LOCALIZATION OF QUANTUM BIEQUIVARIANT D-MODULES AND Q-W
ALGEBRAS

A. SEVOSTYANOV

ABSTRACT. We present a biequivariant version of Kremnizer—Tanisaki localization theorem for
quantum D-modules. We also obtain an equivalence between a category of finitely generated
equivariant modules over a quantum group and a category of finitely generated modules over a g-W
algebra which can be regarded as an equivariant quantum group version of Skryabin equivalence.
The biequivariant localization theorem for quantum D-modules together with the equivariant
quantum group version of Skryabin equivalence yield an equivalence between a certain category
of quantum biequivariant D-modules and a category of finitely generated modules over a q-W
algebra.

1. INTRODUCTION

Let G be a complex simple connected simply connected algebraic group with Lie algebra g, B
a Borel subgroup of G, b the Lie algebra of B. Denote by U(g) the universal enveloping algebra
of g. Let A be a weight of g, M) the Verma module over g with highest weight A\ with respect to
the system of positive roots of the pair (g, b). Denote by I the annihilator of M) in U(g), and let
U(g)* = U(g)/Ix. Note that I, is generated by a maximal ideal of the center Z(U(g)) of U(g) which
is the kernel of a character x» : Z(U(g)) — C. By the celebrated Beilinson-Bernstein theorem, if A is
regular dominant then the category of U(g)*modules is equivalent to the category of modules over
the sheaf Dg /B of A-twisted differential operators on the flag variety G/B which are quasi-coherent
over the sheaf of regular functions C[G/B] on G/B. The functor providing the equivalence is simply
the global section functor.

This result was generalized to the case of quantum groups in [1, 29]. The main observation used
in [1] is that Dy can be regarded as a quantization of the A-twisted cotangent bundle T*(G/B)x
which is a symplectic leaf in the quotient (T*G)/B of the symplectic variety T*G, equipped with
the canonical symplectic structure of the cotangent bundle, by the Hamiltonian action induced by
the B—action by right translations on G. Note that A naturally gives rise to a character A : b — C,
and T*(G/B)y corresponds to the value A € b* of the moment map p : T*G — b* for the B-action,
T*(G/B)x = u~*(\)/B. Using this observation at the quantum level one can replace the category
of Dg‘; / p-modules with a category D}, of modules over the sheaf of differential operators Dg on G
which are equivariant with respect to a left B—action. Objects of this category are Dg—modules
M equipped with the structure of B—modules in such a way that the action map Dg ® M — M
is a morphism of B-modules, where the action of B on D¢ is induced by the action on G by right
translations, and the differential of the action of B on M coincides with the action of the Lie algebra
b on the tensor product M ® Cy, where b acts on M via the natural embedding b — D¢, and C,, is
the one—dimensional representation of b corresponding to the character A\. The Beilinson—Bernstein
localization theorem for equivariant Dg—modules was already formulated in [2] (see also [16] for
some further details).
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Note that T*G is naturally equipped with a G—action induced by the G—action by left translations
on (. This action also preserves the canonical symplectic structure on 7T*G and commutes with
the right B-action. Hence it induces a Hamiltonian G-action on (T*G)/B and on all its symplectic
leaves. In particular, the natural G-action on T*(G/B), is Hamiltonian. One can restrict this
action to various subgroups of G. Let NN be such a subgroup with Lie algebra n equipped with
a character xy : n — C. Similarly to the case of B—equaivariant Dg—modules one can consider the
category fVDg /B of N—equivariant Dg / p—modules. By Beilinson-Bernstein localization theorem this

category is equivalent to the category x*U(g)* — mod of equivariant (g, N)-modules on which the
center Z(U(g)) acts by the character y,. This category is defined similarly to the category Dg. Its
objects are left g—modules V' equipped with the structure of left N—modules in such a way that the
action map g ® V — V is a morphism of N—-modules, where the action of N on g is induced by the
adjoint representation, and the differential of the action of N on V coincides with the action of the
Lie algebra n on the tensor product V ® C,, where n acts on V via the natural embedding b — g,
and C, is the one-dimensional representation of n corresponding to the character .

Now let w1 : T*(G/B)) — n* be the moment map corresponding to the Hamiltonian group ac-
tion of N on T*(G/B)», and , T*(G/B)x = i ' (x)/N the corresponding reduced Poisson manifold.
Following the philosophy presented before in case of equivariant Dg—modules one can expect that
the category ]\’,‘Dg /B is equivalent to the category of D—-modules related to certain quantization of

«T*(G/B),, and the category U (g)*—mod is equivalent to the category of modules over an associa-
tive algebra XU (g)* which is a quantization of ,7*(G/B),. Putting the two equivariance conditions
together this would yield an equivalence between a category D3 of Dg-modules equipped with the
two equivariance conditions with respect to actions of B and N and a category of XU (g)*-modules.

Such equivalence was established, for instance, in case of modules over W-algebras in [9] when
the subgroup N and its character y are chosen in such a way that XU(g)* is a quotient of a finitely
generated W-algebra over a central ideal. In this paper we are going to obtain a similar categorial
equivalence in case of g-W-algebras introduced in [27].

The definition of g-W—-algebras is given in terms of quantum groups and we shall need an analogue
of Beilinson—Bernstein localization for quantum groups. First of all there is a natural analogue of
the algebra of differential operators on G for quantum groups called the Heisenberg double D, (see
[23]). D, is a smash product of a quantum group U,(g) and of the dual Hopf algebra generated by
matrix elements of finite-dimensional representations of the quantum group. Similarly to the case of
Lie algebras one can consider the category of Dy,—modules which are equivariant, in a sense similar
to the Lie algebra case, with respect to a locally finite action of a quantum group analogue U, (b)
of the universal enveloping algebra of a Borel sublagebra, U, (b4 ) being equipped with a character A
as well. The main statement of [1] is that if A is regular dominant the category of such D,—modules
is equivalent to the category of U,(g)*-modules, where U,(g)* = U,(g)/""/Jy, and U,(g)*™ is the
locally finite part with respect to the adjoint action of the Hopf algebra U,(g) on itself, Jy is the
annihilator of the Verma module with highest weight \ in U, (g)’™.

In Section 8 we give a quantum group analogue of the localization theorem for the category
~D3. Our construction is a straightforward generalization of the classical result. Such an easy
generalization is possible because the Heisenberg double is equipped with natural analogues of the
G—actions on the algebra of differential operators on G induced by left and right translations on G.

This result can be applied in case of g-W—algebras if a quantum analogue of the group N and of
its character are chosen in a proper way. Appropriate subalgebras U; (m ) of U,(g) with characters
Xy were defined in terms of certain new realizations U;(g) of the quantum group Uy, (g) associated
to Weyl group elements s of the Weyl group W of g. The definition of subalgebras UJ(m.) requires
a deep study of the algebraic structure of U,(g) presented in [27]. We recall the main results
of [27] in Sections 4-6, with some important modifications crucial for applications to UZ(g)/™".
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The definition of the category of U, (m,)-equivariant modules over U;(g) requires some further
investigation presented in Sections 5-6. The problem is that a proper definition of this category
formulated in Section 7 can only be given in terms of the locally finite part U; (g)f" of U;(g), and
the definition of the corresponding q-W-algebras associated to characters xj : U (my) — C given
in Section 5 in terms of U, ;(g)f " also becomes more complicated comparing to the one suggested in
[27]. The use of the locally finite part UZ(g)/™ is related to the fact that U (g)/*" is a deformation
of the algebra of regular functions on the algebraic group G which follows from Proposition 5.5.
Implicitly this result is also contained in [14].

The most difficult part of our construction is the proof of the equivalence between the category of
finitely generated modules over U; (9)/" equivariant over U, ,(m) and the category of finitely gener-
ated modules over the corresponding q-W-algebra W (G) which can be regarded as an equivariant
version of Skryabin equivalence for quantum groups (see Appendix to [19]). We use the idea of the
proof of a similar fact for W—algebras as it appears in [13]. However, technical difficulties in case of
quantum groups become obscure. Our proof is presented in Section 7. It heavily relies on the behav-
ior of all ingredients of the construction in the classical limit ¢ — 1. In particular, the key step is to
use the cross—section theorem for the action of a unipotent algebraic subgroup N C G on a subvariety
of G obtained in [26]. Let U(m4) be ¢ = 1 specialization of the U;(m,). The cross-section theorem
implies in particular that as a U(m)-module the ¢ = 1 specialization of any U;(m, )-equivariant
qu(g)fmfmodule V' is isomorphic to the space of homomorphisms home (U(m4), V') of U(m,) into
a vector space V' vanishing on some power of the natural augmentation ideal of U(m).

The quantum group analogue of the localization theorem for the category U (g)* — mod easily
gives an equivalence between a category of modules over D, equivariant with respect to a Uy (by)—
action and to a Uj(my)-action and the category of Ug(my)-equivariant modules over U (g)f™m
with central character x,. This equivalence together with the equivariant Skryabin equivalence
for quantum groups yield an equivalence between a category of finitely generated modules over D,
equivariant with respect to a U,(by)-action and to a U7 (m )-action and the category of finitely
generated modules over the quotient W/ (G)a of the corresponding g-W-algebra Wy (G) by a central
ideal. This agrees with the general philosophy that W7 (G)x, or more generally W7 (G), can be
regarded as a quantization of the algebra of regular functions on a reduced Poisson manifold. In
case of the algebra W;(G) the corresponding manifold is an algebraic group analogue of Slodowy
slices associated to Weyl group element s (see Theorem 6.4). Such slices transversal to conjugacy
classes in G were defined in [26].

The main results of this paper are valid when the deformation parameter ¢ is generic, i.e. it
belongs to an open subset of the complex plane.
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2. NOTATION

Fix the notation used throughout the text. Let G be a connected finite-dimensional complex
simple Lie group, g its Lie algebra. Fix a Cartan subalgebra b C g and let A be the set of roots of
(g,h). Let o, 0 =1,...,1, I = rank(g) be a system of simple roots, Ay = {f1,...,5n} the set of
positive roots. Let Hi, ..., H; be the set of simple root generators of b.

Let a;; be the corresponding Cartan matrix, and let dy,...,d; be coprime positive integers such
that the matrix b;; = d;a;; is symmetric. There exists a unique non-degenerate invariant symmetric
bilinear form (, ) on g such that (H;, H;) = dj_laij. It induces an isomorphism of vector spaces h ~ h*
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under which «; € h* corresponds to d; H; € h. We denote by oV the element of § that corresponds
to a € h* under this isomorphism. The induced bilinear form on h* is given by (a;, ;) = b;;.

Let W be the Weyl group of the root system A. W is the subgroup of GL(h) generated by the
fundamental reflections sq, ..., s,

Sz(h) =h-— Oéi(h)Hi, heb.

The action of W preserves the bilinear form (,) on h. We denote a representative of w € W in G by
the same letter. For w € W, g € G we write w(g) = wgw™!. For any root a € A we also denote by
S« the corresponding reflection.

For every element w € W one can introduce the set A,, = {a € A} : w(a) € —A}, and the
number of the elements in the set A,, is equal to the length I(w) of the element w with respect to
the system I' of simple roots in A.

Let by be the positive Borel subalgebra and b_ the opposite Borel subalgebra; let ny = [by, b4 ]
and n_ = [b_,b_] be their nilradicals. Let H = exph, Ny = expny,N_ = expn_,B; =
HN,,B_ = HN_ be the Cartan subgroup, the maximal unipotent subgroups and the Borel sub-
groups of G which correspond to the Lie subalgebras h,n,,n_, by and b_, respectively.

We identify g and its dual by means of the canonical invariant bilinear form. Then the coadjoint
action of G on g* is naturally identified with the adjoint one. We also identify n * & n_, b " =~ b_.

Let gg be the root subspace corresponding to aroot 5 € A, gg = {x € g|[h, 2] = B(h)z for every h €
h}. g5 C g is a one—dimensional subspace. It is well known that for @ # —j the root subspaces g,
and gg are orthogonal with respect to the canonical invariant bilinear form. Moreover g, and g_q
are non—degenerately paired by this form.

Root vectors X, € g, satisfy the following relations:

[(Xo, X o] = (Xo, X _o)a”.
Note also that in this paper we denote by N the set of nonnegative integer numbers, N = {0, 1,...}.

3. QUANTUM GROUPS

In this paper we shall consider various specializations of the standard Drinfeld-Jimbo quantum
group Up(g) defined over the ring of formal power series C[[h]], where h is an indeterminate. We
follow the notation of [6].

Let V' be a C[[h]]-module equipped with the h—adic topology. This topology is characterized by
requiring that {h"V | n > 0} is a base of the neighborhoods of 0 in V', and that translations in V/
are continuous.

A topological Hopf algebra over C[[h]] is a complete C[[h]]-module A equipped with a structure
of C[[h]]-Hopf algebra (see [6], Definition 4.3.1), the algebraic tensor products entering the axioms
of the Hopf algebra are replaced by their completions in the h—adic topology. Let u,1, A, e,S be the
multiplication, the unit, the comultiplication, the counit and the antipode of A, respectively.

The standard quantum group U, (g) associated to a complex finite-dimensional simple Lie algebra
g is a topological Hopf algebra over C[[h]] topologically generated by elements H;, X;5, X, i =
1,...,1, subject to the following defining relations:

KiK.

1,7 qlfq,jl bl

+ + - —
[Hi7Hj] :0, [H“Xj } ::t(linj 5 XjX] _Xj Xj :(5

1—a;; r 1—ay g i—r r . .

o e I e
qi

where

d;hH; h _ _ . d; __ _d;h
Ki:6 , € =¢, ¢ =q " =¢€ )
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n

[ ZL L: LM? [n]g! = [nlg. .. [Ug [nlg = (];__7;—_1

b

with comultiplication defined by
Ap(H)=H;®1+10H;, Af(X)=X"oK '+10X}, AyX;)=X; @1+ KX,
antipode defined by
Sn(Hi) = —Hi, Su(X[") = =X K, Su(X[) = K[ ' X},
and counit defined by
en(H;) = en(XF) = 0.
We shall also use the weight-type generators

and the elements L; = Vi,

The Hopf algebra Uy (g) is a quantization of the standard bialgebra structure on g in the sense
that Ux(g)/hUn(g) = U(g), Ap = A (mod h), where A is the standard comultiplication on U(g),
and

Aj — AP
h
Here 6 : g — g ® g is the standard cocycle on g, and AYPP = oA, o is the permutation in Uy, (g)®?,
o(z ®y) =y ® z. Recall that

0(z)=(ad, ®1+1®ady)2ry, 74 €949,

(mod h) = —0.

l
1
(3.1) ry = §ZYZ»®HH— > (X5 X p) ' Xp0 X p.
i=1 BEAL

Here X1 € g4 are root vectors of g. The element r € g ® g is called a classical r—matrix.
Un(g) is a quasitriangular Hopf algebra, i.e. there exists an invertible element R € Uy (g) @ Ux(g),
called a universal R—matrix, such that

(3.2) APP(a) = RAR(a)R ™! for all a € Uy(g).

We recall an explicit description of the element R. Firstly, one can define root vectors of Up(g)
in terms of a braid group action on Uy (g) (see [6]). Let m;j, i # j be equal to 2,3,4,6 if a;jaj; is
equal to 0, 1,2, 3, respectively. The braid group By associated to g has generators T3, ¢ = 1,...,1[,
and defining relations

LTI ... =T,T,1,T; ...
for all 7 # j, where there are m;; 1"’s on each side of the equation.

By acts by algebra automorphisms of Uy, (g) as follows:

Ti(X;") = =X " T(X]) = —e "X Ti(Hj) = Hj — ajiH;,

E(X;F) = Z(_1)7“—%3'q;T(X;r)(—an—r)X;r(Xj)(r)’ i 7,
r=0

T(X;) =Y (=1 " gf (X)X, (X)), i

r=0
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where

[rlg:! ’ [r]g;!
Recall that an ordering of a set of positive roots A is called normal for any three roots o, 3, =
such that v = a + 8 we have either a <y < for f<v < a.
For any reduced decomposition wg = $;, ... S;,, of the longest element wq of the Weyl group W
of g the ordering

(X;) P20, i=1,...,L

B = iy, B2 = 8i, gy .., BD = Siy -+ - Sip_, Qi
is a normal ordering in A, and there is a one-to—one correspondence between normal orderings of
A, and reduced decompositions of wy (see [31]).
Fix a reduced decomposition wy = s;, ... s;, of wy and define the corresponding root vectors in

Un(g) by

(3.3) X; =T,..T, X
The root vectors X; satisfy the following relations:
a k k kn
(84) XIXF —q*PXIxF= 3 Clh k)5 ™0™ )™, a < B,
a<d1<...<6p<B
£\(R) _ (XD)* _ di " .
where for o € AL we put (X)W = mT k >0, g, = q“ if the positive root « is Weyl group

conjugate to the simple root o, C'(k1,...,k,) € Clg,q71].
Note that by construction
X[}L (mod h) = X3 € g3,

XE (mod h) =X_g€g_p

are root vectors of g.

Denote by Up(ny), Up(n_) and Up(h) the C[[h]]-subalgebras of Up(g) topologically generated by
the X7, by the X, and by the H;, respectively. For any a € Ay one has X € Uy (ny).

An explicit expression for R may be written by making use of the q—exponential

> k

1 T
i) = S
k=0 a°

in terms of which the element R takes the form:

Hequgl [(1- q%)ng ® X5,
B

where the product is over all the positive roots of g, and the order of the terms is such that the
a—term appears to the left of the f—term if o >  with respect to the normal ordering of A, .

The r-matrix r; = 2~ (R—1®1) (mod h), which is the classical limit of R, coincides with the
classical r—matrix (3.1).

One can calculate the action of the comultiplication on the root vectors Xi in terms of the

l
(3.5) R = exp l—h > (Y @ Hy)

universal R—matrix. For instance for Ah(ng) one has

(3.6) An(XE) =R (X} @™ +10 X1 R,
where

R<p. =Rp_,---Rp,, Rp, = empq[;:[(l —q3)X; ® X5 .
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4. REALIZATIONS OF QUANTUM GROUPS ASSOCIATED TO WEYL GROUP ELEMENTS

Our main objects of study are certain specializations of realizations of quantum groups associated
to Weyl group elements. Let s be an element of the Weyl group W of the pair (g, §), and b’ the
orthogonal complement, with respect to the Killing form, to the subspace of h fixed by the natural
action of s on h. Let h’* be the image of h’ in h* under the identification h* ~ b induced by the
canonical bilinear form on g. The restriction of the natural action of s on h* to the subspace h’* has
no fixed points. Therefore one can define the Cayley transform ifiPh/* of the restriction of s to h'*,
where Py« is the orthogonal projection operator onto '™ in h*, with respect to the Killing form.

Let U (g) be the topological algebra over C[[h]] topologically generated by elements e;, f;, H;, ¢ =
1,...1 subject to the relations:

Cis Ki—K '
[Hi, Hj] =0, [Hi,ej] = azjej, [Hy, f] = —aijfj, eifj —q% fjei = d; -,

qi—4q;

_ [ 1+s _ ,dihH;
cij_(li_sph’*ahaj)u Ki—G’ )

1—a;; rorcs 1—ai- —a—T r . .
ZT:O ](_1) a |: T ’ :| (ei)l I ej(ei) = 07 1 7& T
q

i

1—a;; P 1—ay —ii—1 r . .
>0 (=) [ o } (f)' =" fi(fi)" =0, i # j.
qi
Proposition 4.1. ([27], Theorem 4.1) For every solution n;; € C, i,j =1,...,1 of equations
(4].) djnij — dmﬂ = Cij
there exists an algebra isomorphism ),y : Ui (g) — Un(g) defined by the formulas:
1 l
Cpny(en) = X T Lpws e (F) = T] ;"0 X0, gy () = Hi.
p=1 p=1
The general solution of equation (4.1) is given by
1
(4.2) nij = de(% + 5ij),
where s;; = s5;.
The algebra U;(g) is called the realization of the quantum group Uj(g) corresponding to the
element s € W.
Now we recall the definition of certain normal orderings of root systems associated to Weyl group
elements introduced in [27]. These orderings will play a crucial role in the definition of q-W-algebras.
Let s be an element of the Weyl group W of the pair (g,). By Theorem C in [5] s can be
represented as a product of two involutions,

(4.3) s =s's?
where s' = s, ..., s> = $y,,, ... 5y,, the roots in each of the sets v1,...,7, and Ypy1,..., W
are positive and mutually orthogonal, and the roots 71, ..., form a linear basis of h’*.

Proposition 4.2. ([27], Proposition 5.1) Let s € W be an element of the Weyl group W of the
pair (g,b), A the root system of the pair (g,h) Then there is a system of positive roots A% such that
the decomposition s = s's? is reduced in the sense that I(s) = I(s?) + I(s'), where I(-) is the length
function in W with respect to the system of simple roots in A%, and AS = A3, [Js*(A%)), AS_, =
A% UsH(AS,) (disjoint unions), A%, = {a € A% : sb2a € =A%}, A = {a € A} : sa € —A%}.
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Here s, s* are the involutions entering decomposition (4.3), s* = sy, ... 8., , 8% = Sypar -+ Sy, the

roots in each of the sets yi,...,vn and Yp41, ...,y are positive and mutually orthogonal.
Moreover, there is a normal ordering of the root system A% of the following form

1 1 1 1 1 1
ﬂ:l?""/Bt7ﬁt+17‘"76t+%7717ﬁt+¥+2""7ﬁt+¥+nl’,y27

1 1 1 1
(44) t+p;n,+n1+2...,ﬂt+p;n+n2,’)/3,...,’yn,ﬂt_‘_p_’_l,...,ﬁl(s1),...,

ﬁ%7 cee ,52,%+17ﬂ§+2, e 7B§+m157n+2753+m1+2a e ,5q2+m2,’7n+3, )
W B im0+ Boasamy o~y Bagromy .z~ —myr1r -+ Bils2):
ﬂ?’ s 7ﬂ%oa
where

1 1 jpl 1 1 1
{ﬁlv"'aﬂtvﬂtJrl,'"76t+%77175t+%+2a”~7ﬁt+%+nla’y2v

1 1 1 1 _ AS
g pnge o Bepegn 98 s Brpin s By b = B,

1 1 1 1
{ﬁt+17"'56t+¥771a/6t+%+2a"'7ﬁt+%+n15727

! A} ={a € A%t (@) = —a} = AS__,

1
t+P;n+n1+2"'7/Bt+p;"+n27’y37' A

2 2 2 2 2 2
{617 s aﬁq77n+1;ﬁq+27 e 76q+m177n+27ﬁq+m1+27 e 7Bq+m2a7n+37 sy

2 2 2 2 _
Y, Bq+ml(52)+17 N 7ﬁ2q+2ml(52)7(l’7n)7 B2q+2ml(52)7(l/7n)+17 LR Bl(s2)} - Agz,
2 2 2 2
{’Yn-‘rla 5q+2, LR ﬂq+m17’yn+2a ﬂq+m1+27 cee ,ﬂq+m27 Y435
2 2 2
7l’aﬁq+ml(32)+17 cee ’ﬁ2q+2ml(32)—(l’—n)} = {Oé S Aj_|5 (Oé) = —Oé} = A§2:_17

{BY,....BD,} ={a € Ajls(a) = a}.
The length of the ordered segment An, C A in normal ordering (4.4),

_ 1 1 1 1
Am+ —'7176t+%+27~--a6t+%+n177276t+%+n1+2---vﬁH,%Jﬂma
1 1 2 2
(45) 735'"77ﬂ7ﬁt+p+17"'>6l(51)7""517"'76q7
7n+17ﬂg+27"'u63+m17’7n+2a63+m1+27‘"763+m27’7n+37"'7’yl’7
is equal to
I(s)=1U
(4.6) D — (%—!—Do),

where D is the number of roots in A%, I(s) is the length of s and Dy is the number of positive roots
fixed by the action of s.

1

Remark 4.1. In case when s = s* is an involution the last root in the segment Ay, is the root

preceding BY in normal ordering (4.4).

Let
Ap = {a € Als(a) = o},
and I' the set of simple roots in A% . We shall need the parabolic subalgebra p of g and the parabolic
subgroup P associated to the subset I'o = I'(] A of simple roots. Let n and [ be the nilradical and
the Levi factor of p, IV and L the unipotent radical and the Levi factor of P, respectively.
Note that we have natural inclusions of Lie algebras p D n, and Ag is the root system of the
reductive Lie algebra I. We also denote by n the nilpotent subalgebra opposite to n.
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We shall also need another system of positive roots associated to (the conjugacy class of) the
Weyl group element s. In order to define it we need to recall the definition of a circular normal
ordering of the root system A.

Let f31,082,...,8p be a normal ordering of a positive root system. Then following [17] one can
introduce the corresponding circular normal ordering of the root system A where the roots in A are
located on a circle in the following way

. \ .

Ba Bp
B1 —B1
-Bp —Ba
AN .

Let o, 8 € A. One says that the segment [«, 5] of the circle is minimal if it does not contain
the opposite roots —a and —f and the root 8 follows after a on the circle above, the circle being
oriented clockwise. In that case one also says that o < 8 in the sense of the circular normal ordering,

(4.7 a < 8 < the segment [«, 5] of the circle is minimal.

Later we shall need the following property of minimal segments which is a direct consequence of
Proposition 3.3 in [18].

Lemma 4.3. Let [, 8] be a minimal segment in a circular normal ordering of a root system A.
Then if a + 3 is a root we have
a<a+p<p.

Note that any segment in a circular normal ordering of A of length equal to the number of positive
roots is a system of positive roots.

Now consider the circular normal ordering of A corresponding to the system of positive roots A%
and to its normal ordering introduced in Proposition 4.2. The segment which consists of the roots
« satisfying 71 < a < —v; is a system of positive roots in A as its length is equal to the number of
positive roots and it is closed under addition of roots by Lemma 4.3.

The system of positive roots A, introduced this way and equipped with the normal ordering
induced by the circular normal ordering is called the normally ordered system of positive roots
associated to the (conjugacy class of) the Weyl group element s € W.

The linear subspace of g generated by the root vectors X, (X_,), a € A, is in fact a Lie
subalgebra m, C g (m_ C g). Note that by definition A, C A, and hence m4 C by, where b is
the Borel subalgebra associated to A4 and b_ is the opposite Borel subalgebra. Also by definition
we have Ay, C A%, and hence my Cn, m_ Cu.
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Denote by Uj(ny) the subalgebra in U7 (g) generated by e; (f;),i = 1,...,1. Let UZ(h) be the
subalgebra in Uj(g) generated by H;, i =1,...,1.

We shall construct analogues of root vectors for Uf(g). It is convenient to introduce an operator
K € End b defined by

l
(4.8) Z d—J

Proposition 4.4. ([27], Proposition 4.2, Theorem 6.1, Section 10) Let s € W be an element
of the Weyl group W of the pair (g,h), A the root system of the pair (g,h). Let Uj(g) be the
realization of the quantum group Up(g) associated to s.

For any solution of equation (4.1) and any normal ordering of the root system Ay the elements
es = Uy, }(X+ e"EBYY and fs = w{_nl}(e_hKﬁvXﬁ_)7 B € Ay lie in the subalgebras Uf(ny) and
Uj(n_), respectively.

The elements eg, B € Ay satisfy the following commutation relations

(4.9) eaes — qOPTEER B o — S Ok ka)eliel? el
a<81<...<8,<B

where a < B, and C'(kq,...,kp) € C[qﬁ7q*ﬁ,ﬁ,...,ﬁ], where i = 1,...,1, r is the maximal

number k; that appears in the right-hand sides Offolrmulas (3.4) for various o and B. Each function
C'(k1,...,kn) has a zero of order ky + ...+ k, — 1 at point ¢ = 1.

Let Ay be the system of positive roots associated to s. Let eg € Uf(ny), 5 € Ay be the root
vectors constructed with the help of the normal ordering of A associated to s.

Then elements eg € Up(ny), B € Am, generate a subalgebra Uy (my) C Uj(g) such that

Uima) /AU (m) = Uim,),

where my is the Lie subalgebra of g generated by the root vectors Xo, o € Ay .

The realizations Uj;(g) of the quantum group Uy, (g) are connected with quantizations of some non-
standard bialgebra structures on g. At the quantum level changing bialgebra structure corresponds

to the so—called Drinfeld twist (see [27], Section 4).
Equip Uj;(g) with the comultiplication A, given by

Ay(H)) =H; ®1+1® Hj,

hdi (1225 Pyr =Py, 1) H;

Asle;) =e;®e +1®e, Afi)=fi ® e M TS Py Hi | hdiHi fi,

where Py . is the orthogonal projection operator onto the orthogonal complement b’ L to b’ in b
with respect to the Killing form, and the antipode Sq(x) given by

Sy(ei) = —eje —hd; (125 Py =Py, 1) HL So(f;) = — hderhd T2 Py H; . S.(H;) = —H,.
Then U7 (g) becomes a quasitriangular topological Hopf algebra with the universal R-matrix R?,
R* = eap [h(= Tiy (i @ Hy) + Loy 2Py H; 0 ;)] x
11 equgl[(l a3)es ® M Sph'ﬂvfﬁ],

where Py is the orthogonal projection operator onto h’ in h with respect to the Killing form.
The element R® may be also represented in the form
= [Tg eap ;2 [(1 = 3)ese (T 707 @ e=h8” )

R
(4.11) l .
€.’17p h(_ Zz 1(Y ®H + Z’L 11— Ph/H ®Y)

(4.10)
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Note that the Hopf algebra U (g) is a quantization of the bialgebra structure on g defined by the
cocycle

(4.12) dz)=(ad, ®1+1®ad,)2r], rl €g®y,
where 75 =ry — % i 1+5 Py H; ®Y;, and ry is given by (3.1).

Using formula (3.6) an Pr0p051t10n 4.3 in [27] one can also easily find that
(4.13) Aslep) = (Rig) ™ (eg, ® M 410 05 )R,
where

R, =R - Ri, R, = eapa[(1—a,)es, © PO f ),
and

~5 — ~S — ~S — ~S — — ﬁ ’ v
(Rip) ™ = (R5) ™ (R )7 (R = eapy, [(1— g5 )es, @ "= f5 ).

We shall actually need not the algebras U;(g) themselves but some their specializations defined
over certain rings and over the field of complex numbers. They are similar to the rational form,
the restricted integral form and to its specialization for the standard quantum group Ujx(g). The
motivations of the definitions given below will be clear in Section 5. The results below are slight
modifications of similar statements for Uy (g), and we refer to [6], Ch. 9 for the proofs.

We start with the observation that by the results of Section 7 in [27] the numbers

1+s
(414) b= (EE2Ry; ) + 057y

are rational, p;; € Q. Denote by d the smallest integer number divisible by all the denominators of
the rational numbers p;;/2, 4,5 =1,...,1.

Let U; (g) be the C(q2a)-subalgebra of U7 (g) generated by the elements e;, f;, 5 = exp(+45 H;), i =
1,...,10

The defining relations for the algebra U7 (g) are

tity = tity, tit; =t =1, tiejt; L =q3te;, tifit; = q 3 fj,

- K;—K ! 1

eifj — a4 fiei = bij = — . cij = (1t:Ph’*aia04j> )
K; = 294

(4.15)

1—aiy rore; | 1 — Qig P r . .
Ym0 (=1)Tgmeu [ - ] (e)' "% "ej(e;)” =0, i # j,
q

k3

e (—1)r g [ 1 _raij ] (fo)' s f5(fi)" =0, i # .
q

i

Note that by the choice of d we have ¢“ € C[q2d,q™ 2a].
1

The second form of Uj;(g) is a subalgebra U3 (g) in U (g) over the ring A = Clg2a,q 2a, ﬁ, e ﬁ],

where ¢ = 1,...,[, r is the maximal number k; that appears in the right-hand sides of formulas
(3.4) for various a and 3. Uj(g) is the subalgebra in U;(g) generated over A by the elements
g KK =1L

qi—4q;
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The most important for us is the specialization UZ(g) of U%(g), UZ(g) = Uj‘(g)/(q;? —52%)Uf4(g),
e € C* [rle,! #0,4i=1,...,1. Note that [r];! # 0, and hence one can define the specialization
Uz (9)-

Us(9), U3(g) and UZ(g) are Hopf algebras with the comultiplication induced from Uj(g). If in
addition e2% # 1,3 = 1,...,1, then U?(g) is generated over C by tX*, e;, f;, i = 1,...,1 subject
to relations (4.15) where ¢ = . The algebra U%(g) has a similar description. The elements t; are
central in the algebra Uf(g), and the quotient of U7 (g) by the two—sided ideal generated by t; — 1 is
isomorphic to U(g). Note that none of the subalgebras of U;(g) introduced above is quasitriangular.

As usual, one can define highest weight, Verma and finite-dimensional modules for all forms and
specializations of the quantum group U (g) introduced above (see [27], Section 7).

For the solution n;; = %‘ljcij to equations (4.1) the root vectors eg, fg belong to all the above
introduced subalgebras of Uy, (g), and one can define analogues of root vectors for them in a similar
way. From now on we shall assume that the solution to equations (4.1) is fixed as above, n;; = ﬁcij.

Denote by Ug(ny),U;s(n-) and U;(h) the subalgebras of U;(g) generated by the e;, f; and by
the t;, respectively. Then the elements e = 6211 ...eg’;, ft = EDD féi and t5 = t7*...t)", for
r=(r,...Tp), t = (t1,...tp) E NP s = (s1,...5) € Z', form bases of US(ny),U;(n_) and U (h),
respectively, and the products e*t° f* form a basis of U (g) (see [27], Section 7).

We shall also use quantum analogues of Borel subalgebras UJ(b), U7 (b_), U (bx) is the sub-
algebra in U7 (g) generated by Ug(ny) and by Ug(h), U7 (b+) = U;(ny)U;s(h). By specializing the
above constructed basis for ¢ = € we obtain a similar basis and similar subalgebras for UZ(g).

Let U (n4), U5 (n-) be the subalgebras of U%(g) generated by the e; and by the f;, i =1,...,1,
respectively. Using the root vectors eg and fz we can construct a basis of U%(g). Namely, the
elements e”, f* for r, t € NV form bases of U (n.), U (n_), respectively.

The elements

|: K“C :| _ ﬁ Kiq;_f“’lfs _ Kiflqisflfc
" 4% s=1 4 =4

,i=1,...,l, ceZ, reN

belong to U%(g). Denote by U¥%(h) the subalgebra of U%(g) generated by those elements and by
tlil, i=1,...,l. Then multiplication defines an isomorphism of .4 modules:

Ui(n-) @ Ui(h) @ Ui(ng) — Ui(g)-

We shall also use the subalgebras U%(b+) C U%(g) generated by U5 (n+) and by U5 (h). A basis
for U5 (b) is a little bit more difficult to describe. We do not need its explicit description (see [6],
Proposition 9.3.3 for details).

Finally we discuss an obvious analogue of the subalgebra Uj(m.y) C Uj(g) for U5(g).

Let Uj(my) C Uj(g) be the subalgebra generated by elements eg € U5(ny), 8 € A, , where
A, C A is the ordered segment Ay, .

By the results of [27], Section 7 the elements e = e ...eg”, r; €N, i=1,..., D, and r; can be
strictly positive only if 3; € An, , form a basis of U5 (m,.). Obviously Uj(mﬁ/(qﬁ - U5 (my) ~
U(my), where my is the Lie subalgebra of g generated by the root vectors X,, o € Ay, . By
specializing ¢ to a particular value ¢ = € one can obtain a subalgebra UZ(m4) C US(g) with similar
properties.

The algebras U (g),U3(g) and UZ(g) can be equipped with remarkable filtrations such that the
associated graded algebras are almost commutative (see [7]). For r, t € N? define the height of the
element uy ¢, = e*tf%, t € Ug(h) as follows ht (upe,) = S0, (t; +r;)ht §; € N, where ht §; is the
height of the root ;. Introduce also the degree of uyt; by

d(unt’t) = (7”1, ...sTD,tp,y .yt ht (u,,t’t)) S N2D+1.
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Equip N?P+1 with the total lexicographic order and denote by (U;(g))x the span of elements uy.¢ ¢
with d(urt¢) < k in U;(g). Then Proposition 1.7 in [7] implies that (U;(g))x is a filtration of
U, (g) such that the associated graded algebra is the associative algebra over C(q2a) with generators
€ fa,x € Ay, tfl, 1=1,...1 subject to the relations

— - _ H; () _ _Hi()
titj = tjti, tit; 1 _ t; lti =1, tieat; L q 27 eq, tifati 1 q "2 fj,

s pea B f
e(!]ﬁ - q(175 b ’ ) ,Beaa

14s
ot = q(aﬁ)'i'(mph’*o‘vﬂ)eﬁea, o < f,

« ﬁ 1% O
fafs = ¢ @PTE=PaB) fo g 0 < B,

Such algebras are called semi-commutative. A similar result holds for the algebras UZ(g) and U%(g).

5. QUANTIZED ALGEBRAS OF REGULAR FUNCTIONS ON POISSON—LIE GROUPS AND Q-W
ALGEBRAS

First we recall some notions concerned with Poisson—Lie groups (see [6], [10], [20], [23]). These
facts will be used for the study of q-W algebras.

Let G be a finite-dimensional Lie group equipped with a Poisson bracket, g its Lie algebra. G is
called a Poisson—Lie group if the multiplication G x G — G is a Poisson map. A Poisson bracket
satisfying this axiom is degenerate and, in particular, is identically zero at the unit element of the
group. Linearizing this bracket at the unit element defines the structure of a Lie algebra in the space
TxG ~ g*. The pair (g,g") is called the tangent bialgebra of G.

Lie brackets in g and g* satisfy the following compatibility condition:

Let 6 : g — g A g be the dual of the commutator map [,]« : g* ANg* — g*. Then ¢ is a I-cocycle
on g (with respect to the adjoint action of g on gAg).

Let cfj, f2 be the structure constants of g, g* with respect to the dual bases {e;},{e’} in g, g*.
The compatibility condition means that

Canfs' = ashi® + cafst — e fit 4 afit =0
This condition is symmetric with respect to exchange of ¢ and f. Thus if (g, g*) is a Lie bialgebra,
then (g*, g) is also a Lie bialgebra.
The following proposition shows that the category of finite-dimensional Lie bialgebras is isomor-
phic to the category of finite-dimensional connected simply connected Poisson—Lie groups.

Proposition 5.1. ([6], Theorem 1.3.2) If G is a connected simply connected finite-dimensional
Lie group, every bialgebra structure on g is the tangent bialgebra of a unique Poisson structure on
G which makes G into a Poisson—Lie group.

Let G be a finite-dimensional Poisson-Lie group, (g,g*) the tangent bialgebra of G. The con-
nected simply connected finite-dimensional Poisson-Lie group corresponding to the Lie bialgebra
(g*, 0) is called the dual Poisson—Lie group and denoted by G*.

(g,9%) is called a factorizable Lie bialgebra if the following conditions are satisfied (see [10], [20]):

(1) g is equipped with a non—degenerate invariant scalar product (-,-).
We shall always identify g* and g by means of this scalar product.
(2) The dual Lie bracket on g* ~ g is given by

(5.1) X,)Y], = - (X, Y]+ [X,rY]), X, Y €g,

1
2
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where r € End g is a skew symmetric linear operator (classical r-matriz).
(3) r satisfies the modified classical Yang-Bazter identity:
(5.2) X, Y] —r (P X, Y]+ [X,rY]) = - [X,Y], X,Y €g.
Define operators r+ € End g by
1
re =g (r+id).
We shall need some properties of the operators r1. Denote by by and ny the image and the kernel
of the operator r:
(5.3) by =Imry, ng = Ker ry.

The classical Yang—Baxter equation implies that ry , regarded as a mapping from g* into g, is a
Lie algebra homomorphism. Moreover, r} = —r_, and 7, —r_ = id.
Put 0 = g ® g (direct sum of two copies). The mapping

(5.4) g0 X (X4, X)), Xy = rp X

is a Lie algebra embedding. Thus we may identify g* with a Lie subalgebra in 0.
Naturally, embedding (5.4) extends to a homomorphism

G* > GxG, Lvs (Ly,L_).

We shall identify G* with the corresponding subgroup in G x G.
There exists a unique right local Poisson group action

G"xG— G*7 ((L+7L7)ag) = go (LJr’L*)v
such that if ¢ : G* — G is the map defined by
q(Ly L) = L_L7"

then
qlgo(Ls+, L)) =g 'L_L'g.
This action is called the dressing action of G on G*.

Let g be a finite—dimensional complex simple Lie algebra, h C g its Cartan subalgebra. Let s € W
be an element of the Weyl group W of the pair (g, h) and A the system of positive roots associated
to s. Observe that cocycle (4.12) equips g with the structure of a factorizable Lie bialgebra, where the
scalar product is given by the Killing form. Using the identification End g = g® g the corresponding

r-matrix may be represented as

1
rs:P+—P,—1+S

Ph/7

— S
where Py, P_ and Py are the projection operators onto ny,n_ and )’ in the direct sum

g=ny +b +h 4,

where b L is the orthogonal complement to b’ in § with respect to the Killing form.

Let G be the connected simply connected simple Poisson—Lie group with the tangent Lie bialgebra
(g,9%), G* the dual group.

Observe that G is an algebraic group (see §104, Theorem 12 in [30]).

Note also that

5 1 1 1
11— SPh/ + §Pb1L7 r® =—P_— 11— SP = iphu,
and hence the subspaces by and ny defined by (5.3) coincide with the Borel subalgebras in g and
their nilradicals, respectively. Therefore every element (L., L_) € G* may be uniquely written as

(55) (LJraL*) = (thvh*)(nJran*)v

s
7"+:P+—
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where ny € Ni, hy = exp((—7 Py + %P[,yL)ZE), ho = exp((—1=Py — 3Py1)z), € h. In
particular, G* is a solvable algebraic subgroup in G x G.

For every algebraic variety V we denote by C[V] the algebra of regular functions on V. Our
main object will be the algebra of regular functions on G*, C[G*]. This algebra may be explicitly
described as follows. Let 7y be a finite-dimensional representation of G. Then matrix elements
of my(Ly) are well-defined functions on G*, and C[G*] is the subspace in C*°(G*) generated by
matrix elements of my (L), where V' runs through all finite-dimensional representations of G. The

elements L™V = my/(L+) may be viewed as elements of the space C[G*] ® EndV.

Proposition 5.2. ([23], Section 2) C[G*] is a Poisson-Hopf subalgebra in the Poisson algebra
C™®(G*), the comultiplication and the antipode being induced by the multiplication and by taking
inverse in G*, respectively.

Now we construct a quantization of the Poisson—Hopf algebra C[G*]. For technical reasons we
shall need an extension of the algebra U#%(g) to an algebra U3, (g) = U5(g) ®4 A’, where A" =

1

1 1
24, ﬁ, ol qui, %]izlw)l. Note that the ratios 11—:1;?
¢ =1, and we can define a localization, A’/(1 —¢2i)A’ = C as well as similar localizations for other
generic values of &, A'/(e21 — q21) A’ = C and the corresponding localizations of algebras over A'.
U% (g) is naturally a Hopf algebra with the comultiplication and the antipode induced from U¥(g).

First, by the results of Section 10 in [27] for any finite-dimensional U# (g)-module V' the invertible

elements L%V given by

IV = (id@my)Ry ' = (id @ my S*) RSy, LY = (id @ my)R®.

Clg2e,q ™2

have no singularities when

are well-defined elements of U5(g) ® EndV. If we fix a basis in V/, 1L*YV may be regarded as
matrices with matrix elements (L%V);; being elements of U%(g).

We denote by C 4/[G*] the Hopf subalgebra in U$, (g) generated by matrix elements of (1L%V)*!,
where V' runs through all finite-dimensional representations of U%(g).

The quotient algebra C4/[G*]/(q27 — 1)C/[G*] is commutative (see e.g. [27], Section 10), and
one can equip it with a Poisson structure given by
1 [al,ag}

(56) {1131,1'2}: ?dqﬁ 1

(mod (¢77 — 1)),

where ay,a5 € C4[G*] reduce to x1, 25 € Ca[G*]/(q2a — 1)C4[G*] (mod (¢3¢ — 1)). Obviously,
the the comultiplication and the antipode on C 4/ [G*] induce a comultiplication and an antipode
on C4[G*]/(g2i — 1)C_4[G*] compatible with the introduced Poisson structure, and the quotient
C/[G*]/(q2i — 1)C.4/[G*] becomes a Poisson-Hopf algebra.

Proposition 5.3. ([27], Proposition 10.2) The Poisson—Hopf algebra C 4 [G*]/(q21 — 1)C_4 [G*]
is isomorphic to C[G*] as a Poisson—Hopf algebra.

We shall call the map p : C4/[G*] = C4/[G*]/(q2a — 1)C4/ [G*] = C[G*] the quasiclassical limit.
From the definition of the elements L%V it follows that C 4/ [G*] is the subalgebra in U “v(g)

l +2dp; ; l +2dp;i . ~ =
gty P Tty i =100, ég = (1= q3)es, fs = (1—

generated by the elements []
a3)e " f5, BE Ay

Now using the Hopf algebra C4/[G*] we shall define quantum versions of W-algebras. From
the definition of the elements 9L*V it follows that the matrix elements of 4LV " form Hopf
subalgebras C 4/ [By] C C4[G*], and that C4 [G*] contains the subalgebra C 4/ [N_] generated by
clements €5 = (1 — g3)ep, B € Ay.
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Suppose that the positive root system A, and its ordering are associated to s. Denote by C 4/ [M_]
the subalgebra in C4/[N_] generated by elements ég, f € A, .

Let My C G be the subgroups corresponding to the Lie subalgebras my C g.

Note that one can consider n_ and m4 as Lie subalgebras in g* via imbeddings

n.—g Cgdg z—(0,2),
my =g Cogdg, x> (2,0),
m_—g"Cgag z— (0,7),
Therefore My can be regarded as subgroups of G* corresponding to the Lie subalgebras my C g*.
By construction C4/[N_] is a quantization of the algebra of regular functions on the algebraic
subgroup N_ C G* corresponding to the Lie subalgebra n_ C g*, and C 4/ [M_] is a quantization of
the algebra of regular functions on the algebraic subgroup M_ C G* in the sense that p(C 4/ [N_]) =
C[N_] and p(C 4 [M_]) =C[M_].
The following proposition gives the most important property of the subalgebra C 4 [M_] which
plays the key role in the definition of q-W-algebras.

Proposition 5.4. The defining relations in the subalgebra C4/[M_] for the generators ég = (1 —
q%)eg, B € A, are of the form

(5.7) bobs — gD TPy g 5 — S Mk ke e a < B,
a<d)<...<dp, <

where C"(ky,...,ky) € A" has a zero of order 1, as a function of q, at point ¢ = 1, and for any
lie Ayi=1,...,0' the map x; : Cy[M_] — A,

(5.8) XZ(éﬁ)_{ 2 gigjh...,’}’l'} ,

is a character of Co/[M_] vanishing on the r.h.s. and on the l.h.s. of relations (5.7).

The proof of the first part of the previous proposition follows straightforwardly from Proposition
4.4 and the second part is a consequence of Lemma 6.2 in [27]. The proofs of similar statements in
[27], Section 10 can be repeated verbatim in the setting of Proposition 5.4 since the defining relations
of the algebra C 4 [M_] have the same form as the defining relations of a similar algebra introduced
in [27].

Denote by (Cx-; the rank one representation of the algebra C 4/ [M_] defined by the character x;.

For any finite-dimensional U%(g)-module V let 1LYV = a= VeVl = (id @ my )R*R3;. Let
C.4[G+] be the A’-subalgebra in C_4/[G*] generated by the matrix entries of LY, where V' runs over
all finite-dimensional representations of U%(g).

Define the right adjoint action of U#%,(g) on U%,(g) by the formula

(5.9) Adz(w) = S (@)way,

where we use the abbreviated notation for the coproduct Ay(z) = 21 ® 22, € U, (g), w € U3, (9).
Note that by Lemma 2.2 in [15]

(5.10) Adz(wz) = Adze(w)Adzy(2).

Observe also that by definition the adjoint action introduced above is dual to a restriction of the
dressing coaction of the quantization of the algebra of regular functions on the Poisson-Lie group G
on the space C 4/ [G*]. Therefore the subspace C 4/[G*] C U%,(g) is stable under the adjoint action.
The subalgebra C 4/ [G] C C4/[G*] is also stable under the dressing coaction (see [23], Section 3),
and hence C4/[G,] is stable under the adjoint action.
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Proposition 5.5. Assume that ¢ € C* is not a root of unity. Define the complex associative algebra
C.[G.] = C/[G.]/(q2a —e20)C 4/ [G,]. Then the algebra C.[G.] can be identified with the Ad locally
finite part UZ(g)"™ of U2(g),

UZ(9)"™ = {z € UZ(g) : dim(AdUZ(g)(x)) < +00},
where the adjoint action of the algebra UZ(g) on itself is defined by formula (5.9).

Proof. Indeed, let V;, i = 1,...,1 be the fundamental representations of U%(g) with highest weights
Y;, i =1,...,1. From formula (4.10) and from the definition of 1LY = (id ® 7y )R*R3; it follows
that the matrix element (id ® v})R*R3; (id ® v;) of 1LVi corresponding to the highest weight vector
v; of V; and to the lowest weight vector v] € V;* of the dual representation V;*, normalized in such
a way that v/ (v;) = 1, coincides with L 2. This implies that L % are elements of the algebra
C.[G.] C UZ(g) as well. Denote by $ C C.[G.] C UZ(g) the subalgebra generated by the elements
L7? € C.[G.], i =1,...,l. By Theorem 7.1.6 and Lemma 7.1.16 in [14] U2(g)/"" = AdUZ(g)$.
Since C.[G,] is stable under the adjoint action we have an inclusion, U2(g)f™ C C.[G.]. On the
other hand from formula (3.26) in [23] it follows that the dressing coaction on C.[G.] is locally
cofinite, and hence the adjoint action of U?(g) on C.[G.] is locally finite. Hence C.[G.] C U(g)’™,
and C.[G,] = U2(g)/™. O

Denote by I, the left ideal in C4/[G*] generated by the kernel of xj, and by px; the canonical
projection Ca/[G*] — Ca/[G*]/1;. Let Qas be the image of C4[G.] under the projection py:.

From formula (4.13) and from the definition of the normal ordering of A, associated to s it
follows that A (U3, (my)) C Ui (my) @ US,(by), where U, (my) = Uj(my) @4 A, U5 (by) =
Us(by) @a A

Now observe that from Proposition 5.4 it follows that the r.h.s. in formula (5.7) belongs to the
subspace (1 — g2)Kerx$ and hence dividing (5.7) by (1 — ¢2) we obtain

(5.11) ealy — q@PTEEPyaBg o > C" (k... ky)Estes? .. a5m,
a<d)<...<dp, <8
where C"'(k1,...,kn) = C"(k1,...,kn)/(1 —¢2) € A’

Therefore we have an inclusion [U3, (my ), Kery;] C Kerxj. Using this inclusion, formula (5.9),
the fact that A(U%, (my)) C Uy (my) ® U, (by) (see formula (4.13)) we deduce that the adjoint
action of U5, (m4) on C4/[G,] induces an adjoint action on @ 4. which we also call the adjoint action
and denote it by Ad.

Let C 4 be the trivial representation of U3, (m4.) given by the counit. Consider the space W (G)
of Ad—invariants in Q 4,

(5.12) W, (G) = Homy:s, (my) (Cars Q).

Proposition 5.6. W7 (G) is isomorphic to the subspace of all v+ I, € Q. such that mv € I, (or
[m,v] € 1) in C o/ [G*] for any m € I, where v € C o/ [G*] is any representative of v+ I, € Q.
Multiplication in Ca/[G*] induces a multiplication on the space W3 (G).

Proof. Letfy,. .., Bp be the normal ordering of A associated to s. From formulas (4.13) and (5.11)
it follows that for 8y € An,

2s _ v )
(5.13) Ag(es,) =ep, @ S e R T es, + Zﬂﬂz ®Yi, Ti € Ucp,,yi € U (b4 ),

where Ug, is the subalgebra (without unit) in U%, (m4) generated by eg, , 3, < fi. Actually one
can show that y; belong to Us 3, U, (h), where U, (h) = U5 (h) ®4» A" and Usp, is the subalgebra
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(without unit) in U%,(m4) generated by eg,_, 8, > fi (see [11], Lemma 4.3.1). We shall not need
this fact.

Recall that S; ! is the antipode for the comultiplication A%P and hence from the definition of
the antipode, the fact that S; (U, (b1)) C U%,(b4) and inclusion (5.13) we must have

Sy (eﬁk) te ThaE Py =Py 0Bk €8y, +ZS (yi)x; = 0,57 (yz) S Uj/(b+)

Therefore , y
S5 (ep,) = —e "I Ry e NS (y)a.

Now the last formula, formula (5.13) and the definition of the adjoint action of U%, (my) on Q'4
imply that for any representative v € C4/[G*] of any element v + I, € Q.4 we have the following
identity in C_4/[G*]

1 ,
(5.14) Adeg v = T PSPy =Py 0B (55— 3 (Eg,))0 — yu + 2,
B

where z € Iy, y = >, S; (ys)2), and =} =[], ., Wl‘;/, x) =épt .. ég: R A (5 égz )
= ey

Let I.g, be the intersection of the ideal I, and of the subalgebra in C4/[M_] generated by the
unit element and by éa,, 8, < Sx. Then z € Ip,.

From identity (5.14) it obviously follows that if mv € I, in C 4/ [G*] for any m € I, then v+ I, is
invariant with respect to the adjoint action.

Now let v + I; € @4/, be an element which is invariant with respect to the adjoint action,
Adz(v) =e(z)v+ 2, € Uy (my), 2" € 1,

Since 31 € A, is the first positive root in the normal ordering associated to s we have I3, = 0,
and (5.14) implies that

1 Ch(2sp,_ - -
¢ = Adegyv = — e MEER RN gy (e )t 2, 2z €
(1- (Ial)
We obtain from the last identity that
1 (28 _ . .
M RO (6, — X (@s) €

———€
(1-4q3)

which is obviously possible only in case if (1772?31)(651 —X;(€p,))v € I, i.e. when

(éﬂl - X;(éﬁ1))v € IQ'
The element é5, — x;(€p,) generates I.g,. Therefore zv € I, for any z € Ig,.
Now we proceed by induction. Assume that

xv €,

for any 2 of the form z =[], _, W(ég; égf R o (e ég::)), n; > 0. From (5.14) by

the induction hypothesis we have

1 _
Adeﬁkv = 75 € hats # Py = Fy ll)ﬁk( €8, — X;(éﬂk))v € IQ'
(1- q,@k)
Finally an argument similar to that applied in case k = 1 shows that ﬁ(éﬁk Xq(€s,))v € I
B
1
r<k+1 (1— qg

3

~11

and (€, —x;(€s,))v € 1. This also shows that zv € I, for any = of the form z = [|
Xq(€g, - ep)), my = 0.

e (€5 .-

~np
Bk
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The element €5, — x;(€s,) and I, generate I, ,. Therefore wv € I, for any w € Ig, .
This establishes the induction step and proves that

(5.15) (€. — xq(€s,))v € I
for any 8 € Ay, . Since as a left ideal I, is generated by the elements €5, — x5 (€g,), 8 € An, (5.15)
proves that mv € I, in C4/[G*] for any m € I,.

Now if v1,v9 € Ca4/[G*] are any representatives of elements vy + Iy, va + I; € W7 (G) the formula

(Ul + Iq)(’l)g + Iq) = V1V2 + Iq
defines a multiplication in W7 (G). O

We call the space W;(G) equipped with the multiplication defined in the previous proposition
the q-W algebra associated to (the conjugacy class of) the Weyl group element s € W.

Now consider the Lie algebra £ 4/ associated to the associative algebra C4/[M_], i.e. £4 is the
Lie algebra which is isomorphic to C4/[M_] as a linear space, and the Lie bracket in £4/ is given
by the usual commutator of elements in C 4 [M_].

Define an action of the Lie algebra £4/ on the space C/[G*]/1,:

(5.16) m- (@ + 1) = pys ([m, ).

where © € C4/[G*] is any representative of x + I, € C4/[G*]/I, and m € C4 [M_]. The algebra
W;(G) can be regarded as the intersection of the space of invariants with respect to action (5.16)
with the subspace Q4 C C4/ [G*]/1,.

Note also that since xj is a character of C/[M_] the ideal I, is stable under that action of
C4/[M~] on C4 [G*] by commutators.

Denote by Cy: the rank one representation of the algebra C/[M_] defined by the character
X;- Using the description of the algebra W;(G) in terms of action (5.16) and the isomorphism
Cu[G*]/1; = Cu[G*] ®c 111 Cy; one can also define the algebra W3 (G) as the intersection

W;(G) = Hoch, [M_](CX§7 Ca[G7) ®c ./ [M_] (CXS) NQar.
Using Frobenius reciprocity we also have

Homc ,,(m_)(Cys, Car[G*] ®c s Cxs) = Endc (6] (Ca[G*] ®c,,, ar_) Cxs )-

q
Hence the algebra W7 (G) acts on the space C [G*] Q®c 4 [M_] CXZ from the right by operators
commuting with the natural left Ca/[G*]-action on Ca/[G*] ®c,,;m_) Cys. By the definition of
W;(G) this action preserves Q4 and by the above presented arguments it commutes with the
natural left C 4 [G,]—action on Q 4.
Thus Qu is a C4/[G4]-W7(G) bimodule equipped also with the adjoint action of U3, (my). By
(5.10) the adjoint action satisfies

(5.17) Adz(yv) = Adze(y)Adz(v), z € U (my), y € Ca[Gy),v € Qur,

and As(z) = 21 ® xa.

Denote by wvg the image of the element 1 € C4/[G,] in the quotient @4+ under the canonical
projection C 4/ [G.] — Q4. Obviously v is the generating vector for @ 4. as a module over C 4/ [G.].
Using formula (5.17) and recalling that Q4 is a C4/[G.]-W;(G) bimodule, for x € U3, (m4),y €
C4/[G4], and for a representative w € C.[G] of an element w + I, € W7 (G) we have

Adz(wyvg) = Adz(ywvg) = Adza(y)Adar (wvg) =
= Adzo(y)e(z1)wyy = Adz(y)wvg = wAdz(yvo).

Since @ 4+ is generated by the vector vy over C4/[G,] the last relation implies that the action of
W3 (G) on Q4 commutes with the adjoint action.
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We can summarize the results of the above discussion in the following proposition.

Proposition 5.7. The space Q 4/ is naturally equipped with the structure of a left Ca/[G]—module,
a right U3, (m)-module via the adjoint action and a right W (G)-module in such a way that the
left C 4/ [G]-action and the right U3, (my)-action commute with the right W (G)-action and com-
patibility condition (5.17) is satisfied.

In conclusion we remark that by specializing ¢ to a particular value ¢ € C such that [r].,! # 0, ¢ #

0,i=1,...,1, one can define a complex associative algebra C.[G.] = C 4 [G*]/(qﬁ — 6ﬁ)(CA/ [G.],
its subalgebra C.[M_] with a nontrivial character x2 and the corresponding W-algebra
(5.18) WZ(G) = Homy: (m, ) (Ce, Qe),

where C. is the trivial representation of the algebra U?(m_ ) induced by the counit, Q. = Q4 /Q 4 (q2a—
1
gzd).
Obviously, for generic & we have W5 (G) = W2 (Q)/(q2i — e2)WE(Q).

q

6. POISSON REDUCTION AND Q-W ALGEBRAS

In this section we shall analyze the quasiclassical limit of the algebra W7 (G). Using results
of Section 9 in [27] we realize this limit algebra as the algebra of functions on a reduced Poisson
manifold.

Denote by x* the character of the Poisson subalgebra C[M_] such that x*(p(z)) = x;(x) (mod (qza—
1)) for every x € C 4 [M_].

Note that under the projection p : C4[G*] — Cu/[G*]/(1 — q22)C4/[G*] and the canonical
projection U%, (my) — U, (my)/Us (my)(1 — q?1) = U(m,) the right adjoint action of Usy(my)
on C4/[G*] induces the right infinitesimal dressing action of U(my) on C[G*], and the image of
the algebra C4/[G.] under the projection p is a certain subalgebra of C[G*] that we denote by
C[G4]. By definition we have C[G.] ~ C[G] as algebras. Let I = p(I;) be the ideal in C[G*]
generated by the kernel of x°. Then by the discussion after formula (5.16) the Poisson algebra
Ws(G) = W;(G)/(qﬁ — 1)W;(G) is the subspace of all x +1 € Q1, Q1 = Qa /(1 — q21)Qu C
C[G*]/1, such that {m,z} € I for any m € C[M_], and the Poisson bracket in W*(G) takes the form
{(z+1), (y+1)} = {x,y}+I, x+1,y+1 € W*(G). We shall also write W*(G) = (C[G*]/I)*™M-InQ,,
where the action of the Poisson algebra C[M_] on the space C[G*]/I is defined as follows

(6.1) v (04 1) = py ({2, 0)),
v € C[G*] is any representative of v + I € C[G*]/I and z € C[M_].

We shall describe the space of invariants (C[G*]/T)®IM-] with respect to this action by analyzing
“dual geometric objects”. First observe that algebra (C[G*]/I)®[M-] is a particular example of the
reduced Poisson algebra introduced in Lemma 8.1 in [27].

Indeed, recall that according to (5.5) any element (L, L_) € G* may be uniquely written as
(6.2) (L4, L) = (hy,ho)(ng,no),
where ny € Ny, hy = exp((— 2 Py + 5Py2)x), he = exp((—= Py — 3Py )x), x €b.

Formula (5.5) and decomposition of N_ into products of one—dimensional subgroups correspond-
ing to roots also imply that every element L_ may be represented in the form

L_=exp [ijl bi(— Py — 1Py ) Hy| x
Hﬁ exp[ng_B], bi7 bﬁ € (Ca

where the product over roots is taken in the order opposed to the normal ordering associated to s.

(6.3)
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Now define a map ppr, : G* — M_ by

(64) 2.7 (L+, L*) =m_,
where for L_ given by (6.3) m_ is defined as follows
m_ = H explbgX_gl,
BEAM,

and the product over roots is taken in the order opposed to that in the normally ordered segment
Ap, .

By definition jpz, is a morphism of algebraic varieties. We also note that by definition C[M_] =
{p € C[G*] : ¢ = p(m_)}. Therefore C[M_] is generated by the pullbacks of regular functions
on M_ with respect to the map ps, . Since C[M_] is a Poisson subalgebra in C[G*], and regular
functions on M_ are dense in C°°(M_) on every compact subset, we can equip the manifold M_
with the Poisson structure in such a way that ps, becomes a Poisson mapping.

Let u be the element defined by

Y
(6.5) u= Hexp[tiX,%] € M_,t; =I; (mod (g7 — 1)),

i=1
where the product over roots is taken in the order opposed to that in the normally ordered segment
A, .

Denote by p : Ca[G*] — Cu[G*]/(q2¢ — 1)Cx[G*] = C[G*] the canonical projection. By
Proposition 5.3 the elements L™V = (p ® py)(?L*") belong to the space C[G*] ® EndV, where
pv : V = V = V/(g2a — 1)V is the projection of finite-dimensional U#%(g)-module V' onto the
corresponding g—module V', and the map

Cu[G*]/(q7 — 1)Cu[G*] = C[G*], LTV s LEV

is an isomorphism. In particular, from (4.10) it follows that

L™V = (p®id)exp [Zi:l hH; @ mp((— 125
[15 explp((1 — q5)es) ® (X _g)]-

From (6.6) and the definition of x° we obtain that x*(¢) = ¢(u) for every ¢ € C[M_]. x*
naturally extends to a character of the Poisson algebra C'*°(M_).

Now applying Lemma 8.1 in [27] we can define a reduced Poisson algebra C'> (,u;/}+ (u))C™ (M=)
as follows (see also Remark 8.4 in [27]). Denote by I, the ideal in C*°(G*) generated by elements
M, ¥, b € C(M-), Y(u) =0. Let P, : C(G*) = C(G)/1u = COO(MKA (u)) be the canonical
projection. Define the action of C*°(M_) on COO(MXA (u)) by

(6.7) Vo= Pu({up, ¥, 0}),

where ¢p € C®(M_), ¢ € C“(uifi (u)) and ¢ € C™(G*) is a representative of ¢ such that
P,$ = . The reduced Poisson algebra C*° (u]T/[i (1))~ (M=) is the algebra of C°°(M_)-invariants
in COO(;LXA (u)) with respect to action (6.7). The reduced Poisson algebra is naturally equipped
with a Poisson structure induced from C*°(G*).

(66) P‘J' 7Ph/L)}/i) X

Lemma 6.1. /‘XA (u) is a subvariety in G*. Let q(;@ir (u)) be the closure of q(ugj+ (u)) in G with
respect to Zariski topology. Then the algebra W*(Q) is isomorphic to the algebra of regular functions
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on q(uJT/Il+ (u)) pullbacks of which under the map q are invariant with respect to the action (6.7) of
C>(M_) on COO(MX/flJr (w)), i.e.

W*(G) = Clg(pa, ()] N C= (/. (u)C™ ),

where (C[q(u]TjJr (w))] is regarded as a subalgebra in C*> (u;ﬁ (u)) using the map ¢* : C”(q(u]_vir (u))) —
O (i3 (u)) and the imbedding Clg(an ()] C C*=(a(pzi. ().

Proof. By definition M;Wi (u) is a subvariety in G*. Next observe that I = C[G*] N I,. Therefore by
the definition of the algebra C[G*] and of the map pys, the quotient C[G*]/I is identified with the
algebra of regular functions on ,u;li (u).

Since C[M_] is dense in C*°(M_) on every compact subset in M_ we have:

O (i () M) & € (i, (u)) P4

Finally observe that action (6.7) coincides with action (6.1) when restricted to regular functions,
and that the image of the map ¢ : G* — G is open in G; its closure coincides with G. Therefore

by definition Q1 = (C[q(ugj+ (u))]. Since Q; C C[G*]/I we have W*(G) = (C[G*]/T)*™M-1nQ, =
C> (i, ()TN Qy = C=° (i, (u) @™ M=) N Clg(pyy, (w))]- O

We shall realize the algebra C>° (ufwl+ (u))¢™ (M=) as the algebra of functions on a reduced Poisson
manifold. In this construction we use the dressing action of the Poisson—Lie group G on G* (see e.g.
Proposition 8.2 in [27]).

Consider the restriction of the dressing action G* x G — G* to the subgroup My C G. Let
G* /M be the quotient of G* with respect to the dressing action of My, = : G* — G*/M, the
canonical projection. Note that the space G* /M is not a smooth manifold. However, we will see
that the subspace w(u;& (u)) C G*/My is a smooth manifold.

We claim that /”LX/11+ (u) is locally stable under the (locally defined) dressing action of M. Indeed,
let M j_‘ be the subgroup of G generated by the one-parametric subgroups corresponding to the roots
from the segment —(A 4\ Ay, ) and by the maximal torus H, st G* — M7 the map defined by

pnge (L L) = me,

where for L_ given by (6.3) m¢ is defined as follows

l
. 1 1
m’ = exp E bi(—EPbr ~5 oL ) Hi H explbg X _gl,
i=1 BEA\Am

and the product over roots is taken in the order opposed to that in the normally ordered segment
Ap, .

Let X € my and X be the corresponding vector field on G* generated by the dressing action, &,
the Hamiltonian vector field of ¢ € C*°(G*). Using the arguments in the proof of Proposition 11.2
in [27], which can be applied verbatim in our situation, one deduces that Proposition 9.4 in [27] is
applicable to the dressing action of My on G*, and by Remark 9.6 to Proposition 9.4 in [27] and

formula (8.4) in [27] the action of the vector field X on ¢ is given by
(68) Lgp = —(Ad(uars)(Oar). X) s, (€,).

where 6, is the universal right invariant Cartan form on M_.
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Note that by Remark 9.5 to Proposition 9.4 in [27] the algebra Ooo(ﬁ(u]}ir (u))) is isomorphic to
O (it () O,

In order to show that p]T/_[lJr (u) is locally stable under the (locally defined) dressing action of M
we have to verify that for any function ¢ € I, one has Lgp(z) =0, = € ,u&i (u). By the definition
of the ideal I, it suffices to verify this property for functions of the form u7\4+1/1, Y € C®(M_),
¥(u) = 0. We shall actually show that pn, (§,(z)) =0, z € /‘JT/11+ (u).

Let ¢ € C*°(M_) be an arbitrary function. Then

pnry  (Epy, 0 (0))0 = Eus, pting, 0(2) = {udr, ¥ i, 03 () = {9, O} (e, () = {4, 6} (u) = 0,

where the last two implications follow from the fact that s, is a Poisson map and x; is a character
of the Poisson algebra C*°(M_).

Observe that using the map ¢ : G* — G, ¢(L4,L_) = L,Ljr1 one can reduce the study of
the dressing action to the study of the action of G on itself by conjugations. This simplifies many
geometric problems. Consider the restriction of this action to the subgroup M,. Denote by m, :
G — G/M, the canonical projection onto the quotient with respect to this action.

Next, similarly to [27], we explicitly describe the reduced space m, (q(,u];[l+ (u))) and the algebra
W4 (G).

First we describe the image of the “level surface” u]T/IlJr (u) under the map ¢q. Let X,(¢) =
exp(tX,) € G, t € C be the one—parametric subgroup in the algebraic group G corresponding to root
a € A. Recall that for any o € Ay and any ¢ # 0 the element s,(t) = X _o () Xo(—t ") X_o(t) € G
is a representative for the reflection s,, corresponding to the root a. Denote by s~ € G the following
representative of the Weyl group element s~ € W,

(6.9) s =8, (tr) ... 5y, (t1),
where the numbers ¢; are defined in (6.5), and we assume that ¢; # 0 for any 7.
We shall also use the following representatives for s' and s2

st = Svn (tn) ... Sy (t1), s* = Sy (trr)... Synt1 (tnt1)-

To shorten the notation we shall simply write s., for s,, (¢;).

Let Z be the subgroup of G generated by the semisimple part of the Levi subgroup L and by the
centralizer of s in H. Denote by N the subgroup of G corresponding to the Lie subalgebra n and by
N the unipotent subgroup in G with the Lie algebra 7.

The following Proposition is a modification of Proposition 7.2 in [28].

Proposition 6.2. Let q: G* — G be the map defined by
oLy, L) = L_L3".
Suppose that the numbers t; defined in (6.5) are not equal to zero for all i. Then q(u;ir (u)) is a

subvariety in Ns~*ZN and the closure q(,u]Tj+ (u)) of q(u]T/[lJr (u)) with respect to Zariski topology is
also contained in Ns~1ZN.

Proof. Using definition (6.4) of the map jp7, we can describe the space ux/ir (u) as follows:
(610) /”’;Mi(u) = {(h+n+7h—yu)|n+ € N—‘r?hi = erimax € hvy € Mi}a

where M€ is the subgroup of G generated by the one—parametric subgroups corresponding to the
roots from the segment —(A \ Ap, ). Therefore

(6.11) q(,u;[i(u)) = {h_yunT'hi'ny € Ny he = ez € by € M°}.
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First we show that yunjr1 belongs to Ns~'ZN. Fix the circular normal ordering on A corre-
sponding to the normal ordering of A associated to s.

Since the roots 1, . . ., v, are mutually orthogonal the adjoint action of s+, (t;), ¢ = 1,...,n on each
of the root subspaces g,,, j = 1,...,n,j # iis given by multiplication by a non—zero constant. There-
fore there are non-—zero constants ci, ..., ¢, such that s,, , ...s, Xy, (cx) = X, (—t,;l)s%_1 Sy
k=2,...,n, and we define ¢c; = —tl_l.

Obviously we have

X o (tn) o X () = Xy () .. Xy (8) X (1) - Xy (60) Xy (=) - Xy, (—€1) =
=X (tn) .- Xy (1) X, (1) .- Xy ()01, n1 = Xo, (—cn) ... Xy (—c1) € Ny,

where ]\71 is the subgroup of N, generated by the one—parametric subgroups corresponding to the
roots in A, on which s! acts by multiplication by —1.
Using the relation X_, (t1)X,, (=t ') = 55, X_-, (—t1) one can rewrite the last identity as follows

(612) X*Vn (tn) N )(,A/1 (t1) = X*’Yn (tn) . X,,ﬁ (tg)s%X,% (—t1)XA/2 (02) N X’Yn (cn)nl.

Now we can write

Xy (1) X, (e2) . Xy, (en) = Xy (e2) . Xy, (en) Xy, (—Cn) o Xy (—e2) Xy (—11) X, (e2) -+ Xy, (cn).

The product X, (—c¢p) ... X, (—c2) Xy, (—t1) X, (c2) ... X, (cn) belongs to the subgroup of G gen-
erated by the one—parametric subgroups corresponding to roots from the set Al = {a € A : 45 <
a < —v1,s'a = —a}. By Lemma 4.3 the minimal segment {a € A : 75 < a < —v;} is closed
under addition of roots and the set of roots on which s' acts by multiplication by —1 is obvi-
ously closed under addition of roots. Hence A! is closed under addition of roots. Assume for a
moment that the order of roots in A! is opposite to the order induced by the circular normal or-
dering of A. Using Lemma 4.3 and the fact that A! is closed under addition of roots the element
Xy (=cn) ... X, (—c2) Xqy (—t1) X5, (c2) ... X, (cn) can be represented as a product of elements
from one-parametric subgroups corresponding to roots from A! ordered in the way described above.
Since the intersection of A! with A_ is Al ={a € A_:a < —v;} and the intersection of A! with
A is contained in the set of positive roots on which s' acts by multiuplication by —1, this yields

Xy (=en) o Xy (—e2) Xy (—11) Xy (c2) - Xy, (en) = 21m),

ny € thl € M', and M! is the subgroup of G generated by the one parametric subgroups
corresponding to roots from Al .

Substituting the last relation into (6.12) and using the definition of ¢ and the orthogonality of
roots 1 and 7> we obtain

X—’Yn (tn) s X—’h (tl) = X—’Yn (tn) e 'X—’Yz (tQ)X’Yz (_tQ_I)S’YlX’YS (63) s X’Yn (Cn)xln%

where no = nhny € Nl.
Now we can use the relation X_., (t2)X,,(—t;") = 5,,X_~,(—t2), the orthogonality of roots 7,
and 79, and apply similar arguments to get
(6.13)
X () - Xy (B1) = X, () - - Xy (B3) 84,59, X gy (02) X5 (€3) Xy (ca) - Xy, (cn) @1, a2 # 0.

Now we can write

X, (a2) Xy, (e3) ... Xy, (cn) = Xqg(e3) ... X (en) Xy, (—cn) oo X (—e3) X gy (a2) Xy (3) .. Xy, (cn).

The product X, (—c,)... Xq,(—c3)X_,(a2) X, (c3) ... X5, (cn) belongs to the subgroup of G gen-
erated by the one-parametric subgroups corresponding to roots from the set A2 = {a € A : 3 <
a < —v,s'a = —a}. By Lemma 4.3 the minimal segment {a € A : 73 < a < —¥,} is closed
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under addition of roots and the set of roots on which s' acts by multiplication by —1 is obvi-
ously closed under addition of roots. Hence A? is closed under addition of roots. Assume for a
moment that the order of roots in A2 is opposite to the order induced by the circular normal or-
dering of A. Using Lemma 4.3 and the fact that A2 is closed under addition of roots the element
Xy (—cn) ... Xy (—e3) Xy, (a2) X o, (c3) ... X, (cn) can be represented as a product of elements from
one—parametric subgroups corresponding to roots from A? ordered in the way described above. Since
the intersection of A? with A_ is A2 = {a € A_: a < —7,} and the intersection A3 of A? with
A consists of positive roots o on which s! acts by multiuplication by —1 and such that v3 < a,
this yields

(6.14) X (=n) oo Xy (—03) X (a2) Xy (c5) .. X, (c) = i,

ns € J\N/'Q/, rh € M?, J\N/'Q/ is the subgroup of G generated by the one—parametric subgroups correspond-
ing to roots from Ai, and M? is the subgroup of G generated by the one-parametric subgroups
corresponding to roots from A2 .

Substituting the last relation into (6.13) and using the definition of ¢3 and the orthogonality of
roots 71, y2 and 3 we obtain
(6.15)

X g (tn) o Xy (1) = Xy (En) - Xy (t3)X73(_t51)5w571X74 (ca) ... Xy, (cn)2yn321m2.

The product zhnsz; belongs to the subgroup of G generated by the one-parametric subgroups

corresponding to roots from the set A2 as M! C M 2.~ Therefore using arguments applied above to

abtain (6.14) we get xhnsry = wonfj, o € M? nf € N}, and (6.15) takes the form

Xy (tn) o Xny (t1) = Xy, (tn) - .- X gy (t3)XW3(_t51)372371 Xy, (ca) ... Xy, (en)mams, m3 = nina € Ni.
We can proceed in a similar way to obtain the following representation

(6.16) X o (tn) .. Xy (t1) = sy, ... 5,00, n € Ny, T €M,

where M™ is the subgroup of G generated by the one—parametric subgroups corresponding to roots

from A" ={aeA_:a< —y}={a€A: -y <a< —v,}. Note that s! acts by multiplication

lzy -1 on thfe roots, and hence s, ...s,, M”s;ll e s;nl = N1 ()N = N{. We can also factorize

Ny = (N1 [\ N)Nj. Let n = @i be the corresponding factorization of n. Now (6.16) can be rewritten

in the following form

(6.17)  X_n (tn) ... X—ny(t1) = s'Z0(s") s, . syt =n's'i, i e Ni,n' =s'za(s') ™ € Ny,

and N; is the subgroup of NV generated by the one—parametric subgroups corresponding to the roots
in A% on which s! acts by multiplication by —1.
Similarly one has

(6.18) X, () X (tng1) =15, o5y = 0?0, 0" € Nayn” € N3,

where Ny is the subgroup of N generated by the one—parametric subgroups corresponding to the
positive roots on which s? acts by multiplication by —1, and N} is the subgroup of N generated by
the one—parametric subgroups corresponding to the positive roots a such that v,4+1 < a < yp.

Observe now that the segment which consists of roots @ € A such that —yp < a < qp is
minimal. Using this fact, Lemma 4.3 and commutation relations between one—parametric subgroups
corresponding to roots one can factorize the product yn'” as follows

(6.19) yn' =iy, € N,ys € Ko, 2’ € ZmN,,

where Ko C N is the subgroup of G generated by the one-parametric subgroups corresponding to
roots from the segment {ov € =A%, 1 —yp < a}.
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Similarly,
(6.20) finy ' =0z’ n € N,yy € Ky, 2" € Z[ | Ny,

where K| C N is the subgroup of G generated by the one parametric subgroups corresponding to
roots from the segment {a € =A% : v < —1}.

Combining (6.17), (6.18), (6.19) and (6.20), using the definition of the circular normal ordering of
the root system A associated to s, Lemma 4.3, the inclusions s' K (s')71, (s2) "1 K52 C N, the fact
that Z normalizes N, s~ 'Zs C Z, and commutation relations between one-parametric subgroups
corresponding to roots we obtain
(6.21) yuni' = yn"'s*n/'n’s'in ! = fis’gs'k, g, € N,k € ZN.

Let Mig be the subgroups of G generated by the one—parametric subgroups corresponding to
the roots from the segments A%, and A?,, respectively, M/ the subgroup of G' generated by the
one-parametric subgroups corresponding to the roots from the segment A% \ (A%, [JAZ, [JAo).
Recalling the properties of normal ordering (4.4), we have s?M1(s?)~! C N, (s')"'M2s' C N,
SQM_/i_(SQ)_l C N. By the definition of the subgroups Mi’Q and M/ every element g € N has a
unique factorization g = gi1gog2, where g1 2 € Mi’2, and go € M’ . Applying this factorization to
the element g in (6.21) we derive from (6.21) that

(6.22) yuni' = ns’g1g0g2s'k = ns’g1go(s?) s (s!) tges'k =ns I, i € N,k € ZN

as Z normalizes N. Hence yunI_1 € Ns~'ZN.
Observe also that one can reduce the expression in the right hand side of the last formula to
a canonical form by factorizing n as i = nsn}, where ng € Ny = {v € N|svs™! € N} C N and

n!, € N! = {v € N|svs~! € N}. Substituting this factorization into (6.22) we arrive at
(6.23) yuni' = ngsk” ,ns € Ny, k" € ZN.

Let H' C H be the subgroup corresponding to the Lie subalgebra §’ C §, and Hy C H the
subgroup corresponding to the orthogonal complement §g of h” in  with respect to the Killing form.
Note that by is the space of fixed points for the action of s on . We obviously have H = H'Hj.
From the definition of r5 it follows that for any hg € Hy and A’ € H' elements h = hgs(h’) and
h_ = halh’ are of the form hy = "+ for some z € h and all elements hy = e"+%, z € b are obtained
in this way.

Next observe that the space Ns~!ZN is invariant with respect to the following action of H:
(6.24) hoL=h_Lhi'h=hy = hos(h'),h_ = hg '}

Indeed, let L = vs~ 2w, v,w € N,z € Z be an element of Ns~!ZN. Then
(6.25) hoL=h_vhZ'h_s'hi'hizwhi' = h_vhZ's 'hg?hy2zwhi’
since s7'h s = hoh'. The r.h.s. of the last equality belongs to Ns~!ZN because H normalizes N
and Z.

Comparing action (6.24) with (6.11) and recalling that yun' € Ns™'ZN we deduce q(u]_wl+ (u)) C
Ns~'ZN.

The variety q(,u]TJl+ (u)) is not closed in G. But following Corollary 2.5 and Proposition 2.10 in
[12] we shall show that Ns~!ZN is closed in G.

Observe that an element g € G belongs to Ns™'ZN = N,s~'ZN if and only if sg € sNys ' ZN.
The variety sNys~1ZN is a subvariety of NZN. First we prove that NZN is closed in G.

Let hr C b be the real span of simple coroots in b, b = b" () br, hor = ho [ hr. bg and hop are
annihilators of each other with respect to the restriction of the Killing form to hg.
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According to the definition of the system of positive roots A% (see [27], Section 5) there is an
element hg € b such that a root o € A\ Ag belongs to A% iff (ho,a) > 0. Let vy, .., oy, be simple
roots which do not belong to Ag, wi,...,w, the corresponding fundamental weights. hj is a linear
subspace in the real linear span 1I of w1, ...,w, as Il is the annihilator of the subspace of hr spanned
by the roots from Ay which is contained in hop. The subset II; of II which consists of z satisfying
the condition (z,a) > 0, & € A% \ Ag is open in II and by definition hg € I () bg. Therefore the
intersection II; () bk is not empty and open in bhj.

The roots 71, ...,7 form a linear basis of hi. They also span a Z—sublattice Q' in the Z-lattice
generated by wi,...,w, as every root is a linear combination of fundamental weights with integer
coefficients and 71, ...,y form a linear basis of h C II. Linear combinations of elements of Q' with
rational coefficients are dense in b, and, in particular, in the open set II; [)bg. Since the subset
IT; of II consists of x satisfying the condition (z,a) > 0, o € A3 \ Ag there is a linear basis of b
which consists linear combinations of wy,...,w, with positive rational coefficients. Multiplying the
elements of this basis by appropriate positive integer numbers we obtain a linear basis Q;,7=1,...,0
of b which consists of integral dominant weights of the form Q, = Z?Zl 9ijWis 9ij € L, gi5 > 0.

Thus an element x € b belongs to b iff (Q;,2) =0,i=1,...,0".

Let B be the opposite Borel subgroups of GG corresponding to the system A% of positive roots, N{

their unipotent radicals. Let Vo,, i = 1,...,1’ be the irreducible finite-dimensional representation of
¢ with highest weight €; with respect to the system A? of positive roots. Denote by v, a nonzero
highest weight vector in Vi, and by < -,- > the contravariant bilinear form on Vg, normalized

in such a way that < vg,,vq, >= 1. The matrix element < vgq,,- vo, > can be regarded as a
regular function on G' whose restriction to the big dense cell N® HN7 is given by the character €;
of H, < vq,,n_hnjvg, >=< vq,,hwq, >= Q;(h), n_ € N° h € Hn, € Ni. Each fundamental
weight w; can be regarded as a regular function < v, v,, > on G defined as above with Vg,
replaced by the irreducible finite-dimensional representation V,,, with highest weight w;. By the
definition of §; the function < vq,,- vq, > can be expressed as a product of functions < v, v, >,
< vq,,gug, >= H§:1 <V, GUu,; >, g € G.

Consider the closed subvariety in G defined by the equations < vq,,gvq, >= 1,1 = 1,...,0,
g € G. According to the Bruhat decomposition every element g € G belongs to g € B®wB7 for
some w € W. In this case g can be written in the form g = n_whn, for some ny € Ni, h € H.
Now < wg,,gva, >= Qi(h) < vq,,wvg, >= Q;(h) H§=1 < Uy, W, >%. As different weight
spaces of V,,; are orthogonal with respect to the contravariant form, the right hand side of the last
identity is not zero for all ¢ = 1,...,0" iff w fixes all weights w;, 7 = 1,...,p, i.e. iff w belongs to
the Weyl group of the root subsystem Ag. Since Ag is the root system of the Levi factor L = ZH',
and < v,,,v,, >= 1, one has < vq,,wvg, ># 0, i = 1,...,l' iff g € NZH'N, and in that case
< vg,, gva, >= Q;(h), where g = n_whn, for some ny € Ni, h € H, and w is an element of the
Weyl group of the root subsystem Ag.

As we observed above an element x € h belongs to hg iff (€;,2) =0, i = 1,...,I". Therefore
the conditions < vq,,gvq, >= Q;(h) =1, i = 1,...,I' are equivalent to the fact that h belongs
to a subgroup H{, of H with Lie algebra hg. Hence the equations < vq,,gvg, >=1,i=1,...,1
hold iff ¢ € NZ'N, where Z' C L is a subgroup of L with the same Lie algebra as Z. Thus the
variety NZ'N is closed in G. Its closed connected component containing the identity element of G
is obviously NZ°N, where Z° is the identity component of Z. Thus the variety NZ°N is closed in
G, and hence NZN is also closed in G as the quotient Z/Z° is a finite group, Z normalizes N and
NZN is obtained from NZ°N by right multiplication by representatives in Z of the elements of the
finite group Z/Z°

The variety sN,s~'ZN is a closed subvariety of NZN as sN,s~! is the closed algebraic subgroup
in N generated by the one-parametric subgroups corresponding to the roots from the set {a €

J
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—A% :s7Ha) € A%} So finally sNys™'ZN is closed in G, and hence Ns™'ZN = Nys~'ZN is also

closed. Therefore the closure q(,ujwl+ (u)) is contained in Ns~'ZN. This completes the proof.
O

Proposition 6.3. ([26], Propositions 2.1 and 2.2) Let Ny« = {v € N|s~lvs € N}. Then the
conjugation map

(6.26) N x s 'ZN, .1 — Ns7'ZN

is an isomorphism of varieties. Moreover, the variety s~ ZNy-1 is a transversal slice to the set of
conjugacy classes in G.

Theorem 6.4. Suppose that the numbers t; defined in (6.5) are not equal to zero for all i. Then
q(,u;;+ (u)) is invariant under conjugations by elements of M., the conjugation action of My on
q(,uﬁ+ (u)) is free, the quotient Wq(q(ux/[{r (u))) is a smooth variety isomorphic to sT1ZN,-1, q(ux/ir (u)) ~
M, x 71'q(q(ufwl+ (u))) = My x s7*ZN -1, and the algebra (C[q(,ujgl+ (w))] is isomorphic to C[M1] ®
C[s™tZN4-].

The Poisson algebra W*(G) is isomorphic to the Poisson algebra of regular functions on Wq(q(/l,];[lJr (),

W4 (G) = (C[ﬂ'q(q(u]T;Jr (u)))] = C[s ™' ZNy-1]. Thus the algebra W;(G) is a noncommutative defor-

mation of the algebra of reqular functions on the transversal slice s~ ZNy-1.

Proof. As we observed above N17v11+ (u) is locally stable under the (locally defined) dressing action
of My, and hence q(ugj+ (u)) € Ns™1ZN is (locally) stable under the action of M, C N on

Ns~'ZN by conjugations. Since the conjugation action of N on Ns™!ZN is free the (locally
defined) conjugation action of M on q(,u&l+ (u)) is (locally) free as well.

Now observe that by Proposition 6.2 q(,u]T;+ (u)) C Ns~1ZN. Since the conjugation action of N
on Ns~1ZN is free and regular, and q(ul\_/[l+ (u)) is closed, the induced action of My on q(u]TA,lJr (u))

is globally defined and is free as well. Therefore the quotient Wq(‘](ﬂz\_/ir (u))) is a smooth variety.

Now we show that the closure of c](,u]TJl+ (u)) contains the variety Ks 'ZK’, where K C N
is the subgroup generated by one-parametric subgroups corresponding to roots from the segment
{a € A% :a <}, K" C N is the subgroup generated by one-parametric subgroups corresponding
to roots from the segment A% \ ({ar € A% : oo < 71} JAo).

Observe that the proof of presentation (6.22), formula (6.24) and the definiton of the variety
q(,u&l+ (u)) imply that it contains elements of the form ns~'k’ for some 7 € N and arbitrary k' €
Z_HyZ.K',Z_ =Z(\N_, Zy = Z()N4. This also follows from the fact that q(ul\_/ll+ (w)) is closed
with respect to the right multiplication by arbitrary elements from Z, K’ and with respect to the
left multiplication by arbitrary elements from Z_, as Z, K’ C Ny, Z_ C M€, and q(u]}[{r (u)) is
closed with respect to the right multiplication by arbitrary elements from Ny and with respect to
the left multiplication by arbitrary elements from M¢, and q(u];[l+ (u)) is also closed with respect to
the restriction of action (6.24) to Hp.

Fix a regular element z € b from the Weyl chamber corresponding to A% . Then the C*-action
on N induced by conjugations by the elements from the one—parametric subgroup h(t) generated by
x is contracting. Applying the action (6.24) with h = s(h(t)) to the elements ns~ 'k’ with arbitrary
k' € Z_HyZ, K' we immediately deduce, with the help of (6.25), that the N—component 7 can be
contracted to the identity element using the above defined contracting action, and the closure of
q(,uﬁ+ (u)) contains the variety s"'ZK' as the closure of Z_HyZ, is Z.
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By definition the variety q(u}ir (u)) is closed with respect to the left multiplication by arbitrary

elements from K. Therefore Ks~!ZK' C q(,u;;+ (u)).

Now observe that there is a factorization Ny—1 = (N,-1 [ K’)K induced by the factorization N =
K'K as by Proposition 4.2 A*_, = A% [Js'(A%,) (disjoint union), and hence K C N,-1. Therefore
sT1ZNy 1 = s71Z(Ny1 (N K')K, and every element of s~'ZN,-1 can be uniquely conjugated by
an element of K to the variety

Ks ' Z(Ny1 [\ K') € Ks™'ZK' C quy/, (w).
This implies that Ks~'Z(N,1 (V1 K') ~ s 1ZN, 1, and by Theorem 6.3 the conjugation map
(6.27) N x Ks™'Z(Ny-1 (| K') = Ns™'ZN

is an isomorphism of varieties.

Thus N acts freely on Ns™1ZN and Ks~'Z(N,-1 () K') is a cross—section for this action. Hence
My C N freely acts on q(ux/[i(u)) C Ns !ZN and any two points of Ks~1Z(N,1 (K') are
not M, —conjugate as we have an inclusion, Ks~!Z(N,-+ (N K') C q(u;/ir (u)), and two points of
q(,uﬁ+ (u)) can not be M, -conjugate if they are not N—conjugate in Ns~1ZN.

Therefore the closed variety wq(q(u&i (u))) must contain the closed variety Ks~'Z(N,-1 (N K').
From formula (4.6) for the cardinality §An,, of the set Ay, and from the definition of q(u]T/IlJr (u))
we deduce that the dimension of the quotient 7T,Z(q(u;41+ (u))) is equal to the dimension of the variety
Ks1Z(NyNK') ~ s 2N,

dim 74 (q(pyy, (u))) = dim G — 2dim My = 2D +1 = 28An, =2D +1 —
I(s) =0

2

—2(D — — Dy) =1(s) +2Dg +1—1' = dim N, + dim Z = dim s~ ZN, 1.

Therefore Wq(q(l‘x/fi (u))) =~ s ' ZN;-1, and Ks~1Z(N,-1 (| K’) is a cross—section for the action of

M, on q(/fMl+ (u)), i.e. the conjugation map
My x Ks™' Z(Ny—r [ E') = q(pyf, (w))

is an isomorphism of varieties as it is a bijective morphism of varieties, and the inverse map is a
restriction of the inverse to isomorphism (6.27) of algebraic varieties.

As Ks7'Z(Ny1 (N K') ~ s71ZN,-1 is an isomorphism of varieties, the algebra (C[q(ug/ll+ (u))] is
isomorphic to C[M] ® C[s71ZN,-1], (C[q(/QLJT/[lJr (u))] 2 C[M4] @ C[s™*ZN,-1].
Now observe that by Remark 9.5 in [27] the map

O (mg(kar, () = C=(upf, ()™ M), g '

is an isomorphism. By construction the map m, : q(,uﬁ+ (u)) — wqq(u&i (u)) is a morphism of
varieties. Therefore the map

Clrq(uiag, ()] = Clalpar, ()] NC® (uyp, (W) M, 4 s mhy

is an isomorphism, where Clg(p,, (w))] is regarded as a subalgebra in C* (;LI\_/[l+ (w)) using the map
1

My
q: C’Oo(q(u];l,{r (w))) = C>(kyy, (u)) and the imbedding C[q(p];[l+ (w)] C C‘"’(q(,uﬁ+ (u))).
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Finally observe that by Lemma 6.1 the algebra (C[q(ufwl+ (u))]NC (MX/A (u))¢” (M=) is isomorphic

to W*(G), and hence W*(G) = (C[?TQ(J(/,LA_/}+ (u))] = C[s71ZN,-1]. This completes the proof.
O

In conclusion we discuss a simple property of the algebra W?(G) which allows to construct non-
commutative deformations of coordinate rings of singularities arising in the fibers of the conjugation
quotient map g : G — H/W generated by the inclusion C[H]" ~ C[G]¢ — C[G], where H is the
maximal torus of G corresponding to the Cartan subalgebra h and W is the Weyl group of the pair
(G, H).

Observe that each central element z € Z(C[G.]) obviously gives rise to an element py:(z) € Q-,
and since z is central

sz(z) € Hom(Cg[Mf]((Cx:v(Cs[G*] Qe [M_] (ng) sz = WZ(G).
The proof of the following proposition is similar to that of Theorem Ay, in [24].

Proposition 6.5. Let € € C be generic. Then the restriction of the linear map pys : C.[G4] — Q-
to the center Z(C.[G.]) of Cc|G4] gives rise to an injective homomorphism of algebras,

pxe * Z(CLIG]) = W2(G).

Now if n : Z(C¢[G.]) — C is a character then from Theorem 6.4 and the results of Section
6 in [26] it follows that the algebra W27 (G)/WE(G)ker n can be regarded as a noncommutative
deformation of the algebra of regular functions defined on a fiber of the conjugation quotient map
dq : s 1ZNy1 — H/W. In particular, for singular fibers we obtain noncommutative deformations
of the coordinate rings of the corresponding singularities.

7. SKRYABIN EQUIVALENCE FOR EQUIVARIANT MODULES OVER QUANTUM GROUPS

In this section we establish a remarkable equivalence between the category of W?(G)-modules
and a certain category of C.[G.] modules. This equivalence is a quantum group counterpart of
Skryabin equivalence established in the Appendix to [19].

Let J = Ker ¢ Us, (my) be the augmentation ideal of U%, (m.) related to the counit € of U%,(g),
and C 4 the trivial representation of U5, (m4) given by the counit. Let V' be a finitely generated
C 4/|G.]-module which satisfies the following conditions:

(1) V is free as an A’-module.

(2) V is a right U%,(my)-module with respect to an action Ad such that the action of the
augmentation ideal J on V is locally nilpotent.

(3) The following compatibility condition holds for the two actions

(7.1) Adz(yv) = Adze(y)Adzi(v), z € U (my), y € Co[Gi], v EV,

where Ay(z) = 21 ® 2, Adz(y) is the adjoint action of z € U%,(my) on y € C 4/ [Gy].
An element v € V is called a Whittaker vector if Adzv = e(x)v for any x € U, (my).
The space

(7.2) HOIHU;l (my) ((CA/, V) = Wh(V).

is called the space of Whittaker vectors of V.

Consider the induced U}, (g)-module W = U3, (g) ®c ,,[¢.] V. Using the adjoint action
of U%,(g) on itself one can naturally extend the adjoint action of U%,(m4) from V to W in
such a way that compatibility condition (7.1) is satisfied for the natural action of U%,(g)
and the adjoint action Ad of U5, (m;) on W. As we observed in Section 5 (see formula
(5.13)) A®P(U%, (my)) C U (by) ® U (my). From this using the fact that the elements
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és = (1 = q3)ep, ep € U (my), are generators of Ca/[M_] one immediately deduces that
APP(Ca[M_]) C U3 (by) @ Cx [M_]. In fact APP(Ca[M_]) C Ca[B_] ® Ca/[M_] since
Ca/[M_] C C4[B_] which is a Hopf algebra.

We shall require that

(4) For any = € Ca/[M_] the natural action of the element (S~ @ x5)A°P(x) € C4[G*] on W

coincides with the adjoint action Adz of z on W.

As in the second part of the proof of Proposition 5.6 one can see that the last condition
implies that for any z € C 4/ [G.] NI, and v € Wh(V') zv = 0.

Denote by C 4/ [G,] — mod ? Xa the category of finitely generated C 4/[G,]-module which satisfy

Uso(my),

conditions 1-4. Morphisms in the category Ca[Gy] — modU‘i (my),,, AT Ca[Gy]- and U, (my)—

module homomorphisms. We call C 4/ [G,] — mod . the category of (U3, (m4.), xj)—equivariant

U,;l’(er)loc
modules over C 4/ [G.].
Note that the algebra W (G) naturally acts in the space of Whittaker vectors for any object V'

of the category C4/[G.] — modUs J(mi)y, . Indeed, if w,w’ € C4/[G,] are two representatives of an

element from W7 (G) then w—w' € (CA/ [G ]N1,, and hence for any v € Wh(V') wv = w’v. Moreover,
by the definition of the algebra W7 (G) and by condition (7.1) we have

Adz(wv) = Adze(w)Adz (v) = Adze(w)e(xr)v = Adz(w)v = e(z)wo.
Therefore wv is a Whittaker vector independent of the choice of the representative w.
Proposition 7.1. For any finitely generated WS(G) —~module E which is free as an A'-module the

space Qu Qwg(c) E is an object in C 4/ [Gy] — modUi 5 (m), , and

Wh(Qa ®@w;s(c) E) = HomU;,(er)((CAu Qa ®W;(G) E)=FE.

US, (ma)y,, We shall prove that the

adjoint action of the augmentation ideal J of U, (m+) on Q4 is locally nilpotent. All the other

Proof. First we prove that Q4 is an object in C 4/ [G4] — mod

properties of objects of the category C4/[G.] — mod ¢ for Q4 were already established in

US s (my )l
Proposition 5.7.

Indeed, let hom 4/ (U3, (m4.)), W7 (G)) be the subspace in Hom 4/ (U4 (m4.), W7 (G)) which consists
of the linear maps vanishing on some power of the augmentation ideal J = Ker e of Uy (my),
hom 4/ (U (my ), W2 (G)) = {f € Homa (Uar(my), W5 (G)) : f(J") = 0 for some n > 0}. Fix any
linear map p : Qq — W;(G) C Q4 the restriction of which to W;(G) is the identity map, and
let for any v € Qs o(v) : Ui (my) — W7 (G) be the A™-linear homomorphism given by o (v)(x) =
p(Adzx(v)). Since the adjoint action of U 4/ (m4) on C 4/ [G.] is locally finite the induced adjoint action
of Uygr(my) on Q4 is locally finite as well (see the arguments in the end of the proof of Proposition
5.5). Therefore for any v € Q 4/ the space AdU 4 (m4)(v) has finite rank over A’. This implies that
in fact o(v) € hom 4 (U3, (my ), W7 (G)), and we have a map o : Q4 — homy (U, (my), Wi (G)).

By definition ¢ is a homomorphism of right U#, (m,.)-modules, where the right action of U%, (m4.)
on hom 4/ (U3, (m4), W (G)) is induced by multiplication in U3, (m) from the left.

We claim that o is injective. Indeed, consider the specialization o; of the homomorphism o
at ¢ = 1. The specialization of the algebra Uy (m;) at ¢ = 1 is isomorphic to U(my.), and the
specialization Q1 = QAI/(qﬁ — 1)Qu of the Uy (my)-module Q4 at ¢ = 1 is isomorphic to
(C[q(ux/ir (u))]. By Theorem 6.4 (C[q(/LJT/IlJr (u))] 2 C[M4] ® W*(G). From Proposition 11.2 in [27] we

obtain that the induced action of U(m4 ) on the corresponding variety q(,uzT/Il+ (u)) is induced by the
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conjugation action of M, and now using Proposition 6.3 one immediately deduces that the induced
action of U(my) on C[M;]® W*(G) is generated by the action of U(my.) on C[M] by left invariant
differential operators.

Using the exponential map exp : my — M, we can also identify C[M,] ® W*(G) with the right
U(m4)—module hom¢(U(my), W*(G)) = {f € Homc(U(my), W*(Q)) : f(J}*) = 0 for some n > 0},
where J; is the augmentation ideal of U(m,) generated by m_, and the right action of U(m,) on
homge (U (my ), W#(G)) is induced by multiplication in U(my) from the left.

On the other hand the specialization of hom 4/ (U3, (m4), Wi (G)) at ¢ = 1 is also isomorphic to
home (U (my ), W#(G)), and hence under the above identifications the specialization of 1 of map o
at ¢ = 1 becomes the identity map.

Now let W be the kernel of o, and W7 C @Q); its image under the canonical projection Q4 —
Q1 = Qu /(g2 —1)Q4. Wy must be contained in the kernel of o1. Since this kernel is trivial W;
must be trivial as well, and hence W = (qﬁ — W', W C Q. Since Q 4/ is A'free and A’ has no
zero divisors we also have W' C W. Iterating this process we deduce that any element w € W can
be represented in the form w = (q?ld — 1)Bw',w’ € W with arbitrary large B € N which is possible
only in case when W = 0. Therefore o is injective.

Thus Q 4 is a submodule of hom 4/ (U3, (m4.), W, (G)) the action of J on which is locally nilpotent.
Therefore the action of J on @ 4 is locally nilpotent as well.

We conclude that for any finitely generated W;(G)-module £ which is free as an A’~module
the space Q- Qwes () E can be equipped with the adjoint action induced by the adjoint action on
Q4 in such a way that the compatibility condition (7.1) is satisfied. Since the adjoint action of the
augmentation ideal J on @ 4 is locally nilpotent the induced adjoint action of the augmentation
ideal J on Q4 Ow;z(a) FE is locally nilpotent as well.

The fact that @ 4/ is an object of the category C 4/ [G,] — mod

U, (my) implies now that QA/®W;(G)

loc

E is an object of the category C4/[G.] — mod;ﬁ (ms), as well. Moreover, by the definition of the
Al oc
algebra W7 (G)

(7.3) Homy:, (m,)(Ca, Qu @w;(6) E) = Wh(Qu Qw; ey E) = Wi (G) @w; () E = E.

This completes the proof of the fact that Q4 and Q4 Qwe () E are objects of the category
Cu[C] — mod

U;/ (m+)loc.

O

Obviously we also have that for any object V of the category C 4/ [G.] — mod the canon-

Xq
Uj\’(m+)loc
ical map Q4 Bws(G) Wh(V) — V is a morphism in the category C4/[G.] — mod -

. Ujl’(m+)loc.
We also denote by C.[G.] — mod}; Vioe the category of C.[G.]-modules which are specializa-

S(my
tions of modules from C4/[G.] — mod;"ﬁ (my), atgqg=cec C. The spaces of Whittaker vectors
Al loc

XZ
for modules from C.[G.]— modU;(er)lo

Wh(V) = V, V € C.[G.] - mody;

Xs
Ca|Gy] — modU‘E\/(m)loc.
We have the following obvious e—specialization of Proposition 7.1.

, the adjoint action and the canonical map Q. ®@ws(q)
C €

m,), . are defined similarly to the case of modules from
+/loc
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Proposition 7.2. Let e € C be generic. Then for any finitely generated W2(G)-module E the space

Q: ®ws(q) E is an object in C.[G.] — modUE (1) g and

Wh(Q: ®w:(g) ) = Homys (m,)(Ce, Qe @ws (o) E) = E,

where C. is the trivial representation of UZ(my) given by the counit.
The following proposition is crucial for the proof of the main statement of this paper.

Proposition 7.3. Suppose that the numbers t; defined in (6.5) are not equal to zero for alli. Then
for generic e € C Q. is isomorphic to homc(UZ(m4),C) @ W2 (G) as a US(my)-WE(G)-bimodule,
where home(UZ(m4),C) is the subspace in Home(UZ(my),C) which consists of the linear maps
vanishing on some power of the augmentation ideal J = Ker € (here € is the counit of US(g)) of
Us(my), home(Us(my),C) = {f € Homc(U2(my),C) : f(J™) =0 for some n > 0}.

Proof. First we show that the specialization o, : Q. — homc(UZ(my), W2(G)) at ¢ = € of the
U (my)-module homomorphism o : Q4 — homy (U3, (my.), W7 (G)) constructed in the proof of
Proposition 7.1 is an isomorphism of right UZ(m4)-modules.

First we prove that o, is injective. The proof will be based on the following lemma that will be
also used later.

Lemma 7.4. Let ¢ : X — Y be a homomorphism of UZ(m,)-modules. Denote by Wh(X) the
subspace of Whittaker vectors of X, i.e. the subspace of X which consists of elements v such that
xv = e(x)v, © € UZ(my). Assume that the action of the augmentation ideal of US(my) on X is
locally nilpotent and that the restriction of ¢ to the subspace of Whittaker vectors of X is injective.
Then ¢ is injective.

Proof. Let Z C X be the kernel of ¢. Assume that Z is not trivial. Observe that Z is invariant with
respect to the action induced by the action of U?(my) on X, and that the augmentation ideal of
UZ(my) acts on X by locally nilpotent transformations. Therefore by Engel theorem Z must contain
a nonzero UZ(m4 )—-invariant vector which is a Whittaker vector v € X. But since the restriction of
¢ to the subspace of Whittaker vectors of X is injective ¢(v) # 0. Thus we arrive at a contradiction,
and hence ¢ is injective. O

Now we prove that o. is injective. Observe that by Proposition 7.2 the augmentation ideal of
Us(my) acts on Q. by locally nilpotent transformations. Let v € W2(G) be a nonzero Whittaker
vector of .. By the definition of map o, we have o.(v)(1) = p-(v) = v, where p. : Q. = WE(G) C
Q- is the linear map used in the definition of the map o. the restriction of which to W7 (G) is the
identity map. Therefore o.(v) # 0. Now by Lemma 7.4 applied to o, : Q. — homc (U2 (my), W2 (G))
the homomorphism o, is injective.

Now we prove that o, is surjective. In order to do that we shall calculate the cohomology space
of the right U?(my)-module Q. with respect to the adjoint action of UZ(m),

(7.4) Extf m, ) (C=, Q2).
We shall show that
(7.5) Ext{s(m,)(Ce, Qe) =0, n > 0.
Note that we already know that by deﬁmtlon
(7.6) Ext{rs (m, ) (Ce, Qc) = Homy: (m, ) (Ce, Q) = WE(G).

We shall calculate the Ext functors in formula (7.5) using a deformation argument which is based
on upper semicontinuity of cohomology functor with respect to base ring localizations discovered
by Grothendieck (see for instance [32], Theorem 1.2 for the formulation of this principle suitable
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for our purposes). Let X* be a complex of finitely generated free modules over a ring k, X the
corresponding complex over the residue field k(p) of the localization of k at a prime ideal p. Then
for each i the function p — dimcH'(X}) is upper semicontinuous on Spec(k). In particular, if
H' (X)) = 0 for some po then for generic p we have H*(X2) = 0.

As k we shall take A’. Note that one can define a localization, A’/(1 — g2a)A’ = C as well as
similar localizations for other generic values of &, A’/(e2a — q2a) A’ = C.

An appropriate complex X* is a little bit more complicated to define. Let C4 be the trivial
representation of U5, (m4) given by the counit. We shall construct a complex X, for calculating
the functor Ext‘UA,(m+)(C A7, Q) the specialization of which for any generic € is a complex for
calculating the functor Ext'UEs(m”((CE,QE), and the specialization of X%, at ¢ = 1 is a complex
for calculating U(m.)—cohomology with values C[M,] ® W*(G), where the action of U(my) on
C[M,] ® W*(G) is induced by the natural action of U(m4) on C[M,] by left invariant differential
operators. These cohomology is just the de Rham cohomology of M, and hence is trivial in nonzero
degrees. Moreover, the complex X%, will be filtered by finitely generated free modules. Therefore
Grothendieck upper semicontinuity of cohomology together with the property of the specialization
of our complex at ¢ = 1 imply vanishing property (7.5).

To construct the complex X%, we first recall the definition of the standard bar resolution of an
associative algebra A over a ring k regarded as an A — A-bimodule (see [33], Ch. 9, §6),

Bar"(A) = A®k...®k A, n >0,
———

n—+2 times
7.7
( ) d(a0®...®an+1)=
Sor (m1)fap ® ... ® asas41 @ ... ® ant1
where ag, ...,a,411 € A.
Now observe that if one introduces degrees of elements of U%,(ny) by putting dege; = 1, i =
1,...,1 the algebra U%, (ny) becomes naturally N-graded by subspaces U, (ny)* which are free over

A" and have finite rank over A’. Let U$,(m4)* be the induced grading of U%,(m4) and denote by
U5 (my )y the induced filtration of U, (m4.) by subspaces of finite rank over A’.

Now one can define a filtration of the U%,(m)-module Q 4/ by free A’~modules of finite rank
over A’. In order to do that we recall that Q 4/ is a submodule of hom 4/ (U, (m ), W7 (G)) as we
observed in the proof of Proposition 7.1. We also observe that from the definition of the space
hom 4/ (U5, (my ), W7 (G)) it follows that
(7.8) hom_ (U3 (), W3 (G)) = hom.a (U (), A) @40 W2 (G),
where

homA’(Uj\’ (m+>7 AI) = @r<ohom g/ (Ujl’ (er)—k’ A/)’
Observe that hom 4/ (U5, (m4), A’) is naturally a Z_-graded module over the N-graded algebra
U5/ (my). Denote by hom4 (U, (my), A")r = @p>rhomy (Uy (my)?, A’) the corresponding fil-
tration of hom 4 (U3, (my ), A’) by subspaces which are free over A’ and have finite rank over
A’. By construction the action of U%,(my) on hom 4 (U3, (my), A’) preserves the filtration of

hom 4/ (U%,(my), A’). Combining the filtration on hom 4 (U%, (m, ), A’) with an arbitrary filtration
W2(G)k, k € N of W7(G) by free A'-submodules of finite rank we obtain a filtration of

hom 4 (U (m), W;(G)) = hom g (U (my ), A') @ 0 WE(G),
hom a4 (U (m), W (G = | homa (U (my), A)y @40 Wi (G)gy b €N,

q—p<k
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The induced filtration of the submodule @) 4 has components which are free A’~modules of finite
rank. By construction the action of Uj, (m;) on Qs preserves the components (Qa/)r of that
filtration.

The filtration U%, (m.); induces a filtration Bar™ (U, (my))x of the complex Bar"(U%, (my)) by
subcomplexes with finite rank graded components.

Consider the subcomplex

homU.i\/ (my) (Bar.(Uil’ (m-‘r))a QA’) =

= U HomU;l(m”(Bar'(Uj/ (my)g, Qar)
k
of the complex HomU;,(m”(Bar'(Uj, (m4), Q). Since Bar®(U¥,(m4)) is homotopic to U, (my.)
as a filtered U%, (my) — U3, (m) bimodule the cohomology of

hOHlU;, (my) (Bar'(Uj, (my)),Qa)
coincide with @ 4. We claim that the homological degree graded components of
homUjv (my)(Bar® (U (my)), Qar)

are injective U?%, (my)-modules, and hence homye , (m ) Bar® (Ui, (my)), Q) is an injective resolu-
tion of Q4.

Indeed, by construction each of the components homUil(m”(Bar”(Uj\, (m4)), Q.4) is isomorphic
to hom 4 (U5, (my), W) = J, Homa (U, (my))k, W) for some free A’-module W, and the right
action of U%,(m) on hom4 (U, (m,), W) is induced by multiplication on U, (my) from the left.
Clearly, hom 4/ (U%, (m4.), W) is the subspace of Hom 4/ (U%, (m4.), W) which consist of the linear maps
vanishing on some power of the augmentation ideal J = Kere of U, (m4.), hom 4 (U5, (my), W) =
{f € Hom 4 (U3, (my), W) : f(JP) = 0 for some p > 0}.

Lemma 7.5. Let J = Ker € be the augmentation ideal of U5, (m4), homa (U, (my), W) = {f €
Hom 4 (U, (my), W) : f(JP) = 0 for some p > 0}, where W is a free A'~module. Equip hom 4 (U%, (my.), W)
with the right action of U%,(my) induced by multiplication on U3, (my) from the left. Then the

U (my)-module hom 4 (U5, (my), W) is injective.

Proof. First observe that the algebra U%,(m.) is Notherian and ideal J satisfies the so-called weak
Artin-Rees property, i.e. for every finitely generated left U%, (my)-module M and its submodule
N there exists an integer n > 0 such that J*M (N C JN. Indeed, observe that the algebra
U5/ (m4) can be equipped with a filtration similar to that introduced in Section 4 on the algebra
U ;(g) in such a way that the associated graded algebra is finitely generated and semi—commutative
(see (4.16)). The fact that U5, (m,) is Notherian follows from the existence of the filtration on it
for which the associated graded algebra is semi—commutative and from Theorem 4 in Ch. 5, §3 in
[35] (compare also with Theorem 4.8 in [37]). The ideal J satisfies the weak Artin—Rees property
because the subring U$, (my) + Jt + J?t2 + ... C US, (my)[t], where t is a central indeterminate, is
Notherian (see [38], Ch. 11, §2, Lemma 2.1). The last fact follows from the existence of a filtration
on U5, (my) + Jt+ J*? + ... induced by the filtration on U, (m_) for which the associated graded
algebra is semi—commutative and again from Theorem 4 in Ch. 5, §3 in [35].

Finally, the module Hom 4/ (U%,(m,), W) is obviously injective. By Lemma 3.2 in Ch. 3, [34]
the module hom 4 (U, (my), W) = {f € Hom 4 (U3, (my), W) : f(JP) = 0 for some p > 0} is also
injective since the ideal J satisfies the weak Artin—Rees property. O

Lemma 7.5 implies that the complex homUz,(m”(Bar'(Uj‘, (my)),Q.4) is an injective resolution
of Q4 as a right U%, (my)-module.
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Now consider the complex
X = Homye  (m,) (Ca, homU;,(m”(Bar'(Uj/ (my)), Qu))
for calculating the functor
EXt?]Z,(m+)(CA/7 Q.A’) = H’(XA/)
Observe that the specialization of the U, (my)-module C 4 at e is isomorphic to C., and the

specialization of the U$, (m . )-module Q 4/ at ¢ is isomorphic to Q.. Therefore the specialization of
the complex X%, at € is isomorphic to

X2 = Homy: (m,)(C., homy: (m_ ) (Bar® (U (my)), Qc)),

where the complex
homU:(m+)(Bar'(U§(m+)), Q:)

is defined similarly to homUz,(er)(Bar'(Uj\, (m4)), Q.as) using the e—specialization of the filtration
(U (my))k. Applying the same arguments as in case of the complex X§, one can show that X? is
a complex for calculating the functor Ext{.(y,)(Ce, Qc) = H*(X?).

The specialization of the algebra U%,(m,) at ¢ = 1 is isomorphic to U(m), the specialization of
the U5, (m4)-module C 4 at ¢ = 1 is isomorphic to the trivial representation Cy of U(m..), and the
specialization of the U3, (my)-module Q 4+ at ¢ = 1 is isomorphic to (C[q(,ui/ll+ (u))]. By Theorem 6.4

Cla(uar, (u))] = CIMy] @ W*(G).

From the proof of Proposition 11.2 in [27] we obtain that the induced action of U(m,) on the
corresponding variety q(uxj+ (u)) is obtained from the conjugation action of M, and now using
proposition 6.3 one immediately deduces that the induced action of U(m,) on C[M,] ® W*(G) is
generated by the action of U(my) on C[M] by left invariant differential operators. Therefore the
specialization of the complex X%, at ¢ = 1 is isomorphic to

X = Homy(m, ) (Co, homy ) (Bar* (U(m)), CM, ] @ W*(G))).
where the complex
homy () (Bar®*(U(my)), C[My] ® W*(G))
is defined similarly to
homys , (m ) (Bar® (U, (my)), Q)

using the ¢ = 1-specialization of the filtration (U%,(my))s. Applying the same arguments as in case
of the complex X%, one can show that X7 is a complex for calculating the functor

my)(Co, CIMy] @ W*(G)) = H*(XT).

We also obviously have Extf .y )(Co, C[My] ® W*(G)) = Ext{m,)(Co, C[M4] ® W*(G)) =
H3,(My) ® W*(G), where H3,(M,) is the de Rham cohomology of the unipotent group M.
Since H}p (M, ) = 0 for n > 0 we deduce that H"(X}) = 0 for n > 0.

Finally observe that the complex X, and its specializations introduced above can be equipped
with compatible filtrations by finitely generated free subcomplexes. These filtrations are induced
by the filtrations (Q.a4/)r and (U5, (m4))x and by their specializations at ¢ = ¢ and ¢ = 1. The
Grothendieck cohomology semicontinuity property holds for these subcomplexes, and hence for the
complex X%, as well. Therefore from the vanishing property H"(X?) = 0 for n > 0 we deduce that
for generic & Extyy: (m,)(Cs, Q) = H"(X2) = 0 for n > 0.

Now we prove that o, is surjective. We start with the following lemma.

EXt.U(
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Lemma 7.6. Let ¢ : X — Y be an injective homomorphism of UZ(m4)-modules. Assume that ¢ in-
duces an isomorphism of the spaces of Whittaker vectors of X and of Y, and that ExtlUEs (m”((CE, X) =
0, where C. is the trivial representation of U (my.). Suppose also that the action of the augmentation
ideal J of U2(my.) on the cokernel of ¢ is locally nilpotent. Then ¢ is surjective.

Proof. Consider the exact sequence
0—+X =Y W —0,
where W’ is the cokernel of ¢, and the corresponding long exact sequence of cohomology,
0 = Ext{re (m,)(Ce, X) = Extre () (Ce, Y) = Extre ) (Co, W) =

— Ethljss(m+)((Cg7X) — ...

Since ¢ induces an isomorphism of the spaces of Whittaker vectors of X and of Y, and
Ext,ljs(m”((cg, X) =0, the initial part of the long exact cohomology sequence takes the form

0 — Wh(X) = Wh(Y) - Wh(W’) — 0,

where the second map in the last sequence is an isomorphism. Using the last exact sequence we
deduce that Wh(W') = 0. But the augmentation ideal J acts on W’ by locally nilpotent transfor-
mations. Therefore, by Engel theorem, if W' is not trivial there should exists a nonzero UZ(my)—
invariant vector in it. Thus we arrive at a contradiction, and W’ = 0. Therefore ¢ is surjective.

|

Now recall that by (7.5) and (7.6) we already know that
Wh(Q:) = WZ(G), Exty:(m,)(Ce, Qc) = 0
and by the definition of the module hom¢ (UZ (m4. ), W2 (G))
Wh(home (U2 (my.), W2(G))) = Homy; (m,) (Ce, home (U2 (m), W2(G))) = W2(G).

Observe also that by construction the map o, : Q. — homc(UZ(m4), W2(G)) induces an iso-
morphism of the spaces of Whittaker vectors. Since the action of the augmentation ideal J on
home (UZ (m4), W2(Q)) is locally nilpotent its action on the cokernel of o, is locally nilpotent as
well. Therefore o, is surjective by Lemma 7.6.

Thus we have proved that o, : Q. — hom¢(UZ(m,), W2 (G)) is an isomorphism of right U?(m)-
modules. Note that by the definitions of the spaces home (UZ (my), W2(G)) and home (Uf (my), C) we
also have an obvious right UZ (m4 )-module isomorphism home (Uf (my, W2 (G)) = home (UZ (m4),C)®
W:(G).

Now consider the U?(m, )-submodule o2 ! (homc(US(my ), C)) of Q., where homc (US(my),C) C
homg (U (m,), W2(Q)). Obviously o1 (homg(Ug(m,),C)) =~ homc(US(my ), C) as a right U (my)—
module.

Let ¢. : o7 (homc(Ug(m,),C)) ® W2(G) — Q. be the map induced by the action of W2 (G)
on Q.. Since this action commutes with the adjoint action of Uf(my) on Q. we infer that ¢. is a
homomorphism of Uf(m)-W2(G)-bimodules.

We claim that ¢, is injective. This follows straightforwardly from Lemma 7.4 because all Whit-
taker vectors of o (homc(Ug(m,),C)) ® W2(G) belong to the subspace

1® WE(G) € o7 (home (U2 (my), €)) ® W2 (G),

and the restriction of ¢. to this subspace is injective.

Now we show that ¢. is surjective. By the specializing the result of Lemma 7.5 at q
one can immediately deduce that the right U?(my)-module o ! (homc(Ug(my),C)) ® Wi (G
homge (UZ (m4 ), W2(G)) is injective. In particular, Ext%]:(m+)(((:5, o1 (homc (U2 (m+),C))®W§(

= £

)
) =
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0. One checks straightforwardly, similarly the case of the map o, that the other conditions of Lemma
7.6 for the map ¢. are satisfied as well. Therefore ¢. is surjective.
This completes the proof of the proposition. |

Now we formulate our main statement.

Theorem 7.7. Suppose that the numbers t; defined in (6.5) are not equal to zero for alli. Then for
generic € € C the functor E — Q: Qws () E, is an equivalence of the category of finitely generated

left W2(G)-modules and the category C.[G.] — mod s

Uz(mi)oc
the functor V. Wh(V'). In particular, the latter functor is exact.
Every module V € C.[G,] — mod}= is isomorphic to homc(UZ(my),C)) ® Wh(V) as a

U: (m+)loc
right U2 (m)-module. In particular, V is UZ(my)~injective, and Extysm 1 (Ce, V) = Wh(V).

The inverse equivalence is given by

my)

Proof. Let E be a finitely generated W2(G)-module. First we observe that by the definition of
the algebra W$ we have Wh(Q 4/ ®ws(a) E) = E. Therefore to prove the theorem it suffices to

check that for any V € C.[G.] — mod*?

Us(my)oe

the canonical map f : Q. ®@ws(q) Wh(V) — V is an

isomorphism.
By the previous Proposition Q. = homc¢(Uf(my),C) @ W2(G) as a UZ(m,)-W2(G)-bimodule.
Therefore

(7.9) Q: Sw(c) Wh(V) = home (U2 (m),€) ® Wh(V)

as a right UZ(m4)-module.

Now the fact that f is an isomorphism can be established by repeating verbatim the arguments
used in the proof of a similar statement for the map ¢. in the previous Proposition. In particular
[ is injective by Lemma 7.4, Q. ®@w: @) Wh(V) = home (U2 (my),C) @ Wh(V) is an injective right
UZ(my)-module by Lemma 7.5, and f is surjective by Lemma 7.6.

This completes the proof of the theorem. O

8. LOCALIZATION OF QUANTUM BIEQUIVARIANT D—MODULES

In this section we present a biequivariant version of the localization theorem for quantum D-
modules proved in [1, 29]. A similar result for Beilinson—Bernstein localization of D modules on the
flag variety was already mentioned in the original paper [2] (see also [16] for more details).

Let ¢ € C be transcendental and generic. Denote by C.[G] the Hopf algebra generated by
matrix coefficients of finite-dimensional representations of UZ(g). There is a natural paring (-,-) :
Us(g) ® C.[G] — C. The algebra C.[G] is equipped with a U?(g)-bimodule structure via the left
and the right regular action,

(8.1) u(a) = a1(u, az), (a)u = (u,a1)az, u € UZ(g), a € C.[G], Aa = a1 ® as.

Let D, be the Heisenberg double of UZ(g) defined in [23]. As a vector space D, = C.[G] ® UZ(g),
and the multiplication on D, is given by

(8.2) a®u-b®v=au(b) ®ugv, a,b € C.G], u,v € U(g), Asu=u ® us.
The Heisenberg double is an analogue of the algebra of differential operators on the group G in
case of Hopf algebras. D, also has the structure of a U?(g)-bimodule,
(8.3) ur(a®v) = uay(a) @ up)vSs(u)), ur(a®@v) = (a)u v,
u € Uj(g), a € Cs[G], (id@ AS)AS(U) = U(1) @ U2) @ U(3).
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Both the left and the right UZ(g) actions on D, are derivations with respect to the multiplicative
structure in the sense that

(84) wup(a®@u-b®v)=uip(a®@u) uzr(b®0v), urla@u-b®v) =ur(a@u) - uzpr(b®v).

These actions are analogues of the actions generated by left and right translations on G on the
algebra of differential operators.

Let A be a character of U?(h). A naturally extends to a one-dimensional U? (b, )-module that we
denote by C,.

Note that there is an algebra embedding Uf(g) C D.,  — 1 ® 2. The image of this embedding
is an analogue of the algebra of right invariant vector fields on G. As in case of Lie groups right
invariant vector fields generate left translations in the sense that

1®y1'a®$'1®55y2=yL(a®$)» yEUES(g)CDEa a®zx €Dy, As(y):y1®y2~

Let C.[B+] be the quotient Hopf algebra of C.[G] by the Hopf algebra ideal generated by elements
vanishing on UZ(by). Note that if V' is a right C.[B4]—comodule then V is also naturally a left
UZ (b )-module.

A (UZ(by), N)—equivariant D.—module is a triple (M, a, 8), where M is a complex vector space
equipped with a left D.—action a : D, x M — M, a right C.[B,]'—coaction which gives rise to a left
Us(by)—action B : UZ(by) x M — M such that

(1) The UZ(by)-actions on M @ Cy given by 8 ® A and by |y (s, ) ® Id coincide;
(2) Bu)(ala®@v)m) = a(uig(a @ v))B(uz)m,for all u € US(by), a®@v € D, m € M, Agu =
U X ug.

(Ug(b4), A)—equivariant D.—modules form a category Dé;’(lw) morphisms in which are linear
maps of vector spaces respecting all the above introduced structures on (UZ(b4 ), A)—equivariant
D.—modules.

Let D2 be the maximal quotient of D. which is an object of Dg;(m)- In fact one has

D) ~D./D.I,
where I is the left ideal in D, generated by the elements 1®e¢;, 1®t; — A(t;), i = 1,...,1. We denote
by 1 the image of 1 ® 1 € D, in D2.
Now define the global section functor I : Dgs(m) — Vectc, where Vectc is the category of vector

spaces,
(M) =Hompy (D2, M) = Homyy,)(Ce, M),

Ug(by
where in the last formula U# (b, ) acts on M according to S—action, and C. is the trivial representation
of UZ(b) given by the counit.
One can also write

(8.5) ['(M) = Homy: (s, (Cx, M),

where UZ(by) acts on M according to the a—action composed with the embedding UZ(b;) — D,
z—1®x.

Naturally T'(D2) = Endp» " )(Dg‘) is an algebra with multiplication induced from D.. The

2oy

algebra I'(D2) naturally acts from the left on spaces I'(M) for M € D?}s(m)'

Recall that there is a locally finite right adjoint action of Ad : U2(g) x U2(g)/™ — U2(g)’"" given
by

Adz(w) = S; ! (@)way,

where Ay(2) = 21 ® 73, 2 € US(g), w € U2(g)/™™. Tet Ana : U(g)/™™ — C.[G] ® U2(g)™ be the
dual C.[G]-coaction on U2(g)7™™. One can consider the tensor product C.[G] ® U2 (g)f™ as a linear
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subspace of D.. Using this fact Axq can be regarded as a linear map to D., Aaq : US(g)/™ — D..
In fact Aagq is an embedding, the left inverse map Aagqg, is given by

(8.6) Apgs,(a®@x) =a®1-Apgs, (), a®@2 € ImApg C C.[G] ® Uj(g)fi",

where Apqs, : U2(g)f™ — C.[G]@UZ(g)7™ is the map dual to the action of U?(g) on U2 (g)f™™ given
by AdSs, and the image of Aags, in (8.6) belongs to the subspace 1 ® UZ(g)?™ which is naturally
identified with U2 (g)/™".

Direct calculation also shows that Aaq : U2(g)/" — D, is an algebra antihomomorphism,

Ana(r) - Ana(y) = Aaaly).

Note that Aaq can be extended to a homomorphism from U?(g) to a certain completion C. [G]RUZ(g)
of C.[G]®U$(g) by infinite series terms of which are elements of C.[G]@UZ(g). We denote this exten-
sion by the same symbol, Aaq : US(g) — C.[G]@UZ(g). One can equip the completion C.[G]&UZ(g)
with a multiplication induced from D.. We denote the obtained algebra by ﬁs.

One checks that the map Apqgg, naturally extends to a left inverse of Aaq : U (g) — 255, and

hence Apq : US(g) — 235 is an embedding. The image of this map can be regarded as an analogue
of the algebra of left invariant vector fields on G. In particular, these analogues generate the right
action of U?(g) on D,

(8.7) Apa(yn) - a®@x - Axa(S;'y2) =yr(a®@x), y € UZ(g), As(y) =11 @ y2, a®x € D..
The map Aagq is also equivariant with respect to the right action of Uf(g) on D, in the sense that
(8.8) ur(Axa(v) = Apa(Adu(v), u € UX(g), v € U(g)™

Denote by Jy the annihilator of the Verma module M.(A) = UZ(g) ®u:(e,) Ca in UZ(g)F".
Jy is generated by the ideal of the center Z(UZ?(g)f™) = Z(UZ(g)) corresponding to a character
Xatp : Z(UZ(g)) = C, where p = %ZaeAJr a € Py. Let U:(g)* be the quotient of U(g)/"" by Jy,
Us(9)* = UZ(g) ™"/ I

We also denote by Iy the annihilator of M.()A) in U(g) and by UZ(g)x the quotient UZ(g)x =

Uz (9)/Ix.
A character A : US(h) — C is called regular dominant if for each ¢ € P, and all weights ¢ of

Ve(¢), ¢ # 1, one has Xxtg # Xaty-

Proposition 8.1. ([1], Proposition 4.8, Theorem 4.12) The map
(8.9) Uz(g)* — I(D2)"? = Homy:(p,)(Ce, D), > Apa(z)1
is an algebra isomorphism.
If X\ is reqular dominant the global section functor I : Df\Js(m) — mod — UZ(g)* is an equivalence

of the category ’D/\s(m) and of the category mod — UZ2(g)* of right U2(g)*-modules. The inverse
functor is given by

(8.10) V=V Qus(gp D2, V € mod — U (g)*.

Now we present an equivariant version of the previous proposition. Let U C UZ(g) be a sub-
algebra equipped with a character x : U — C. Denote by C, the corresponding one-dimensional
representation of U. Assume that U is also a coideal, i.e. A;(U) C U ® UZ(g)

A biequivariant D.—module is a (U?(b;), A\)—equivariant D.—module M which is also equipped
with the structure of a left U-module v : U x M — M such that

(1) For any u € U the action of the operator x(u1)a(Aaq(Ssuz)) on M is well defined, and the
U-actions on C, ® M given by Id ® v and by x ® aAaq 0 Ss coincide;
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(2) v(u)(a(a ®v)m) = a(Ss(u2) z(a ® v))y(ur)m,for all u € U, a®v € D, m € M, Agu =
U1 X Us.
Biequivariant D.—modules form a category éD?}s(bJr) morphisms in which are linear maps of
vector spaces respecting all the above introduced structures on biequivariant D.—modules.
A (U, x)-equivariant UZ(g)*-module is a right U?(g)*-module V equipped with the structure of
a left U-module v: U x V — V such that
(1) For any w € U and v € V one has y(u)m = x(u1)Ssusv, where a priori x(u)Ssugm should
be understood as the natural action of the image of the element x(u1)Ssuz € UZ(g) in UZ(g)
on the induced UZ(g)y—module V' =V ®ps(g)» UZ(9)x;
(2) y(u)(zv) = AdSs(uz)(z)(y(ur)v),for all u € U, z € U:(g)*, v € V, Agu = uj ® us.
(U, x)—equivariant U (g)*~modules form a category §mod—UZ(g)* morphisms in which are linear
maps of vector spaces respecting all the above introduced structures on equivariant UZ (g)*-modules.
Formula (8.5), condition (2) in the definition of biequivariant D.—modules and the obvious relation

ur(l®z) =c(u)l @, u,z € Ulg)

imply that if M is a biequivariant D.—module then 7 induces a U-action on I'(M). From formula
(8.8) it also follows that if M is a biequivariant D.-module then I'(M) is an equivariant UZ2(g)*~
module. Conversely, the second relation in (8.4) and (8.7) imply that if V is an equivariant U?(g)*-
module with an equivariant structure ~ then the formula

(811) A& (@9 2) = (u)(v) ® Sy(us)pla©a), vEV, aga D, ueU
defines the structure of a biequivariant D.—module on V' @grs(g)x D).
Thus we have the following proposition.
Proposition 8.2. If \ is reqular dominant the global section functor I : Dl/\JS(m) — mod — US(g)*

gives rise to an equivalence of the category )éD[)}S(m) of biequivariant D, —modules and of the category

Smod — US(g)* of equivariant right U2 (g)*~modules. The inverse functor is given by
(8.12) V= V @y D2, V € mod — Uz (g).

Denote by I7 the right ideal in C.[G*] generated by the kernel of x¢ in C.[M_], and by py: the
canonical projection C.[G*] — IZ\C.[G*]. Let QL be the image of C.[G.] under the projection pys.

Recall that the definition of the system of positive roots associated to s and formula (4.13) imply
that A, (U2(m.)) C U (my) @ U2(b,).

Similarly to Section 5 we deduce that the left action Ad o Sy of UZ(m4) on C.[G.] induces an
action on @7 which we denote by Ad o Ss;. One can also define the corresponding W-algebra by

WES(G)T = HOHlUss(er) ((CE, Qg),

where the multiplication in W2(G)" is induced from C.[G.].
As in Proposition 6.5 we have an embedding

Z(C.[G.]) = WE(G)".

Note that by Proposition 5.5 C.[G,] ~ UZ(g)/". Let Z, be the kernel of the character yy :
Z(C.[G.]) — C. Consider the quotient

W2(G)5 = W2(G)"/W2(G)" 2.

Observe that for generic € we have an algebra isomorphism C.[M_] = UZ(my) and that U?(m) is
a coideal in UZ(g). In particular, x{ is a character of UZ(m..). Therefore one can define the category

U:(mﬁmod — U2(g)* of (US(my), x5)-equivariant US(g)*-modules. Consider the full subcategory
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Xemod — Us(g)}, of

Ug(my) loc

Us(mjfmod — UZ(g)* objects of which are finitely generated over UZ(g)
objects of Us(mjmod —UZ(g)* such that the y-action of the augmentation ideal of U?(m, ) on them
is locally nilpotent.

Let Q7 be the image of UZ(g ) under the projection pys. We have the following straightforward
analogue of Theorem 7.7 for the category * U (m,ymod — U (9)}

loc*

Proposition 8.3. Suppose that the numbers t; defined in (6.5) are not equal to zero for alli. Then
for generic e € C the functor E — E ®Qws )y Qfy, s an equivalence of the category of finitely

generated right W2 (G)%—modules and the category Us(mff mod — UZ(g)}\,. The inverse equivalence

loc

is given by the functor V +— Homys(m,)(Ce, V) = Wh(V'). In particular, the latter functor is ezact.
Every module V GUb(mX)E mod — U2(g)\,. is isomorphic to homc(US(m,),C) @ Wh(V) as a left
Uz (my)-module. In particular, V is UZ(m.)~injective, and Exty.,,)(Ce, V) = Wh(V).

Let C.[M4]" be the coalgebra which is the quotient of C.[G] by the coalgebra ideal generated by
elements vanishing on UZ(my). Proposition 8.3 implies that the UZ(m,)-action on the objects of

the category Us(mXE mod —U2(g);\. is induced by the adjoint UZ(g)-action on UZ(g)* which is locally

loc

finite. Therefore this action gives rise to a right coaction of C.[My]" on objects of U (my )mod —

Us(g)},.. Conversely, a right C.[M]'—coaction on any such object V' gives rise to a US(m )-action
such that the action of the augmentation ideal of U?(m_ ) on it is locally nilpotent. Indeed, the action
of the augmentation ideal of UZ(b,) on any finite-dimensional U?(g)-module is locally nilpotent,
and hence the action of Uf(my) C UZ(by) induced by the coaction of C.[My]" is locally nilpotent
as well.

Now observe that in this case the UZ (m4 )-action defined by formula (8.11) on the corresponding
biequivariant D.—module gives rise to a right C.[M.]'—coaction which is the tensor product of the
right coaction of C.[M,]" on V described above and the right coaction of C.[M,]" on D2 induced
by the regular action (u,a) — (a)Ss(u), u € UZ(g), a € C.[G], of UZ(g) on C.[G] which is locally
finite by definition.

Conversely, if M is an object of the category Us (mf%Dgg(m) such that the y—action of UZ(m)

on it is induced by a right C.[M]'—coaction then the induced U?(m )-action on I'(M) corresponds
to a right C.[M]'—coaction on I'(M).

Now consider the full subcategory Us(mfj’l)és(b+)l of Us(m X;Déb( ) objects of which are finitely
€ € oc

generated over D, objects of us (mf%D;}:(m) such that for each M € U;(mfjpé;‘(h)loc the y—action

of UZ(m4) on M is induced by a right C.[M]'—coaction. From Propositions 8.2 and 8.3 and the
discussion above we immediately obtain the following statement.

Theorem 8.4. Suppose that the numbers t; defined in (6.5) are not equal to zero for all i. Suppose

also that A is regular dominant. Then for generic transcendental e € C the category Us(my) Df‘]é(b”l
oc

is equivalent to the category of finitely generated right W2(G)% —modules.
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