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Abstract
Aims β-Secretase 1 (BACE1) is a key enzyme in Alzheimer’s
disease pathogenesis that catalyses the amyloidogenic
cleavage of amyloid precursor protein (APP). Recently, global
Bace1 deletion was shown to protect against diet-induced
obesity and diabetes, suggesting that BACE1 is a potential
regulator of glucose homeostasis. Here, we investigated
whether increased neuronal BACE1 is sufficient to alter
systemic glucose metabolism, using a neuron-specific human
BACE1 knockin mouse model (PLB4).
Methods Glucose homeostasis and adiposity were determined
by glucose tolerance tests and EchoMRI, lipid species were
measured by quantitative lipidomics, and biochemical and
molecular alterations were assessed by western blotting,
quantitative PCR and ELISAs. Glucose uptake in the brain
and upper body was measured via 18FDG-PET imaging.
Results Physiological and molecular analyses demonstrated
that centrally expressed human BACE1 induced systemic
glucose intolerance in mice from 4 months of age onward,

alongside a fatty liver phenotype and impaired hepatic glyco-
gen storage. This diabetic phenotype was associated with hy-
pothalamic pathology, i.e. deregulation of the melanocortin
system, and advanced endoplasmic reticulum (ER) stress in-
dicated by elevated central C/EBP homologous protein
(CHOP) signalling and hyperphosphorylation of its regulator
eukaryotic translation initiation factor 2α (eIF2α). In vivo
18FDG-PET imaging further confirmed brain glucose
hypometabolism in these mice; this corresponded with altered
neuronal insulin-related signalling, enhanced protein tyrosine
phosphatase 1B (PTP1B) and retinol-binding protein 4
(RBP4) levels, along with upregulation of the ribosomal
protein and lipid translation machinery. Increased forebrain
and plasma lipid accumulation (i.e. ceramides, triacylglycerols,
phospholipids) was identified via lipidomics analysis.
Conclusions/interpretation Our data reveal that neuronal
BACE1 is a key regulator of metabolic homeostasis and pro-
vide a potential mechanism for the high prevalence of meta-
bolic disturbance in Alzheimer’s disease.
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18FDG-PET 2-[18F]Fluoro-2-deoxy-D-glucose positron
emission tomography

GIP Glucose-dependent insulinotropic peptide
GSIS Glucose-stimulated insulin secretion
GTT Glucose tolerance test
hBACE1 Human BACE1 gene
HFD High-fat diet
IRβ Insulin receptor β
mTOR Mammalian target of rapamycin
GS Glycogen synthase
GSK3β Glycogen synthase kinase-3 β
rpS6 Ribosomal protein S6
S6K p70-S6 kinase
PERK Protein kinase RNA-like ER kinase
PTP1B Protein tyrosine phosphatase 1B
RBP4 Retinol-binding protein 4
STZ Streptozotocin
WAT White adipose tissue
WT Wild-type

Introduction

The incidence of type 2 diabetes and Alzheimer’s disease is
rising at an alarming rate. Type 2 diabetes increases the risk of
Alzheimer’s disease [1]; however, systemic glucose intoler-
ance and insulin resistance are also reported in dementia
patients without a history of diabetes [2]. Alzheimer’s disease
brains exhibit defective neuronal insulin signalling [3] and
glucose hypometabolism in 2-[18F]fluoro-2-deoxy-D-glucose
positron emission tomography (18FDG-PET) studies [4].
Further, mouse models of both diseases share similar
cognitive phenotypes [5], and increased susceptibility to
high-fat diet (HFD)-induced diabetes is observed in
Alzheimer mouse models compared with controls [6].
Collectively, the overlapping pathology indicate common
pathogenic factors, although their molecular foundations
remain unclear.

β-Secretase 1 (BACE1) is implicated in Alzheimer’s
disease as the enzyme responsible for the rate-limiting step
in β-amyloid (Aβ) production [7]. Brain BACE1 levels
increase with age [8], particularly in Alzheimer’s disease [9],
and following pathological events [10, 11]. Bace1 deletion
abolishes Aβ deposition and rescues cognitive deficits in
APP mutant mice [12]. We recently confirmed that neuron-
specific knockin of human (h)BACE1 induces Aβ accumula-
tion, promotes brain inflammation and recapitulates
Alzheimer’s disease-like phenotypes in mice in the absence
of mutant APP expression [13], suggesting that BACE1
represents a molecular risk factor for sporadic Alzheimer’s
disease.

Although studied principally for its role in amyloidosis,
BACE1 has multiple substrates other than APP [14],

comprising transmembrane proteins involved in intercellular
signalling. BACE1 expression is predominantly neuronal,
although BACE1 mRNA is also found in the liver, skeletal
muscle and pancreas [15], with pancreatic mRNA encoding
an inactive isoform [7, 16]. A potential role for BACE1 in
metabolic regulation has only recently emerged, as Bace1
knockout improved glucose metabolism and protected mice
from HFD-induced obesity and diabetes [17]. Conversely, the
induction of insulin deficiency via systemic streptozotocin
(STZ) injection raised central BACE1 levels [18], and this
was associated with endoplasmic reticulum (ER) stress [19].
Thus, BACE1 may contribute to metabolic regulation;
however, it remains to be established whether BACE1
mediates the association between type 2 diabetes and
Alzheimer’s disease.

To elucidate the contribution of neuronal BACE1 to
systemic glucose regulation and lipid metabolism, we
characterised central and peripheral metabolic changes in
brain-specific hBACE1 (PLB4) knockin mice [13]. Because
global deletion of Bace1 protected mice from diet-induced
diabetes [17], we hypothesised that neuronal BACE1 may
regulate system metabolism in addition to inducing brain
pathologies relevant to Alzheimer’s disease [13]. We provide
evidence that BACE1-induced hypothalamic dysregulation
causes systemic diabetes, which may explain the high comor-
bidity of diabetes and Alzheimer’s disease in ageing
populations.

Methods

Animals All animals were housed and tested in accordance
with European (Directive on the Protection of Animals used
for Scientific Purposes, 2010/63/EU) and UK Home Office
regulations, experiments were approved by the University of
Aberdeen Ethics Board and performed in accordance with the
Animal (Scientific Procedures) Act 1986 and following
Animal Research: Reporting of In Vivo Experiments
(ARRIVE) guidelines. The transgenic PLB4 and WT lines
were generated and bred as previously described [13], exper-
imenters were not blinded to genotype. All mice were housed
in single sex groups, unless food and water consumption was
beingmeasured. Physiological assessments were performed in
male mice at 3, 4, 5 and 8 months of age. All mice were killed
by neck dislocation. Five-hour-fasted mice aged 3 and
8 months were used for liver assays, and all postmortem mo-
lecular analyses of signalling pathways (western blotting and
quantitative real-time PCR [qPCR]) were performed using
samples from 8-month-old mice. Glucose-stimulated insulin
secretion (GSIS) was determined in 4-month-old mice at 0, 15
and 30 min time points during glucose tolerance tests (GTTs).
Blood leptin content was determined from baseline reading at
3, 4 and 8 months in a 5 h fasted state. EchoMRI scans
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(EchoMRI, Houston, TX, USA) were performed on mice at
ages 4, 5 and 8 months. Additional 6-month-old mice were
used for lipidomic analysis and 18FDG-PET imaging. Body
weights were recorded and food and water consumption (in g)
were measured for 2 weeks in 5- and 8-month-old male mice.

Metabolic measurements Tail blood glucose was determined
using an AlphaTRAK glucometer (Berkshire, UK). GTTs
were performed (as described in [6, 20]) in 5-h fasted male
mice at age 3 (WT, n=4; PLB4 n=7), 4 (WT, n=8; PLB4,
n=7), 5 (WT, n=9; PLB4, n=15) and 8 (WT, n=4; PLB4
n = 4) months. Fasting blood glucose was determined at
baseline (time 0) before i.p. injection of bolus glucose
(20%; 2 g/kg body weight). Blood glucose clearance was
assessed at 15, 30, 60 and 90 min post injection in 3-, 5- and
8-month-old mice; and at 0, 15 and 30 min post injection in
4-month-old mice.

Serum immunoassays Tail- or trunk-derived blood was
collected from 5-h fasted mice aged 3 (WT, n= 6; PLB4,
n = 8), 4 (WT, n = 7; PLB4, n = 8), 5 (WT, n = 9; PLB4,
n=12) and 8 (WT, n=8; PLB4, n=10) months into serum
separator microtubes; serum was used for insulin and leptin
determination (Insulin ELISA, Millipore, Darmstadt,
Germany; leptin ELISA, CrystalChem, Zaandam, the
Netherlands). A multiplex assay (customer-designed mouse
metabolic hormone Magnetic Multiplex Assay; Merck
Millipore, Darmstadt, Germany) was used for the simulta-
neous quantification of leptin, amylin (active form),
C-peptide 2, glucose-dependent insulinotropic peptide
(GIP; total), pancreatic polypeptide, peptide tyrosine tyrosine
(PYY), IL-6 and resistin following the manufacturer’s
instructions. Triacylglycerol and glycogen assays were used
as previously described [20].

Comparative lipidomics plasma and brain analyses Frozen
plasma and forebrain samples from 6-month-old male mice
(WT, n=8; PLB4, n=8) were used for global lipid analysis
using liquid chromatography–mass spectroscopy (LC–MS).
Plasma lipids were extracted from samples according to the
Folch method. Lipids were solvent extracted in methanol/
chloroform (2:1 vol./vol.). The lipid extracts were subsequent-
ly analysed by LC–MS in positive and negative ion modes
with a C18 column and a water/acetonitrile/isopropanol
gradient using an Exactive Orbitrap system (Thermo
Scientific, Hemel Hempstead, UK) . Lipidomic datasets were
processed using Progenesis QI software (version 2.0, Non-
Linear Dynamics, Newcastle upon Tyne, UK) and searched
against LIPID MAPS (www.lipidmaps.org/) and the Human
Metabolome Database (www.hmdb.ca/).

Brain and upper body PET/CT imaging Six-month-old
female mice (WT, n=10; PLB4, n=9) were imaged using

an Argus GE dual ring PET/CT scanner (Sedecal, Madrid,
Spain) using our published protocol [21].

Immunoblotting All tissues were lysed in RIPA buffer [as
described in [6]. Tissue from 5-h fasted mice was
immunoblotted using rabbit polyclonal antibodies diluted
1:1000 in TRIS-buffered saline containing Tween-20, 5%
BSA and 0.05% sodium azide. Antibodies raised against
human BACE1 (C-terminal 485–501; no. 195111,
Calbiochem, UK); phospho-protein kinase B (p-AktSer473;
no. 4060), total Akt (Akt; no. 9272), phospho-glycogen
synthase kinase-3β (p-GSK-3βSer21 /9; no. 9331),
phospho-ribosomal protein S6 (p-rpS6Ser235–236; no.
4858), total rpS6 (rpS6; no. 2217), phospho-S6 kinase
(p-S6KThr389; no. 9234), total S6 kinase (S6K; no. 2708),
phospho-mammalian target of rapamycin (p-mTORSer2448;
no. 5536), mTOR (no. 2983), phospho-glycogen synthase
(p-GSSer641; no. 3891), phospho-eukaryotic translation
initiation factor 2α (p-eIF2αSer51; no. 3398), total eIF2α
(no. 5324), protein kinase RNA-like ER kinase (PERK;
no. 5683; all obtained from Cell Signaling Technology,
Leiden, the Netherlands); insulin receptor β (IRβ; C-19,
no. Sc-711; 1:500 dilution), apolipoprotein (ApoE; no.
Sc-6384), mouse monoclonal protein tyrosine phosphatase
1B (PTP1B; no. Sc-14021), C/EBP homologous protein
(CHOP; also known as GAD153, no. Sc-7351; Santa
Cruz, Heidelberg, Germany); and retinol-binding protein
4 (RBP4; no. A0040, Dako, Glastrup, Denmark) were used
following manufacturer’s instructions and as described
before [6, 13]. Coomassie Blue (PhastGel Blue R; GE
Healthcare, Watford, UK) was used as a loading control
[13, 22].

Gene expression RNA was extracted from frozen hypotha-
lamic and cortical samples using TRI Reagent, as previously
described [23]. Target genes (hBACE1 and mouse Pomc,
Mc4R, Npy, LepR, Ptp1b, Chop, Cd11 and Cd68) were
amplified by qPCR using GoTaq Master Mix (Promega,
Madison, WI, USA). The geometric mean of three commonly
used reference mRNAs (Ywhaz, Nono and Actb) was used to
normalise data.

Statistical analysis Prism 5 (GraphPad, La Jolla, CA, USA)
was used for statistical analyses, and data are expressed as the
means ± SEM. All molecular and genetic data were adjusted
to loading controls or housekeeping genes and calculated
relative toWT. Two-tailed t tests withWelch’s correction were
used for unbiased comparisons between transgenic mice and
controls. Group analyses used two-way ANOVA (with
repeated measures where appropriate), followed by Bonferroni
post hoc tests.
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Results

Systemic glucose homeostasis is impaired in PLB4 mice
We first confirmed that human BACE1 expression was brain
specific (Fig. 1a,b) and then established that body weights
were normal in PLB4 mice aged up to 4 months (Fig. 1c)
but decreased compared with wild-type (WT) controls at 5
and 8 months. Food and water intake adjusted to body weight
were not affected (Fig. 1d,e). Despite the lean phenotype,
adipose tissue mass was mildly increased in PLB4 mice vs
WT at 4 and 8 months of age (Fig. 1f), while lean mass was
unaffected (Fig. 1g), as demonstrated by EchoMRI.
Furthermore, 5-h fasted PLB4 mice exhibited elevated blood

glucose levels, progressive severe glucose intolerance
(Fig. 1h–k) and impaired GSIS from 4 months of age
(Fig. 1m,n). Serum insulin levels were also raised
(hyperinsulinaemia) at 5 months but were similar toWT levels
at 8 months (Fig. 1l), despite continued hyperglycaemia.
Serum NEFA were increased in 3-month-old PLB4 mice,
although this was not statistically significant (p=0.06), and
were comparable between groups at 8 months of age (Fig. 1o).

Altered plasmametabolic homeostasis and hyperleptinaemia
Levels of the adipocyte-derived hormone, leptin, which
strongly correlate with obesity and diabetes, were initially
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Fig. 1 Systemic diabetes in neuronal hBACE1 knockin mice. (a) BACE1
protein content in soluble lysates from neuronal and pancreatic tissues
from PLB4 and WT mice. (b) BACE1 protein screening in other tissue
types from PLB4 mice only. (c) Body weight of WTand PLB4 mice at 3,
4, 5 and 8 months (m) of age. (d, e) Normalised food (d) and water (e)
intake in 5- and 8-month-old mice. (f, g) Body composition data obtain
from EchoMRI scans showing adipose (f) and lean mass (g) in mice aged
4, 5 and 8 months. (h–j) GTTs at age 3 (p > 0.05), 5 (p< 0.01) and 8
(p < 0.05) months (m). (k) Total glucose excursions during GTTs. (l)

Fasted serum insulin concentrations in 5- and 8-month-old PLB4 and
WT mice. (m) GTTs in 4-month-old mice (p< 0.001; onset of defective
glucose disposal). (n) GSIS in 4-month-old mice during GTTs. (o) Serum
NEFA at 3 and 8 months of age. (p) Fasted serum leptin levels in PLB4 vs
WT mice at 3, 4 and 8 months of age. (q) Serum markers detected in
8-month-old PLB4 mice using an enzymatic multiplex assay. White bars,
WT mice; black bars, PLB4 mice. Data represent means + SEM or (p, q)
means + SEM normalised to WT values. *p < 0.05, **p < 0.01,
***p< 0.001
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normal in PLB4 mice, but were drastically elevated at 4 and
8 months (Fig. 1p) when adiposity was increased.

Since body mass and long-term energy expenditure are
tightly regulated by complex signalling networks between
the CNS and peripheral systems, we screened serum samples
from 8-month-old PLB4 mice for markers of homeostatic
control using a multiplex assay (Fig. 1q). Concentrations of
fasting C-peptide were low, indicative of defective proinsulin
synthesis, while amylin levels (co-secreted with insulin) were
enhanced. GIP was also upregulated in PLB4 mice compared
with controls.

Impaired hepatic glycogen synthesis, insulin resistance
and fatty liver phenotypeEvidence of failing glucose storage
in mice expressing hBACE1 was indicated by their reduced
hepatic glycogen levels (Fig. 2a), increased hepatic triacyl-
glycerol content (Fig. 2b) and inability to activate (i.e. dephos-
phorylate) GS in response to hyperglycaemic conditions
(Fig. 2c,d). Heightened translational demand was also identi-
fied in PLB4 hepatocytes, suggested by increased phosphor-
ylation of the rpS6 component of 40S ribosomes (Fig. 2c,d).
Additionally, the ApoE, PTP1B and RBP4 lipometabolic
regulators linked with obesity and insulin resistance [6, 24,
25] were upregulated in PLB4 mouse liver (Fig. 2c,d),
suggesting decreased hepatic insulin sensitivity. Levels of
these regulators were unchanged in white adipose tissue
(WAT) and muscle (Fig. 2e–h).

Dysregulated central and plasma lipid composition The
non-alcoholic fatty liver phenotype of PLB4 mice
corresponded to that observed in human type 2 diabetes
[26], and called for further investigation of putative changes
in lipid metabolism. Altered lipid composition was recently
proposed to predict ‘phenoconversion’ from mild cognitive
impairment to Alzheimer’s disease, potentially offering a
novel biomarker [27]. Hence, we applied a comparative
global lipidomics approach and identified 321 altered
species in PLB4 mice vs controls (see Table 1 for a summa-
ry and electronic supplementary material Tables 1–4 for
details) comprising phospholipids, sphingomyelins and
sphingolipids such as ceramides. Phospholipids such as
phosphatidylethanolamine, lysophosphatidylethanolamine
and phosphatidylserine were predominantly increased in
both the brain and plasma; however only 11% of the altered
lipid species were identical in both sample types. Fewer
changes in lipid composition were detected in plasma
samples than in brain samples.

Reduced brain glucose metabolism To further investigate
whether the diabetic and metabolic phenotype of PLB4 mice
was similar to that of human type 2 diabetes and dementia, we
conducted an in vivo 18FDG-PET study (Fig. 3). and
confirmed global cerebral hypometabolism in PLB4 mice vs

WT controls at the symptomatic age of 6 months. In contrast
to that of the brain, the metabolic activity of brown adipose
tissue (BAT) was drastically enhanced, while cardiac
metabolism did not differ between groups. As BAT activation
is inversely related to body weight and obesity, the hypermet-
abolic readouts in PLB4 mice are consistent with their leaner
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Fig. 2 Hepatic pathology induced by brain-specific hBACE1 knockin.
(a) Hepatic glycogen content of 3- and 8-month-old PLB4 and control
mice. (b) Triacylglycerol concentrations of liver tissue from 3- and
8-month-old PLB4 andWTmice. (c) Representative immunoblots show-
ing insulin signalling related markers in liver tissue from 8-month-old
WTand PLB4mice, and (d) quantification of the relative protein content.
(e) Representative IRβ, RBP4 and ApoE immunoblots of WAT, and (f)
quantification of relative protein content. (g) Hindlimb skeletal muscle
immunoblots and (h) quantification of relative protein content. (d, f, h)
PLB4 values are normalised to WT values. White bars, WT mice; black
bars, PLB4 mice. Data show means + SEM. *p< 0.05, **p< 0.01
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phenotype [28] and indicative of a compensatory metabolic
adjustment. Collectively, these data confirm that PLB4 mice
have a diabetes-like phenotype.

Abnormal neuronal insulin signalling Since hBACE1 was
expression was forebrain specific, we next investigated
whether neuronal insulin signalling was affected in

Table 1 Summary of the brain
and plasma lipid species altered in
PLB4 mice

Lipid species ↑ Increased vs WT ↓ Decreased vs WT

Brain Plasma BvsP match, n (%) Brain Plasma BvsP match, n (%)

Phospholipids 116 77 24 (12) 17 11 0

PC and lysoPC 40 31 14 (20) 7 6 0

PE and lysoPE 36 20 5 (9) 7 4 0

PG 6 1 0 0 0 0

PS 23 19 3 (7) 3 1 0

PI 10 5 2 (13) 0 0 NA

Other 1 1 0 0 0 NA

Sphingomyelin 10 10 7 (35) 1 0 0

Sphingolipids 29 8 0 3 6 0

Ceramides 20 7 0 3 3 0

Other 9 1 0 0 3 0

Diacylglycerols 10 3 2 (15) 1 1 0

Triacylglycerols 31 12 0 2 3 0

Total determined 196 110 33 (11) 24 21 0

Data show the numbers of lipids significantly (p< 0.05) up- or downregulated in 6-month-old PLB4mice relative
to age-matched WT controls

Brain vs plasma comparison (BvsP): overlap of altered lipid species between brain and plasma tissue in
PLB4 mice; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI,
phosphatidylinositol; PS, phosphatidylserine
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Fig. 3 Abnormal glucose metabolism in PLB4 mice, as measured by
18FDG-PET imaging. (a) Representative scan illustrating glucose uptake
based on 18FDG-PET imaging in brain and BAT. (b) Quantification of
upper body glucose uptake for the brain, heart and BAT. (c) Statistical
parametric mapping shows reduced regional T scores (0–6) for brain
metabolism in PLB4 vs WTanimals. (d) Quantification of regional brain

glucose uptake in WT and PLB4 mice. cBS, caudal brainstem; Cort,
cortex; Cere, cerebellum; HC, hippocampus; Hypo, hypothalamus;
STR, striatum; SUV, standardised uptake value. White bars, WT mice;
black bars, PLB4 mice. Data show means + SEM. *p < 0.5, **p < 0.01,
***p< 0.001
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symptomatic PLB4mice by probing for markers of the insulin
IR–Akt–GSK-3β transduction pathway (Fig. 4) in forebrain
lysates of 8-month-old fasted mice. Total IR was upregulated
in PLB4 vsWTmice, together with RBP4, thus corroborating
links with insulin resistance [29]. PTP1B levels were also
increased, indicating downregulation of central insulin and
leptin signalling [6, 24]. There were no differences in brain
levels of Akt between PLB4 and WT mice, but trends for
decreased baseline GSK-3β phosphorylation in PLB4 mice
indicated early neuronal disinhibition of this pro-apoptotic
kinase. Targets downstream of mTOR were also altered:
although levels of mTOR did not differ in PLB4 forebrain
vs controls, we detected increased levels of rpS6 and its kinase
S6K, implying an overall increase in translational demand
consistent with elevated brain lipid synthesis in PLB4 mice.

Altered hypothalamic melanocortin transcription and ER
stress As the hypothalamus is the regulatory brain centre for
metabolic control, we reasoned that its malfunction was a
possible cause of the failing insulin signalling and diabetic
phenotype of PLB4 mice. Hypothalamic function was
assessed via gene expression analysis of neuro- and polypep-
tides that regulate the hypothalamic–pituitary–adrenal axis
(Fig. 5a–c). Transcription of the appetite-suppressing
pro-opiomelanocortin (Pomc) gene was drastically increased
in PLB4 mice compared with controls. POMC-positive
neurons respond to leptin or insulin to reduce food intake

and maintain energy homeostasis via secretion of alpha
melanocyte-stimulating hormone (αMSH) and melanocortin
receptor 4 (MC4R). A consistent increase in Mc4r gene
expression was detected in the PLB4 vs WT hypothalamus,
suggesting a shift toward anorectic signalling in mouse brains
expressing hBACE1. Importantly, hypothalamic ER stress
(see Fig. 5d) was confirmed by a drastic rise in Chop
transcription in PLB4 tissue compared with controls.
Corresponding protein levels were also increased (Fig. 5e,f),
as was phosphorylated (i.e. activated) eIF2α, a major CHOP
regulator. These changes were not associated with transcrip-
tional alterations in inflammatory markers (microglial Cd11
and Cd68).

Discussion

Diabetic complications can lead to cognitive dysfunction and
are acknowledged risk factors of Alzheimer’s disease, but
little is known about the reverse scenario. Here, we demon-
strate that the major amyloidogenic enzyme, BACE1, is
sufficient to increase the risk of diabetes development when
expressed in neurons only. Severe impairment in systemic
glucose homeostasis and insulin sensitivity was evident in
PLB4 mice from the age of 4 months onwards and progres-
sively deteriorated with age. We previously reported that
PLB4 mice develop mild cognitive deficits between 4 and
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6 months. Our current findings therefore indicate that
neuronal BACE1 induces global metabolic dysregulation
along with brain inflammation and amyloidosis-related
cognitive decline. Overall, the diabetic profile of PLB4 mice
agrees with the improved glucose clearance and insulin
sensitivity in mice lacking murine Bace1 globally [17, 30],
but pinpoints neuronal BACE1 as the major driver of this
alteration.

Although both Bace1 knockout and our hBACE1 knockin
mice were leaner compared with WT controls, there were
differential effects on adiposity and leptin signalling.
Deletion of Bace1 decreased adiposity and improved
sensitivity to leptin, while neuronal hBACE1 expression
promoted adipogenesis and induced hyperleptinaemia.
Hence, it seems plausible that manipulation of (neuronal)
BACE1 affects body weight via changing metabolic
efficiency, adipose composition and signalling. Importantly,
leptin production and signalling are regulated by neuronal
PTP1B [24]. We propose that the elevated central PTP1B
express ion in PLB4 forebrains may explain the
hyperleptinaemic profile and compensatory BAT hyperactivity
in these mice, which confirms that leptin has opposing effects
on WAT and BAT [31].

Further, while proinsulin synthesis appeared unchanged in
PLB4 mice compared with controls, heightened levels of

amylin indicate an attempt to downregulate hyperglycaemia
in the insulin-deficient state, and suggests that pancreatic
function was at least partially preserved in 8-month-old
PLB4 mice. Glucose intolerance and the fatty liver phenotype
in PLB4mice were further associated with drastically elevated
levels of serum GIP. Although GIP exhibits insulinotropic
properties under physiological conditions, its incretin effects
are thought to be blunted in the diabetic state, and elevated
levels may promote fatty acid accumulation and induction of
proinflammatory cytokines [32].

The fatty liver phenotype of PLB4 mice corresponded with
high plasma triacylglycerol and elevated levels of phospho-
lipids such as phosphatidylcholine and lysophosphatidylcholine,
which are typically observed in type 2 diabetic patients [26].
Altered plasma lipid composition was also recently proposed
to predict early memory impairments, thus potentially offering
a novel approach to identify Alzheimer’s disease [27, 33, 34].

Although lipid accumulation was also affected in neuronal
tissue from symptomatic PLB4 mice, there was a poor species
match for plasma, suggesting that (1) plasma markers may not
be indicative of changes in brain lipid composition and (2) that
the increase in neuronal lipids probably originated from the
CNS. PLB4 mice had pronounced elevation of several classes
of phospholipids such as phosphatidylethanolamine,
lysophosphatidylethanolamine and phosphatidylserine, which
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are major components of neuronal membrane bilayers. Such
alterations are reported in human Alzheimer’s disease brains
[35] and are proposed to affect mitochondrial function, signal
transduction and receptor activation, hence interfering with
neurotransmission and neuronal integrity [36, 37].

Importantly, brain ceramide levels were substantially
increased in PLB4 mice compared with controls. This
sphingomyelin precursor is of particular interest because it
increases naturally with age [38] and at an early stage of
human Alzheimer’s disease [39]. Furthermore, ceramides
were previously shown to regulate BACE1 protein expression
and promote APP β-site cleavage [40]. Although the
mechanisms through which BACE1may upregulate ceramide
accumulation are largely unknown, initial evidence suggests
that Aβ peptidesmay activate sphingomyelinase [41]. It there-
fore seems plausible that the introduction of BACE1 promotes
ceramide biogenesis, and vice versa. In support of this, a
recent study demonstrated that intracerebroventricular
ceramide infusions induce lipotoxicity and hypothalamic ER
stress associated with increased eIF2α and PERK phosphor-
ylation, sympathetic inhibition, reduced weight gain and
altered energy balance in rats [42].

Cerebral hypometabolism revealed via 18FDG-PET
imaging is common in early dementia patients as well as
diabetic patients with or without mild cognitive impairment
[43], and may ultimately contribute to cognitive pathology.
We found that reduced glucose utilisation in PLB4 mice was
associated with poor neuronal insulin sensitivity. Altered IR
and PTP1B expression occurred in PLB4 mice at an advanced
stage of systemic insulin resistance, hepatic dysfunction and
Aβ-associated cognitive impairment [13]. Similar elevations
in neuronal PTP1Bwere observed in response to HFD feeding
in other Alzheimer’s disease models [6], while deletion of
neuronal PTP1B improved IR signalling and protected against
HFD-induced obesity and insulin resistance [24].

Increased S6K phosphorylation in PLB4 vsWT brains and
elevated expression of its substrate, rpS6, suggest an increased
demand for protein and lipid synthesis. Additionally, the
ribosomal element is regulated by eIF2, offering an alternative
route for its modification [44]. Elevated rpS6 phosphorylation
alongwith increased brain RBP4 levels were previously found
in Alzheimer’s disease mice on a HFD [6]. Neuronal
pathways that mediate RBP4’s action and toxicity are yet to
be investigated, but have been linked to proinflammatory
cytokines in macrophages and to activation of JNK, a major
ER stress kinase [29].

Recent studies revealed reduced hypothalamic volume and
accelerated atrophy of orexin neurons in early Alzheimer’s
disease [45, 46]. In contrast to diet-induced obese and diabetic
models, PLB4 mice displayed increased Pomc and Mc4r
mRNA levels, suggesting a hypothalamic shift toward
appetite suppression and increased energy expenditure. The
increase in hypothalamic Mc4r and Pomc transcription in

PLB4 mice further contrasts with the recently demonstrated
Aβ-oligomer-induced elevation in Npy mRNA (but not in
Pomc mRNA), which was not associated with changes in
circulating leptin levels [47]. Here, elevated melanocortin
transcription in the hypothalamus of PLB4 mice may be a
downstream effect of persistently increased circulating levels
of leptin and systemic hyperglycaemia.

An advanced state of ER stress was confirmed in the
hypothalamus of PLB4 mice, resembling that induced by
HFD feeding [48]. Pharmacologically induced hypothalamic
ER stress resulted in systemic diabetes in mice [49]; this was
also recently illustrated for Aβ oligomer infusions [47]. The
pathology of PLB4 mice therefore agrees with a scenario of
BACE1-driven elevations of the ER stress marker CHOP and
the protein translation regulator eIF2α, which suggest
induction of an integrated stress response. Mechanistically,
neuronal expression of human BACE1 may promote
hypothalamic ER stress via ceramide lipotoxicity, activation
of eIF2α and an integrated stress response [42], in addition to
driving Aβ production [13].

In conclusion, we demonstrate that neuronal expression of
human BACE1 causes systemic diabetic complications. We
propose that increased levels of central BACE1 promotes
metabolic disturbance via inducing hypothalamic impairment,
ER stress, and Aβ and lipid accumulation, leading to neuronal
damage, insulin resistance, hepatic deficits and global glucose
dyshomeostasis. The comorbid phenotype of the PLB4mouse
provides insight into the complex mechanistic interactions
between diabetes and Alzheimer’s disease. As an extension
to the hypothesis that diabetic complications promote the
onset and progression of Alzheimer’s disease, we suggest that
the reverse scenario may also apply.
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