

because $\Psi\left(\llbracket x \rrbracket \in \Phi^{\prime}(\Psi(C))\right.$ as we have seen above. The verification that ψ respects identities and compositions is straightforward and the equality $\pi^{\prime} \circ \Psi=\psi \circ \pi$ holds by the way we defined ψ.
6.16. Proposition. Let $(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group. The extension $\mathcal{E}=\left(\mathcal{L}, \mathcal{L}_{/ 0}, \Phi^{\prime}, \pi_{/ 0}, \delta_{/ 0}\right)$ in Proposition 6.7 is Λ-rigid (Definitions 6.13, 6.14).

Proof. It follows from [BLO3, Lemma 2.5] that for every \mathcal{F}-centric $P \leq S$ the group $\operatorname{Aut}_{\mathcal{L}}(P)$ is an extension of P_{0} by a finite group and therefore $\Lambda\left(\operatorname{Aut}_{\mathcal{L}}(P)\right)=P_{0}$.

Fix a small category \mathcal{C}. An n-chain in \mathcal{C} is a sequence $X_{0} \xrightarrow{c_{0}} X_{1} \xrightarrow{c_{1}} \ldots \xrightarrow{c_{n-1}} X_{n}$ of composable morphisms. We write \mathcal{C}_{n} for the set of n-chains. Now consider a functor $\Phi: \mathcal{C} \rightarrow \mathbf{A b}$. Recall that the cobar construction is the cochain complex $C^{*}(\mathcal{C}, \Phi)$ where

$$
C^{n}(\mathcal{C}, \Phi)=\prod_{X_{0} \xrightarrow{c_{1}} \ldots \xrightarrow{c_{n-1}} X_{n}} \Phi\left(X_{n}\right) .
$$

We view it as a set of functions $u: \mathcal{C}_{n} \rightarrow \coprod_{X} \Phi(X)$ such that $u\left(X_{0} \xrightarrow{c_{0}} \ldots \xrightarrow{c_{n-1}} X_{n}\right) \in \Phi\left(X_{n}\right)$. The differential $\delta: C^{n}(\mathcal{C}, \Phi) \rightarrow C^{n+1}(\mathcal{C}, \Phi)$ is defined on the factor $X_{0} \xrightarrow{c_{0}} \ldots \xrightarrow{c_{n}} X_{n+1}$ of the target by

$$
\delta(u)\left(X_{\bullet}\right)=\sum_{j=0}^{n}(-1)^{j} u\left(\delta_{i}\left(X_{\bullet}\right)\right)+(-1)^{n+1} \Phi\left(c_{n}\right)\left(\delta_{n+1}\left(X_{\bullet}\right)\right)
$$

where $\delta_{i}\left(X_{\bullet}\right)$ is the n-chain obtained by deleting X_{i} from X_{\bullet}.
The cohomology groups of $C^{*}(\mathcal{C}, \Phi)$ are isomorphic to $\lim ^{*} \Phi$ [GZ, Appendix II, Section 3]. The following facts are elementary and are left to the reader.
6.17. Lemma. Let $\mathcal{C}^{*}(C, \Phi)$ be the cochain complex defined above. Then the following hold.
(a) Any 1-cocycle $z \in C^{1}(\mathcal{C}, \Phi)$ satisfies $z\left(1_{X}\right)=1$ for any $X \in \mathcal{C}$.
(b) A 2-cocycle z is called regular if $z\left(1_{X_{1}}, c\right)=1=z\left(c, 1_{X_{0}}\right)$ for any $c \in \mathcal{C}\left(X_{0}, X_{1}\right)$. Every 2-cocycle $z^{\prime} \in C^{2}(\mathcal{C}, \Phi)$ is cohomologous to a regular 2 -cocycle z.
6.18. Definition. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ be an extension (Definition 6.1). A section is a function $\sigma: \operatorname{Mor}(\mathcal{C}) \rightarrow \operatorname{Mor}(\mathcal{D})$ such that $[\sigma(c)]=c$ for every $c \in \operatorname{Mor}(\mathcal{C})$. We say that a section σ is regular if $\sigma\left(1_{X}\right)=1_{X}$ for every $X \in \mathcal{C}$.

The following definition is an analogue of the well known construction of the 2-cocycles associated with extensions of groups. Compare with Ho .
6.19. Definition. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ be an extension and $\sigma: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}$ a regular section. Define a 2 -cochain as follows. Given a 2-chain $X_{0} \xrightarrow{c_{0}} X_{1} \xrightarrow{c_{1}} X_{2}$ notice that $\left[\sigma\left(c_{1}\right) \circ \sigma\left(c_{0}\right)\right]=c_{1} \circ c_{0}=\left[\sigma\left(c_{1} \circ c_{0}\right)\right]$ and therefore there exists a unique element $z_{\sigma}\left(c_{1}, c_{0}\right)$ in $\Phi\left(X_{2}\right)$ such that

$$
\sigma\left(c_{1}\right) \circ \sigma\left(c_{0}\right)=\llbracket z_{\sigma}\left(c_{1}, c_{0}\right) \rrbracket \circ \sigma\left(c_{1} \circ c_{0}\right)
$$

The next lemma is analogous the the well known result about the 2-cocycles associated to a given extension of groups. We leave the details to Appendix A.
6.20. Lemma. The 2-cochain z_{σ} defined above is a regular 2 -cocycle. Moreover, if σ^{\prime} is another regular section then $z_{\sigma^{\prime}}$ and z_{σ} are cohomologous.

This lemma justifies the following definition.
6.21. Definition. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ be an extension. Let $[\mathcal{D}]$ denote the element of $\mathcal{H}^{2}(\mathcal{C}, \Phi)$ defined by the 2 -cocycle z_{σ} associated with a section $\sigma: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}$.

Here is a simple consequence of the definitions analogous to the statement that an extension of groups is split if and only if the associated 2-cohomology class is trivial. The proof is given in Appendix A.
6.22. Lemma. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi,[-], \llbracket-\rrbracket)$ be an extension. Then $[\mathcal{D}]=0$ if and only if there exists a functor $s: \mathcal{C} \rightarrow \mathcal{D}$ which is a right inverse to $\mathcal{D} \xrightarrow{[-]} \mathcal{C}$.

The next definition is analogous to that of an equivalence of extensions of groups.
6.23. Definition. Let \mathcal{C} be a small category and $\Phi: \mathcal{C} \rightarrow \mathbf{A b}$ a functor. Two extensions $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ and $\mathcal{E}^{\prime}=\left(\mathcal{D}^{\prime}, \mathcal{C}, \Phi, \pi^{\prime}, \delta\right)$ are called equivalent if there exists an isomorphism $\Psi: \mathcal{E} \rightarrow \mathcal{E}^{\prime}$ such that $\bar{\Psi}=\operatorname{Id}_{\mathcal{C}}$ and the natural transformation $\eta(\Psi)$ is the identity transformation $\Phi \rightarrow \Phi \circ \bar{\Psi}=\Phi$.

This defines an equivalence relation on the class of all extensions of \mathcal{C} by Φ. The equivalence class of an extension \mathcal{E} is denoted $\{\mathcal{E}\}$. Let $\operatorname{Ext}(\mathcal{C}, \Phi)$ denote the collection of equivalence classes of these extensions.

The next result is a special case of the results in Ho. It's proof is deferred to Appendix A.
6.24. Lemma. Fix a small category \mathcal{C} and a functor $\Phi: \mathcal{C} \rightarrow \mathbf{A b}$. Then there exists a one-to-one correspondence

$$
\Gamma: \operatorname{Ext}(\mathcal{C}, \Phi) \xrightarrow{\{\mathcal{E}\} \mapsto[\mathcal{E}]} H^{2}(\mathcal{C}, \Phi) .
$$

Now we deal with constructing morphisms of extensions. The next result should be compared with [JLL, Lemma 2.2(i)]. It's proof is deferred to Appendix A.
6.25. Proposition. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ and $\mathcal{E}^{\prime}=\left(\mathcal{D}^{\prime}, \mathcal{C}^{\prime}, \Phi^{\prime}, \pi^{\prime}, \delta^{\prime}\right)$ be extensions. Let $\psi: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ be a functor, and let $\eta: \Phi \rightarrow \Phi^{\prime} \circ \psi$ be a natural transformation. Then the following are equivalent.
(i) There exists a morphism of extensions $\Psi: \mathcal{E} \rightarrow \mathcal{E}^{\prime}$ such that $\psi=\bar{\Psi}$ and $\eta=\eta(\Psi)$.
(ii) The homomorphisms in cohomology induced by ψ and η

$$
H^{2}(\mathcal{C} ; \Phi) \xrightarrow{\eta_{*}} H^{2}\left(\mathcal{C} ; \Phi^{\prime} \circ \psi\right) \stackrel{\psi^{*}}{\leftarrow} H^{2}\left(\mathcal{C}^{\prime}, \Phi^{\prime}\right)
$$

satisfy $\eta_{*}([\mathcal{D}])=\psi^{*}\left(\left[\mathcal{D}^{\prime}\right]\right)$.
For the sake of completeness we prove the following result. We will not use it in this paper. Let $\operatorname{Aut}\left(\mathcal{E} ; 1_{\mathcal{C}}, 1_{\Phi}\right)$ denote the group of all automorphisms Ψ of \mathcal{E} such that $\bar{\Psi}=\operatorname{Id}_{\mathcal{C}}$ and $\eta(\Psi)=\operatorname{Id}_{\Phi}$.
6.26. Proposition. Let $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ be an extension. Then there is a one-to-one correspondence

$$
\Gamma: H^{1}(\mathcal{C}, \Phi) \rightarrow \operatorname{Aut}\left(\mathcal{E} ; 1_{\mathcal{C}}, 1_{\Phi}\right) / \operatorname{Inn}(\mathcal{E})
$$

7. Special Adams operations

Let \mathcal{F} be a saturated fusion system over S. A set \mathcal{R} of subgroups of S is called an \mathcal{F}-collection or simply a collection if it is closed under conjugacy in \mathcal{F}, namely it is the union of isomorphism classes of objects in \mathcal{F}. We will write $\mathcal{F}^{\mathcal{R}}$ for the full subcategory of \mathcal{F} with object set \mathcal{R}. If $\mathcal{R} \subseteq \mathcal{F}^{c}$ we let $\mathcal{L}^{\mathcal{R}}$ be the full subcategory of \mathcal{L} on the object set \mathcal{R}. In this section we will make use of the structure map δ of a linking system \mathcal{L} as well as the structure map $\delta_{/ 0}$ of \mathcal{L} regarded as an extension of the associated quotient $\mathcal{L}_{/ 0}$, see Proposition 6.7. While $\delta_{/ 0}: P_{0} \rightarrow \operatorname{Aut}_{\mathcal{L}}(P)$ is merely the restriction of $\delta: P \rightarrow \operatorname{Aut}_{\mathcal{L}}(P)$ to P_{0} these morphisms play different roles in their respective contexts. To emphasize this, for $x \in P$ and $t \in P_{0}$, we will denote $\delta(x)$ by \widehat{x} and $\delta_{/ 0}(t)$ by $\llbracket t \rrbracket$. This is consistent with the notation we have established in previous sections. An equality of the form $\llbracket x \rrbracket=\widehat{x}$ for $x \in P_{0}$ will simply mean that the corresponding elements in $\operatorname{Aut}_{\mathcal{L}}(P)$ coincide. Notice that $\llbracket x \rrbracket$ only makes sense when $x \in P_{0}$ wheras \widehat{x} is defined for any $x \in P$, or indeed, $x \in N_{S}(P, Q)$. Also, we will use the symbol $[\varphi]$ for image in $\mathcal{L}_{/ 0}$ of a morphism φ in \mathcal{L}, and $\pi(\varphi)$ for the image of that morphism in \mathcal{F}.
7.1. Definition. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and let \mathcal{R} be a collection of \mathcal{F}-centric subgroups. We say that $(\Psi, \psi) \in \operatorname{Ad}(\mathcal{G})$ is a special unstable Adams operation relative to \mathcal{R} if there exists a choice of
(a) $\tau_{P} \in T$ for every $P \in \mathcal{R}$ and
(b) $\tau_{\varphi} \in Q_{0}$ for every $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$
such that the following hold
(1) $\psi(P)=\tau_{P} P \tau_{P}^{-1}$ for every $P \in \mathcal{R}$ and
(2) $\Psi(\varphi)=\widehat{\tau_{Q}} \circ \widehat{\tau_{\varphi}} \circ \varphi \circ{\widehat{\tau_{P}}}^{-1}$ for every $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$.

The subset of $\operatorname{Ad}(\mathcal{G})$ of all the special unstable Adams operation relative to \mathcal{R} is denoted $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$.
In JLL, given a p-local compact group $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$, we find an integer $m \geq 0$ such that every $\zeta \in \Gamma_{m}(p)$ is the degree of some unstable Adams operation which we construct. The construction, however, involves many choices and the number m is quite mysterious. It turns out that all the unstable Adams operation we constructed in JLL are special relative to the collection $\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$. We will show this in Appendix B

Recall that \mathcal{G} gives rise to an extension of categories $\mathcal{E}=\left(\mathcal{L}^{\mathcal{R}}, \mathcal{L}_{/ 0}^{\mathcal{R}},\left.\Phi\right|_{\mathcal{R}}, \pi_{/ 0}, \delta\right)$, as in Definitions 6.5. 6.6 and Proposition 6.7. The main purpose of this section is to relate special unstable Adams operations relative to \mathcal{R} to the extension \mathcal{E}. The main result of this section is Proposition 7.2 which gives a conceptual meaning to the integer m above. It also implies that if $H^{1}\left(\mathcal{L}_{/ 0}^{\mathcal{R}} ; \Phi\right)=0$ then special unstable Adams operations relative to \mathcal{R} are determined, modulo $\operatorname{Aut}_{T}(\mathcal{G})$, by their degree. Here $\operatorname{Aut}_{T}(\mathcal{G})$ means automorphisms of \mathcal{G} induced by elements of $\widehat{T}=\delta(T) \leq \operatorname{Aut}_{\mathcal{L}}(S)$ (see (4.5)).
7.2. Proposition. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and $\mathcal{R} \subseteq \mathcal{F}^{c}$ be a collection which contains $\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$. Let \mathcal{E} denote the extension $\left(\mathcal{L}^{\mathcal{R}}, \mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi,[-], \llbracket-\rrbracket\right)$ and suppose that the order of $\left[\mathcal{L}^{\mathcal{R}}\right]$ in $H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}} ; \Phi\right)$ is p^{m} for some $m \geq 0$. Then there is an exact sequence

$$
H^{1}\left(\mathcal{L}_{/ 0}^{\mathcal{R}} ; \Phi\right) \rightarrow \operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) / \operatorname{Aut}_{T}(\mathcal{G}) \xrightarrow{\text { deg }} \Gamma_{m}(p) \rightarrow 1
$$

Proposition 7.2 gives a sufficient condition for the existence of special Adams operations. The next statement is a necessary condition.
7.3. Proposition. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and $\mathcal{R} \subseteq \mathcal{F}^{c}$ a collection. If $(\Psi, \psi) \in$ $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ is of degree ζ then $\zeta \cdot\left[\mathcal{L}^{\mathcal{R}}\right]=\left[\mathcal{L}^{\mathcal{R}}\right]$ in $H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$.

Let R be a ring and let ξ be a central element in R. Let \mathcal{C} a small category and $F: \mathcal{C} \rightarrow R$-mod be a functor. Then ξ induces a natural transformation $F \rightarrow F$ given by $F(c) \xrightarrow{x \mapsto \xi \cdot x} F(c)$ for every object $c \in \mathcal{C}$ and $x \in F(c)$. We call this natural transformation multiplication by ξ and we will denote it by $\xi: F \rightarrow F$. Proposition 7.3 will follow as a corollary from the next lemma.
7.4. Lemma. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and \mathcal{R} a collection. Let (Ψ, ψ) be a special unstable Adams operation relative to \mathcal{R} of degree ζ. Let \mathcal{E} denote the extension $\left(\mathcal{L}^{\mathcal{R}}, \mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi,[-], \llbracket-\rrbracket\right)$. Then Ψ restricts to a functor $\left.\Psi\right|_{\mathcal{R}}: \mathcal{L}^{\mathcal{R}} \rightarrow \mathcal{L}^{\mathcal{R}}$. This gives rise to a homomorphism

$$
\text { Res : } \operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) \xrightarrow{\left.(\Psi, \psi) \mapsto \Psi\right|_{\mathcal{R}}} \operatorname{Aut}(\mathcal{E}) .
$$

As an automorphism of the extension \mathcal{E} (see Definition 6.8), $\left.\Psi\right|_{\mathcal{R}}: \mathcal{L}^{\mathcal{R}} \rightarrow \mathcal{L}^{\mathcal{R}}$ has the following properties.
(1) $\Phi \circ \bar{\Psi}=\Phi$,
(2) $\eta(\Psi): \Phi \rightarrow \Phi \circ \bar{\Psi}=\Phi$ is multiplication by ζ (see Lemma 6.10), and
(3) $\bar{\Psi}^{*}\left(\left[\mathcal{L}^{\mathcal{R}}\right]\right)=\left[\mathcal{L}^{\mathcal{R}}\right]$ in $H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$.

Proof. Since \mathcal{R} is closed under \mathcal{F}-conjugation, it is invariant under conjugation by T. Since Ψ is special, $\Psi(P)=\psi(P)$ is a T-conjugate of P for any $P \in \mathcal{R}$ and therefore Ψ restricts to a functor on the object set $\mathcal{R} \subseteq \operatorname{Obj}(\mathcal{L})$ and hence gives a functor $\left.\Psi\right|_{\mathcal{R}}: \mathcal{L}^{\mathcal{R}} \rightarrow \mathcal{L}^{\mathcal{R}}$ whose inverse is $\left.\Psi^{-1}\right|_{\mathcal{R}}$. Since the extension \mathcal{E} is Λ-rigid by Proposition 6.16, it follows that $\left.\Psi\right|_{R}$ is an automorphism of the extension \mathcal{E}. It is clear that the assignment Res: $\left.\Psi \mapsto \Psi\right|_{\mathcal{R}}$ is a homomorphism (since composition of fucntors is the group operation).

Now consider some $(\Psi, \psi) \in \operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$. By definition of the functor $\bar{\Psi}: \mathcal{L}_{/ 0}^{\mathcal{R}} \rightarrow \mathcal{L}_{/ 0}^{\mathcal{R}}$ and since (Ψ, ψ) is an Adams operation, for any $P \in \mathcal{R}$

$$
\bar{\Psi}(P)=[\Psi(P)]=\psi(P) .
$$

Suppose that $P, Q \in \mathcal{R}$ and that $\varphi \in \mathcal{L}(P, Q)$ and consider its image $[\varphi] \in \mathcal{L}_{/ 0}^{\mathcal{R}}(P, Q)$. Then by definition of $\bar{\Psi}$

$$
\bar{\Psi}([\varphi])=[\Psi(\varphi)] .
$$

Proof of (11). Let $\pi: \mathcal{L} \rightarrow \mathcal{F}$ denote the projection. Since ψ is an Adams automorphism of S then $\left.\psi\right|_{T}$ is multiplication by ζ, hence it leaves any subgroup of T invariant. Also note that if $P \in \mathcal{R}$ then P_{0} is a characteristic subgroup of P. This shows that

$$
\Phi(\bar{\Psi}(P))=\bar{\Psi}(P))_{0}=\psi(P)_{0}=\psi\left(P_{0}\right)=P_{0}=\Phi(P)
$$

So $\Phi \circ \bar{\Psi}$ and Φ attain the same values on objects. Now suppose that $P \xrightarrow{[\varphi]} Q$ is a morphism in $\mathcal{L}_{/ 0}$ where $P, Q \in \mathcal{R}$ and $\varphi \in \mathcal{L}(P, Q)$. Notice that $\pi(\varphi)\left(P_{0}\right)$ is a discrete p-torus and it is therefore a subgroup of T. Since (Ψ, ψ) is a special unstable Adams operation relative to \mathcal{R},

$$
\begin{aligned}
\Phi(\bar{\Psi}([\varphi])) \stackrel{\sqrt{6.8}}{=} \\
= \\
\hline
\end{aligned}([\Psi(\varphi)]) \stackrel{\sqrt{7.1]}}{=} \Phi\left(\left[\widehat{\tau_{Q}} \circ \widehat{\tau_{\varphi}} \circ \varphi \circ \widehat{\tau_{P}}{ }^{-1}\right]\right) .
$$

where each equality follows from the definition indicated above it, and the fourth equality holds since T is abelian. This shows that $\Phi \circ \bar{\Psi}=\Phi$.
Proof of (2). Fix some $P \in \mathcal{R}$ and $x \in \Phi\left(P_{0}\right)=P_{0}$. Then, since $\left.\psi\right|_{T}$ is multiplication by ζ, one has

$$
\llbracket \eta(\Psi)(x) \rrbracket=\Psi(\llbracket x \rrbracket)=\Psi(\widehat{x})=\widehat{\psi(x)}=\widehat{\zeta \cdot x}=\llbracket \zeta \cdot x \rrbracket
$$

where the first quality follows from Lemma 6.10, and the third from Definition 4.2. Thus $\eta(\Psi)$ is multiplication by $\zeta \in \mathbb{Z}_{p}$.
Proof of (3). Let $\left\{\tau_{P}\right\}_{P \in \mathcal{R}}$ and $\left\{\tau_{\varphi}\right\}_{\varphi \in \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)}$ be as in Definition 7.1. Choose a regular section

$$
\sigma: \operatorname{Mor}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}\right) \rightarrow \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)
$$

Define a 1-cochain $t \in C^{1}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$ by setting

$$
t(c) \stackrel{\text { def }}{=} \tau_{\sigma(c)}, \quad c \in \operatorname{Mor}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}\right)
$$

Observe that for every $c \in \mathcal{L}_{/ 0}^{\mathcal{R}}(P, Q)$,

$$
[\Psi(\sigma(c))]=\bar{\Psi}([\sigma(c)])=\bar{\Psi}(c)
$$

and therefore there exists a unique element $v(c) \in Q_{0}$ such that

$$
\begin{equation*}
\sigma(\bar{\Psi}(c))=\llbracket v(c) \rrbracket \circ \Psi(\sigma(c)) \tag{7.5}
\end{equation*}
$$

We obtain a 1-cochain $v \in C^{1}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$. Recall that we use multiplicative notation for the group operation in Φ and hence in the cochain complex $C^{*}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$. Set

$$
u=v \cdot t \in C^{1}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)
$$

Since Ψ is special relative to \mathcal{R}, for any $c \in \mathcal{L}_{/ 0}^{\mathcal{R}}(P, Q)$,

$$
\Psi(\sigma(c))=\widehat{\tau_{Q}} \circ \llbracket t(c) \rrbracket \circ \sigma(c) \circ{\widehat{\tau_{P}}}^{-1}
$$

Together with (7.5) and the commutativity of T we obtain

$$
\begin{equation*}
\sigma(\bar{\Psi}(c))=\llbracket v(c) \rrbracket \circ \Psi(\sigma(c))=\widehat{\tau_{Q}} \circ \llbracket u(c) \rrbracket \circ \sigma(c) \circ{\widehat{\tau_{P}}}^{-1} \tag{7.6}
\end{equation*}
$$

Let $P \xrightarrow{c_{0}} Q \xrightarrow{c_{1}} R$ be a 2 -chain in $\mathcal{L}_{/ 0}^{\mathcal{R}}$. By definition of z_{σ} (Definition 6.19) and the functoriality of $\bar{\Psi}$,

$$
\begin{equation*}
\llbracket z_{\sigma}\left(\bar{\Psi}\left(c_{1}\right), \bar{\Psi}\left(c_{0}\right)\right) \rrbracket \circ \sigma\left(\bar{\Psi}\left(c_{1} \circ c_{0}\right)\right)=\sigma\left(\bar{\Psi}\left(c_{1}\right)\right) \circ \sigma\left(\bar{\Psi}\left(c_{0}\right)\right) \tag{7.7}
\end{equation*}
$$

Thus we obtain the following sequence of equalities:

$$
\begin{aligned}
& \llbracket z_{\sigma}\left(\bar{\Psi}\left(c_{1}\right), \bar{\Psi}\left(c_{0}\right)\right) \rrbracket \circ \widehat{\tau_{R}} \circ \llbracket u\left(c_{1} \circ c_{0}\right) \rrbracket \circ \sigma\left(c_{1} \circ c_{0}\right) \circ{\widehat{\tau_{P}}}^{-1}= \\
& \widehat{\tau_{R}} \circ \llbracket u\left(c_{1}\right) \rrbracket \circ \sigma\left(c_{1}\right) \circ{\widehat{\tau_{Q}}}^{-1} \circ \widehat{\tau_{Q}} \circ \llbracket u\left(c_{0}\right) \rrbracket \circ \sigma\left(c_{0}\right) \circ{\widehat{\tau_{P}}}^{-1}= \\
& \widehat{\tau_{R}} \circ \llbracket u\left(c_{1}\right) \rrbracket \circ \sigma\left(c_{1}\right) \circ \llbracket u\left(c_{0}\right) \rrbracket \circ \sigma\left(c_{0}\right) \circ{\widehat{\tau_{P}}}^{-1}= \\
& \widehat{\tau_{R}} \circ \llbracket u\left(c_{1}\right) \rrbracket \circ \llbracket \Phi\left(c_{1}\right)\left(u\left(c_{0}\right)\right) \rrbracket \circ \sigma\left(c_{1}\right) \circ \sigma\left(c_{0}\right) \circ{\widehat{\tau_{P}}}^{-1}= \\
& \widehat{\tau_{R}} \circ \llbracket u\left(c_{1}\right) \cdot \Phi\left(c_{1}\right)\left(u\left(c_{0}\right)\right) \rrbracket \circ \llbracket z_{\sigma}\left(c_{1}, c_{0}\right) \rrbracket \circ \sigma\left(c_{1} \circ c_{0}\right) \circ{\widehat{\tau_{P}}}^{-1},
\end{aligned}
$$

where the first equality follows from (7.6) applied to both sides of (7.7), the third by Definition (6.6) and Axiom (C) of linking systems, and the fourth by Definition (6.19).

Now, $\widehat{\tau_{P}}: P \rightarrow \psi(P)$ and $\widehat{\tau_{R}}: R \rightarrow \psi(R)$ are both isomorphisms, and $\sigma\left(c_{1} \circ c_{0}\right)$ is an epimorphism in \mathcal{L} by [JLL, Corollary 1.8]. Hence,

$$
\llbracket z_{\sigma}\left(\bar{\Psi}\left(c_{1}\right), \bar{\Psi}\left(c_{0}\right)\right) \cdot u\left(c_{1} \circ c_{0}\right) \rrbracket=\llbracket u\left(c_{1}\right) \cdot \Phi\left(c_{1}\right)\left(u\left(c_{0}\right)\right) \cdot z_{\sigma}\left(c_{1}, c_{0}\right) \rrbracket
$$

and so we deduce that

$$
z_{\sigma}\left(\bar{\Psi}\left(c_{1}\right), \bar{\Psi}\left(c_{0}\right)\right)=z_{\sigma}\left(c_{1}, c_{0}\right) \cdot u\left(c_{1}\right) \cdot u\left(c_{1} \circ c_{0}\right)^{-1} \cdot \Phi\left(c_{1}\right)\left(u\left(c_{0}\right)\right)=z_{\sigma}\left(c_{1}, c_{0}\right) \cdot \delta(u)\left(c_{1}, c_{0}\right)
$$

where δ is the differential in $C^{*}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$. This shows that z_{σ} and $\bar{\Psi}^{*}\left(z_{\sigma}\right)$ are cohomologous.
Proof of Proposition 7.3. Proposition 6.25 and Lemma 7.4 show that $\left[\mathcal{L}^{\mathcal{R}}\right]=\bar{\Psi}^{*}\left(\left[\mathcal{L}^{\mathcal{R}}\right]\right)=\eta(\Psi)_{*}\left(\left[\mathcal{L}^{\mathcal{R}}\right]\right)=$ $\zeta \cdot\left[\mathcal{L}^{\mathcal{R}}\right]$.

Next we turn to Proposition 7.2. This require some preparation.
7.8. Lemma (JLL Proposition 1.14]). Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and let \mathcal{R} be a collection which contains $\mathcal{H}^{\bullet}(\mathcal{F})$. Let $\psi: S \rightarrow S$ be a fusion preserving Adams automorphism. Then any functor $\Psi^{\prime}: \mathcal{L}^{\mathcal{R}} \rightarrow \mathcal{L}^{\mathcal{R}}$ which covers ψ in the sense of Definition 4.2, extends uniquely to an unstable Adams operation (Ψ, ψ).
7.9. Definition. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local finite group and $\mathcal{R} \subseteq \mathcal{F}^{c}$ a collection. Let \mathcal{E} denote the extension $\left(\mathcal{L}^{\mathcal{R}}, \mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi,[-], \llbracket-\rrbracket\right)$. Let $Z \subseteq \mathbb{Z}_{p}^{\times}$be a subgroup. Let

$$
\operatorname{Aut}\left(\mathcal{E} ; \operatorname{Id}_{\mathcal{L}_{/ 0}^{\mathcal{R}}}, Z\right) \leq \operatorname{Aut}(\mathcal{E})
$$

denote the subgroup of the automorphisms Θ, such that $\bar{\Theta}=\operatorname{Id}_{\mathcal{L}_{10}^{\mathcal{R}}}$ and $\eta(\Theta)$ is multiplication by some $\zeta \in Z$.

Observe that $\operatorname{Aut}\left(\mathcal{E} ; \operatorname{Id}_{\mathcal{L}_{10}^{\mathcal{R}}}, Z\right)$ is indeed a subgroup, since for any $P \in \mathcal{R}$ and any $x \in P_{0}$, the definition of $\eta(-)$ implies

$$
\llbracket \eta\left(\Theta_{1} \circ \Theta_{2}\right)(x) \rrbracket=\left(\Theta_{1} \circ \Theta_{2}\right)(\llbracket x \rrbracket)=\Theta_{1}\left(\llbracket \eta\left(\Theta_{2}\right)(x) \rrbracket\right)=\llbracket \eta\left(\Theta_{1}\right)\left(\eta\left(\Theta_{2}\right)(x)\right) \rrbracket,
$$

and so $\eta\left(\Theta_{1} \circ \Theta_{2}\right)=\eta\left(\Theta_{1}\right) \circ \eta\left(\Theta_{2}\right)$. Notice also that for any $\Theta \in \operatorname{Aut}\left(\mathcal{E} ; \operatorname{Id}_{\mathcal{L}_{/ 0}^{\mathcal{R}}}, \mathbb{Z}_{p}^{\times}\right)$and any $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$ one has $[\Theta(\varphi)]=[\varphi]$.
7.10. Proposition. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and \mathcal{R} be a collection which contains $\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$. Let \mathcal{E} denote the extension $\left(\mathcal{L}^{\mathcal{R}}, \mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi,[-], \llbracket-\rrbracket\right)$. Then
(i) There exists a homomorphism

$$
\operatorname{Aut}\left(\mathcal{E} ; I d_{\mathcal{L}_{/ 0}^{\mathcal{R}}}, \mathbb{Z}_{p}^{\times}\right) \xrightarrow{\rho} \operatorname{SpAd}(\mathcal{G} ; \mathcal{R})
$$

such that $\operatorname{deg}(\rho(\Theta))=\eta(\Theta) \in \mathbb{Z}_{p}^{\times}$(compare Definition 7.9).
(ii) Moreover, composition of ρ with the quotient by $\operatorname{Inn}_{T}(\mathcal{G})$ gives a surjective homomorphism

$$
\operatorname{Aut}\left(\mathcal{E} ; I d_{\mathcal{L} / \mathcal{R}}, \mathbb{Z}_{p}^{\times}\right) \xrightarrow{\bar{\rho}} \operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) / \operatorname{Inn}_{T}(\mathcal{G})
$$

whose kernel contains $\operatorname{Inn}(\mathcal{E})$, (compare Definition 6.9 and Lemma 6.12).

Proof. For any $\Theta \in \operatorname{Aut}\left(\mathcal{E} ; \operatorname{Id}_{\mathcal{L}_{/ 0}^{\mathcal{R}}}, \mathbb{Z}_{p}^{\times}\right)$, fix the following elements:
(i) For any $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$ let $\tau_{\varphi}(\Theta)$ be the unique element of Q_{0} such that

$$
\Theta(\varphi)=\llbracket \tau_{\varphi}(\Theta) \rrbracket \circ \varphi
$$

(ii) For every $P \in \mathcal{R}$ set $\tau_{P}(\Theta) \stackrel{\text { def }}{=} \tau_{\iota_{P}^{S}}(\Theta)$.

Notice that $\tau_{P}(\Theta) \in T$ for all $P \in \mathcal{R}$. Consider $\Theta \in \operatorname{Aut}\left(\mathcal{E} ; \operatorname{Id}_{\mathcal{L}_{10}^{\mathcal{R}}}, \mathbb{Z}_{p}^{\times}\right)$such that $\eta(\Theta)=\zeta$. Set $\tau_{P}=\tau_{P}(\Theta)$ and $\tau_{\varphi}=\tau_{\varphi}(\Theta)$ for short, where $\tau_{P}(\Theta)$ and $\tau_{\varphi}(\Theta)$ are as in (ii) and (iii) above. Notice that $\tau_{S}=1$ since $\iota_{S}^{S}=\mathrm{id}_{S}$ in \mathcal{L}.

For any $x \in P$, where $P \in \mathcal{R}$, consider $\widehat{x} \in \operatorname{Aut}_{\mathcal{L}}(P)$. Then $[\Theta(\widehat{x})]=\bar{\Theta}([\widehat{x}])=[\widehat{x}]$, so $\Theta(\widehat{x}) \in \widehat{P} \leq$ Aut ${ }_{\mathcal{L}}(P)$. By identifying P with \widehat{P} via δ_{P}, this shows that for every $P \in \mathcal{R}$, the functor Θ induces an automorphism $\theta_{P} \in \operatorname{Aut}(P)$ by the equation

$$
\widehat{\theta_{P}(x)}=\Theta(\widehat{x}), \quad(\forall x \in P)
$$

Notice that $S \in \mathcal{R}$, and we set

$$
\psi \stackrel{\text { def }}{=} \theta_{S}
$$

Consider some $P \in \mathcal{R}$ and $x \in P$. By applying Θ to the equality $\iota_{P}^{S} \circ \delta_{P}(x)=\delta_{S}(x) \circ \iota_{P}^{S}$ we obtain $\widehat{\tau_{P}} \circ \widehat{\theta_{P}(x)}=\widehat{\psi(x)} \circ \widehat{\tau_{P}}$ in \mathcal{L}. Therefore

$$
\begin{equation*}
\psi(x)=\left(c_{\tau_{P}} \circ \theta_{P}\right)(x), \quad(x \in P) \tag{7.11}
\end{equation*}
$$

In particular it follows that

$$
\tau_{P} \cdot P \cdot \tau_{P}^{-1}=\psi(P)
$$

i.e, $\tau_{P} \in N_{T}(P, \psi(P))$.

Step 1. ψ is a normal Adams automorphism of degree ζ. Notice first that for any $x \in T \subseteq S$,

$$
\widehat{\psi(x)}=\Theta(\widehat{x})=\Theta(\llbracket x \rrbracket) \stackrel{\boxed{6.2 \rrbracket}}{=} \llbracket \eta(\Theta)_{S}(x) \rrbracket=\llbracket \zeta \cdot x \rrbracket=\widehat{\zeta \cdot x}
$$

Therefore $\left.\psi\right|_{T}$ is multiplication by ζ. Also, the image of S in Aut $_{\mathcal{L}_{/ 0}}(S)$ is exactly S / T and since $\bar{\Theta}=\operatorname{Id}$, it follows that ψ induces the identity on S / T. Hence ψ is a normal Adams automorphism, as claimed.
Step 2. ψ is fusion preserving. Since $\mathcal{R} \supseteq \mathcal{F}^{\bullet}$, it controls fusion. Therefore, it is enough to show that for any $P \in \mathcal{R}$ and any $f \in \operatorname{Hom}_{\mathcal{F}}(P, S)$ there exists $g \in \operatorname{Hom}_{\mathcal{F}}(\psi(P), S)$ such that $\psi \circ f=\left.g \circ \psi\right|_{P} ^{\psi(P)}$. Let $\varphi \in \mathcal{L}(P, S)$ be a lift for f. By axiom (C) of linking systems, for every $x \in P$ we have $\varphi \circ \widehat{x}=\widehat{f(x)} \circ \varphi$. By applying Θ,

$$
\begin{equation*}
\Theta(\varphi) \circ \widehat{\theta_{P}(x)}=\widehat{\psi(f(x))} \circ \Theta(\varphi) \tag{7.12}
\end{equation*}
$$

Set $f^{\prime}=\pi(\Theta(\varphi))$. By Axiom (C) and (7.11),

$$
\begin{equation*}
\left.\Theta(\varphi) \circ \widehat{\theta_{P}(x)}=f^{\prime}\left(\theta_{P}(x)\right) \circ \Theta(\varphi)=f^{\prime}\left(c_{\tau_{P}} \widehat{{ }^{-1}(\psi}(x)\right)\right) \circ \Theta(\varphi) . \tag{7.13}
\end{equation*}
$$

Comparing the right hand sides of (7.12) and (7.13), and using the fact that $\Theta(\varphi)$ is an epimorphism in \mathcal{L} by JLL, Corollary 1.8],

$$
\psi(f(x))=f^{\prime}\left({c_{\tau_{P}}}^{-1}(\psi(x))\right)
$$

for every $x \in P$. Set $g=\left.f^{\prime} \circ c_{\tau_{P}}{ }^{-1}\right|_{\psi(P)} ^{P}$. Then $g \in \operatorname{Hom}_{\mathcal{F}}(\psi(P), S)$ and $\psi \circ f=\left.g \circ \psi\right|_{P} ^{\psi(P)}$. This shows that ψ is fusion preserving and completes Step 2.

Define a functor $\Psi: \mathcal{L}^{\mathcal{R}} \rightarrow \mathcal{L}^{\mathcal{R}}$, on objects $P, Q \in \mathcal{R}$ and morphisms $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$, by

$$
\begin{align*}
& \Psi(P) \stackrel{\text { def }}{=} \psi(P) \tag{7.14}\\
& \Psi(\varphi) \stackrel{\text { def }}{=} \widehat{\tau_{Q}} \circ \Theta(\varphi) \circ{\widehat{\tau_{P}}}^{-1} \tag{7.15}\\
& 23
\end{align*}
$$

where τ_{P} and τ_{Q} are considered here as elements of $N_{T}(P, \psi(P))$ and $N_{T}(Q, \psi(Q))$ respectively. The functoriality of Ψ is clear from that of Θ. In fact, the morphisms $\widehat{\tau_{P}} \in \mathcal{L}(P, \psi(P))$ give a natural isomorphism

$$
\widehat{\tau}: \Theta \rightarrow \Psi
$$

Step 3. Ψ covers ψ (see Definition 4.2). First, we show that $\pi \circ \Psi=\psi_{*} \circ \pi$. The functors on both sides agree on objects, by definition of Ψ and ψ_{*}, and since the projection π is the identity on objects. Let $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$ be a morphism. Consider the squares:

The left square commutes by Axiom (C), and the right one is obtained from the left by applying Θ. Since $\Theta(\varphi)$ is an epimorphism in \mathcal{L}, Axiom (C) applied to the right square gives

$$
\begin{equation*}
\theta_{Q}(\pi(\varphi)(x))=\pi(\Theta(\varphi))\left(\theta_{P}(x)\right) \tag{7.16}
\end{equation*}
$$

Therefore, for any $x \in P$

$$
\begin{aligned}
& \pi(\Psi(\varphi))(\psi(x))=\pi\left(\widehat{\tau_{Q}} \circ \Theta(\varphi) \circ{\widehat{\tau_{P}}}^{-1}\right)(\psi(x))=\left(c_{\tau_{Q}} \circ \pi(\Theta(\varphi)) \circ c_{\tau_{P}}^{-1}\right)(\psi(x)) \stackrel{\sqrt{77.11]}}{=} \\
&\left(c_{\tau_{Q}} \circ \pi(\Theta(\varphi))\right)\left(\theta_{P}(x)\right) \stackrel{\sqrt{7.16}}{=} c_{\tau_{Q}}\left(\theta_{Q}(\pi(\varphi)(x))\right) \stackrel{\sqrt{77.11}}{=} \psi(\pi(\varphi)(x))
\end{aligned}
$$

Thus, $\left.\pi(\Psi(\varphi)) \circ \psi\right|_{P}=\psi \circ \pi(\varphi)$ and consequently $(\pi \circ \Psi)(\varphi)=\left(\psi_{*} \circ \pi\right)(\varphi)$ as claimed.
Next we show that for any $P, Q \in \mathcal{R}$ and $g \in N_{S}(P, Q)$ we have $\Psi(\widehat{g})=\widehat{\psi(g)}$. First, notice that $\psi(g) \in N_{S}(\psi(P), \psi(Q))$. Next,

$$
\begin{array}{rlr}
\iota_{\psi(Q)}^{S} \circ \Psi(\widehat{g}) & = & \text { by definition of } \Psi(\overline{7.15)} \\
\iota_{\psi(Q)}^{S} \circ \widehat{\tau_{Q}} \circ \Theta(\widehat{g}) \circ{\widehat{\tau_{P}}}^{-1} & = & \text { by definition of } \tau_{Q} \\
\Theta\left(\iota_{Q}^{S}\right) \circ \Theta(\widehat{g}) \circ{\widehat{\tau_{P}}}^{-1} & = & \\
\Theta\left(\iota_{Q}^{S} \circ \widehat{g}\right) \circ{\widehat{\tau_{P}}}^{-1} & = & \\
\Theta\left(\widehat{g} \circ \iota_{P}^{S}\right) \circ{\widehat{\tau_{P}}}^{-1} & = & \\
\Theta(\widehat{g}) \circ \Theta\left(\iota_{P}^{S}\right) \circ{\widehat{\tau_{P}}}^{-1} & = & \text { by definition of } \theta_{S} \\
\widehat{\theta_{S}(g)} \circ \Theta\left(\iota_{P}^{S}\right) \circ{\widehat{\tau_{P}}}^{-1} & = & \text { by definition of } \tau_{P} \\
\widehat{\theta_{S}(g)} \circ \iota_{\psi(P)}^{S} & = & \\
\iota_{\psi(Q)}^{S} \circ \widehat{\psi(g)} . & &
\end{array}
$$

Since $\iota_{\psi(Q)}^{S}$ is a monomorphism in \mathcal{L} it follows that $\Psi(\widehat{g})=\widehat{\psi(g)}$. This shows that Ψ covers ψ and completes the proof of the claim.

Step 4. Proof of (i). By Lemma 7.8, Ψ extends to an unstable Adams operation $(\rho(\Theta), \psi)$. We retain the notation $\Psi=\rho(\Theta)$ for convenience. Then Ψ is special relative to \mathcal{R} because for any $P \in \mathcal{R}$,

$$
\psi(P)=c_{\tau_{P}}\left(\theta_{P}(P)\right)=c_{\tau_{P}}(P)=\tau_{P} P \tau_{P}^{-1}
$$

where the first and second equality follow from (7.11), and for any $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$,

$$
\Psi(\varphi)=\widehat{\tau_{Q}} \circ \Theta(\varphi) \circ{\widehat{\tau_{P}}}^{-1}=\widehat{\tau_{Q}} \circ \llbracket \tau_{\varphi} \rrbracket \circ \varphi \circ{\widehat{\tau_{P}}}^{-1}
$$

where the second equality follows from the definition of τ_{φ} and (7.15). It has degree ζ because for any $x \in T$,

$$
\llbracket \psi(x) \rrbracket=\llbracket \theta_{S}(x) \rrbracket=\underset{24}{\Theta(\llbracket x \rrbracket)}=\eta(\Theta)(\llbracket x \rrbracket)=\zeta \cdot \llbracket x \rrbracket .
$$

It remains to prove that ρ is a homomorphism. Choose $\Theta, \Theta^{\prime} \in \operatorname{Aut}\left(\mathcal{E} ; \operatorname{Id}_{\mathcal{L}_{/ 0}}, \mathbb{Z}_{p}^{\times}\right)$and set $\Theta^{\prime \prime}=\Theta^{\prime} \circ \Theta$. Let $\Psi, \Psi^{\prime}, \Psi^{\prime \prime}$ denote their images in $\operatorname{Ad}(\mathcal{G} ; \mathcal{R})$ by ρ. We need to show that $\Psi^{\prime \prime}=\Psi^{\prime} \circ \Psi$. Keeping the notation above, if $P \in \mathcal{R}$ then it is clear that $\theta_{S}^{\prime \prime}=\theta_{S}^{\prime} \circ \theta_{S}$, namely $\psi^{\prime \prime}=\psi^{\prime} \circ \psi$ and therefore

$$
\Psi^{\prime \prime}(P)=\psi^{\prime \prime}(P)=\psi^{\prime}(\psi(P))=\left(\Psi^{\prime} \circ \Psi\right)(P)
$$

Hence $\Psi^{\prime \prime}$ and $\Psi^{\prime} \circ \Psi$ agree on objects. Moreover, observe that by the definition of the elements $\tau_{P}, \tau_{P}^{\prime}, \tau_{P}^{\prime \prime}$ of T

$$
\iota_{\psi^{\prime \prime}(P)}^{S} \circ \widehat{\tau_{\psi(P)}^{\prime}} \circ \Theta^{\prime}\left(\widehat{\tau_{P}}\right)=\Theta^{\prime}\left(\iota_{\psi(P)}^{S}\right) \circ \Theta^{\prime}\left(\widehat{\tau_{P}}\right)=\Theta^{\prime}\left(\iota_{\psi(P)}^{S} \circ \widehat{\tau_{P}}\right)=\Theta^{\prime}\left(\Theta\left(\iota_{P}^{S}\right)\right)=\Theta^{\prime \prime}\left(\iota_{P}^{S}\right)=\iota_{\psi^{\prime \prime}(P)}^{S} \circ \widehat{\tau_{P}^{\prime \prime}} .
$$

Since $\iota_{\psi^{\prime \prime}(P)}^{S}$ is a monomorphism in \mathcal{L} it follows that

$$
\widehat{\tau_{\psi(P)}} \circ \Theta^{\prime}\left(\widehat{\tau_{P}}\right)=\widehat{\tau_{P}^{\prime \prime}}
$$

Now suppose that $P, Q \in \mathcal{R}$ and that $\varphi \in \mathcal{L}(P, Q)$. Then

$$
\begin{aligned}
\Psi^{\prime}(\Psi(\varphi))= & \Psi^{\prime}\left(\widehat{\tau_{Q}} \circ \Theta(\varphi) \circ{\widehat{\tau_{P}}}^{-1}\right)=\widehat{\tau_{\psi(Q)}^{\prime}} \circ \Theta^{\prime}\left(\widehat{\tau_{Q}} \circ \Theta(\varphi) \circ{\widehat{\tau_{P}}}^{-1}\right) \circ{\widehat{\tau_{\psi(P)}^{\prime}}}^{-1}= \\
& \widehat{\tau_{\psi(Q)}^{\prime}} \circ \Theta^{\prime}\left(\widehat{\tau_{Q}}\right) \circ \Theta^{\prime}(\Theta(\varphi)) \circ \Theta^{\prime}\left({\widehat{\tau_{P}}}^{-1}\right) \circ{\widehat{\tau_{\psi(P)}^{\prime}}}^{-1}={\widehat{\tau_{Q}^{\prime \prime}} \circ \Theta^{\prime}(\Theta(\varphi)) \circ{\widehat{\tau_{P}^{\prime \prime}}}^{-1}=\Psi^{\prime \prime}(\varphi)}^{\text {(}} .
\end{aligned}
$$

This shows that $\Psi^{\prime \prime}$ and $\Psi^{\prime} \circ \Psi$ agree on morphisms and completes the proof of (ii).
Step 5. Proof of (iii). Suppose that $(\Psi, \psi) \in \operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ has degree ζ. For each $P \in \mathcal{R}$ and each $\varphi \in \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)$, fix elements τ_{P} and τ_{φ}, as in Definition 7.1. Define a functor $\Theta: \mathcal{L}^{\mathcal{R}} \rightarrow \mathcal{L}^{\mathcal{R}}$ by

$$
\begin{aligned}
& \Theta(P)=P, \quad(P \in \mathcal{R}) \\
& \Theta(\varphi)={\widehat{\tau_{Q}}}^{-1} \circ \Psi(\varphi) \circ \widehat{\tau_{P}}, \quad\left(\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)\right) .
\end{aligned}
$$

The functoriality of Θ is clear, and it is a morphism of extensions by Propositions 6.15 and 6.16. Since (Ψ, ψ) is special relative to \mathcal{R},

$$
[\Theta(\varphi)]=\left[{\widehat{\tau_{Q}}}^{-1}\right] \circ\left[\widehat{\tau_{Q}} \circ \widehat{\tau_{\varphi}} \circ \varphi \circ{\widehat{\tau_{P}}}^{-1}\right] \circ\left[\widehat{\tau_{P}}\right]=[\varphi],
$$

and so $\bar{\Theta}=\operatorname{Id}_{\mathcal{L}_{/ 0}^{\mathcal{R}}}$. Also, given $P \in \mathcal{R}$ and $g \in P_{0}$, since T is abelian we get

$$
\Theta(\llbracket g \rrbracket)=\Theta(\widehat{g})={\widehat{\tau_{P}}}^{-1} \circ \Psi(\widehat{g}) \circ \widehat{\tau_{P}}={\widehat{\tau_{P}}}^{-1} \circ \widehat{\psi(g)} \circ \widehat{\tau_{P}}=\llbracket \psi(g) \rrbracket=\llbracket \zeta \cdot g \rrbracket .
$$

Hence $\eta(\Theta)=\zeta$ by Lemma 6.10. Thus, $\Theta \in \operatorname{Aut}\left(\mathcal{E} ; \operatorname{Id}_{\mathcal{L}_{/ 0}^{\mathcal{R}}} ; \mathbb{Z}_{p}^{\times}\right)$.
It remains to show that $\rho(\Theta)$ and (Ψ, ψ) differ by $c_{\widehat{\tau_{S}}} \in \operatorname{Inn}_{T}(\mathcal{G})$. Observe first that $\tau_{P}(\Theta)$ is the unique element satisfying $\Theta\left(\iota_{P}^{S}\right)=\llbracket \tau_{P}(\Theta) \rrbracket \circ \iota_{P}^{S}$. On the other hand,

$$
\Theta\left(\iota_{P}^{S}\right)={\widehat{\tau_{S}}}^{-1} \circ \Psi\left(\iota_{P}^{S}\right) \circ \widehat{\tau_{P}}={\widehat{\tau_{S}}}^{-1} \circ \iota_{\psi(P)}^{S} \circ \widehat{\tau_{P}}=\tau_{S}^{-1} \tau_{P} \circ \iota_{P}^{S} .
$$

By comparing the two expressions for $\Theta\left(\iota_{P}^{S}\right)$ and since ι_{P}^{S} is an epimorphism in \mathcal{L} we deduce that

$$
\tau_{P}(\Theta)=\tau_{S}^{-1} \tau_{P}
$$

By (7.11), (7.14) and (7.15) it follows that

$$
\begin{aligned}
& \rho(\Theta)(P)=\tau_{P}(\Theta) \cdot P \cdot \tau_{P}(\Theta)^{-1}=\tau_{S}^{-1} \tau_{P} \cdot P \cdot \tau_{P}^{-1} \tau_{S}=\tau_{S}^{-1} \cdot \psi(P) \cdot \tau_{S} \\
& \rho(\Theta)(\varphi)=\widehat{\tau_{Q}(\Theta)} \circ \Theta(\varphi) \circ{\widehat{\tau_{P}(\Theta)}}^{-1}=\widehat{\tau_{S}^{-1}} \circ \widehat{\tau_{Q}} \circ \Theta(\varphi) \circ{\widehat{\tau_{P}}}^{-1} \circ \widehat{\tau_{S}}={\widehat{\tau_{S}}}^{-1} \circ \Psi(\varphi) \circ \widehat{\tau_{S}}
\end{aligned}
$$

Therefore $\Psi=c_{\widehat{\tau_{S}}}-1 \circ \rho(\Theta)$, and this shows that $\bar{\rho}$ is surjective.
Finally, consider some $\Theta \in \operatorname{Inn}(\mathcal{E})$. Then for every $P, Q \in \mathcal{R}$ and any $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$, there is an element $t_{P} \in P_{0}$, such that $\Theta(\varphi)=\widehat{t_{Q}}-1 \circ \varphi \circ \widehat{t_{P}}$. In particular $\tau_{P}(\Theta)=t_{S}^{-1} t_{P}$. Then for any $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$

$$
\rho(\Theta)(\varphi)=\widehat{\tau_{Q}(\Theta)} \circ \Theta(\varphi) \circ{\widehat{\tau_{P}(\Theta)}}^{-1}={\widehat{t_{s}}}^{-1} \circ \varphi \circ \widehat{t_{s}}
$$

This shows that $\left.\rho(\Theta)\right|_{\mathcal{R}}=c_{\overparen{t S}^{-1}}$ and by Lemma [7.8, $\rho(\Theta)=c_{\widehat{t S}^{-1}}$. This completes the proof of Step 5 and hence of the proposition.

We recall from (4.5) that if $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ is a p-local compact group then every element of $\operatorname{Aut}_{\mathcal{L}}(S)$ induces a "conjugation automorphism" on \mathcal{G} which we call "inner". We will write $\operatorname{Aut}_{T}(\mathcal{G})$ for the inner automorphisms of \mathcal{G} induced by the elements of $\widehat{T} \leq \operatorname{Aut}_{\mathcal{L}}(S)$. Observe that conjugation by $t \in T$ induces an Adams automorphism of S of degree 1 and c_{t} is a special unstable Adams operation with $\tau_{P}=t$ for every $P \in \mathcal{F}^{c}$ and $\tau_{\varphi}=1$ for any $\varphi \in \operatorname{Mor}(\mathcal{L})$.

Suppose that M is a \mathbb{Z}_{p}-module and that $x \in M$ has order p^{m} for some m, i.e $p^{m} x=0$. Then for any $\zeta \in \mathbb{Z}_{p}^{\times}$we claim that $\zeta \cdot x=x$ if and only if $\zeta \in \Gamma_{m}(p)$. To see this write $\zeta=u+p^{m} v$ for some $u \in \mathbb{Z} \subseteq \mathbb{Z}_{p}$ and $v \in \mathbb{Z}_{p}$. Then $\zeta \cdot x=u \cdot x$ so $\zeta \cdot x=x$ if and only if $u \cdot x=x$ which happens if and only if $u \in \operatorname{Ker}\left(\mathbb{Z}_{p}^{\times} \rightarrow \operatorname{Aut}\left(\mathbb{Z} / p^{m}\right)\right)=\Gamma_{m}(p)$.

Proof of Proposition 7.2. Suppose that $(\Psi, \psi) \in \operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ and let $\zeta=\operatorname{deg}(\psi)$. By Propositions 6.15 and 6.16, $\left.\Psi\right|_{\mathcal{R}} \in \operatorname{Aut}(\mathcal{E})$. By Proposition [7.3, $\zeta \cdot\left[\mathcal{L}^{\mathcal{R}}\right]=\left[\mathcal{L}^{\mathcal{R}}\right]$. By the remark above, $\zeta \in \Gamma_{m}(p)$. Conversely, if $\zeta \in \Gamma_{m}(p)$ the same remark shows that $\zeta \cdot\left[\mathcal{L}^{\mathcal{R}}\right]=\left[\mathcal{L}^{\mathcal{R}}\right]$ and Proposition 6.25 implies that there exists $\Theta \in \operatorname{Aut}(\mathcal{E})$ such that $\bar{\Theta}=\operatorname{Id}_{\mathcal{L}_{70}^{\mathcal{R}}}$, and $\eta(\Theta)=\zeta$. By Proposition 7.10, $\rho(\Theta)$ is a special unstable Adams operation relative to \mathcal{R} of degree ζ. This shows that the degree homomorphism is onto $\Gamma_{m}(p)$.

The kernel of deg is the group of special unstable Adams operations relative to \mathcal{R} of degree 1. Its preimage under ρ is $\operatorname{Aut}\left(\mathcal{E} ; \operatorname{Id}_{\mathcal{L}_{\mathcal{R}}}, \operatorname{Id}_{\Phi}\right)$. The exactness of the sequence at $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) / \operatorname{Inn}_{T}(\mathcal{G})$ now follows from Proposition 7.10(iii) and Proposition 6.26,

We end this section with an analysis of the group $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ as a subgroup of $\operatorname{Ad}(\mathcal{G})$. The next two lemmas will be needed.
7.17. Lemma. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local finite group and $\mathcal{R} \subseteq \mathcal{F}^{c}$ a collection. Then $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ is a normal subgroup of $\operatorname{Ad}(\mathcal{G})$.

Proof. Suppose (Ψ, ψ) and $\left(\Psi^{\prime}, \psi^{\prime}\right)$ are special unstable Adams operations relative to \mathcal{R}. Fix structure elements $\left\{\tau_{P}\right\}_{P \in \mathcal{R}}$ and $\left\{\tau_{\varphi}\right\}_{\varphi \in \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)}$ for (Ψ, ψ), and $\left\{\tau_{P}^{\prime}\right\}_{P \in \mathcal{R}}$ and $\left\{\tau_{\varphi}^{\prime}\right\}_{\varphi \in \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)}$ for $\left(\Psi^{\prime}, \psi^{\prime}\right)$. Set $\left(\Psi^{\prime \prime}, \psi^{\prime \prime}\right)=\left(\Psi \circ \Psi^{\prime}, \psi \circ \psi^{\prime}\right), \tau_{P}^{\prime \prime}=\tau_{P} \psi\left(\tau_{P}^{\prime}\right)$ for every $P \in \mathcal{R}$, and $\tau_{\varphi} \psi\left(\tau_{\varphi}^{\prime}\right)$ for any $\varphi \in \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)$. Notice that $\psi^{\prime \prime}(P)=\tau_{p}^{\prime \prime} P \tau_{P}^{\prime \prime-1}$ and that $\tau_{\varphi}^{\prime \prime} \in \psi^{\prime \prime}(Q)_{0}$ for any $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$. Using the fact that $\Psi(\widehat{g})=\widehat{\psi(g)}$ it is straightforward to check that $\left(\Psi^{\prime \prime}, \psi^{\prime \prime}\right)$ is a special unstable Adams operation with structure elements $\left\{\tau_{P}^{\prime \prime}\right\}_{P \in \mathcal{R}}$ and $\left\{\tau_{\varphi}^{\prime \prime}\right\}_{\varphi \in \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)}$. The details are straightforward and left to the reader. In addition Ψ^{-1} is a special unstable Adams operation with structure elements $\left\{\psi^{-1}\left(\tau_{P}^{-1}\right)\right\}_{P \in \mathcal{R}}$ and $\left\{\psi^{-1}\left(\tau_{\varphi}^{-1}\right)\right\}_{\varphi \in \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)}$. The verification uses the commutativity of T and the fact that $\psi^{-1}\left(\tau_{\varphi}^{-1}\right) \in Q_{0}$ for $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$. It follows that $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ is a subgroup of $\operatorname{Ad}(\mathcal{G})$.

Let (Ψ, ψ) be a special unstable Adams operation relative to \mathcal{R}. For any $(\Theta, \theta) \in \operatorname{Ad}(\mathcal{G})$ consider the Adams operation $\Psi^{\prime} \stackrel{\text { def }}{=} \Theta^{-1} \circ \Psi \circ \Theta$. Set $\tau_{P}^{\prime} \stackrel{\text { def }}{=} \theta^{-1}\left(\tau_{\theta(P)}\right)$ and $\tau_{\varphi}^{\prime} \stackrel{\text { def }}{=} \theta^{-1}\left(\tau_{\Theta(\varphi)}\right)$. For any $P \in \mathcal{L}^{\mathcal{R}}$ and any $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$,

$$
\begin{aligned}
& \Psi^{\prime}(P)=\theta^{-1}\left(\psi(\theta(P))=\theta^{-1}\left(\tau_{\theta(P)} \cdot \theta(P) \cdot \tau_{\theta(P)}^{-1}\right)=\tau_{P}^{\prime} \cdot P \cdot \tau_{P}^{\prime}-1\right. \\
& \Psi^{\prime}(\varphi)=\Theta^{-1}\left(\widehat{\tau_{\theta(Q)}} \circ \widehat{\tau_{\Theta(\varphi)}} \circ \Theta(\varphi) \circ \widehat{\tau_{\theta(P)}}\right)=\widehat{\tau_{Q}^{\prime}} \circ \widehat{\tau_{\varphi}^{\prime}} \circ \varphi \circ \widehat{\tau_{P}^{\prime}} .
\end{aligned}
$$

Therefore the sets $\left\{\tau_{P}^{\prime}\right\}_{P \in \mathcal{R}}$ and $\left\{\tau_{\varphi}^{\prime}\right\}_{\varphi \in \operatorname{Mor}\left(\mathcal{L}^{\mathcal{R}}\right)}$ give Ψ^{\prime} the structure of a special Adams operation, and so $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) \unlhd \operatorname{Ad}(\mathcal{G})$.
7.18. Lemma. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and let $\mathcal{R} \subseteq \mathcal{F}^{c}$ be any collection with finitely many \mathcal{F}-conjugacy classes. Then the the order of the class $\left[\mathcal{L}^{\mathcal{R}}\right] \in H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$ is a power of p.

Proof. The category $\mathcal{L}_{/ 0}^{\mathcal{R}}$ can be replaced with a finite subcategory \mathcal{M} such that $H^{*}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right) \cong H^{*}(\mathcal{M}, \Phi)$. Since \mathcal{M} is finite the cobar construction has the property that for any $n \geq 0$ the group $C^{n}(\mathcal{M}, \Phi)$ is a product of finitely many discrete p-tori and it is therefore a p-torsion group.
7.19. Proposition. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and $\mathcal{R} \subseteq \mathcal{F}^{c}$ be a collection which contains finitely many \mathcal{F}-conjugacy classes. Then $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ had finite index in $\operatorname{Ad}(\mathcal{G})$ and the factor group is solvable of class at most 3.

Proof. We have seen in Lemma 7.17 that $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) \unlhd \operatorname{Ad}(\mathcal{G})$. By Lemma 7.18 and Proposition 7.2 there is a morphism of exact sequences

The cokernel of the last column is a finite abelian group. Thus, by the snake lemma it remains to show that the quotient group in the first column is a solvable finite group of class at most 2 .

Consider the following commutative diagram with exact rows

where the superscript id_{S} means operations whose underlying Adams automorphism is the identity on S. Let $U \leq V$ be the images of the right horizontal maps. Notice that $\mathrm{Aut}_{T}(S) \leq U$ because for every $t \in T, c_{\widehat{t}} \in \operatorname{SpAd}^{\operatorname{deg}=1}(\mathcal{G} ; \mathcal{R})$. By JLL, Proposition 2.8] $\operatorname{Ad}^{\operatorname{deg}=1}(S) / \operatorname{Aut}_{T}(S) \cong H^{1}(S / T ; T)$. Since this is a finite abelian group it follows that V / U is a finite abelian group. It remains to show that the quotient group in the left column in this diagram is a finite abelian group. This follows from the next two claims.
Claim 1: $\operatorname{Ad}^{\mathrm{id}_{S}}(\mathcal{G})$ is an abelian discrete p-toral group.
Proof: Recall from [BLO3, Lemma 3.2] that $\mathcal{H}^{\bullet}(\mathcal{F})$ has finitely many S-conjugacy classes and hence finitely many T-conjugacy classes. Let $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{r}\right\}$ be a set of representatives and for any $P \in$ $\mathcal{H}^{\bullet}(\mathcal{F})$ we choose once and for all some $t_{P} \in T$ such that $t_{P} P t_{P}^{-1} \in \mathcal{Q}$. If $\left(\Psi, \mathrm{id}_{S}\right) \in \operatorname{Ad}(\mathcal{G})$, then for $\varphi \in \mathcal{L}(P, Q)$ we have $\pi(\Psi(\varphi))=\pi(\varphi)$, so $\Psi(\varphi)=\varphi \circ \widehat{z(\varphi)}$ for a unique $z(\varphi) \in Z(P)$. This gives a function

$$
z: \operatorname{Ad}^{\operatorname{id}_{S}}(\mathcal{G}) \xrightarrow{\Psi \mapsto(z(\varphi))} \prod_{Q, Q^{\prime} \in \mathcal{Q} \mathcal{L}\left(Q, Q^{\prime}\right)} \prod Z(Q)
$$

This is a homomorphism because if $\Psi, \Psi^{\prime} \in \operatorname{Ad}^{\mathrm{id}_{S}}(\mathcal{G})$, then for any $\varphi \in \mathcal{L}(P, Q)$

$$
\left(\Psi^{\prime} \circ \Psi\right)(\varphi)=\Psi^{\prime}(\varphi \circ z \widehat{(\Psi)(\varphi)})=\Psi^{\prime}(\varphi) \circ \Psi^{\prime}(\widehat{z(\Psi)(\varphi)})=\varphi \circ z \widehat{\left(\Psi^{\prime}\right)(\varphi)} \circ z \widehat{(\Psi)(\varphi)}
$$

so $z\left(\Psi^{\prime} \circ \Psi\right)=z\left(\Psi^{\prime}\right) \cdot z(\Psi)$.
We claim that z is injective. Choose some $\Psi \in \operatorname{ker}(z)$ and suppose that $z(\Psi)(\varphi)=1$ for all $\varphi \in \mathcal{L}^{\mathcal{Q}}$. This means that Ψ is the identity on $\mathcal{L}^{\mathcal{Q}}$. If $P, P^{\prime} \in \mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$, then with the notation above, there are unique $Q, Q^{\prime} \in \mathcal{Q}$ such that $\mathcal{L}\left(P, P^{\prime}\right)=\widehat{t_{P^{\prime}}}-1 \circ \mathcal{L}\left(Q, Q^{\prime}\right) \circ \widehat{t_{P}}$. Since $\left.\Psi\left(\widehat{t_{P}}\right)=\widehat{\mathrm{id}_{S}\left(t_{P}\right)}\right) \widehat{t_{P}}$ and $\Psi\left(\widehat{t_{P^{\prime}}}\right)=\widehat{t_{P^{\prime}}}$, and since Ψ is the identity on $\mathcal{L}\left(Q, Q^{\prime}\right)$, it follows that Ψ is the identity on $\mathcal{L}^{\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)}$. By the uniqueness part in Lemma 7.8 it follows that $\Psi=$ Id.

Since z is injective and the codomain of z is a finite product of discrete p-tori, hence a discrete p-torus itself, it follows that its image is an abelian discrete p-toral group.
Claim 2: $\operatorname{SpAd}^{\operatorname{id}_{S}}(\mathcal{G} ; \mathcal{R})$ has finite index in $\operatorname{Ad}^{\operatorname{id}_{S}}(\mathcal{G})$.
Proof: By the the previous claim, $\operatorname{Ad}^{\mathrm{id}}(\mathcal{G})$ is an abelian discrete p-toral. Thus by the structure theorem of abelian discrete p-toral groups, it is isomorphic to $D_{0} \times A$, where D_{0} is a discrete p-torus and A is a finite abelian p-group. Therefore, $n \cdot D$ has finite index in D for any $n \geq 1$. We will show that there exists some n such that $\Psi^{n} \in \operatorname{SpAd}^{\operatorname{id}_{S}}(\mathcal{G} ; \mathcal{R})$ for any $\Psi \in \operatorname{Ad}^{\mathrm{id}_{S}}(\mathcal{G})$, and this will complete the proof.

Any $\left(\Psi, \operatorname{id}_{S}\right) \in \operatorname{Ad}(\mathcal{G})$ induces, by Propositions 6.15 and 6.16, a functor $\bar{\Psi} \in \operatorname{Aut}(\mathcal{L} / 0)$ which is the identity on objects and therefore induces a permutation on $\mathcal{L}_{/ 0}(P, Q)$ for all $P, Q \in \mathcal{L}$. We therefore obtain a homomorphism

$$
\sigma: \operatorname{Ad}^{\left\{\operatorname{id}_{S}\right\}}(\mathcal{G}) \rightarrow \prod_{P, Q \in \mathcal{L}^{\mathcal{R}}} \operatorname{Sym}\left(\mathcal{L}_{/ 0}(P, Q)\right)
$$

where $\operatorname{Sym}(\Omega)$ is the symmetric group of a set Ω. Since the sets $\mathcal{L}_{/ 0}(P, Q)$ are finite and since \mathcal{R} has finitely many T-conjugacy classes, we obtain a well defined

$$
r=\max \left\{\left|\mathcal{L}_{/ 0}(P, Q)\right|: P, Q \in \mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)\right\} .
$$

Then $n=r$! annihilates any element in the codomain of σ, and in particular $\Psi^{n} \in \operatorname{Ker}(\sigma)$ for any $\Psi \in \operatorname{Ad}^{\operatorname{id}_{S}}(\mathcal{G})$. It remains to show that $\operatorname{Ker}(\sigma) \leq \operatorname{SpAd}^{\mathrm{id}_{S}}(\mathcal{G} ; \mathcal{R})$. Suppose that $\left(\Psi, \operatorname{id}_{S}\right) \in \operatorname{Ker}(\sigma)$. Then $\Psi(P)=P$ for any $P \in \mathcal{R}$ and also $[\Psi(\varphi)]=[\varphi]$ for any $\varphi \in \mathcal{L}^{\mathcal{R}}(P, Q)$, namely $\Psi(\varphi)=\widehat{\tau_{\varphi}} \circ \varphi$ for a unique $\tau_{\varphi} \in Q_{0}$. This shows that (Ψ, ψ) has the structure of a special unstable Adams operation with structure $\tau_{P}=1$ and the elements τ_{φ} above. This completes the proof of the claim and the proposition follows.

8. Not all Adams operations are special

specials
In this section we find examples of weakly connected p-local compact groups \mathcal{G} that afford unstable Adams operations which are not special relative to the collection \mathcal{R} of the \mathcal{F}-centric \mathcal{F}-radical subgroups. The idea is to find such \mathcal{G} which fulfils the conditions of Lemma 8.1 below.

The collection \mathcal{R} is a very natural one to look at since $\left|\mathcal{L}^{\mathcal{R}}\right| \rightarrow|\mathcal{L}|$ is a mod- p equivalence. To see this observe that $\mathcal{R} \subseteq \mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$ by BLO3, Corollary 3.5] and that $\left|\mathcal{L}^{\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)}\right| \rightarrow|\mathcal{L}|$ is a homotopy equivalence by [JLL, Proposition 1.12] which provides a natural transformation from the identity on \mathcal{L} to the functor $\mathcal{L} \xrightarrow{P \mapsto P^{\bullet}} \mathcal{L}$. Since $\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$ has finitely many \mathcal{F}-conjugacy classes by BLO3, Lemma 3.2], there results a finite filtration of $\mathcal{L}^{\mathcal{H}}{ }^{\bullet}\left(\mathcal{F}^{c}\right)$ which together with the Λ-functors machinery in BLO3, Section 5], can be used to prove that $\left|\mathcal{L}^{\mathcal{R}}\right| \rightarrow\left|\mathcal{L}^{\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)}\right|$ induces an isomorphism in $H^{*}\left(-, \mathbb{Z}_{(p)}\right)$.
8.1. Lemma. Let $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ be a p-local compact group and \mathcal{R} be a collection of \mathcal{F}-centric subgroup. Let $(\Psi, \psi) \in \operatorname{Ad}(\mathcal{G})$ and assume that
(i) $\operatorname{deg}(\psi) \in \mathbb{Z}_{p}^{\times} \backslash \Gamma_{1}(p)$ and that
(ii) there exists $P \in \mathcal{R}$ such that P is not a semi-direct product of P_{0} with P / P_{0}.

Then $(\Psi, \psi) \notin \operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$.
Proof. Assume by contradiction that $(\Psi, \psi) \in \operatorname{SpAd}(\mathcal{G} ; \mathcal{R})$ and set $\zeta=\operatorname{deg}(\psi)$. We claim that $\left[\mathcal{L}^{\mathcal{R}}\right]$ is the trivial element in $H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$. To see this, let L be the \mathbb{Z}_{p}-submodule of $H^{2}\left(\mathcal{L}_{/ 0}^{\mathcal{R}}, \Phi\right)$ generated by $\left[\mathcal{L}^{\mathcal{R}}\right]$. By Proposition 7.3ζ acts as the identity on L. If L is infinite then $L \cong \mathbb{Z}_{p}$ and therefore $\zeta=1 \in \Gamma_{1}(p)$ which is a contradiction. Therefore $L \cong \mathbb{Z} / p^{m}$ and $\zeta \in \Gamma_{m}(p)$ which by hypothesis (ili) implies that $m=0$, namely $L=0$.

Lemma 6.22 now implies that there exists a functor $s: \mathcal{L}_{/ 0}^{\mathcal{R}} \rightarrow \mathcal{L}^{\mathcal{R}}$ which is a right inverse to the projection $\mathcal{L}^{\mathcal{R}} \rightarrow \mathcal{L}_{/ 0}^{\mathcal{R}}$. Consider any $P \in \mathcal{R}$. Notice that $\operatorname{Aut}_{\mathcal{L}}(P)$ contains \widehat{P} as a copy of P and similarly Aut $_{\mathcal{L}_{/ 0}}(P)$ contains a copy of P / P_{0}. The functor s gives a section $s: P / P_{0} \rightarrow P$ for the projection $P \rightarrow P / P_{0}$. This is a contradiction to hypothesis (iii).

It turns out that compact Lie groups provide examples of p-local compact group \mathcal{G} which satisfy the conditions of the lemma. First, let us recall from BLO3, Section 9] how compact Lie groups give rise to p-local compact groups.

The poset of all discrete p-toral subgroups of a compact Lie group G contains a maximal element S. Every discrete p-toral $P \leq G$ is conjugate to a subgroup of S and in particular all maximal discrete p-toral subgroups of G are conjugate. The fusion system $\mathcal{F}=\mathcal{F}_{S}(G)$ over S has by definition $\operatorname{Hom}_{\mathcal{F}}(P, Q)=$ $\operatorname{Hom}_{G}(P, Q)$ namely the homomorphisms $P \rightarrow Q$ induced by conjugation by elements of g. This fusion
system is saturated by BLO3, Lemma 9.5], it admits an associated centric linking system $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$ that is unique up to isomorphism, and $\left|\mathcal{L}_{S}^{c}(G)\right|_{p}^{\wedge} \simeq B G_{p}^{\wedge}$ by BLO3, Theorem 9.10].

Recall that a closed subgroup $Q \leq G$ is called p-toral if it is an extension of a torus by a finite p-group. Let P be a discrete p-toral subgroup of G. Then \bar{P} (the closure of P) is a a p-toral subgroup of G. In fact, $\overline{P_{0}}$ is the maximal torus of \bar{P}.

A discrete p-toral $P \leq G$ is called snugly embedded if $\bar{P}=\overline{P_{0}} \cdot P$ and every p-power torsion element in $(\bar{P})_{0}$ belongs to P_{0}.
8.2. Lemma. Let G be a compact Lie group and $P \leq G$ a snugly embedded discrete p-toral subgroup. If P is the semidirect product of P_{0} with P / P_{0} then \bar{P} is the semidirect product of \bar{P}_{0} with P / P_{0}.

Proof. Suppose $\pi \leq P$ is a complement of P_{0}. Since P is snugly embedded, $\bar{P}=\overline{P_{0}} \cdot P=(\bar{P})_{0} \cdot P=(\bar{P})_{0} \cdot \pi$. Also, P_{0} contains all p-torsion in $(\bar{P})_{0}$ so $(\bar{P})_{0} \cap \pi \leq P_{0} \cap \pi=1$.

Fix a compact Lie group G. A subgroup P is called p-stubborn, if P is p-toral and if $N_{G}(P) / P$ is finite and $O_{p}\left(N_{G}(P) / P\right)=1$, where $O_{p}(K)$ denotes the largest normal p-subgroup of a finite group K JMO. Let us now recall from © the structure of the p-stubborn subgroups of the classical groups $U(n)$ and $S U(n)$ when $p>2$.

First, consider the regular representation of \mathbb{Z} / p on \mathbb{C}^{p} with the standard basis e_{0}, \ldots, e_{p-1}. This representation sends a generator of \mathbb{Z} / p to the permutation matrix in $U(p)$:

$$
B=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & & \ldots & & \ldots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right) \quad B: e_{i} \mapsto e_{i-1}
$$

Since the regular representation contains one copy of every irreducible representation of \mathbb{Z} / p, it is clear that B is conjugate in $U(p)$ to the matrix

$$
A=\operatorname{diag}\left(1, \zeta, \zeta^{2}, \ldots, \zeta^{p-1}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & \zeta & 0 \ldots & 0 & \\
0 & 0 & \zeta^{2} & \ldots & 0 \\
\ldots & & & & \ldots \\
0 & 0 & 0 & \ldots & \zeta^{p-1}
\end{array}\right) \quad A: e_{i} \mapsto \zeta^{i} e_{i}
$$

where ζ is a p-th root of unity. It is easy to check that

$$
[A, B]=A B A^{-1} B^{-1}=\zeta I_{p}
$$

Thus, A and $[A, B]$ belong to the standard maximal torus of $U(p)$ (namely the unitary diagonal matrices).
Consider the natural action of $U\left(p^{k}\right)$ on $\mathbb{C}^{p^{k}} \cong \mathbb{C}^{p} \otimes \cdots \otimes \mathbb{C}^{p}$. For every $i=0, \ldots, k-1$ we let A_{i} and B_{i} denote the matrices that correspond to the action of A and B on the i th factor of the tensor product and the identity on the other factor. From this description it is clear that

$$
\begin{equation*}
\left[A_{i}, A_{j}\right]=\left[B_{i}, B_{j}\right]=I, \quad\left[A_{i}, B_{j}\right]=I(i \neq j), \quad\left[A_{i}, B_{i}\right]=\zeta I \tag{8.3}
\end{equation*}
$$

In matrix notation, $A_{i}=I^{\otimes i-1} \otimes A \otimes I^{\otimes k-i}$ and $B_{i}=I^{\otimes i-1} \otimes B \otimes I^{\otimes k-i}$ where I denotes the $p \times p$ identity matrix and we use the Kronecker tensor product of matrices.

For any $k \geq 0$ define $\Gamma_{p^{k}}^{U} \leq U\left(p^{k}\right)$ by

$$
\Gamma_{p^{k}}^{U} \stackrel{\text { def }}{=}\left\langle A_{0}, \ldots, A_{k-1}, B_{0}, \ldots, B_{k-1}, u \cdot I: u \in U(1)\right\rangle
$$

where I denotes the identity matrix in $U\left(p^{k}\right)$. It is clear from (8.3) that the identity component of $\Gamma_{p^{k}}^{U}$ is isomorphic to $U(1)$ and that the factor group is isomorphic to

$$
\begin{equation*}
\mathbb{Z} / p^{2 k}=\left\langle\overline{A_{0}}, \ldots, \overline{A_{k-1}}, \overline{B_{0}}, \ldots, \overline{B_{k-1}}\right\rangle \tag{8.4}
\end{equation*}
$$

where $\overline{A_{i}}$ and $\overline{B_{i}}$ are the images of A_{i} and B_{i} in the quotient. Thus, $\Gamma_{p^{k}}^{U}$ are p-toral groups. Notice that

$$
\Gamma_{1}^{U}=U(1) \quad \text { and } \quad \Gamma_{p}^{U}=\langle A, B, u \cdot I: u \in U(1)\rangle
$$

Next, fix some $k \geq 1$ and recall that $\Sigma_{p^{k}} \leq U\left(p^{k}\right)$ via permutation matrices. Let $E_{p^{k}}=(\mathbb{Z} / p)^{k}$ act on itself by left translation. This gives a monomorphism $E_{p^{k}} \rightarrow \Sigma_{p^{k}}$ and identifies $E_{p^{k}}$ as a subgroup of $U\left(p^{k}\right)$. Given any $H \leq U(m)$ the wreath product $H \succ E_{p^{k}}$ is naturally a subgroup of $U\left(m p^{k}\right)$.

Now fix some $n \geq 1$ and let p be an odd prime. Write $n=p^{m_{1}}+\cdots+p^{m_{r}}$. Identifying the product $U\left(p^{m_{1}}\right) \times \cdots \times U\left(p^{m_{r}}\right)$ as a subgroup of $U(n)$ in the standard way, consider the subgroups $Q_{1} \times \cdots \times Q_{r}$, where for each $1 \leq i \leq r, Q_{i} \leq U\left(P^{m_{i}}\right)$ has the form

$$
\Gamma_{p^{k}}^{U} \prec E_{q_{1}} \prec \cdots \imath E_{q_{t}}
$$

and where $t \geq 0$ and q_{1}, \ldots, q_{t} are all p-powers such that $p^{m_{i}}=p^{k} q_{1} \ldots q_{t}$. By [O. Theorems 6 and 8], these groups give a complete set of representatives for the conjugacy classes of p-stubborn subgroups of $U(n)$ when $p>2$. By [O, Theorem 10] the assignment $P \mapsto P \cap S U(n)$ gives a bijection between the p-stubborn subgroups of $U(n)$ and $S U(n)$.
8.5. Lemma. Let G be a connected compact Lie group and $S \leq G$ a maximal discrete p-toral group. Then $\mathcal{F}_{S}(G)$ is weakly connected, namely $T=S_{0}$ is self centralising in S.

Proof. Let $T \leq S$ be the maximal discrete p-torus in S. Then \bar{T} is the maximal torus in \bar{S}, and hence it is the maximal torus of G. Since G is connected, its maximal torus is self-centralising and in particular $C_{S}(T)=C_{S}(\bar{T})=S \cap C_{G}(\bar{T})=S \cap \bar{T}=T$, where the last equality holds since S is snugly embedded in G.

Recall that a space X is called p-good in the sense of Bousfield and Kan BK72] if the natural map $X \rightarrow X_{p}^{\wedge}$ induces isomorphism in $H_{*}(-; \mathbb{Z} / p)$. Also recall that $H_{\mathbb{Q}_{p}}^{*}(X) \stackrel{\text { def }}{=} H^{*}\left(X ; \mathbb{Z}_{p}\right) \otimes \mathbb{Q}$.
8.6. Lemma. Let X be a $C W$-complex. If X is p-good then $H_{\mathbb{Q}_{p}}^{*}(X) \cong H_{\mathbb{Q}_{p}}^{*}\left(X_{p}^{\wedge}\right)$ via the natural map. If $H_{*}(X ; \mathbb{Z})$ is finitely generated in every degree then $H_{\mathbb{Q}_{p}}^{*}(X) \cong H^{*}(X) \otimes \mathbb{Q}_{p} \cong H^{*}(X ; \mathbb{Q}) \otimes \mathbb{Z}_{p}$.

Proof. If X is p-good then $X \rightarrow X_{p}^{\wedge}$ induces an isomorphism in $H_{*}(-; \mathbb{Z} / p)$ and hence in $H^{*}\left(-; \mathbb{Z} / p^{n}\right)$ for all $n \geq 1$. Since $\mathbb{Z}_{p}=\lim _{\curvearrowleft} \mathbb{Z} / p^{n}$ a standard spectral sequence argument gives $H^{*}\left(X ; \mathbb{Z}_{p}\right) \cong H^{*}\left(X_{p}^{\wedge} ; \mathbb{Z}_{p}\right)$ and hence $H_{\mathbb{Q}_{p}}^{*}(X) \cong H_{\mathbb{Q}_{p}}^{*}\left(X_{p}^{\wedge}\right)$.

Suppose $H_{*}(X)$ is finitely generated in every degree. If A is a torsion-free abelian group, Sp, Theorem 10 in Chap. 5.5] implies that $H^{*}(X ; A) \cong H^{*}(X) \otimes A$. Therefore

$$
H_{\mathbb{Q}_{p}}^{*}(X)=H^{*}\left(X ; \mathbb{Z}_{p}\right) \otimes \mathbb{Q} \cong H^{*}(X) \otimes \mathbb{Z}_{p} \otimes \mathbb{Q}=H^{*}(X) \otimes \mathbb{Q}_{p}=H^{*}(X) \otimes \mathbb{Q} \otimes \mathbb{Z}_{p}=H^{*}(X ; \mathbb{Q}) \otimes \mathbb{Z}_{p}
$$

The next proposition is the main result of this section.
8.7. Proposition. Let $p \geq 3$ be a prime and set $G=\operatorname{PSU}(2 p)$. Let $S \leq G$ be a maximal discrete p-toral group and let $\mathcal{G}=\left(S, \mathcal{F}_{S}(G), \mathcal{L}_{S}^{c}(G)\right)$ be the associated p-local compact group. Let \mathcal{R} denote the collection of all centric radical subgroups of S. Then $\operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) \lesseqgtr \operatorname{Ad}(\mathcal{G})$. In fact, the following composition is not surjective

$$
\operatorname{SpAd}(\mathcal{G} ; \mathcal{R}) \xrightarrow{i n c l} \operatorname{Ad}(\mathcal{G}) \xrightarrow{(\Psi, \psi) \mapsto|\Psi|_{p}} \operatorname{Ad}^{\text {geom }}(B \mathcal{G})
$$

Proof. Write $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ for short. Let W be the Weyl group of G. Since $p>2$, Dirichlet's theorem on the existence of infinitely many primes in arithmetic progressions implies that there are infinitely many primes k such that $k \not \equiv 1 \bmod p$. In particular there exists such k that, in addition, satisfies $(k,|W|)=1$. By [JMO, Theorem 2] there exist unstable Adams operations $f: B G \rightarrow B G$ of degree k. That means that $f^{*}: H^{2 m}(B G ; \mathbb{Q}) \rightarrow H^{2 m}(B G ; \mathbb{Q})$ is multiplication by k^{m} for every $m>0$. Lemma 8.6 and the functoriality of $H^{*}(-)$ imply that f_{p}^{\wedge} induces multiplication by k^{m} on $H^{2 m}(B G ; \mathbb{Q}) \otimes \mathbb{Z}_{p} \cong H_{\mathbb{Q}_{p}}^{2 m}(B G) \cong$ $H_{\mathbb{Q}_{p}}^{*}\left(B G_{p}^{\wedge}\right)$. Since $B G_{p}^{\wedge} \simeq B \mathcal{G}$, we obtain a self equivalence h of $B \mathcal{G}$ which induces multiplication by k^{m}
on $H_{\mathbb{Q}_{p}}^{*}(B \mathcal{G})$. Since \mathcal{G} is weakly connected by Lemma 8.5 it follows from BLO7 Proposition 3.2] that $h \in \operatorname{Ad}^{\text {geom }}(B \mathcal{G})$. Theorem 1.3 applies to show that h is homotopic to $|\Psi|_{p}^{\wedge}$ for some $(\Psi, \psi) \in \operatorname{Ad}(\mathcal{G})$.

Set $\zeta=\operatorname{deg}(\psi)$. Thus, $\left.\psi\right|_{T}$ is multiplication by ζ. Commutativity of

and the fact that $H_{\mathbb{Q}_{p}}^{*}(B \mathcal{G}) \cong H_{\mathbb{Q}_{p}}^{*}(B T)^{W(\mathcal{G})}$, BLO7, Theorem A], imply that $|\Psi|_{p}^{\wedge}$ induces multiplication by ζ^{m} on $H_{\mathbb{Q}_{p}}^{2 m}(B \mathcal{G})$ for all $m>0$. On the other and, $|\Psi|_{p}^{\wedge} \simeq h$, so $\zeta^{m}=k^{m}$ for all $m>0$.

Now, $G=\operatorname{PSU}(2 p)$ and since $Z(\mathrm{SU}(2 p))$ is a finite group, $B G$ and $B S U(2 p)$ are rationally equivalent. It is well known that

$$
H^{*}(B S U(n)) \cong \mathbb{Z}\left[c_{2}, c_{3}, \ldots, c_{n}\right], \quad c_{i} \in H^{2 i}(B S U(n)) .
$$

It follows from Lemma 8.6] that $H_{\mathbb{Q}_{p}}^{*}(B \mathcal{G})$ is a polynomial algebra over \mathbb{Q}_{p} generated by $c_{2}, \ldots, c_{p}, \ldots, c_{2 p}$. In particular $H^{2 p}(B \mathcal{G})$ is a non-trivial vector space over \mathbb{Q}_{p} on which $|\Psi|_{p}^{\wedge}$ induces multiplication by ζ^{p}, and this map is the same as multiplication by k^{p}. This implies that ζ and k differ by a p th root of unity in \mathbb{Q}_{p} and Ro, Sec. 6.7, Prop. 1,2] implies that $\zeta=k$ since \mathbb{Q}_{p} contains no p th roots of unity if $p>2$.

In order to complete the proof we apply Lemma 8.1 to show that (Ψ, ψ) is not special relative to \mathcal{R}. Since $k \not \equiv 1 \bmod p$, it follows that $k \notin \Gamma_{1}(p)$, and so Condition (iil) of Lemma 8.1 holds. The remainder of the proof is dedicated to showing that Condition (iiil) of the lemma also holds.

Let $\tilde{Q} \leq U(2 p)$ be the subgroup

$$
\tilde{Q}=\Gamma_{p}^{U} \times \Gamma_{p}^{U}
$$

that, by the discussion above, is p-stubborn in $U(2 p)$. As we explained above, \tilde{Q} is generated by the matrices

$$
\begin{aligned}
& A^{(1)}=\left(\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right), \quad B^{(1)}=\left(\begin{array}{cc}
B & 0 \\
0 & I
\end{array}\right), \\
& A^{(2)}=\left(\begin{array}{ll}
I & 0 \\
0 & A
\end{array}\right), \\
& \left(\begin{array}{cc}
u I & 0 \\
0 & v I
\end{array}\right), \quad(u, v \in U(1)) .
\end{aligned}
$$

Throughout we will write I for the identity matrix in $U(p)$ and we will also write $\operatorname{diag}(u I, v I)$ for the matrices of the last type, and $\operatorname{diag}(A, I)$ for $A^{(1)}$ etc. It is clear from (8.3) that

$$
\begin{aligned}
& {\left[A^{(1)}, A^{(2)}\right]=\left[A^{(1)}, B^{(2)}\right]=\left[B^{(1)}, B^{(2)}\right]=1,} \\
& {\left[A^{(1)}, B^{(1)}\right]=\operatorname{diag}(\zeta I, I), \quad\left[A^{(2)}, B^{(2)}\right]=\operatorname{diag}(I, \zeta I) .}
\end{aligned}
$$

Also, $A^{(1)}, A^{(2)}, B^{(1)}, B^{(2)}$ commute with all the matrices $\operatorname{diag}(u I, v I)$. Set

$$
Q=\tilde{Q} \cap S U(2 p)
$$

By [O, Theorem 10], Q is p-stubborn in $\operatorname{SU}(2 p)$ and by [O, Lemma 7] it is also centric in $\operatorname{SU}(2 p)$, namely $C_{\mathrm{SU}(2 p)}(Q)=Z(Q)$. Notice that Q contains $A^{(1)}, A^{(2)}, B^{(1)}, B^{(2)}$ because $\operatorname{det}(B)=1$ since it is the signature of the odd cycle $(1,2, \ldots, p)$. Therefore Q is generated by $A^{(1)}, A^{(2)}, B^{(1)}, B^{(2)}$ and by the subgroup consisting of the matrices

$$
\left(\begin{array}{cc}
u I & 0 \tag{8.8}\\
0 & v I
\end{array}\right), \quad u, v \in U(1), u^{p} v^{p}=1 .
$$

This subgroup is easily seen to be isomorphic to $U(1) \times \mathbb{Z} / p$. The maximal torus of Q is therefore the set of matrices

$$
Q_{0}=\left\{\operatorname{diag}(u I, v I): v=u^{-1}\right\} \cong U(1) .
$$

Clearly Q contains $Z(S U(2 p))$ which is the set of matrices $u \cdot I$ where $u^{2 p}=1$.

Let R be the image of Q in $\operatorname{PSU}(2 p)$. It is generated by the images of $A^{(1)}, A^{(2)}, B^{(1)}, B^{(2)}$ which we denote by adding "bars" - $\bar{A}^{(i)}$ and $\bar{B}^{(i)}$ - and by the images of the matrices in (8.8) which we denote by \bar{U}. The maximal torus of R is the image of Q_{0}, namely these matrices U with $v=u^{-1}$.

By JMO, Proposition 1.6(i)], R is p-stubborn in G and hence, by Q, Lemma 7(ii)] it is also centric in $G=\operatorname{PSU}(2 p)$, namely $C_{G}(R)=Z(R)$. We claim that the projection $R \rightarrow R / R_{0}$ does not have a section. Assume to the contrary that such a section $s: R / R_{0} \rightarrow R$ exists. Consider the following elements in R

$$
X=\bar{A}^{(1)} \bar{B}^{(2)}, \quad Y=\bar{B}^{(1)} \bar{A}^{(2)}
$$

A straightforward calculation using (8.3) gives

$$
[X, Y]=\left[\bar{A}^{(1)} \bar{B}^{(2)}, \bar{B}^{(1)} \bar{A}^{(2)}\right]=\left[\bar{A}^{(1)}, \bar{B}^{(1)}\right] \cdot\left[\bar{B}^{(2)}, \bar{A}^{(2)}\right]=\overline{\operatorname{diag}(\zeta I, I)} \cdot \overline{\operatorname{diag}\left(I, \zeta^{-1} I\right)}=\overline{\operatorname{diag}\left(\zeta I, \zeta^{-1} I\right)} .
$$

Let x, y denote the images of X, Y in R / R_{0}. These are clearly non-trivial elements, and since $s: R / R_{0} \rightarrow R$ is a section, there are $\bar{U}, \bar{V} \in R_{0}$ such that

$$
s(x)=X \cdot \bar{U} \quad \text { and } \quad s(y)=Y \cdot \bar{V}
$$

Say, $U=\operatorname{diag}\left(u I, u^{-1} I\right)$ and $V=\operatorname{diag}\left(v I, v^{-1} I\right)$ where $u, v \in U(1)$. Then U, V commute with the matrices $A^{(i)}$ and $B^{(i)}$, and since s is a homomorphism and R / R_{0} is abelian, (8.4), it follows that

$$
1=[s(x), s(y)]=[X \bar{U}, Y \bar{V}]=[X, Y]=\overline{\operatorname{diag}\left(\zeta I, \zeta^{-1} I\right)}
$$

This means that $\operatorname{diag}\left(\zeta I, \zeta^{-1} I\right) \in Z(\mathrm{SU}(2 p))$ so it is diagonal, namely $\zeta=\zeta^{-1}$. Therefore $\zeta^{2}=1$ in \mathbb{Z}_{p} which implies that $\zeta= \pm 1$. However, we have seen that $\zeta=k$, and k was chosen such that $k>0$ and $k \neq 1 \bmod p$, which is absurd. We conclude that $R \rightarrow R / R_{0}$ does not have a section.

Let P be a maximal discrete p-toral subgroup of R. Up to conjugation in G we may assume that $P \leq S$. Since R is centric, it is p-centric (namely $Z(R)$ is the maximal p-toral subgroup of $C_{G}(R)$) and BLO3, Lemma 9.6(c)] shows that P is \mathcal{F}-centric. Also, P is snugly embedded in R, hence in G, and by [BLO3, Lemma 9.4] there is an isomorphism of groups

$$
\operatorname{Out}_{G}(P)=\operatorname{Rep}_{G}(P, P) \stackrel{\cong}{\rightrightarrows} \operatorname{Rep}_{G}(R, R)=\operatorname{Out}_{G}(R) .
$$

Since R is centric in G, it follows that $\operatorname{Out}_{G}(R)=N_{G}(R) / R$ and since R is p-stubborn, $\operatorname{Out}_{G}(R)$ is finite and

$$
O_{p}\left(\operatorname{Out}_{\mathcal{F}}(P)\right)=O_{p}\left(\operatorname{Out}_{G}(P)\right) \cong O_{p}\left(\operatorname{Out}_{G}(R)\right)=O_{p}\left(N_{G}(R) / R\right)=1
$$

Therefore P is \mathcal{F}-radical. We deduce that $P \in \mathcal{R}$. Since $\bar{P}=R$, Lemma 8.2 shows that P cannot have a complement for P_{0} in P. This shows that P satisfies the condition (iii) in Lemma 8.1 and finishes the proof of this proposition.

Appendix A. Extensions of categories - Proofs of results

Proof of Lemma 6.20. Let $c \in \mathcal{C}\left(X_{0}, X_{1}\right)$ be a morphism. By the definition of z_{σ} we have $\llbracket z_{\sigma}\left(1_{X_{1}}, c\right) \rrbracket \circ$ $\sigma\left(1_{x_{1}} \circ c\right)=\sigma\left(1_{X_{1}}\right) \circ \sigma(c)=\sigma(c)$ and since $\Phi\left(X_{1}\right)$ acts freely on $\mathcal{D}\left(X_{0}, X_{1}\right)$ it follows that $z_{\sigma}\left(1_{X_{1}}, c\right)=1$. Similarly $z_{\sigma}\left(c, 1_{X_{0}}\right)=1$.

Now we show that z_{σ} is a 2 -cocycle. We need to show that $\delta\left(z_{\sigma}\right)\left(c_{2}, c_{1}, c_{0}\right)=1$ for any 3-chain $X_{0} \xrightarrow{c_{0}} X_{1} \xrightarrow{c_{1}} X_{2} \xrightarrow{c_{2}} X_{3}$. Consider the following diagram in \mathcal{D}

The rectangle, the bottom-right square and the two triangles commute by the definition of z_{σ}. The bottom-left square commutes by (6.2). The diagram is therefore commutative. Since $\Phi\left(X_{3}\right)$ acts freely on $\mathcal{D}\left(X_{0}, X_{3}\right)$ it follows that the two morphisms $X_{3} \rightarrow X_{3}$ defined at the bottom of the diagram are
equal because their composition with $\sigma\left(c_{2} \circ c_{1} \circ c_{0}\right)$ give the same morphism in $\mathcal{D}\left(X_{0}, X_{2}\right)$. This, in turn, is equivalent to the 2 -cocycle condition for z_{σ}.

Now suppose that σ^{\prime} is another regular section. Since $[\sigma(c)]=c=\left[\sigma^{\prime}(c)\right]$ for any $c \in \mathcal{C}\left(X_{0}, X_{1}\right)$, there exists a unique $u(c) \in \Phi\left(X_{1}\right)$ such that $\sigma^{\prime}(c)=\llbracket u(c) \rrbracket \circ \sigma(c)$. This gives a 1-cochain $u \in C^{1}(\mathcal{C}, \Phi)$. By the defining relation of z_{σ} and $z_{\sigma^{\prime}}$ we get for any 2 -cochain $X_{0} \xrightarrow{c_{0}} X_{1} \xrightarrow{c_{1}} X_{2}$ in \mathcal{C}

$$
\begin{aligned}
\llbracket z_{\sigma^{\prime}}\left(c_{1}, c_{0}\right) \rrbracket \circ \llbracket u\left(c_{1} \circ c_{0}\right) \rrbracket \circ \sigma\left(c_{1} \circ c_{0}\right) \stackrel{(u)}{=} \llbracket z_{\sigma^{\prime}}\left(c_{1}, c_{0}\right) \rrbracket \circ \sigma^{\prime}\left(c_{1} \circ c_{0}\right) \stackrel{\left(z_{\sigma^{\prime}}\right)}{=} \sigma^{\prime}\left(c_{1}\right) \circ \sigma^{\prime}\left(c_{0}\right) \stackrel{(u)}{=} \\
\llbracket u\left(c_{1}\right) \rrbracket \circ \sigma\left(c_{1}\right) \circ \llbracket u\left(c_{0}\right) \rrbracket \circ \sigma\left(c_{0}\right) \stackrel{\boxed{6.2}}{=} \llbracket u\left(c_{1}\right) \rrbracket \circ \llbracket c_{1 *}\left(u\left(c_{0}\right)\right) \rrbracket \circ \sigma\left(c_{1}\right) \circ \sigma\left(c_{0}\right) \stackrel{\left(z_{\sigma}\right)}{=} \\
\llbracket u\left(c_{1}\right) \rrbracket \circ \llbracket c_{1 *}\left(u\left(c_{0}\right)\right) \rrbracket \circ \llbracket z_{\sigma}\left(c_{1}, c_{0}\right) \rrbracket \circ \sigma\left(c_{1} \circ c_{0}\right) .
\end{aligned}
$$

Since $\Phi\left(X_{2}\right)$ acts freely on $\mathcal{D}\left(X_{0}, X_{2}\right)$ and since $\llbracket-\rrbracket: \Phi\left(X_{2}\right) \rightarrow$ Aut $_{\mathcal{D}}\left(X_{2}\right)$ is injective, we deduce that $z_{\sigma^{\prime}}\left(c_{1}, c_{0}\right)=z_{\sigma}\left(c_{1}, c_{0}\right) \cdot u\left(c_{1}\right) \cdot u\left(c_{1} \circ c_{0}\right)^{-1} \cdot c_{1 *}\left(u\left(c_{0}\right)\right)$. Since this holds for all 2-cochains, $z_{\sigma^{\prime}}=z_{\sigma} \cdot \delta(u)$, namely z_{σ} and $z_{\sigma^{\prime}}$ are cohomologous.

Proof of Lemma 6.22. Suppose first that s exists. Then it provides a regular section $s: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}$ and the functoriality of s readily implies that $z_{s}=1$, hence $[\mathcal{D}]=0$.

Conversely, suppose that $[\mathcal{D}]=0$. Choose a regular section $\sigma: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}$. Then $z_{\sigma}=\delta(u)$ where δ is the differential in the cobar construction and $u \in C^{1}(\mathcal{C}, \Phi)$. Thus, given a 2-chain $C_{0} \xrightarrow{c_{1}} C_{1} \xrightarrow{c_{2}} C_{2}$ in \mathcal{C},

$$
\begin{equation*}
z_{\sigma}\left(c_{2}, c_{1}\right)=u\left(c_{2}\right) \cdot u\left(c_{2} \circ c_{1}\right)^{-1} \cdot \Phi\left(c_{2}\right)\left(u\left(c_{1}\right)\right) \tag{A.1}
\end{equation*}
$$

Define a functor $s: \mathcal{C} \rightarrow \mathcal{D}$ as follows. On objects $s(C)=C$ for all $C \in \mathcal{C}$. On morphisms $c \in \mathcal{C}\left(C_{1}, C_{2}\right)$,

$$
s(c)=\llbracket u(c) \rrbracket \circ \sigma(c)
$$

Then s is a functor because it respects units and compositions. First, since z_{σ} is regular $1=z_{\sigma}\left(1_{X}, 1_{X}\right)=$ $u\left(1_{X}\right) \cdot u\left(1_{X} \circ 1_{X}\right)^{-1} \cdot\left(1_{X}\right)_{*}\left(u\left(1_{X}\right)\right)=u\left(1_{X}\right)$, and therefore $u\left(1_{X}\right)=1$. Hence $s\left(1_{X}\right)=1_{X}$ because σ is regular. Next, s respects composition because

$$
\begin{aligned}
s\left(c_{2} \circ c_{1}\right)= & \llbracket u\left(c_{2} \circ c_{1}\right) \rrbracket \circ \sigma\left(c_{2} \circ c_{1}\right)=\llbracket u\left(c_{2} \circ c_{1}\right) \rrbracket \circ \llbracket z_{\sigma}\left(c_{2}, c_{1}\right) \rrbracket \circ \sigma\left(c_{2}\right) \circ \sigma\left(c_{1}\right) \text { (A.1 } \\
& \llbracket u\left(c_{2}\right) \rrbracket \circ \llbracket \Phi\left(c_{2}\right)\left(u\left(c_{1}\right)\right) \rrbracket \circ \sigma\left(c_{2}\right) \circ \sigma\left(c_{1}\right)(6.2) \llbracket u\left(c_{2}\right) \rrbracket \circ \sigma\left(c_{2}\right) \circ \llbracket u\left(c_{1}\right) \rrbracket \circ \sigma\left(c_{1}\right)=s\left(c_{2}\right) \circ s\left(c_{1}\right) .
\end{aligned}
$$

Clearly s is a right inverse to $\mathcal{D} \xrightarrow{[-]} \mathcal{C}$.
A.2. Remark. Given a functor $\Phi: \mathcal{C} \rightarrow \mathbf{A b}$, Thomason's construction Th gives rise to an extension \mathcal{D}. Inspection of this construction shows that is comes equipped with a section, namely a functor $s: \mathcal{C} \rightarrow \mathcal{D}$ which is a right inverse to the projection $\mathcal{D} \xrightarrow{[-]} \mathcal{C}$. It is not hard to see that $\left[\operatorname{Tr}_{\mathcal{C}}(\Phi)\right]=0$ and conversely, if \mathcal{D} is an extension with $[\mathcal{D}]=0$ then \mathcal{D} is isomorphic as an extension to $\operatorname{Tr}_{\mathcal{C}}(\Phi)$.

Proof of Lemma 6.24. To see that Γ is well defined we need to show that if \mathcal{E} and \mathcal{E}^{\prime} are equivalent extensions of \mathcal{C} by Φ then they give rise to the same element of $H^{2}(\mathcal{C}, \Phi)$. Fix regular sections $\sigma: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}$ and $\sigma^{\prime}: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}^{\prime}$ and let z_{σ} and $z_{\sigma^{\prime}}$ be their associated 2 -cocycles. Also fix an equivalence $\Psi: \mathcal{E} \rightarrow \mathcal{E}^{\prime}$, i.e. $\bar{\Psi}=\operatorname{Id}_{\mathcal{C}}$ and $\eta(\Psi)=\operatorname{Id}_{\Phi}$. Notice that $\Psi(\sigma): \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}^{\prime}$ is a regular section for \mathcal{E}^{\prime} because $\bar{\Psi}=\operatorname{Id}_{\mathcal{C}}$. Since $\eta(\Psi)=\operatorname{Id}_{\Phi}$, by applying Ψ to the defining relation of z_{σ} and using (6.11) we get

$$
\llbracket z_{\sigma}\left(c_{1}, c_{0}\right) \rrbracket \circ \Psi\left(\sigma\left(c_{1} \circ c_{0}\right)\right)=\Psi\left(\sigma\left(c_{1}\right)\right) \circ \Psi\left(\sigma\left(c_{0}\right)\right) .
$$

Therefore $z_{\sigma}=z_{\Psi(\sigma)}$ which is cohomologous to $z_{\sigma^{\prime}}$ by Lemma 6.20,
Now we construct $\Sigma: H^{2}(\mathcal{C}, \Phi) \rightarrow \operatorname{Ext}(\mathcal{C}, \Phi)$. Given $\zeta \in H^{2}(\mathcal{C}, \Phi)$ choose a regular 2-cocycle $z \in \zeta$ (this is possible by Lemma 6.17). Define a category \mathcal{D}_{z} as follows. First, $\operatorname{Obj}\left(\mathcal{D}_{z}\right)=\operatorname{Obj}(C)$ and $\mathcal{D}_{z}(X, Y)=\Phi(Y) \times \mathcal{C}(X, Y)$. Composition of morphisms $\left(g_{0}, c_{0}\right) \in \mathcal{D}_{z}\left(X_{0}, X_{1}\right)$ and $\left(g_{1}, c_{1}\right) \in \mathcal{D}_{z}\left(X_{1}, X_{2}\right)$ is given by

$$
\left(g_{1}, c_{1}\right) \circ\left(g_{0}, c_{0}\right)=\left(g_{1} \cdot \Phi\left(c_{1}\right)\left(g_{0}\right) \cdot z\left(c_{1}, c_{0}\right), c_{1} \circ c_{0}\right)
$$

It is a standard calculation to show that composition defined in this way is unital and associative, hence making D_{z} a small category. The functor $\pi_{z}: \mathcal{D}_{z} \rightarrow \mathcal{C}$ is the identity on objects and the obvious projection
on morphisms. The assignment $g \mapsto\left(g, 1_{X}\right)$ gives the maps $\delta_{X}: \Phi(X) \rightarrow$ Aut $_{\mathcal{D}_{z}}(X)$. It is easy to check that \mathcal{D}_{z} is an extension of \mathcal{C} by Φ.

Suppose that $z^{\prime} \in \zeta$ is another regular 2-cocycle and let $D_{z^{\prime}}$ be the associated extension. We claim that \mathcal{D}_{z} and $\mathcal{D}_{z^{\prime}}$ are equivalent extensions. Since z and z^{\prime} are cohomologous there is $u \in C^{1}(\mathcal{C}, \Phi)$ such that $z=z^{\prime} \cdot \delta(u)$. Regularity of z and z^{\prime} implies that $u\left(1_{X}\right)=1$ for all $X \in \mathcal{C}$ (by looking at the 2-chain $X \xrightarrow{\mathrm{id}} X \xrightarrow{\mathrm{id}} X)$. Define $\Psi: \mathcal{D}_{z} \rightarrow \mathcal{D}_{z^{\prime}}$ as the identity on objects, and on morphisms

$$
\Psi:(g, c) \mapsto(u(c) \cdot g, c)
$$

Then Ψ respects identity morphisms since $u\left(1_{X}\right)=1$. One easily checks it respects compositions because $z\left(c_{1}, c_{0}\right)=z^{\prime}\left(c_{1}, c_{0}\right) \cdot u\left(c_{1}\right) \cdot u\left(c_{1} \circ c_{0}\right)^{-1} \cdot c_{1 *}\left(u\left(c_{0}\right)\right)$. Finally, $\bar{\Psi}=\mathrm{Id}_{\mathcal{C}}$ as is evident from the definitions and $\eta(\Psi)=\mathrm{Id}$. Therefore \mathcal{D}_{z} and $\mathcal{D}_{z^{\prime}}$ define equivalent extensions. This shows that a map $\Sigma: H^{2}(\mathcal{C}, \Phi) \rightarrow$ $\operatorname{Ext}(\mathcal{C}, \Phi)$ is well defined. Notice that $\sigma: \mathcal{C}_{1} \rightarrow\left(\mathcal{D}_{z}\right)_{1}$ defined by $c \mapsto(1, c)$ where $c \in \mathcal{C}\left(X_{0}, X_{1}\right)$ and 1 denotes the identity element of $\Phi\left(X_{1}\right)$ gives a regular section such that $z_{\sigma}=z$. This shows that $\Gamma \circ \Sigma=\operatorname{Id}$. If $\mathcal{E}=(\mathcal{D}, \mathcal{C}, \Phi, \pi, \delta)$ is an extension and $\sigma: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}$ is a section then there is an equivalence $\Psi: \mathcal{D}_{z_{\sigma}} \rightarrow \mathcal{D}$ defined as the identity on objects and $\Psi:(g, c) \mapsto \llbracket g \rrbracket \circ \sigma(c)$ on morphisms. This shows that $\Sigma \circ \Gamma=\mathrm{Id}$.

Proof of Proposition 6.25. Fix regular sections $\sigma: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}$ and $\sigma^{\prime}: \mathcal{C}_{1}^{\prime} \rightarrow \mathcal{D}_{1}^{\prime}$ and let z_{σ} and $z_{z_{\sigma}^{\prime}}$ be the associated 2-cocycles (6.19).
(ii) \Longrightarrow (iii). Let $\Psi: \mathcal{E} \rightarrow \mathcal{E}^{\prime}$ be a morphism of extensions such that $\bar{\Psi}=\psi$ and $\eta(\Psi)=\eta$. Then for any $c \in \mathcal{C}\left(X_{0}, X_{1}\right)$ we have $[\Psi(\sigma(c))]=\psi(c)=\left[\sigma^{\prime}(\psi(c))\right]$ so $\Psi(\sigma(c))=\llbracket g \rrbracket \circ \sigma^{\prime}(\psi(c))$ for a unique $g \in \Phi^{\prime}(\psi(c))$. Therefore there exists $u \in C^{1}\left(\mathcal{C}, \Phi^{\prime} \circ \psi\right)$ such that

$$
\begin{equation*}
\Psi(\sigma(c))=\llbracket u(c) \rrbracket \circ \sigma^{\prime}(\psi(c)), \quad\left(c \in \mathcal{C}_{1}\right) \tag{A.3}
\end{equation*}
$$

Now, given a 2-chain $X_{0} \xrightarrow{c_{0}} X_{1} \xrightarrow{c_{1}} X_{2}$ in \mathcal{C} we have

$$
\begin{aligned}
& \llbracket \eta_{X_{2}}\left(z_{\sigma}\left(c_{1}, c_{0}\right)\right) \rrbracket \circ \llbracket u\left(c_{1} \circ c_{0}\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1} \circ c_{0}\right)\right) \stackrel{\boxed{\boxed{A .3}}=}{=} \llbracket \eta_{X_{2}}\left(z_{\sigma}\left(c_{1}, c_{0}\right)\right) \rrbracket \circ \Psi\left(\sigma\left(c_{1} \circ c_{0}\right)\right) \stackrel{\boxed{\boxed{6.11}}=}{=} \\
& \Psi\left(\llbracket z_{\sigma}\left(c_{1}, c_{0}\right) \rrbracket \cdot \sigma\left(c_{1} \circ c_{0}\right)\right) \stackrel{\stackrel{6.19}{=}}{=} \Psi\left(\sigma\left(c_{1}\right)\right) \circ \Psi\left(\sigma\left(c_{0}\right)\right) \stackrel{\text { A.3) }}{=} \\
& \llbracket u\left(c_{1}\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1}\right)\right) \circ \llbracket u\left(c_{0}\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{0}\right)\right) \stackrel{\stackrel{6.2}{=}}{=} \llbracket u\left(c_{1}\right) \rrbracket \circ \llbracket \Phi^{\prime}\left(\psi\left(c_{1}\right)\right)\left(u\left(c_{0}\right)\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1}\right)\right) \circ \sigma^{\prime}\left(\psi\left(c_{0}\right)\right)\left(z_{\sigma^{\prime}}\right) \\
& \llbracket u\left(c_{1}\right) \rrbracket \circ \llbracket \Phi^{\prime}\left(\psi\left(c_{1}\right)\right)\left(u\left(c_{0}\right)\right) \rrbracket \circ \llbracket z_{\sigma^{\prime}}\left(\psi\left(c_{1}\right), \psi\left(c_{0}\right)\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1} \circ c_{0}\right)\right) .
\end{aligned}
$$

Since $\Phi^{\prime}\left(\psi\left(X_{2}\right)\right)$ acts freely on $\mathcal{D}^{\prime}\left(X_{0}, X_{2}\right)$ we deduce that

$$
\eta_{X_{2}}\left(z_{\sigma}\left(c_{1}, c_{0}\right)\right)=z_{\sigma^{\prime}}\left(\psi\left(c_{1}\right), \psi\left(c_{0}\right)\right) \cdot u\left(c_{1}\right) \cdot u\left(c_{1} \circ c_{0}\right)^{-1} \cdot \Phi^{\prime}\left(\psi\left(c_{1}\right)\right)\left(u\left(c_{0}\right)\right) .
$$

This shows that $\eta_{*}\left(z_{\sigma}\right)=\psi^{*}\left(z_{\sigma^{\prime}}\right) \cdot \delta(u)$, hence $\eta_{*}([\mathcal{D}])=\psi^{*}\left(\left[\mathcal{D}^{\prime}\right]\right)$.
(iii) \Longrightarrow (ii). Assume that $\eta_{*}([\mathcal{D}])=\psi^{*}\left(\left[\mathcal{D}^{\prime}\right]\right)$. We will construct a morphism $\Psi: \mathcal{E} \rightarrow \mathcal{E}^{\prime}$. By the hypothesis, there exists $u \in C^{1}\left(\mathcal{C}, \Psi^{\prime} \circ \psi\right)$ such that $\eta_{*}\left(z_{\sigma}\right)=\psi^{*}\left(z_{\sigma^{\prime}}\right) \cdot \delta(u)$. Notice that since z_{σ} and $z_{\sigma^{\prime}}$ are regular 2-cocycles, $u\left(1_{X}\right)=1$ for every $X \in \mathcal{C}$ (to see this, evaluate $\eta_{*}\left(z_{\sigma}\right)$ and $\psi^{*}\left(z_{\sigma^{\prime}}\right)$ on the 2-chain $X \xrightarrow{\mathrm{id}} X \xrightarrow{\mathrm{id}} X)$.

Define $\Psi: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ a follows. On objects $\Psi: X \mapsto \psi(X)$. Every morphism in $\mathcal{D}(X, Y)$ has the form $\llbracket g \rrbracket \circ \sigma(c)$ for unique $c \in \mathcal{C}(X, Y)$ and $g \in \Phi(Y)$. Define

$$
\begin{equation*}
\Psi: \llbracket g \rrbracket \circ \sigma(c) \mapsto \llbracket \eta_{Y}(g) \rrbracket \circ \llbracket u(c) \rrbracket \circ \sigma^{\prime}(\psi(c)) \tag{A.4}
\end{equation*}
$$

Then Ψ respects identities since $u\left(1_{X}\right)=1$ and $\sigma^{\prime}\left(1_{X}\right)=1_{X}$. It respects composition as one verifies directly for $X_{0} \xrightarrow{\llbracket g_{0} \rrbracket \circ \sigma\left(c_{0}\right)} X_{1} \xrightarrow{\llbracket g_{1} \rrbracket \circ \sigma\left(c_{1}\right)} X_{2}$. On one hand,

$$
\begin{gathered}
\Psi\left(\llbracket g_{1} \rrbracket \circ c_{1}\right) \circ \Psi\left(\llbracket g_{0} \rrbracket \circ c_{0}\right)=\llbracket \eta_{X_{2}}\left(g_{1}\right) \cdot u\left(c_{1}\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1}\right)\right) \circ \llbracket \eta_{X_{1}}\left(g_{0}\right) \cdot u\left(c_{0}\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{0}\right)\right) \stackrel{\boxed{\boxed{66.2}}}{=} \\
\llbracket \eta_{X_{2}}\left(g_{1}\right) \cdot u\left(c_{1}\right) \cdot \Phi^{\prime}\left(\psi\left(c_{1}\right)\right)\left(\eta_{X_{1}}\left(g_{0}\right)\right) \cdot \Phi^{\prime}\left(\psi\left(c_{1}\right)\right)\left(u\left(c_{0}\right)\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1}\right)\right) \circ \sigma^{\prime}\left(\psi\left(c_{0}\right)\right) \stackrel{\text { nat. of } \eta}{=} \eta \\
\llbracket \eta_{X_{2}}\left(g_{1}\right) \cdot u\left(c_{1}\right) \cdot \eta_{X_{2}}\left(\Phi\left(c_{1}\right)\left(g_{0}\right)\right) \cdot \Phi^{\prime}\left(\psi\left(c_{1}\right)\right)\left(u\left(c_{0}\right)\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1}\right)\right) \circ \sigma^{\prime}\left(\psi\left(c_{0}\right)\right) \stackrel{\left(z_{\sigma^{\prime}}\right)}{=} \\
\llbracket \eta_{X_{2}}\left(g_{1}\right) \cdot u\left(c_{1}\right) \cdot \eta_{X_{2}}\left(\Phi\left(c_{1}\right)\left(g_{0}\right)\right) \cdot \Phi^{\prime}\left(\psi\left(c_{1}\right)\right)\left(u\left(c_{0}\right)\right) \cdot z_{\sigma^{\prime}}\left(\psi\left(c_{1}\right), \psi\left(c_{0}\right)\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1} \circ c_{0}\right)\right) \\
34
\end{gathered}
$$

On the other hand

$$
\begin{gathered}
\Psi\left(\llbracket g_{1} \rrbracket \circ c_{1} \circ \llbracket g_{0} \rrbracket \circ c_{0}\right) \stackrel{\llbracket .2 \rrbracket,\left(z_{\sigma}\right)}{=} \Psi\left(\llbracket g_{1} \cdot \Phi\left(c_{1}\right)\left(g_{0}\right) \cdot z_{\sigma}\left(c_{1}, c_{0}\right) \rrbracket \circ \sigma\left(c_{1} \circ c_{0}\right)\right) \stackrel{\text { 6.11, , A.4 }}{=} \\
\llbracket \eta_{X_{2}}\left(g_{1}\right) \cdot \eta_{X_{2}}\left(\Phi\left(c_{1}\right)\left(g_{0}\right)\right) \cdot \eta_{X_{2}}\left(z_{\sigma}\left(c_{1}, c_{0}\right)\right) \rrbracket \circ \llbracket u\left(c_{1} \circ c_{0}\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(c_{1} \circ c_{0}\right)\right)
\end{gathered}
$$

The right hand sides of the two equations are equal since $\eta_{*}\left(z_{\sigma}\right)=\psi^{*}\left(z_{\sigma^{\prime}}\right) \cdot \delta(u)$. We have just shown that $\Psi: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ is a functor. By its construction $\pi^{\prime} \circ \Psi=\psi \circ \pi$ and $\eta(\Psi)=\eta$ because for any $g \in \Phi(X)$ we have $\Psi\left(\llbracket g \rrbracket \circ \sigma\left(1_{X}\right)\right)=\llbracket \eta_{X}(g) \cdot u\left(1_{X}\right) \rrbracket \circ \sigma^{\prime}\left(\psi\left(1_{X}\right)\right)=\llbracket \eta_{X}(g) \rrbracket$ and use 6.11).

Proof of Proposition 6.26. For any 1-cocycle $z \in C^{1}(\mathcal{C} ; \Phi)$ define $\alpha_{z}: \mathcal{D} \rightarrow \mathcal{D}$ as the identity on objects and for any $d \in \mathcal{D}(X, Y)$

$$
\alpha_{z}: d \mapsto \llbracket z([d]) \rrbracket \circ d
$$

Since z is a 1 -cocycle, $z\left(1_{X}\right)=1$ for any $X \in \mathcal{C}$ and therefore α_{z} respects identity morphisms. It respects composition since z is a 1 -cocycle:

$$
\begin{aligned}
& \alpha_{z}\left(d_{1}\right) \circ \alpha_{z}\left(d_{0}\right)=\llbracket z\left(\left[d_{1}\right]\right) \rrbracket \circ d_{1} \circ \llbracket z\left(\left[d_{0}\right]\right) \rrbracket \circ d_{0} \stackrel{\boxed{6.2 \rrbracket}}{=} \llbracket z\left(\left[d_{1}\right]\right) \cdot\left[d_{1}\right]_{*}\left(z\left(\left[d_{0}\right]\right)\right) \rrbracket \circ d_{1} \circ d_{0} \stackrel{1 \text {-cocycle }}{=} \\
& \llbracket z\left(\left[d_{1} \circ d_{0}\right]\right) \rrbracket \circ d_{1} \circ d_{0}=\alpha_{z}\left(d_{1} \circ d_{0}\right)
\end{aligned}
$$

It easily follows from (6.2) that given $u \in C^{0}(\mathcal{C}, \Phi)$ we have $\alpha_{\delta(u)}=\tau_{u}$. This shows that Γ is well defined. The inverse of Γ sends every self equivalence Ψ to the 1-cochain $z \in C^{1}(\mathcal{C}, \Phi)$ which is defined by the relation $\Psi(d)=\llbracket z([d] \rrbracket \circ d$ which follows from the fact that $[\Psi(d)]=\bar{\Psi}([d])=[d]$. It is left as an exercise to check that z is a 1 -cocycle and that $\alpha_{z}=\Psi$.

Appendix B. The unstable Adams operations in JLL are special

Fix a p-local compact group $\mathcal{G}=(S, \mathcal{F}, \mathcal{L})$ and set $\mathcal{R}=\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$. Let \mathcal{P} be a set of representatives for the S-conjugacy classes in \mathcal{R}. By [BLO3, Lemma 3.2] the set \mathcal{P} is finite. For any $P, Q \in \mathcal{P}$ let $\mathcal{M}_{P, Q}$ be a set of representatives for the orbits of $N_{S}(Q)$ on $\mathcal{L}(P, Q)$. These sets are finite by [BLO3, Lemma 2.5]. Also we remark that since every $R \in \mathcal{R}$ is \mathcal{F}-centric, $N_{S}(R) / R_{0}$ is finite.

In JLL we showed that there exists some m such that for any $\zeta \in \Gamma_{m}(p)$ we can construct an unstable Adams operation (Ψ, ψ) of degree ζ. This operation has the following properties
(1) $\psi(P)=P$ for any $P \in \mathcal{P}$.
(2) If $P \in \mathcal{P}$ then $\left.\psi\right|_{N_{S}(P)}$ is an automorphism of $N_{S}(P)$ which induces the identity on $N_{S}(P) / P_{0}$.
(3) $\Psi(\varphi)=\varphi$ for every $\varphi \in \mathcal{M}_{P, Q}$ where $P, Q \in \mathcal{P}$.

In the rest of this section we show that any (Ψ, ψ) which satisfies these conditions must be special relative to $\mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$. As usual we will write T for the identity component of S.

For any $R \in \mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$ we fix once and for all $g_{R} \in S$ such that $R=g_{R} P g_{R}^{-1}$ where $P \in \mathcal{P}$ (clearly P is unique). For any $R, R^{\prime} \in \mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$ and any $\varphi \in \mathcal{L}\left(R, R^{\prime}\right)$ we consider $P=g_{R}^{-1} R g_{R}$ and $P^{\prime}=g_{R^{\prime}}^{-1} R^{\prime} g_{R^{\prime}}$; these are the representatives in \mathcal{P} for the S-conjugacy classes of R and R^{\prime} respectively. There is a unique $\mu \in \mathcal{M}_{P, P^{\prime}}$ and a unique $n_{\varphi} \in N_{S}\left(P^{\prime}\right)$ such that

$$
\begin{equation*}
\widehat{g_{R^{\prime}}^{-1}} \circ \varphi \circ \widehat{g_{R}}=\widehat{n_{\varphi}} \circ \mu . \tag{B.1}
\end{equation*}
$$

Since ψ induces the identity on S / T, there is a unique $\tau_{R} \in T$ such that

$$
\psi\left(g_{R}\right)=\tau_{R} \cdot g_{R}
$$

Similarly, with the notation above ψ induces the identity on $N_{S}\left(P^{\prime}\right) / P_{0}^{\prime}$ and therefore there exists a unique $t_{\varphi} \in P_{0}^{\prime}$ such that

$$
\psi\left(n_{\varphi}\right)=t_{\varphi} \cdot n_{\varphi}
$$

Notice that $g_{R^{\prime}} \in N_{S}\left(P^{\prime}, R^{\prime}\right)$ and therefore conjugation by g_{R} carries P_{0}^{\prime} onto R_{0}^{\prime}. Set

$$
\tau_{\varphi}=g_{R^{\prime}} \cdot t_{\varphi} \cdot g_{R^{\prime}}^{-1} \in R_{0}^{\prime}
$$

We now claim that τ_{R} and τ_{φ} chosen above render (Ψ, ψ) a special unstable Adams operation relative to $H^{\bullet}\left(\mathcal{F}^{c}\right)$, see Definition 7.1.

First, for any $R \in H^{\bullet}\left(\mathcal{F}^{c}\right)$,

$$
\psi(R)=\psi\left(g_{R} P g_{R}^{-1}\right)=\psi\left(g_{R}\right) P \psi\left(g_{R}\right)^{-1}=\tau_{R} g_{R} P g_{R}^{-1} \tau_{R}^{-1}=\tau_{R} R \tau_{R}^{-1}
$$

Next, if $R, R^{\prime} \in \mathcal{H}^{\bullet}\left(\mathcal{F}^{c}\right)$ and $\varphi \in \mathcal{L}\left(R, R^{\prime}\right)$ then (B.1) implies

$$
\begin{aligned}
\Psi(\varphi)= & \Psi\left(\widehat{g_{R^{\prime}}} \circ \widehat{n_{\varphi}} \circ \mu \circ \widehat{g_{R}^{-1}}\right)=\widehat{\psi\left(g_{R^{\prime}}\right)} \circ \widehat{\psi\left(n_{\varphi}\right)} \circ \Psi(\mu) \circ \widehat{\psi\left(g_{R}^{-1}\right)}= \\
& \widehat{\tau_{R^{\prime}}} \circ \widehat{g_{R^{\prime}}} \circ \widehat{t_{\varphi}} \circ \widehat{n_{\varphi}} \circ \mu \circ \widehat{g_{R}^{-1}} \circ \widehat{\tau_{R}^{-1}}=\widehat{\tau_{R^{\prime}}} \circ \widehat{\tau_{\varphi}} \circ \widehat{g_{R^{\prime}}} \circ \widehat{n_{\varphi}} \circ \mu \circ \widehat{g_{R}^{-1}} \circ \widehat{\tau_{R}^{-1}}=\widehat{\tau_{R^{\prime}}} \circ \widehat{\tau_{\varphi}} \circ \varphi \circ \widehat{\tau_{R}^{-1}}
\end{aligned}
$$

References

[A] K. Andersen , The normalizer splitting conjecture for p-compact groups; Fundamenta Mathematicae 161 (1999), no. $1-2,1-16$.
[AG09] K. K. S. Andersen; J. Grodal, The classification of 2-compact groups; J. Amer. Math. Soc. 22 (2009), no. 2, $387-436$.
[AGMV08] K. K. S. Andersen; J. Grodal ; J. M. Møller; A. Viruel, The classification of p-compact groups for p odd; Ann. of Math. (2) 167 (2008), no. 1, 95-210.
[AOV] K. K. S. Andersen; B. Oliver; J. Ventura, Reduced, Tame and exotic fusion systems; Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 87-152.
[BLO2] C. Broto, R. Levi, B. Oliver, The homotopy theory of fusion systems; J. Amer. Math. Soc. 16 (2003), no. 4, 779-856.
[BLO3] C. Broto, R. Levi, B. Oliver, Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups; Geom. Topol. 11 (2007), 315-427.
[BLO6] C. Broto, R. Levi, B. Oliver, An algebraic model for finite loop spaces; Algebr. Geom. Topol. 14 (2014), no. 5, 2915-2981.
[BLO7] C. Broto, R. Levi, B. Oliver, The rational cohomology of a p-local compact group; Proc. Amer. Math. Soc. 142 (2014), no. 3, 1035-1043.
[Br] K. Brown, Cohomology of Groups; Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin, 1982. $\mathrm{x}+306 \mathrm{pp}$.
[BK72] A. K. Bousfield; D. M. Kan, Homotopy limits, completions and localizations; Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin-New York, 1972. v+348 pp.
[GZ] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35 Springer-Verlag New York, Inc., New York 1967 x+168 pp.
[Ho] G. Hoff, Cohomologies et extensions de categories; Math. Scand. 74 (1994), no. 2, 191-207.
[JMO] S. Jackowski, J. McClure, B. Oliver, Homotopy classification of self-maps of BG via G-actions. I; Ann. of Math. (2) 135 (1992), no. 1, 183-226.
[LL] R. Levi, A. Libman Existence and uniqueness of classifying spaces for fusion systems over discrete p-toral groups; J. London Math. Soc. (2) 91 (2015) 47-70.
[JLL] F. Junod, R. Levi, A. Libman, Unstable Adams operations for p-local compact groups; Algebr. Geom. Topol. 12 (2012), no. 1, 49-74.
[O] B. Oliver, p-stubborn subgroups of classical compact Lie groups; J. Pure Appl. Algebra 92 (1994), no. 1, 55-78.
[Ro] A. M. Robert, A course in p-adic analysis; Graduate Texts in Mathematics, 198. Springer-Verlag, New York, 2000, xvi+437 pp.
[Sp] E. H. Spanier, Algebraic topology; McGraw-Hill Book Co., New York-Toronto, Ont.-London 1966 xiv+528 pp.
[Th] R. W. Thomason, Homotopy colimits in the category of small categories; Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91-109.

Institute of Mathematics, University of Aberdeen, Fraser Noble Building 138, Aberdeen AB24 3UE, U.K. E-mail address: r.levi@abdn.ac.uk

Institute of Mathematics, University of Aberdeen, Fraser Noble Building 136, Aberdeen AB24 3UE, U.K.
E-mail address: a.libman@abdn.ac.uk

