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Polyandry is often hypothesized to evolve to allow females to adjust the degree to which they inbreed. Multiple factors might

affect such evolution, including inbreeding depression, direct costs, constraints on male availability, and the nature of polyandry as

a threshold trait. Complex models are required to evaluate when evolution of polyandry to adjust inbreeding is predicted to arise.

We used a genetically explicit individual-based model to track the joint evolution of inbreeding strategy and polyandry defined

as a polygenic threshold trait. Evolution of polyandry to avoid inbreeding only occurred given strong inbreeding depression, low

direct costs, and severe restrictions on initial versus additional male availability. Evolution of polyandry to prefer inbreeding only

occurred given zero inbreeding depression and direct costs, and given similarly severe restrictions on male availability. However,

due to its threshold nature, phenotypic polyandry was frequently expressed even when strongly selected against and hence

maladaptive. Further, the degree to which females adjusted inbreeding through polyandry was typically very small, and often

reflected constraints on male availability rather than adaptive reproductive strategy. Evolution of polyandry solely to adjust

inbreeding might consequently be highly restricted in nature, and such evolution cannot necessarily be directly inferred from

observed magnitudes of inbreeding adjustment.

KEY WORDS: Inbreeding strategy, inbreeding avoidance, inbreeding preference, mate choice, multiple mating, polyandry.

The degree to which females mate with multiple males within

a single reproductive bout, and hence the degree of polyandry,

varies considerably among individuals within populations, among

populations, and across taxa (Uller and Olsson 2008; Pannell and

Labouche 2013; Parker and Birkhead 2013; Taylor et al. 2014).

Some females might mate with a single male, while other fe-

males mate with two or more males (e.g., Solymar and Cade

1990; Bretman and Tregenza 2005; Evans and Gasparini 2013;

Reid et al. 2014), or even with tens of males (e.g., in numerous in-

sects; Dickinson 1995; Wattanachaiyingcharoen et al. 2003; Kraus

et al. 2004; Rheindt et al. 2004; Pai et al. 2007). Understanding

such polyandry remains theoretically challenging because mul-

tiple mating does not necessarily increase female reproductive

success or hence fitness, yet the ubiquity of polyandry suggests

that it is widely beneficial (Bateman 1948; Parker and Birkhead

2013; Taylor et al. 2014). Because polyandry can influence the

evolution of traits underlying sexual selection and sexual conflict,

and influence population viability and disease dynamics, under-

standing the evolutionary causes and consequences of polyandry

remains a central aim in evolutionary ecology (Ashby and Gupta

2013; Holman and Kokko 2013; Pizzari and Wedell 2013; Shuster

et al. 2013).

One hypothesis is that polyandry indirectly benefits females

when their additional mates sire offspring that have higher fitness

than the offspring their initial mate could have sired (Jennions and

Petrie 2000; Tregenza and Wedell 2002; Akçay and Roughgarden
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2007). Specifically, because inbred offspring are commonly less

fit than outbred offspring (Charlesworth and Charlesworth 1999;

Keller and Waller 2002; Charlesworth and Willis 2009), females

are widely hypothesized to mate multiply in order to avoid in-

breeding and hence reduce the degree to which their offspring

are inbred (Stockley et al. 1993; Zeh and Zeh 1996; Tregenza

and Wedell 2002; Michalczyk et al. 2011). Yet despite the preva-

lence of such verbal hypotheses and associated empirical studies,

surprisingly few models explicitly examine the conditions un-

der which polyandry is likely to evolve to alter the degree of

inbreeding (but see Lehtonen and Kokko 2015). Since multiple

complex factors will likely affect the evolutionary dynamics of

such mating systems, simple verbal, or numerical models might

not make accurate predictions (Alonzo 2010; Bocedi and Reid

2016).

For example, understanding the joint evolution of polyandry

and inbreeding is complicated by a paucity of clear predictions re-

garding the evolution of inbreeding avoidance itself, especially in

the context of small populations with separate sexes (i.e., dioecy)

and hence obligate biparental reproduction. While it is often pre-

sumed that inbreeding depression will cause adaptive evolution of

inbreeding avoidance (Pusey and Wolf 1996; Tregenza and Wedell

2002; Geffen et al. 2011; Szulkin et al. 2013; Tennenhouse 2014),

theory highlights that there can be an inclusive fitness benefit of

inbreeding, stemming from increased transmission of underly-

ing alleles (Parker 1979, 2006; Kokko and Ots 2006; Duthie and

Reid 2015; Lehtonen and Kokko 2015). Consequently, if inbreed-

ing depression is weak, inbreeding tolerance or preference might

evolve. Evolution of polyandry to avoid inbreeding might be then

precluded, or females might even mate multiply to increase the

degree to which their offspring are inbred (Lehtonen and Kokko

2015).

Even given strong selection for females to avoid or pre-

fer (hereafter “adjust”) inbreeding, polyandry will not necessar-

ily evolve. Polyandry might be subject to negative direct selec-

tion if mating costs time and energy, or entails risks of sexu-

ally transmitted infection (Knell and Webberley 2004; Parker and

Birkhead 2013; Taylor et al. 2014; Roberts et al. 2015), or de-

creased longevity due to male harm (e.g., Blanckenhorn et al.

2002; Kemp and Rutowski 2004; Maklakov and Lubin 2004;

Diaz et al. 2010). Courtship and mating can also increase preda-

tion risk, imposing strong and immediate direct selection against

polyandry (e.g., Rowe 1988, 1994; Ronkainen and Ylonen 1994;

Acharya and McNeil 1998; Koga et al. 1998; Maier et al. 2000;

Lasley-Rasher and Yen 2012). Evolution of polyandry to adjust

inbreeding may therefore be constrained by negative direct selec-

tion, even given strong inbreeding depression in offspring fitness.

Furthermore, polyandry can only allow females to adjust

inbreeding if male availability changes after a female’s initial

mate choice. If females can always mate with an optimal male

through initial choice, there is no benefit from mating multiply.

For polyandry to evolve to adjust inbreeding, additional mate

choice must therefore allow females to acquire a better male,

such as when different sets of potential mates are available for

additional versus initial mate choice. Net selection on polyandry

must therefore be evaluated in the context of changing constraints

on female choice (Petrie and Kempenaers 1998). Indeed, there are

multiple reasons why initial mate availability might be constrained

or suboptimal with respect to inbreeding relative to additional

mate availability.

First, initial female mate choice might be constrained to a

subset of the total male population due to ecological or physi-

ological restrictions. Such restrictions might stem from limited

mobility and therefore search area, or asynchrony in reproductive

phenology, or because few males can provide resources required

for reproduction at particular times (e.g., Kokko and Rankin 2006;

Heuschele et al. 2012; Weigel et al. 2016). A different subset

of males might become available for subsequent mating due to

spatial or temporal variation in mate searching, availability, or

resource requirements or provision (e.g., West and Herre 1998;

Tinghitella et al. 2013).

Second, initial female mate choice might be intrinsically

constrained by the process of mate choice itself, and hence by

a population’s social, demographic, or relatedness structure. For

example, in some species, females and males form socially persis-

tent breeding pairs where both individuals contribute to resource

defence or parental care (Trivers 1985; Lukas and Clutton-Brock

2013; Gilbert and Manica 2015). Any female’s choice of her first

(socially paired) mate will then be constrained by the previous

choices of other females if males do not have multiple social

mates (Petrie and Kempenaers 1998). This constraint might be

circumvented by additional mate choice through extra-pair mat-

ing, allowing females access to numerous paired males that were

not available for initial mating (Akçay and Roughgarden 2007;

Cleasby and Nakagawa 2012; Forstmeier et al. 2014; Hsu et al.

2015). Indeed, extra-pair mating is widely hypothesized to evolve

to circumvent inbreeding when females are socially paired with

relatives (Blomqvist et al. 2002; Foerster et al. 2003; Mays et al.

2008; Arct et al. 2015).

Beyond effects of mating constraints, phenotypic expression

of polyandry, and the evolutionary response to selection, stem-

ming from inbreeding adjustment or any other mechanism is

likely to be shaped by nonlinear relationships between genetic

and phenotypic variation. As for any complex reproductive be-

havior, polyandry is likely to have a highly polygenic genetic

architecture (Evans and Simmons 2008). Indeed, quantitative ge-

netic studies have detected additive genetic variation underlying

female multiple mating (e.g., Solymar and Cade 1990; Shuker

et al. 2007; Evans and Gasparini 2013), suggesting that quanti-

tative genetic principles can be applied to predict evolutionary
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dynamics. However, both monandry and polyandry involve dis-

crete numbers of matings that cannot be negative. Polyandry can

therefore be conceptualized as a “threshold trait” (Lynch and

Walsh 1998, p. 727) whereby continuous genetic variation under-

lying female liability for multiple mating is expressed at some

threshold value(s), and translates into the observed discrete num-

ber of matings (e.g., Bocedi and Reid 2014). Such threshold traits

have intrinsic characteristics that affect evolutionary dynamics.

Most pertinently, selection against alleles causing maladaptive

trait values (that would be directly selected against if expressed)

is weakened as the frequency of such alleles decreases and their

effects become increasingly likely to be hidden by alleles causing

adaptive trait values (Roff 1996, 1998). Alleles causing maladap-

tive traits may thereby persist at low frequencies, and the mal-

adaptive trait can be sporadically expressed when recombination

causes genotypic values to exceed the threshold for expression

(Lynch and Walsh 1998; Roff 1998). Some degree of polyandry

might consequently persist in a population, even if it is selected

against when expressed and hence strictly maladaptive. However,

to date, no models have explicitly quantified changes in frequen-

cies of alleles underlying polyandry and inbreeding avoidance or

preference, or hence quantified the joint evolutionary dynamics

of phenotypic polyandry and inbreeding given inbreeding depres-

sion, direct selection against multiple mating, constraints on the

availability of different relatives as potential mates, and intrin-

sic evolutionary dynamics of threshold traits. It therefore remains

unclear whether polyandry is likely to evolve as an adaptive mech-

anism to adjust inbreeding, or whether polyandry that is strictly

maladaptive might be sporadically expressed.

Despite a paucity of theory, numerous empirical studies have

attempted to test the hypothesis that polyandry evolves as an adap-

tation to facilitate inbreeding adjustment. One common approach

is to test the verbal prediction that a female’s relatedness with her

initial mate will differ from her relatedness with her additional

mate(s). When females are less or more closely related to their

additional mates than their initial mates on average, polyandry is

inferred to have evolved to facilitate inbreeding avoidance (e.g.,

Johnsen et al. 2000; Foerster et al. 2003; Bishop et al. 2007;

Suter et al. 2007) or inbreeding preference (e.g., Kleven et al.

2005; Wang and Lu 2011; Bichet et al. 2014). Although this

verbal reasoning seems cogent, no models quantitatively predict

whether evolution of polyandry driven by inbreeding avoidance

or preference will actually cause detectable differences in mean

relatedness between females’ initial and additional mates, or to

what degree observed differences imply that inbreeding adjust-

ment caused adaptive evolution of polyandry. Such patterns might

in fact be complicated because phenotypic comparisons of related-

ness can only be made across functionally polyandrous females,

and such females might be nonrandom (e.g., Reid and Sardell

2012). Further, patterns of apparent inbreeding adjustment might

not be caused by active inbreeding avoidance or preference, but

instead result from constraints on mate availability with respect

to relatedness. It therefore remains unclear whether or not verbal

predictions that currently underpin empirical hypothesis-testing

actually follow logically from sensible assumptions regarding ini-

tial evolution of inbreeding and polyandry.

We used individual-based modeling to investigate whether

polyandry can evolve as an adaptation to adjust inbreeding (as-

suming ancestral monandry and random mating) given different

magnitudes of inbreeding depression, direct costs of polyandry,

and constraints on mate choice. First, we investigate how these

conditions affect evolution of biparental inbreeding avoidance

or preference. Second, we examine how these conditions affect

selection for polyandry, and quantify the degree to which mal-

adaptive polyandry is expressed due to intrinsic properties of a

polygenic threshold trait. Third, we quantify the degree to which

polyandrous females adjust their relatedness between their initial

and additional mates, and thereby evaluate whether realised in-

breeding adjustment reliably reflects selection for polyandry to

increase or decrease inbreeding, as implicitly assumed in empiri-

cal tests. Finally, we contrast polyandry that is expressed uncondi-

tionally with polyandry that is conditional upon a female’s initial

mate choice.

Model
Evolution of avoidance of biparental inbreeding is most relevant in

small or viscous populations where random mating among proxi-

mate individuals would commonly result in inbreeding (Jamieson

et al. 2009; Bretman et al. 2011; Alho et al. 2012). Consequently,

our model tracks individuals in a small focal population, which is

implicitly embedded within and receives immigrants from a larger

metapopulation. Kinship between individuals emerging over mul-

tiple nonoverlapping generations is explicitly recorded to model

inbreeding and consequent inbreeding depression in fitness. In

each generation, females choose an initial mate from a specified

available set, then potentially choose one or multiple additional

mates from a second specified set (i.e., polyandry). Females then

produce offspring, paternity is assigned among mates, and off-

spring survival is reduced as a function of kinship between par-

ents (i.e., inbreeding depression). Male immigration occurs to

prevent the focal population from becoming completely inbred,

then density regulation limits focal population size. We model the

degrees of inbreeding avoidance or preference, and of polyandry,

as polygenic quantitative traits and quantify the values of alleles

and phenotypes present following numerous generations of evolu-

tion. Further, to evaluate current empirical approaches to inferring

adaptive evolution of polyandry through inbreeding adjustment,

we record the magnitude of inbreeding adjustment enacted by

phenotypically polyandrous females.
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By explicitly tracking alleles and individuals across gen-

erations, our model generates internally consistent relatedness

structure that emerges from the fitness of individuals’ ancestors,

and directly captures evolutionary dynamics stemming from al-

lele transmission associated with inbreeding. Polyandry could

potentially facilitate inbreeding adjustment through postcopula-

tory ( e.g., Tregenza and Wedell 2002; Simmons et al. 2006;

Firman and Simmons 2008) or precopulatory (e.g., Frommen and

Bakker 2006; Kingma et al. 2013; Liu et al. 2014) mechanisms.

Our current model focuses on the hypothesis that selection for

precopulatory inbreeding adjustment (i.e., enacted through mate

choice) drives polyandry evolution.

GENETIC ARCHITECTURE

All individuals have a diploid genome comprising 30 physically

unlinked autosomal loci. Ten loci underlie variation in female

inbreeding strategy and alleles (Ia) cause females to avoid or

prefer kin as initial or additional mates. Ten different loci underlie

variation in polyandry and alleles (Pa) affect the number of

additional males that a female mates with following her initial

mating (i.e., her degree of polyandry). Finally, ten additional

loci have alleles (ηa) with no phenotypic effect, creating neutral

genetic variation. We use a continuum-of-alleles model (Kimura

1965; Lande 1976; Reeve 2000; Bocedi and Reid 2014), such

that allele values at all 30 loci can take any real number. We

assume additive effects such that an individual’s genotypic values

for inbreeding strategy (Ig) and polyandry (Pg) equal the sums

of their 20 Ia and Pa allele values at the 10 different loci con-

trolling inbreeding strategy and polyandry, respectively (sensu

Reeve 2000; Bocedi and Reid 2014). Individuals’ phenotypic

values for inbreeding strategy (Ip) equal their genotypic values,

where negative and positive values correspond to inbreeding

avoidance or preference, respectively. Individuals’ phenotypic

values for polyandry (Pp) also equal their genotypic values

when Pg ≥ 0. However, because females cannot mate with a

negative number of additional males, we define Pp = 0 whenever

Pg < 0, thereby modeling a biologically realistic threshold

trait.

For all 30 loci, offspring inherit a randomly selected allele

from each parent, which mutates with a probability μ. In general,

deleterious mutations might occur more frequently than benefi-

cial mutations (i.e., biased mutation). However, since we make

no a priori assumptions regarding whether inbreeding avoidance,

inbreeding preference, or polyandry are beneficial, we add muta-

tion effect sizes sampled from a normal distribution with a mean

of zero and a standard deviation σm to the original allele value

(Kimura 1965; Lande 1976; Bocedi and Reid 2014). This allows

us to directly compare evolution of Ia and Pa values to ηa values

arising only from mutation and drift, and thereby infer selection

on inbreeding strategy and polyandry.

COST OF POLYANDRY

Positive Pp values entail a cost cP , which increases a female’s

probability of reproductive failure such that females have a

Pp × cP probability of mortality prior to mating (if Pp × cP ≥ 1,

reproductive failure is certain). This cost represents direct negative

selection, as might be incurred through increased predation risk

associated with mate search or courtship (e.g., Rowe 1988, 1994;

Ronkainen and Ylonen 1994; Koga et al. 1998; Lasley-Rasher

and Yen 2012).

MATE CHOICE

The males available to choosing females for initial versus ad-

ditional matings are restricted to subsets of the total population

in two alternative ways. (i) Best-of-N constraint: each female is

restricted to two random subsests of N males generated indepen-

dently for each female, modeling externally imposed constraints

on initial and additional potential mates, respectively (i.e., a “fixed

sample” search, Janetos 1980; Wiegmann and Angeloni 2007;

Thom and Dytham 2012; Edward 2015). Any individual male can

occur once (but not more than once) within both subsets, but a

female’s initially chosen male cannot be in the additional subset.

(ii) Social constraint: each female is initially restricted to the sub-

set of males remaining following the initial mating decisions of

other females, thereby modeling social constraints resulting from

pairing. Polyandrous females can then choose any males other

than their initially chosen male as additional mates.

Females able to mate following expression of costs are ran-

domly ordered in a mating queue, and each female assesses all

available males before making her initial mate choice. Given so-

cial constraints, females ordered early in the queue therefore have

more males available for initial mating. Polyandrous females then

choose Nadd additional mates without replacement from the avail-

able set where Nadd = Poisson(Pp). If fewer than Nadd males are

available, females mate with all available males. In our primary

simulations, Pp is unconditionally expressed, such that females

do not vary their polyandry based on the perceived quality of their

initial mate. Indeed, any more sophisticated strategy of conditional

polyandry cannot be assumed to predate the initial evolution of

inbreeding strategy and polyandry from ancestral random mating

and monandry that we model. However, to consider the potential

impact of conditional polyandry, we additionally model an ex-

treme scenario where females with Pp > 0 reject all additional

males (and hence are effectively monandrous) if no additional

males have a perceived quality that exceeds that of their initially

chosen male. Such conditional expression can be interpreted as

a fixed trait underlying plasticity for polyandry that exists in the

ancestral population.

Numerical restrictions on the initial and additional sets of

available males are denoted Sinitial,additional . For best-of-N con-

straints, the initial and additional subscripts can take any natural
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number specifying the number of males randomly selected to

form each female’s available subset. If this number exceeds the

total male population, then the subset includes all males. For

social constraints, initial subscript is “Q” indicating restriction

stemming from previously choosing females in the mating queue.

Females assign a perceived quality value to each available

male. Perceived quality depends on female phenotype for inbreed-

ing strategy Ip and the kinship between the focal female i and

male j (ki, j ). The value of ki, j is the probability that two randomly

selected homologous alleles from i and j will be identical-by-

descent (Lynch and Walsh 1998). Values are calculated directly

from a recorded population pedigree (not from individuals’ mod-

eled loci) using a standard iterative algorithm (Boyce 1983). If

Ip < 0, female i assigns male j a value of (−Ip × ki, j + 1)−1

such that the quality of a relative decreases as Ip becomes more

negative (i.e., stronger inbreeding avoidance). If Ip > 0, i assigns

j a quality of Ip × ki, j + 1 such that the quality of a relative in-

creases with increasing Ip (i.e., stronger inbreeding preference).

If Ip = 0 or ki, j = 0, then i assigns j a quality of 1. Each female’s

perceived quality of each available male j is divided by the sum

of the qualities of all available males. The resulting probability

vector is used to assign a mate to each focal female. Realization

of mate choice is therefore stochastic; females do not always mate

with the highest quality male available.

After all females have chosen their initial and additional

mates, paternity is randomly and independently assigned to each

of a female’s n offspring following a fair raffle across her Nadd + 1

mates (Parker 1990). Female choice is therefore entirely precop-

ulatory. Female and male offspring are produced with equal prob-

ability.

INBREEDING DEPRESSION

Offspring survival probability ψoff decreases as a log-linear func-

tion of the offspring’s coefficient of inbreeding foff, where foff

equals ki, j between the offspring’s parents (Lynch and Walsh

1998),

�off = e−β foff . (1)

Here, β is the log-linear slope of inbreeding depression, typically

interpreted as the number of haploid lethal equivalents per individ-

ual gamete (e.g., mating with a full sibling gives foff = 0.25 and

hence reduces offspring survival by ca 5% when β = 0.2, and by

ca 32% when β = 1). This model assumes that deleterious alleles

act independently, and each is potentially lethal if homozygous,

giving multiplicative effects on survival probability (Morton et al.

1956; Mills and Smouse 1994). Inbreeding depression is therefore

a fixed function of foff , and cannot coevolve with inbreeding (e.g.,

via purging). Such coevolution is likely to be minimal in small

populations with biparental inbreeding, at least given weak selec-

tion coefficients against individual deleterious mutations (Wang

et al. 1999; Guillaume and Perrin 2006, Duthie and Reid, in press).

Realized offspring survival is determined using an independent

Bernoulli trial for each offspring given ψoff.

MORTALITY AND IMMIGRATION

Offspring that survive inbreeding depression immediately become

the next generation of adults. Additionally, ρ adult immigrants are

added to the focal population to prevent it from becoming com-

pletely inbred. Immigrants are always unrelated to each other,

and to all existing natives. Immigrants are always male because

female immigrants would not be able to inbreed or express in-

breeding avoidance or preference. Values of immigrants’ Ia , Pa ,

and ηa alleles are sampled from normal distributions with means

and standard deviations equal to those calculated across the native

population at the time of immigration, assuming the same correla-

tion between Ip and Pp as in the native population. Conceptually,

this models a focal deme within a larger meta-population under-

going uniform selection.

After immigration, if female or male abundance exceeds set

carrying capacities (K f and Km , respectively), random mortality

(which can also be interpreted as emigration) reduces the popu-

lation back to K f or Km (e.g., Guillaume and Perrin 2009). All

remaining individuals form the pool of adults to mate and produce

the next generation.

SIMULATIONS

We ran separate sets of simulations considering best-of-N and

social constraints on male availability, each initialized with

K f = Km = 100 (Table 1). Previous modeling showed that these

values generate populations that are sufficiently large to persist

but sufficiently small for inbreeding to be common given ran-

dom mating (Duthie and Reid, in press). The best-of-N simula-

tions constrained initial and additional male availability to random

subsets of 2, 10, and 100 males sampled independently for each

female, with a full 3 × 3 factorial design comprising all nine pos-

sible combinations of Sinitial,additional . Given Km = 100, S100,100

can be interpreted as a null model where each female can choose

among all males for her initial mating and all remaining males

(i.e., Km minus her single chosen initial mate) for her additional

matings. The social constraint simulations allocated each female’s

initial mate availability through the mating queue, and all males

(except a female’s initial mate) were available to each female for

additional matings (SQ,100).

Table 1 shows all parameter values. All allele values (Ia ,

Pa , and ηa) were initialized at zero (i.e., ancestral random

mating and monandry). We further assume that males do not

exert mate choice, that all females mate at least once un-

less their Pp × cP causes prereproductive mortality, and that

female Ip does not differ between initial and additional mate
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Table 1. Individual traits (A) and model parameter values (B) for an individual-based model of the evolution of inbreeding strategy and

polyandry.

A Trait Allele Genotype Phenotype

Inbreeding strategy Ia Ig Ip

Polyandry Pa Pg Pp

Neutral variation ηa – –
B Description Parameter Default value(s)

Allele mutation rate μ 0.001
Standard deviation of mutation effect size σm

√
1/20

Cost of polyandry cP 0, 0.01, 0.02, 0.03
Initial and additional mate availability Sinitial,additional 2, 10, 100
Offspring produced per female n 8
Log-linear inbreeding depression slope β 0, 0.2, 1, 2, 5
Immigrants per generation ρ 5
Female carrying capacity K f 100
Male carrying capacity Km 100

choice. We simulate five magnitudes of inbreeding depres-

sion (β = {0, 0.2, 1, 2, 5}), and four direct costs of female

polyandry (cP = {0.00, 0.01, 0.02, 0.03}) for all ten considered

Sinitial,additional .

ANALYSIS

For all parameter values explored, we ran 100 replicate simu-

lations with unconditional (i.e., genetically determined) expres-

sion of polyandry, and 40 replicate simulations where polyandry

was conditionally expressed if at least one available additional

male was of higher perceived quality than a female’s initial mate.

For conditional polyandry, we primarily present simulations with

S100,100 to isolate effects of conditional polyandry from effects

of mating constraints. Each simulation was run for 5000 genera-

tions, which was sufficient to compare mean Ia and Pa values to

mean ηa values across replicates, allowing inference of whether or

not selection caused Ia and Pa values to differ from expectation

given only neutral processes (i.e., mutation and drift). Specifi-

cally, because ηa values are selectively neutral, the expected value

of ηa never deviates from zero, but the variance increases over

generations. Simulated distributions of ηa values across all pa-

rameter combinations confirmed these a priori expectations (Sup-

porting Information S1). Selection, and hence adaptive evolution,

is therefore inferred where mean Ia and Pa values deviate from

zero.

To quantify evolution of inbreeding strategy (i.e., inbreed-

ing avoidance or preference), we calculate the population mean

values of Ia and Ip in generation 5000 across replicates. Be-

cause Ip is simply the summation of Ia , emerging distributions

are similar and mean Ia values are presented in Supporting In-

formation S1. To quantify change in allele values underlying

polyandry, and evolution of phenotypic polyandry, we calculate

the population mean values of Pa and Pp in generation 5000.

Finally, to quantify the degree to which inbreeding was adjusted

by polyandry (kad j ), we calculate the difference in mean kinship

between each polyandrous female and her initial mate (kinitial )

versus her additional mate(s) (kadditional ) in generation 5000, such

that kad j = E[kadditional − kinitial ]. Positive and negative kad j val-

ues indicate that polyandry functionally increased or decreased

inbreeding, respectively.

To infer adaptive evolution of polyandry, and infer whether

mean kinship is expected to differ between initial and additional

mate choice, we bootstrap mean Pa and kad j values across repli-

cates and evaluate whether or not 95% confidence intervals over-

lap zero (Manly 2007, p. 46). Confidence intervals facilitate inter-

pretation of general patterns within simulation results, and should

not be interpreted as tests of statistical (or biological) hypotheses

in the traditional sense (White et al. 2014).

Results
INBREEDING STRATEGY ALLELES AND PHENOTYPES

Figure 1 illustrates distributions of mean Ip values across repli-

cate simulated populations for five values of β and four values

of cP when all males were available to each female for initial

and additional mating (S100,100). Evolution of inbreeding strat-

egy clearly varied with the magnitude of inbreeding depression.

When β ≤ 0.2, Ip typically evolved toward inbreeding preference

(Ip > 0; Fig. 1 boxes with medians greater than zero). In contrast,

when β ≥ 1, Ip typically evolved toward inbreeding avoidance

(Ip < 0; Fig. 1 boxes with medians less than zero). Indeed, when

β = 5, mean Ip values never exceeded zero (Fig. 1 dark gray

boxes). However, evolution of inbreeding strategy did not vary

with cP , distributions of Ia and Ip values did not differ across

Sinitial,additional , and Ip and Pp did not covary across individuals

(Supporting Information S1, S2). Overall, therefore, inbreeding
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Figure 1. Distributions of mean inbreeding strategy phenotype

values ( I p) across individuals within populations after 5000 sim-

ulated generations. Male availability is unconstrained (S100,100)

such that all males are available to all females as initial and ad-

ditional mates. Positive and negative I p reflect inbreeding pref-

erence and avoidance, respectively. Blocks of boxes show four

direct costs of the polyandry phenotype (cP ). Boxes within blocks

show five increasingly severe magnitudes of inbreeding depres-

sion β = {0, 0.2, 1.0, 2.0, 5.0} (white to dark gray). Central lines on

boxes show medians across 100 replicate simulations, box limits

show interquartile ranges (IQRs), whiskers show 1.5 × IQRs, and

extreme points show outliers. One extreme negative value where

β = 5 and cP = 0.03 is not shown. The dotted horizontal line de-

marcates zero on the y-axis.

preference often evolved when inbreeding depression was weak,

but inbreeding avoidance evolved in most populations with mod-

erate or strong inbreeding depression (β ≥ 1), and evolution of

inbreeding strategy was unaffected by costs or constraints affect-

ing polyandry.

POLYANDRY ALLELES: BEST-OF-N

Figure 2 shows distributions of mean Pa allele values across repli-

cate simulated populations for five values of β, four values of cP ,

and each of the nine best-of-N constraints on initial and additional

mate availability given unconditional polyandry. To understand

how β, cP , and Sinitial,additional affect evolution of Pa , it is useful

to consider each parameter independently before inferring their

joint effects. Three key points are evident.

First, given S100,100 and cP = 0, increasing β caused mean

Pa to become slightly more negative (Fig. 2A). This evolutionary

decrease in allele values underlying polyandry with increasing in-

breeding depression occurred because polyandrous females sam-

pled males without replacement. On average, after choosing a high

quality initial male (as defined by a choosing female’s Ip) from

the full set of available males, remaining males for a female to

choose as additional mates were of lower quality. Because initial

mate choice is otherwise unconstrained when S100,100, a female

with negative Ip was therefore more likely to inbreed with each

additional mate (i.e., with increasing polyandry). More negative

Pa values therefore evolved, reducing the degrees of polyandry

and inbreeding.

Second, increasing cP caused mean Pa values to decrease

(e.g., Fig. 2A), reflecting direct selection against alleles under-

lying polyandry. Given no inbreeding depression or mating con-

straints (β = 0 and S100,100, Fig. 2A, white boxes), both pos-

itive and negative mean Pa values were common when cP ≤
0.01. But when cP ≥ 0.02, most mean Pa values were negative

(Fig. 2A). This negative impact of cP on Pa values was broadly

consistent across different magnitudes of β and combinations of

Sinitial,additional (Fig. 2).

Third, across all nine combinations of Sinitial,additional , mean

Pa values tended to be highest when the availability of additional

males exceeded the availability of initial males (e.g., Fig. 2 rows

from top to bottom). Most importantly, lower 95% confidence lim-

its for Pa exceeded zero only given the most extreme constraint

on initial versus additional male availability (S2,100; Fig. 2G),

and only given sufficiently high β and low cP (gray shading in

Fig. 2G), or given β = 0 and cP = 0. When β = 0 and cP = 0,

mean Ia values tended to be positive (Fig. 1; Supporting Infor-

mation S1). Selection for polyandry to facilitate inbreeding pref-

erence thereby occurred, but only in the absence of inbreeding

depression and direct costs, and given extremely contrasting con-

straints on initial versus additional male availability. In contrast,

selection for polyandry to facilitate inbreeding avoidance occurred

given strong inbreeding depression, small direct costs, and equally

extreme constraints on male availability.

POLYANDRY PHENOTYPE: BEST-OF-N

Despite the highly restricted conditions under which positive

mean Pa values were expected to evolve, and the converse broad

tendency for negative Pa values to evolve (Fig. 2), populations

with mean Pp > 0, and hence where at least one female was

phenotypically polyandrous, were common given unconditional

expression of polyandry (Fig. 3). Some degree of phenotypic

polyandry occurred in some replicate simulations across all β and

cP values, and across all nine combinations of Sinitial,additional .

Commonly, over 50% of replicates ended with mean Pp > 0, indi-

cating some polyandry (Fig. 3, medians > 0). Mean Pp generally

decreased as polyandry became more costly, but some positive

values were still observed even given cP = 0.03 (Fig. 3). Further-

more, the distributions of mean Pp were typically highly skewed,

especially given cP = 0 (Fig. 3), meaning that many populations

were monandrous while some were highly polyandrous. Some
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Figure 2. Distributions of mean polyandry allele value (Pa) after 5000 simulated generations across replicates with different parameter

combinations. Panels show different combinations of initial versus additional male availability (Sini tial,addi tional ) for choosing females.

Blocks of boxes within panels show four direct costs of the polyandry phenotype (cP ). Boxes within blocks show five increasingly

severe magnitudes of inbreeding depression β = {0, 0.2, 1.0, 2.0, 5.0} (white to dark gray). Central lines on boxes show medians across

100 replicate simulations, box limits show interquartile ranges, whiskers show 1.5 × IQRs, and extreme points show outliers. Dotted

horizontal lines indicate zero on the y-axis. Gray vertical bars highlight replicate simulations in which expected values (i.e., grand means)

of mean Pa are positive and 95% bootstrapped confidence intervals do not overlap zero.

degree of phenotypic polyandry (Pp > 0) therefore regularly oc-

curred, even given evolution toward negative Pa values (Fig. 2),

and hence selection for monandry.

The common phenotypic expression of polyandry de-

spite neutrality or negative selection against alleles underlying

polyandry arose because any negative sum of Pa values within an

individual (i.e., Pg < 0) resulted in Pp = 0 following the thresh-

old trait model, which applies because the expressed degree of

polyandry cannot be negative. Positive Pa allele values were

therefore invisible to selection if they were masked by the addi-

tive effects of other Pa alleles with negative values. Furthermore,

particularly negative Pa allele values were also effectively invis-

ible to selection if they had no further effect in causing Pp = 0.

Consequently, selection was inefficient in eliminating positive Pa

allele values, and in increasing the frequency of very negative

Pa allele values. Occasional phenotypic expression of polyandry

consequently persisted, even when polyandry was maladaptive.

In contrast, where positive mean Pa values were expected (e.g.,

given high β, low cP , and S2,100; Fig. 2G), corresponding pos-

itive mean Pp values were observed. Here, the distribution of

Pp was less skewed than given other Sinitial,additional combina-

tions, with lower quartiles and medians exceeding zero (Fig. 3G);

most replicate populations therefore contained some polyandrous

females.

EVOLUTION OF POLYANDRY: SOCIAL CONSTRAINTS

Figure 4A shows distributions of mean Pa allele values across

replicate simulated populations given social constraints (SQ,100)

across the five values of β and four values of cp. Mean Pa values

tended to be positive when β ≥ 1 and cP ≤ 0.01, and whenever

β = 5. Specifically, the 95% bootstrapped confidence intervals did

not overlap zero given cP = 0 and β = 0 or β ≥ 1, or given cP ≤
0.02 and β = 5 (gray vertical shading in Fig. 4A). Here, and where

mean Ia values were negative (β ≥ 1; Fig. 1), adaptive evolution
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Figure 3. Distributions of mean polyandry phenotype value (Pp) after 5000 simulated generations across replicates with different

parameter combinations. Panels show different combinations of initial versus additional male availability (Sini tial,addi tional ) for choosing

females. Blocks of boxes within panels show four direct costs of the polyandry phenotype (cP ). Boxes within blocks show five increasingly

severe magnitudes of inbreeding depression β = {0, 0.2, 1.0, 2.0, 5.0} (white to dark grey). Central lines on boxes show medians across

100 replicate simulations, box limits show interquartile ranges, whiskers show 1.5 × IQRs, and extreme points show outliers. Dotted

horizontal lines indicate zero on the y-axis. Gray vertical bars highlight replicate simulations in which expected values (i.e., grand means)

of mean polyandry allele value Pa causing Pp are positive and 95% bootstrapped confidence intervals do not overlap zero.

of polyandry to facilitate inbreeding avoidance is inferred. As

with the best-of-N constraint S2,100 (Fig. 2G), social constraints

on male availability caused evolution of positive Pa values when

β = 0 and cP = 0 (Fig. 4A). Because mean Ia values tended to be

positive (Fig. 1; Supporting Information S1), polyandry evolved

as an adaptation to facilitate inbreeding preference. Overall, when

male availability was initially restricted by previously choosing

females but subsequently unrestricted, alleles causing polyandry

and inbreeding avoidance or inbreeding preference both evolved

given some values of β and cP .

Given SQ,100, mean Pp (i.e., phenotypic polyandry) com-

monly exceeded zero even given high cP (Fig. 4B). As with

best-of-N constraints, some degree of phenotypic polyandry com-

monly occurred even when mean Pa values tended to be negative

(Fig. 4A). The distribution of mean Pp across replicate popula-

tions given social constraints most closely resembled that for the

most severe best-of-N constraint (S2,100; Fig. 3G); mean Pp values

increased with increasing β and decreased with increasing cP .

INBREEDING ADJUSTMENT

Figure 5 shows distributions of the mean difference in kinship

between polyandrous females and their initial versus additional

mates (kad j ) across replicate simulations for nine best-of-N con-

straints on mate availability (panels A–I), four values of cP (blocks

within panels), and five values of β (points within blocks). Black

and gray bars show the proportions of simulations in which at least

one female in generation 5000 was phenotypically polyandrous,

and the mean total number of mates per female across all simu-

lations, respectively. Figure 6 shows the same data given social

constraints on initial male availability.

The expected magnitude of mean kad j was consistently small,

and never exceeded 0.01 for any parameter combination. The
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Figure 4. Distributions of mean polyandry (A) allele value (Pa)

and (B) phenotype value (Pp) after 5000 simulated generations

across replicates with different parameter combinations. Male

availability is socially constrained (SQ,100) such that females choos-

ing their initial mates only have access to males not already chosen

by other females. Blocks of boxes within A and B show four di-

rect costs of the polyandry phenotype (cP ). Boxes within blocks

show five increasingly severe magnitudes of inbreeding depres-

sion β = {0, 0.2, 1.0, 2.0, 5.0} (white to dark gray). Central lines on

boxes show medians across 100 replicate simulations, box limits

show interquartile ranges, whiskers show 1.5 × IQRs, and extreme

points show outliers. The dotted horizontal line in A indicates zero

on the y-axis. Gray vertical bars highlight replicate simulations in

which expected values (i.e., grand means) of mean Pa are posi-

tive and 95% bootstrapped confidence intervals do not overlap

zero.

mean degree to which polyandrous females actually adjusted off-

spring foff through polyandry was therefore minimal, even given

parameter combinations where inbreeding adjustment caused

adaptive evolution of polyandry. Conversely, 95% confidence in-

tervals for mean kad j frequently did not overlap zero given param-

eter combinations where Pa values were not significantly positive

and hence where selection for polyandry was weak or negligible

(e.g., Fig. 2 vs. Fig. 5, and Fig. 4A vs. Fig. 6). Overall, these re-

sults illustrate that mean kad j is expected to be small, perhaps too

small to be reliably detected in most empirical studies. Further,

they show that “significant” nonzero kad j does not necessarily im-

ply that selection for inbreeding adjustment has driven adaptive

evolution of polyandry.

Such nonzero mean kad j occurred for two reasons. First kad j

was nonzero for highly polyandrous females when their kadditional

was averaged over numerous males, not all of which could be

high quality (as defined by a choosing female’s Ip) since males

are sampled without replacement. This is evident in the S100,100

simulation with cP = 0.01 and β = 1 or β = 2 (Fig. 5A), where

mean kad j tended to be slightly positive (i.e., females increased

their degree of inbreeding through polyandry) despite evolution

of inbreeding avoidance (Fig. 1).

Second, kad j is only defined for phenotypically polyandrous

females (Figs. 5 and 6, black bars). Nonzero mean kad j was conse-

quently common, even when polyandry was maladaptive, solely

due to the different availability of males for initial versus ad-

ditional mate choice. For example, given S100,2, mean kad j was

positive, with 95% confidence intervals that did not overlap zero,

given high β (Fig. 5C). This is because, for polyandrous females,

the ability to avoid inbreeding was severely constrained when

only two males were available as additional mates compared to

100 males as initial mates. Given S100,2, polyandrous females

often successfully avoided inbreeding in initial mating, but could

not do so through their additional matings, causing positive mean

kad j .

CONDITIONAL POLYANDRY

Figure 7 shows distributions of mean Pa and kad j values across

replicate simulations given S100,100 with conditional polyandry

such that females only expressed polyandry if at least one avail-

able additional male was of higher perceived quality than their

initial male. In contrast to when polyandry was an unconditional

genetically determined consequence of Pa , mean Pa exceeded

zero given S100,100 when cP was sufficiently low and β was suf-

ficiently high (Fig. 7A). However, kad j was still small (Fig. 7B)

because females were unlikely to greatly increase the quality of

their additional mate through polyandry given S100,100. For other

Sinitial,additional , mean Pa also exceeded zero, but the expected

magnitude of kad j never exceeded 0.015, meaning that the mean

degree of inbreeding adjustment achieved was very small even

given conditional polyandry (Supporting Information S2).

Discussion
Polyandry is widely hypothesized to have evolved as an adapta-

tion to allow females to avoid inbreeding (Stockley et al. 1993;

Zeh and Zeh 1996, 1997; Jennions and Petrie 2000; Tregenza

and Wedell 2002; Michalczyk et al. 2011; Reid et al. 2015b).

However, no models explicitly link long-term allele dynamics to

phenotypic expression of female multiple mating with respect
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Figure 5. Mean inbreeding adjustment (kadj ) through polyandry in generation 5000 across replicate simulations with different parameter

combinations. Panels show different combinations of initial versus additional male availability (Sini tial,addi tional ) for choosing females.

Blocks of points show four direct costs of the polyandry phenotype (cP ), and points in each block show five increasingly severe magnitudes

of inbreeding depression (β) of 0 (•), 0.2 (�), 1 (�), 2 (�), and 5 (�). Each point shows the expected value (i.e., grand mean) of mean

kadj for 100 replicate simulations, and error bars show 95% bootstrapped confidence intervals around expected mean kadj . Gray bars

show the mean number of mates each female had across all replicates (right y-axis). Black bars show proportions (gray region spans 0–1;

dotted lines indicate 0.5) of replicates in which at least one female is polyandrous.

to kinship given direct costs and inbreeding depression. Such

models are required to predict the conditions under which selec-

tion drives evolution and phenotypic expression of polyandry to

facilitate inbreeding avoidance or preference, and to examine the

degree to which adaptive evolution can be inferred from empiri-

cal observations of inbreeding adjustment. Our model illustrates

that polyandry can evolve as an adaptation to adjust inbreeding

through precopulatory mate choice. However, the conditions un-

der which selection increased allele values causing unconditional

polyandry were very restricted, suggesting that adaptive evolu-

tion of polyandry to adjust inbreeding from ancestral monandry

and random mating might be rare in nature. Conversely, the poly-

genic threshold nature of polyandry resulted in some degree of

phenotypic expression even when alleles causing polyandry were

neutral or selected against, and hence when polyandry was not

adaptive. Moreover, polyandrous females’ realised magnitudes of

inbreeding adjustment could exceed zero even when polyandry

was not adaptive, but were always very small on average, even

when expression of genotypic polyandry was conditional on ini-

tial mate choice. These results imply that the variable phenotypic

expression of polyandry that is widely observed in nature might, to

some degree, simply reflect its properties as a polygenic thresh-

old trait, and imply that observations of inbreeding adjustment

alone should not be used to infer whether or not polyandry is an

adaptation to adjust inbreeding.

EVOLUTION OF INBREEDING STRATEGY

Offspring fitness is typically reduced by parental inbreeding,

generating a widespread presumption that evolution of inbreeding

avoidance is inevitable in populations with biparental repro-

duction (Keller and Waller 2002; Geffen et al. 2011; Szulkin

et al. 2013; Tennenhouse 2014; Reid et al. 2015a). However,

EVOLUTION SEPTEMBER 2016 1 9 3 7



A. B. DUTHIE ET AL.

increased transmission of alleles causing inbreeding can mean

that inbreeding tolerance or preference is adaptive even given

moderate inbreeding depression (Parker 2006; Kokko and Ots

2006; Szulkin et al. 2013; Duthie and Reid 2015). Yet existing

quantitative predictions regarding inbreeding strategy are based

on highly restrictive assumptions and, in particular, do not track

allele frequency dynamics given realistic or internally consistent

distributions of kinship (Duthie and Reid 2015). Our model, which

explicitly incorporates kinship distributions and allele trans-

mission, shows that inbreeding avoidance readily evolves given

sufficiently strong inbreeding depression (β ≥ 1), while inbreed-

ing preference is more likely to evolve if inbreeding depression is

weak (β ≤ 0.2). Since our current aim was to examine the condi-

tions under which polyandry might evolve to facilitate inbreeding

adjustment, we assumed that expression of inbreeding avoidance

or preference incurred no direct cost. Relaxing this assumption

would presumably impede evolution of inbreeding strategy, and

further constrain evolution of polyandry to adjust inbreeding.

Evolution of inbreeding strategy depended on the strength of

inbreeding depression, but was unaffected by costs of polyandry

or constraints on initial versus additional male availability, with

no evidence of emerging covariance between inbreeding strategy

and polyandry. There was consequently no evidence that when

inbreeding strategy and polyandry are affected by alleles at inde-

pendent loci, costs, and constraints that directly affect evolution

of polyandry feedback to indirectly affect evolution of inbreed-

ing strategy. More complex dynamics, such as could potentially

arise if inbreeding alters the strength of inbreeding depression and

consequent selection for polyandry (e.g., Lande and Schemske via

purging, 1985; Charlesworth and Willis via purging, 2009, but see

Duthie and Reid, in press), or given pleiotropic effects or indirect

selection on polyandry through males, could be explored in future

models.

EVOLUTION OF POLYANDRY TO AVOID INBREEDING

Given our model assumptions, alleles causing increased

polyandry were only selected alongside alleles causing inbreeding

avoidance under highly restricted conditions, requiring low direct

costs, strong inbreeding depression, and extremely constrained

initial versus additional male availability. Given best-of-N con-

straints, adaptive evolution of unconditional polyandry occurred

only when female initial mate choice was extremely restricted

(e.g., to two males) but females could then choose additional

mates from all males within the population. Such an extreme

difference between initial and additional male availability might

occur in some systems where severe initial spatial restrictions

on mating are subsequently relaxed. For example, in insects that

induce atypical plant tissue growths (“galls”) during their larval

development (Price 2005; Shorthouse et al. 2005), or are para-

sitoids of animal hosts (Werren and Simbolotti 1989; Martel et al.

Figure 6. Mean inbreeding adjustment (kadj ) through polyandry

in generation 5000 across replicate simulations with different pa-

rameter combinations. Male availability is socially constrained

(SQ,100) such that females choosing their initial mates only have

access to males not already chosen by other females. Blocks of

points show four direct costs of the polyandry phenotype (cP ),

and points in each block show five increasingly severe magnitudes

of inbreeding depression (β) of 0 (•), 0.2 (�), 1 (�), 2 (�), and 5 (�).

Each point shows the expected value (i.e., grand mean) of mean

kadj for 100 replicate simulations, and error bars show 95% boot-

strapped confidence intervals around expected mean kadj . Gray

bars show the mean number of mates each female had across all

replicates (right y-axis). Black bars show proportions (gray region

spans 0 to 1; dotted lines indicate 0.5) of replicates in which at

least one female is polyandrous.

2010), females might initially mate within the confines of their

host organism, then disperse and mate again in the wider popula-

tion (e.g., Hardy 1994; Cook et al. 1997; West and Herre 1998;

Debout et al. 2002). Polyandry might evolve as an adaptation to

avoid inbreeding in such systems.

Adaptive evolution of polyandry to avoid inbreeding has

been widely invoked to explain extra-pair copulations in socially

monogamous species (e.g., Blomqvist et al. 2002; Griffith et al.

2002; Foerster et al. 2003; Griffith and Immler 2009; Brouwer

et al. 2011; Varian-Ramos and Webster 2012; Kingma et al. 2013;

Reid et al. 2015b). In such systems, females’ initial matings (i.e.,

social pairings) are inevitably constrained by pairings already

formed by other females. Our model shows that unconditional

extra-pair mating can evolve as an adaptation to avoid inbreeding,

but only given strong inbreeding depression and small direct costs

of polyandry. Few empirical studies quantify such costs (Jennions

and Petrie 2000), but some studies suggest that they can be se-

vere (e.g., Watson et al. 1998; Blanckenhorn et al. 2002; Franklin
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Figure 7. Distributions of (A) mean polyandry allele value (Pa)

and (B) polyandry and inbreeding adjustment (kadj ) after 5000

generations when females can choose among all males in both

their initial and additional mate choice (S100,100) but reject all ad-

ditional males if none are of higher quality than their initial male

(conditional polyandry). Blocks of (A) bars and (B) points show

four direct costs of the polyandry phenotype (cP ). (A) Bars and (B)

points within blocks show five increasingly severe magnitudes of

inbreeding depression of β = {0, 0.2, 1, 2, 5} as (A) white to gray

bars and (B) 0 (•), 0.2 (�), 1 (�), 2 (�), and 5 (�). In A, boxes show

medians and interquartile ranges, whiskers show 1.5 × I QRs, and

extreme points show outliers; gray vertical bars highlight 100 repli-

cate simulations in which expected Pa values (grand means) are

positive and 95% bootstrapped confidence intervals do not over-

lap zero. In B, error bars show 95% bootstrapped confidence in-

tervals around expected mean kadj (left y-axis), gray bars show

mean number of mates each females have across replicates (right

y-axis), and black bars show the proportion of simulations in which

at least one female is polyandrous (gray region spans 0–1; dotted

lines indicate 0.5).

et al. 2012; Lasley-Rasher and Yen 2012). Evolution of extra-pair

mating caused entirely by inbreeding avoidance appears unlikely

in such circumstances.

The degree of phenotypic polyandry occurring within a

population did not, by itself, reliably indicate whether or not

polyandry was adaptive, as manifested by the evolution of positive

Pa values. Indeed, some degree of polyandry regularly occurred

in populations across all parameter combinations, even given a

strong direct cost and hence when mean Pa values evolved to be

negative (i.e., where polyandry was maladaptive; e.g., Figs. 3A

and 5A where cP = 0.03). This expression of costly phenotypic

polyandry was not simply a consequence of mutation-selection

balance. Rather, it arose because alleles that increased a female’s

liability for polyandry were hidden from selection by alleles that

decreased its liability, reflecting the plausible and indeed likely

nature of polyandry as a polygenic trait. As the frequency of posi-

tive Pa alleles causing polyandry decreased (due to negative direct

selection), so did the strength of selection against them. Such fre-

quency dependence is a well-known general property of threshold

traits (Roff 1996, 1998), but has not been highlighted in the con-

text of polyandry. Consequently, polyandry might continue to be

expressed infrequently even if there is strong selection against it.

Given small direct costs of polyandry, the degree of pheno-

typic polyandry varied considerably among replicate simulations,

spanning complete monandry to extreme polyandry. For example,

given cP = 0 and S100,100, the mean number of mates per female

sometimes exceeded 20 (Fig. 5A). Such highly variable evolu-

tion might partially explain the extreme polyandry observed in

some empirical systems (e.g., Dickinson 1995; Kraus et al. 2004;

Rheindt et al. 2004; Schwartz and Peterson 2006). Alternatively,

when mates are encountered sequentially, females that frequently

reject mates will risk mating failure if they do not accept enough

males to ensure fertilisation. The null assumption to maximize

reproductive success will therefore be to accept potential mates

whenever they are encountered, meaning that extreme polyandry

might simply be a consequence of avoiding mating failure (Kokko

and Mappes 2013).

EVOLUTION OF POLYANDRY TO PREFER INBREEDING

Under very restricted conditions, adaptive evolution of polyandry

to facilitate inbreeding preference occurred. Similarly, Lehtonen

and Kokko (2015) suggested that a female that is socially paired

with an unrelated mate can increase her inclusive fitness by mating

with a more closely related extra-pair male. Nevertheless, adap-

tive evolution of both inbreeding preference and unconditional

polyandry only occurred given zero inbreeding depression, zero

direct costs of polyandry, and either extreme best-of-N constraints

(S2,100) or social constraints (SQ,100) on initial versus additional

male availability. Given the prevalence of inbreeding depression

in nature, and the evidence that polyandry is commonly costly,

extra-pair reproduction appears generally unlikely to evolve as a

mechanism to increase inbreeding.

INBREEDING ADJUSTMENT AND CONDITIONAL

POLYANDRY

Numerous empirical studies have endeavored to test the hypoth-

esis that females engage in polyandry to decrease the degree

to which they inbreed. One approach, particularly widely imple-

mented in the context of social monogamy with extra-pair mating,
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is to test whether females are less closely related to their extra-pair

mates than to their socially paired mates (or test for corresponding

reductions in inbreeding coefficients or heterozygosity between a

female’s extra-pair vs. within-pair offspring; e.g., Johnsen et al.

2000; Foerster et al. 2003; Kleven et al. 2005). Our models sug-

gest that such tests are insufficient to evaluate whether polyandry

has evolved to allow inbreeding avoidance. Across functionally

polyandrous females, the mean magnitude of inbreeding adjust-

ment was always very small, perhaps too small to be detected

by most field studies, especially given that pairwise relatedness

and hence the degree of inbreeding adjustment is commonly esti-

mated with substantial uncertainty. This was true when polyandry

was unconditionally expressed (i.e., entirely genetically deter-

mined), and when females conditionally expressed their genetic

liability for polyandry given availability of higher quality addi-

tional males. Detection of inbreeding adjustment might be further

impeded if inbred offspring sired by initial or additional males

die before they can be observed (Reid et al. 2015b). Conversely,

nonzero inbreeding adjustment occurred in our simulations when

polyandry was not adaptive (i.e., when mean Pa values were neg-

ative), resulting from constraints on mate availability. Given the

frequent disconnect between adaptive evolution of polyandry and

observed inbreeding adjustment, simple comparison of within-

pair versus extra-pair offspring inbreeding coefficients or het-

erozygosity might lead to erroneous inferences regarding whether

or not polyandry has evolved to facilitate inbreeding adjustment.

Such comparisons are perhaps less likely to mislead if ac-

companied by tests of whether or not females are more likely to

express polyandry if they are socially paired with a close relative

(i.e., conditional inbreeding avoidance). While some empirical

studies show evidence of such conditional polyandry (e.g., Eimes

et al. 2005; Brouwer et al. 2011; Kingma et al. 2013), others do

not (e.g., Hansson et al. 2004; Kiere et al. 2016), implying that our

primary assumption of unconditional polyandry is not unreason-

able. However, to relax our primary assumption, we modelled one

biologically intuitive but relatively extreme form of conditional

polyandry, which assumes that potentially polyandrous females

can immediately enact full conditional expression as soon as any

genetic liability for polyandry evolves from monandry, and also

have complete knowledge of the entire pool of additional potential

mates. Numerous different forms of conditional polyandry could

be hypothesised, including forms involving post-copulatory rather

than solely precopulatory processes (e.g., Simmons et al. 2006;

Michalczyk et al. 2011), and forms contingent upon interactions

with males that express mate choice differently than females as

a consequence of sexual conflict (Parker 1979, 2006). However,

rather than directly imposing any such strategy, thereby invoking

a priori existence of adaptive conditionality, future models should

allow the form of such conditionality to evolve in an internally

consistent way following initial evolution of inbreeding strategy

and any liability for unconditional polyandry. Such model should

allow the form of the relationship between a female’s kinship

with her initial male and expression of polyandry to evolve given

appropriate constraints on male availability across a temporally

explicit series of mating decisions.
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Blomqvist, D., M. Andersson, C. Küpper, I. C. Cuthill, J. Kis, R. B. Lanctot, B.
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