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The influence of spacetime foam on a broad class of bosonic fields with arbitrary numbers of particles in
the low-energy regime is investigated. Based on a recently formulated general description of open quantum
gravitational systems, we analyze the propagation of scalar, electromagnetic, and gravitational waves on
both long and short time scales with respect to their mean frequencies. For the long time propagation, the
Markov approximation that neglects the effects of initial conditions of these waves is employed. In this
case, despite intuitively expected decoherence and dissipation from the noisy spacetime, we show that such
phenomena turn out to be completely suppressed for scalar bosons, photons, and gravitons, which are
coupled to gravity but otherwise free. The short time effects are then recovered through the transient non-
Markovian evolution. Focusing on scalar bosons in initially incoherent states, we find that the resulting
quantum dissipation depends strongly on the distribution of the particle momentum states. We further
identify a hitherto undiscovered collective antidissipation mechanism for a large number of particles. The
surprising new effect tends to “bundle” identical particles within sharply distributed momentum states
having a width inversely proportional to the particle number due to the thermal fluctuations, or its square
root due to the vacuum fluctuations of spacetime.
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I. INTRODUCTION

Decoherence is fundamental to quantum gravity phe-
nomenology, as no physical systems are truly isolated from
the gravitational environment. The existence of spacetime
fluctuations thus provides a universal reservoir of environ-
mental degrees of freedom with which all matter interacts,
leading to the loss of coherence between superposition
states. It has previously been suggested that through this
mechanism quantum gravity can have significant effects on
quantum systems, in particular by causing the appearance
of classical behavior of matter and spacetime [1–3].
Furthermore, it imposes an ultimate limit on the type of
precision measurements that can be performed due to the
suppression of quantum interferences [4–6].
Environmental gravitational decoherence has been con-

sidered in the literature through a number of models [7–15].
These works have shown that gravitationally induced
decoherence would cause generally small effects on labo-
ratory scales [12,15,16]. However, the issue of quantum
systems of a large number of particles that could have
different conclusions does not appear to be sufficiently
addressed. While the models presented in Refs. [12,13]
would in principle allow for the treatment of many
particles, only one-particle master equations have been
studied in detail. Investigating collective decoherence
and dissipation due to gravity could lead to unexpected
effects, as even for noninteracting quantum particles,
the existence of a common reservoir can enhance or
suppress decoherence and dissipation [17]. In addition,

the indistinguishable nature of the particles may contribute
to such phenomena. Recently, we have derived a master
equation for the decoherence and dissipation of general
bosonic matter due to spacetime fluctuations [15]. Thanks
to its wide versatility, we apply the generic formalism
in this work to systems with an arbitrary number of
identical particles and report on the resulting new collective
quantum behaviors that may bear important physical
consequences.
We use the relativistic units in which the speed of light,

gravitational constant, and reduced Planck constant are,
respectively, scaled as c → c=c ¼ 1, G → Gc4, and
ℏ → ℏ=c. This leaves two independent dimensions for
physical quantities related to the Planck length lP and
energy EP. Spatial components are enumerated with Latin
indices with 1,2,3. Spacetime coordinates are labelled with
Greek indices carrying an additional zero for time.
Shorthand kx ¼ kμxμ is understood, and summation over
repeated coordinate and polarization indices is implied. The
time derivative and Hermitian conjugate are denoted with
an overdot ð_Þ and superscript dagger ð †Þ, respectively. A
ditto mark (″) refers to the previous expression or the right-
hand side of the previous equation.

II. PROPAGATION OF BOSONIC FIELDS IN
FLUCTUATING SPACETIME

We start by considering a general bosonic field in
an equilibrium bath of spacetime fluctuations characterized
by a Gaussian state density matrix ρB of environmental
gravitons. Unless otherwise stated, we assume the Planck
distribution NTðωÞ ¼ 1=ðeℏω=kBT − 1Þ at temperature T is
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maintained, where ω is the graviton frequency and kB is
Boltzmann’s constant.
The statistical state of a generally nonequilibrium

bosonic field is described by its density matrix ρðtÞ at
time t reduced from the total system as the ensemble
average over the gravitational reservoir. Initially at t ¼ 0,
this state is untangled with the environment so that the total
state takes the factored form ρð0Þ ⊗ ρB. Thereafter, entan-
glements with the environment are developed, leading to
the reduced state, described in the interaction picture, by
the following master equation

_ρðtÞ ¼ −
i
ℏ
½HSG; ρðtÞ� −

8πG
ℏ

Z
d3k

2ð2πÞ3k

×

�Z
t

0

dt0e−ikðt−t0Þð½τ†ijðk; tÞ; τijðk; t0ÞρðtÞ�

þ NTðkÞ½τ†ijðk; tÞ; ½τijðk; t0Þ; ρðtÞ��Þ þ ð″Þ†
�

ð1Þ

recently derived in Ref. [15], where

HSG ¼ −2G
Z

d3x0
Tμνðx; tÞT̄μνðx0; t − jx − x0jÞ

jx − x0j
denotes the self-gravity Hamiltonian and

τijðk; tÞ ¼
Z

d3xτijðx; tÞe−ik·x ð2Þ

in terms of the stress-energy tensor Tμν, its trace-reversion
T̄μν, and transverse-traceless (TT) stress tensor τij ¼ TTT

ij of
the field.
For a scalar (SC) field with dispersion relation ω2

k ¼
k2 þ μ2 using a mass parameter μ ≥ 0 and annihilation ak
and creation a†k operators satisfying

½ak; a†k0 � ¼ δ3ðk − k0Þ ½ak; ak0 � ¼ 0 ¼ ½a†k; a†k0 �; ð3Þ

we find the corresponding TT stress tensor operator to be

τSCij ðk; tÞ ¼ −
ℏ
2
PijklðkÞ

Z
d3k0

k0kk
0
lffiffiffiffiffiffiffi

ωk0
p

×
a†k0−kak0e

−iðωk0−ωk0−kÞtffiffiffiffiffiffiffiffiffiffi
ωk0−k

p þ ð″jk→−kÞ†; ð4Þ

where Pijkl ¼ ðPikPjl þ PilPjk − PijPklÞ=2 is the TT pro-
jector in terms of the transverse projector Pij [18]. In
arriving at the above τSCij ðk; tÞ, we have adopted normal
ordering and retained terms with particle number preserv-
ing matrix elements to be consistent with the low-energy
effective open quantum system description that involves no
pair productions or destructions.
For the electromagnetic (EM) field, in a fashion analo-

gous to Eq. (4), we find the Maxwell TT stress tensor to be

τEMij ðk; tÞ ¼ −
ℏ
2
PijklðkÞ

Z
d3k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk0−kωk0

p

× ½eσkðk0 − kÞeυl ðk0Þ þ ϵσσ0ϵυυ0eσ
0

k ðk0 − kÞeυ0l ðk0Þ�

×
aσ†k0−ka

υ
k0e

−iðωk0−ωk0−kÞtffiffiffiffiffiffiffiffiffiffi
ωk0−k

p þ ð″jk→−kÞ† ð5Þ

in terms of the basis polarisation vectors eσi ðkÞ for σ ¼ 1, 2,
normalized with eσi ðkÞeσj ðkÞ ¼ PijðkÞ, and the annihilation
aσk and creation a

σ
k
† operators for photons satisfying similar

commutation relations (3) with additional orthogonality
between two independent polarizations.
Similar treatment can be extended to the nonequilibrium

gravitational field considered as a bosonic system subject to
environmental decoherence and dissipation caused by
equilibrium gravitational fluctuations. For this purpose,
there is a need to distinguish these two contributions to the
metric perturbations. We thus denote the two types of
metric perturbations by hμν due to the stronger nonenvir-
onmental gravitational wave (GW) and by qμν due to the
weaker environmental metric fluctuations which also
accounts for the self-gravity of the GW. This then leads
to a spacetime metric of the form gμν ¼ ημν þ hμν þ qμν,
where ημν ¼ diagð−1;1;1;1Þ is the background Minkowski
metric and the perturbation orders for hμν and qμν are
considered to start from the first and second orders,
respectively. It is important to note that for the perturbative
metric expansion to be physically consistent the energy
density of the gravitational source must be below the
Planck scale [19].
Up to the second-order perturbations, they satisfy the

effective Einstein equations

Gð1Þ
μν ½hαβ� ¼ 0; Gð1Þ

μν ½qαβ� ¼ −Gð2Þ
μν ½hαβ�; ð6Þ

where

Gð1Þ
μν ½hαβ� ¼

1

2
fhμα;βμ þ hμβ ;αμ − hαβ ;μμ

− hνν;αβ þ ηαβhνν;μμ − ηαβhμν;μνg

Gð2Þ
μν ½hαβ� ¼

�
Rð2Þ
μν −

1

2
ημνRð2Þ −

1

2
hμνR

ð1Þ
μν

�
½hαβ�

are the first- and second-order expansions of the Einstein
tensor, in terms of the first- and second-order expansions

Rð1Þ
μν and Rð2Þ

μν of the Ricci tensor, respectively [18,20].
It is interesting to note that Eqs. (6) above naturally arise

from the Lagrangian density

L ¼ 1

16πG
fRð2Þ½hαβ� þ Rð2Þ½qαβ� − qμνGð2Þμν½hαβ�g ð7Þ

as variational field equations for hμν and qμν. This
Lagrangian density L fits the form constituting an open
quantum gravitational system [15], with the GW field hμν
acting as an effective bosonic field, whereas the
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inhomogeneous and homogeneous solutions for qμν
describe the self-gravity of hμν and spacetime fluctuations,
respectively.
Henceforth, by gravitons, we will primarily relate to hμν

having an effective stress-energy tensor, from the preceding

discussion, given by TGW
μν ¼ − 1

8πGG
ð2Þ
μν ½hαβ�. To proceed,

we apply the TT condition on hij ¼ hTTij and obtain from
the TT part of TGW

μν

τGWij ¼ 1

16πG
Pijkl

�
2hmnhkm;ln þ hkm;nhln;m

− hkm;nhlm;n −
1

2
hmn;khmn;l

�
: ð8Þ

The quantized GW field hij has the expansion

hij ¼
Z

d3k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGℏ
ð2πÞ3k

s
eσijðkÞaσkeikx þ ð″Þ† ð9Þ

in terms of the basis TT tensors eσijðkÞ for σ ¼ 1, 2,
normalized with eσijðkÞeσklðkÞ ¼ 2PijklðkÞ, and the annihi-
lation aσk and creation a

σ
k
† operators for gravitons satisfying

similar commutation relations for photons. Substituting this
expansion of hij into Eq. (8), we can readily obtain the
normal ordered and particle number preserving operator
τGWij ðk; tÞ, similar in form to Eq. (5) for photons, involving
wave vector k as well as polarization tensors eσijðkÞ instead
of polarization vectors eσi ðkÞ.
To investigate the nonunitary evolution of these bosonic

fields in the momentum basis, it is convenient to express
Eq. (4) in the form

τSCij ðk; tÞ ¼
Z

d3k0τSCij ðk; k0Þe−iωk;k0 t þ ð″jk→−kÞ† ð10Þ

in terms of ωk;k0 ¼ ωk0 − ωk0−k and

τSCij ðk; k0Þ ¼ −
ℏ
2
PijklðkÞ

k0kk
0
lffiffiffiffiffiffiffi

ωk0
p a†k0−kak0ffiffiffiffiffiffiffiffiffiffi

ωk0−k
p : ð11Þ

Analogously, we can write

τijðk; tÞ ¼
Z

d3k0τijðk; k0Þe−iωk;k0 t þ ð″jk→−kÞ† ð12Þ

with corresponding constructions for τij ¼ τSCij , τ
EM
ij , and

τGWij . Furthermore, using the orthogonality relations
between these quantities, we can derive a useful property,

τijðk; const × kÞ ¼ 0; ð13Þ
valid also for scalar bosons, photons, and gravitons with
τij ¼ τSCij , τ

EM
ij , and τGWij , respectively.

Using the properties developed so far in this section, we
can now establish the long-term influence of spacetime
fluctuations on the propagation of the above bosonic fields

in terms of decoherence and dissipation. For this purpose,
let us carry out the Markov approximation [21] of the
general master equation (1) by changing the time variable
t0 ¼ t − s, taking the limit

R
t
0 ds →

R∞
0 ds corresponding to

infinitely long past history, and applying the Sokhotski-
Plemelj theorem

R
∞
0 dse−iϵs ¼ πδðϵÞ − iP 1

ϵ, where P
denotes the Cauchy principal value that gives rise to a
nondissipative Hamiltonian HLS for possible Lamb and
Stark shifts [21]. Together with Eq. (12), this process
allows the master equation (1) to reduce to the Markovian
form

_ρðtÞ ¼ −
i
ℏ
½HSG þHLS; ρðtÞ� −

8π2G
ℏ

Z
d3kd3k0

2ð2πÞ3k
X
�

× δðk ∓ ω�k;k0 Þfe∓iω�k;k0 tð½τ†ijðk; tÞ; τijð�k; k0ÞρðtÞ�
þ NTðkÞ½τ†ijðk; tÞ; ½τijð�k; k0Þ; ρðtÞ��Þ þ ð″Þ†g

ð14Þ
with

P
� indicating the two expressions with correspond-

ing alternative signs are summed together. We will refer to
the nonunitary part of Eq. (14) as the Markov dissipator.
From Eq. (4), we see that the nonzero condition k ¼

�ω�k;k0 for the δ function in Eq. (14) requires the field to be
massless and wave vectors k and k0 to be parallel. But this
makes τijðk; k0Þ ¼ 0 according to Eq. (13) for “free” scalar
bosons, photons, and gravitons in the sense used in this
work that they interact only with gravitation and are
otherwise free. Consequently, for these particles, the
Markov dissipator in Eq. (14) vanishes, resulting in the
lack of long-term quantum decoherence and dissipation due
to spacetime fluctuations [22].

III. COLLECTIVE BUNDLING OF IDENTICAL
BOSONS BY SPACETIME FOAM

To obtain nontrivial quantum dissipative effects during
the transient evolution of an ensemble ρðtÞ of N particles
from an initial state ρð0Þ untangled with the gravitational
reservoir, we return to the master equation (1) and consider
these unbound particles to have a sufficient spatial spread
for their self-gravity to be negligible by approximat-
ing ½HSG; ρðtÞ� ¼ 0.
Given the complex dynamical structures arising from the

dominant non-Markovian dissipator in Eq. (1), let us
champion the development with relatively simple scalar
bosons that have been found to share a number of key
properties with photons and gravitons in the previous
section. The underlying N-particle Hilbert space is spanned
by states of the following generic form

jKi ¼ 1ffiffiffiffiffiffi
N!

p a†
k1
� � � a†kN j0i; ð15Þ

whereK ¼ fk1; k2;…; kNg denotes a set of wave vectors of
the N particles.
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Even with scalar bosons as our “explorer” particles using
the TT stress tensor τij ¼ τSCij , the evaluation of the matrix
elements hKj · jK0i of the non-Markovian dissipator with
respect to general jKi and jK0i can still be quite involved.
Fortunately, by exploiting a number of identities, we are able
to gain considerable simplifications resulting in a trackable
approach. To beginwith,we notice from the normal ordering
and particle number conservation of τij that τijðk; tÞj0i ¼ 0,
and fromEq. (4) and indeedmore generally Eq. (12), we also
have τijð−k; tÞ ¼ τ†ijðk; tÞ. These properties enable us to
infer the (multiple) actions of the TT stress-tensor operators
on an N-particle state from the commutation relation

½τijðk; tÞ; ak0 � ¼ ℏPijklðkÞ
k0kk

0
le

−iðωk0þk−ωk0 Þtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk0þkωk0

p ak0þk ð16Þ

and other commutators between fτijðk; tÞ; τ†ijðk; tÞg and

fak0 ; a†k0 g obtained upon taking ðk → �kÞð†Þ of Eq. (16).
These commutators can be regarded as superoperators on
ak0 , a

†
k0 that shift their wave vectors by �k.

To evaluate the double commutators in the master
equation (1), we proceed in the same manner by succes-
sively applying similar superoperators with compensating
shifts in momenta. This leads to further eigen superoperator
equations of the following form:

½τijðk; t0Þ; ½τ†ijðk; tÞ; ak0 ��

¼ ℏ2PijklðkÞk0ik0jk0kk0l
e−iðωk0−k−ωk0 Þðt−t0Þ

ωk0−kωk0
ak0 : ð17Þ

Relations exemplified by Eqs. (16) and (17) and their

extensions with að†Þk0 → að†Þ
k1

� � � að†ÞkN provide beneficial tools
to systematically evaluate all the matrix elements hKj · jK0i
of the non-Markovian dissipator of the master equation (1).
The resulting matrix elements with jKi ¼ jK0i and jKi ≠
jK0i are responsible for dissipation and decoherence,
respectively, each having its own rich dynamical content.
Below, we will focus on dissipation and demonstrate

its significant effects, leaving more detailed study on the
N-particle decoherence using Eq. (1) to future work.
Transient dissipation of an incoherent statistical state of
the N-particle scalar system can play a significant role for
realistic sources that are classical in nature. Here, its analysis
is based on a further available observation: if the density
matrix ρðtÞ is initially diagonal in the momentum basis, then
under quantum evolution using the master equation (1),
density matrix ρðtÞ remains diagonal in the same basis.
To see this, consider a diagonal density matrix ρðtÞ with

elements hKjρðtÞjKi ¼ fðK; tÞ using a real function f
depending symmetrically on the particle wave vectors. This
function is normalized with

R
fd3NK ¼ 1 to ensure the unity

trace condition of the densitymatrixρðtÞ. Using relations (16)
and (17) and their extensions described above, we obtain
after somealgebra the followingdiagonal elements associated
with the non-Markovian dissipator of Eq. (1):

hKjτ†ijðk; tÞτijðk; t0ÞρðtÞjKi

¼ ℏ2PijklðkÞ
XN
I¼1

×kIik
I
jk

I
kk

I
l
e−iðωkI−k−ωkI Þðt−t0Þ

ωkI−kωkI
fðK; tÞ

hKjρðtÞτijðk; t0Þτ†ijðk; tÞjKi ¼ ð″jk→−kÞ†; ð18Þ
and

hKjτijðk; t0ÞρðtÞτ†ijðk; tÞjKi

¼ ℏ2PijklðkÞ
XN
I¼1

XN
J¼1

×kIik
I
jk

J
kk

J
l
eiðωkJþk−ωkJ Þtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkJþkωkJ

p e−iðωkIþk−ωkI Þt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkIþkωkI

p

× fðKjkJ→kJþk; tÞ
hKjτ†ijðk; tÞρðtÞτijðk; t0ÞjKi ¼ ð″jk→−kÞ†: ð19Þ
It is therefore clear that themaster equation (1)with negligible
self-gravity transcends into a closed system under time
evolution for function f, thereby preserving the stated
diagonal structure of the incoherent density matrix ρ.
Some more striking observations can now be made, in

the special case with jKi consisting of N particles occupy-
ing the same momentum states, i.e., k1 ¼ k2 ¼ � � � ¼ kN .
Then, while the single sum over particles in Eq. (18)
contributes to positive dissipation proportional to N, the
double sum in Eq. (19) contributes to negative dissipation
in proportion to N2. On the other hand, unlike Eq. (18), the
f factor in Eq. (19) depends on k, which in the presence of a
dynamical width of the distribution of f over k would serve
to limit such negative dissipation after integrating over k in
Eq. (1). These two competing factors suggest the existence
of an equilibrium width of k that decreases with the particle
number N.
Specifically, let us assume ρðtÞ to have a characteristic

width Δk around a mean wave vector k̄ initially. To be
consistent with the negligible self-gravity for a large spatial
spread of the N-particle system, the width Δk should be
limited, which will be taken to be Δk < k̄ for simplicity. In
accordance with the low-energy effective description of
Eq. (1), when carrying out the integrations over k, we will
adopt a UV cutoff naturally related to the energy scale of
the N-particle system so that k < k̄.
With the above understanding, we evaluate the diagonal

matrix element of master equation (1), using Eqs. (18) and
(19), related to state jKi consisting of N particles all having
the mean wave vector, i.e., k1 ¼ k2 ¼ � � � ¼ kN ¼ k̄. A
transient time interval Δt ¼ 2π=k̄ then emerges so that the
corresponding matrix element of the non-Markovian dis-
sipator approaches zero rapidly for t > Δt, which is
consistent with the lack of Markovian dissipator in long-
time evolution.
During the transient period 0 < t < Δt, the density

matrix element hKjρðtÞjKi abbreviated with ϱðtÞ in the
following changes in terms of vacuum (Δϱvac) and thermal
(ΔϱT) contributions due to the first and second terms of the
non-Markovian dissipator in Eq. (1), respectively. Up to an
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order 1 factor, we find these changes to be given approx-
imately by

Δϱvac
ϱð0Þ ≃ 3NGℏk̄2

2ω2
k̄

 
N
Z
k<Δk

−
Z
k<k̄

!
kdk; ð20Þ

ΔϱT
ϱð0Þ≃

3NGℏk̄2

ω2
k̄

 
N
Z
k<Δk

−
Z
k<k̄

!
NTðkÞkdk: ð21Þ

Evidently, the above expressions can flip signs depending
on the wave vector width Δk and the particles number N,
leading to a “bundling” effect with a characteristic width
Δk for each of Eqs. (20) and (21) when their right-hand
sides vanish. It is clear that in each case the width Δk
decreases with the particles number N. Such a tendency for
bosonic particles to gather toward the same state as a result
of balanced positive and negative dissipations may be
compared to the collective bunching effect for photons
[23] and other systems that appear to be classical in nature
while satisfying Bose-Einstein statistics [24]. Here, we find
this bosonic behavior could be further enhanced by
spacetime fluctuations.
Since fundamentally vacuum and thermal fluctuations of

spacetime take place on scales of the Planck length lP and
thermal correlation length lT ¼ ℏ

kBT
at temperature T,

respectively, it is instructive to analyze Eqs. (20) and
(21) in terms of these scales. The approximation NTðkÞ≃
kBT=ℏk will be used to explicitly evaluate (21) in the low-
energy limit with ℏk̄ < kBT as a definitive and physically
reasonable scenario which may be readily generalized
without affecting the general arguments here.
Then, for massless particles, Eqs. (20) and (21) reduce,

respectively, to

Δϱvac
ϱð0Þ ≃ 3Nl2

P

4
ðNΔk2 − k̄2Þ; ð22Þ

ΔϱT
ϱð0Þ≃

3Nl2
P

lT
ðNΔk − k̄Þ: ð23Þ

In this case, using Eq. (22), the bundling effect due to
vacuum spacetime fluctuations has a momentum width
given by

Δp
p

≃ 1ffiffiffiffi
N

p ; ð24Þ

where p ¼ ℏk̄ is the mean particle momentum with
Δp ¼ ℏΔk. For this effect to be effective during the
transient period, or equivalently for significant bundling
to occur, we require Δϱvac=ϱð0Þ > 1 for an initial width
Δk ∼ k̄. This implies the condition

N >
λ

lP
≃ EP

E
; ð25Þ

where λ ¼ 2π=k̄ is the mean wavelength of the particles, on
the number of particles, where E is the mean energy of the
particles. This condition amounts to the total energy carried
by the N particles exceeding the Planck energy. However,
for the perturbative metric expansion to be valid, the ratio of
energy E to cubic wavelength λ3 must be so that the
effective energy density is less than the Planck density:

E
λ3

<
EP

l3
P
: ð26Þ

Otherwise nonperturbative quantum effects could also
contribute and are beyond the scope of our present
considerations.
Using Eq. (23), the similar bundling effect due to thermal

fluctuations of spacetime has a momentum width given by

Δp
p

≃ 1

N
; ð27Þ

which can be substantially smaller with larger N compared
with the vacuum case in Eq. (24). Moreover, significant
bundling could occur with ΔϱT=ϱð0Þ > 1 if

N >

ffiffiffiffiffiffiffiffi
lTλ

p
lP

: ð28Þ

Compared with Eq. (25), this condition is a less stringent
condition on N if the mean energy of the particles E is less
than the mean thermal energy of the environmental
gravitons ∼kBT with lT < λ.
For nonrelativistic massive particles, Eqs. (20) and (21)

reduce, respectively, to

Δϱvac
ϱð0Þ ≃ 3Nl2

P

4

k̄2

μ2
ðNΔk2 − k̄2Þ; ð29Þ

ΔϱT
ϱð0Þ≃

3Nl2
P

lT

k̄2

μ2
ðNΔk − k̄Þ: ð30Þ

Using Eq. (29), the bundling effect due to vacuum
spacetime fluctuations also has a width given by
Eq. (24), and this effect could be significant under the
condition

N >
EP

Ekin
; ð31Þ

where Ekin is the mean Newtonian kinetic energy of the
particles. Again, using Eq. (30), the bundling effect due to
thermal spacetime fluctuations has a smaller width given by
Eq. (27), with significant bundling if

N >

ffiffiffiffiffiffi
lT

λ

r
EP

Ekin
ð32Þ

is satisfied, where λ is the mean de Broglie wavelength of
the particles. One also sees that this condition is less
stringent on N compared with Eq. (31), if the mean de
Broglie wavelength of the particles is longer than the
correlation length of thermal environmental gravitons.
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IV. CONCLUDING REMARKS

For the first time, we have described theoretically a novel
collective quantum gravitational effect leading to an anti-
dissipation mechanism that amplifies with the number N of
the identical particles. The effect is highly counterintuitive
as spacetime foam phenomena, if any, have been widely
anticipated to manifest some kind of randomization of
radiation and matter [25–28]. Instead, with the exception of
N ¼ 1 already reported in Ref. [15], here we show that
during the transient evolution from an initial state
untangled with the gravitational environment, following
emission or experimental preparation, identical particles
could be bundled toward a spike, rather than scattered, in
the momentum space by metric fluctuations.
Although this mechanicalism is presently demonstrated

using a scalar field, other (pseudo)bosonic fields, such as
electromagnetic and gravitational waves, are expected to
behave likewise. Using Eq. (25) for the vacuum contribution,
we see that such a scenario would be important for intense
light sources or strong gravitational wave events similar to
recent observation in Ref. [29], where the total energy of the
N-particle system around the mean frequency are likely to
exceed the Planck energy. From Eq. (28), the thermal
contribution also depends on the currently uncertain temper-
ature T of the gravitational bath and could enhance the
vacuum values based on T ∼ 1 K and gravitational wave-
length λ ≫ lT ∼ 1 mm. In contrast, from Eq. (31) and (32)
with also T ∼ 1 K, this bundling effect could be less
significant for ensembles of nonrelativistic identical particles
such as Bose-Einstein condensates under typical laboratory
conditions.
Following the transient period, in which the new

bundling mechanicalism is effective, we show that
gravitationally interacting free particles experience no
further gravitational decoherence and dissipation. This
underlines a commonly unsuspected fact that spacetime
foam by itself may not be enough to cause nonunitary

quantum dynamics. This is also consistent with recent
astronomical observations of gamma-ray bursts sug-
gesting spacetime foam does not appear to affect the
propagation of free photons as certain other models of
gravitational decoherence would imply [30].
Nonetheless, it does not necessarily mean that realistic

long-time propagations of bosonic fields suffer no quantum
gravitational decoherence and dissipation either, since
additional interactions will modify the argument through,
e.g., nongravitational interactions and internal structures of
particles and the curved nature of physical background
spacetime on the cosmological scale due to cosmic expan-
sion and on the astronomical scale due to gravity from
celestial objects and dark matter.
Indeed, we have reported elsewhere how the “no-go

theorem” for long-time decoherence represented by
Eq. (13) can be circumvented by the nontrivial Markovian
quantum behavior of bound systems, having well-defined
quadrupole moments, subject to both spacetime fluctuations
and other external interactions [31]. Based on that, the
aforementioned further physical considerations can also be
investigated.
Finally, we remark that the present work may have far-

reaching consequences for much broader real-world quan-
tum systems consisting of a large number of particles that
inevitably interact with environmental quantum fluctua-
tions. Especially, but perhaps not exclusively, in light of the
role played by the gravitational gauge invariance [15], it
would be interesting to explore novel collective quantum
effects analogous to those studied here using general
transverse fields undergoing gauge invariant interactions
with identical particles such as QED and beyond.
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