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Abstract 1 

Models of object recognition generally emphasise the importance of luminance-defined shape. 2 

However, it is still not fully understood how colour signals combine with luminance signals to affect 3 

object-related form processing. This electroencephalographic study aimed to examine the 4 

contribution of chromatic contrast by assessing its effects on the time-course of shape-related 5 

processing. Participants classified Gaborised images of object shapes, non-object shapes and patches 6 

of pseudo-randomly scattered Gabors. Stimuli excited either the luminance (L+M) channel alone, 7 

luminance and L-M channels, or luminance, L-M and S-(L+M) channels and were presented either at 8 

mean discrimination threshold or at twice this mean threshold. As expected, classification accuracy 9 

was comparable at threshold, as were the attributes of the early, perceptual N1 component of the 10 

event-related potential (ERP). Differences emerged at suprathreshold: objects defined by the full 11 

combination of channels were associated with the poorest performance and the lowest N1 12 

amplitude. Shape-sensitivity was not consistently observed in the N1 but was more evident in the 13 

late positive potential (LPP), a cognitive ERP component. Both the N1 and the LPP were affected by 14 

the amount and type of contrast in the image. Whilst the effects of luminance and L-M contrast 15 

were similar, affecting the ERP selectively during the N1 and LPP period, S-(L+M) contrast elicited a 16 

sustained shift in amplitude. Our results demonstrate, for the first time using a combination of 17 

behavioural as well as early and late electrophysiological effects, that shape classification is 18 

determined by both the chromatic and the luminance content of the image. 19 

  20 

Keywords: object representation, shape perception, luminance, chromatic mechanisms, contrast, 21 

EEG. 22 

  23 
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Introduction 1 

 Acquiring knowledge about objects is essential for adaptive behaviour in everyday 2 

environments. Both achromatic and chromatic information are relevant for everyday vision but their 3 

contributions to object processing have traditionally been perceived as different, with luminance 4 

seen as more relevant for shape processing and colour seen as more relevant for segmenting objects 5 

from their backgrounds (Tanaka, Weiskopf, & Williams, 2001). This is reflected in models of object 6 

recognition. For example, low-level inputs that drive object processing in Sowden and Schyns' (2006) 7 

model stem from luminance-driven spatial frequency channels. Further, in Bar's model of object 8 

recognition, the fast, top-down input essential for constraining the processing in posterior 9 

representational areas is driven by rapid projections of low-spatial frequency luminance information 10 

(Bar, 2003). At the neuronal level, the tuning of luminance-driven spatial frequency channels is 11 

affected by lateral inhibition between neurons with spatially overlapping receptive fields which are 12 

tuned to different spatial frequency and orientation bands (Greenlee & Magnussen, 1988; Tolhurst, 13 

1972). Lateral interactions also exist between spatial frequency channels sensitive to different 14 

spatial locations: Polat and Sagi (1993) found that foveal target detection is affected by a narrow 15 

inhibitory surround and a further much larger facilitatory area. In this way, neuronal sensitivity is 16 

fine-tuned to spatial variations of luminance contrast that define shape across orientation and size.  17 

 However, there is emerging evidence that colour signals can and do contribute to the 18 

processing of object form. To a degree, colour mechanisms are also able to provide low-level 19 

information that sustains object recognition, with spatial frequency (Mullen & Losada, 1994; Mullen 20 

& Losada, 1999) and orientation (Webster, DeValois, & Switkes, 1990; Wuerger, Morgan, Westland, 21 

& Owens, 2000) channels that are not vastly dissimilar to those driven by luminance information. 22 

Anatomical and physiological investigations found that a substantial amount of neurons in areas V1 23 

and V2 of the cortex receives inputs from different visual streams, indicating that the segregation of 24 

luminance and colour signals is not as normative as had been previously thought (Levitt, Yoshioka, & 25 

Lund, 1994; Vidyasagar, Kulikowski, Lipnicki, & Dreher, 2002; for models, see Lund, Wu, Hadingham, 26 

& Levitt, 1995, Zhaoping, 2014; for comprehensive reviews see Kulikowski, 2003; Solomon & Lennie, 27 

2007). Benefits brought about by the availability of spatial information from both luminance and 28 

colour might be expected from considerations of the complexities of our everyday visual 29 

environments. Contributions of chromatic signals to form processing might be particularly salient 30 

due to their independence from shadows and shading, which are defined through changes in 31 

luminance only (for a review, see Shevell & Kingdom, 2008). Indeed, edge extraction from luminance 32 

and chromatic spatially superimposed components within a set of natural scene images showed that 33 

these signals provided mutually independent information (Hansen & Gegenfurtner, 2009). Jennings 34 
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and Martinovic (2014) described facilitatory interactions between L-M chromatic and luminance 1 

signals in a task that required discriminating familiar, nameable shapes (objects) from novel, 2 

unnameable shapes (non-objects).  Chromatic contrast benefitted discrimination by combining with 3 

co-localised luminance contrast in a facilitatory fashion, leading to reduced object/non-object 4 

discrimination thresholds. 5 

 The brief literature overview presented above raises one important question. If chromatic 6 

signals do combine with co-localised luminance signals to contribute to form perception, at which 7 

stage of neural processing does this occur? With its millisecond resolution, electroencephalography 8 

(EEG) is a very useful method for studying the time-course of visual processing. A specific sequence 9 

of event-related potential (ERP) components are typically observed in EEG experiments that require 10 

classification of visual stimuli. Some of the earlier components, such as the first positive (P1) and 11 

first negative (N1) components, are more perceptual in nature, while the components that develop 12 

later in the time-course reflect progressively more cognitive processing. Traditionally, these 13 

components are taken as dependent variables and predictions are then made about modulations 14 

that should occur due to an early, perceptual, or late, cognitive contribution. P1 and N1 components 15 

are considered to be early components, reflecting perceptual processes; they are both contrast and 16 

spatial-frequency dependent, and relatable to psychophysical threshold (Boon, Suttle, & Dain, 2007; 17 

Souza, Gomes, Saito, da Silva, & Silveira, 2007). Isoluminant stimuli do not elicit the earliest, P1 18 

component of the visual ERP but they do elicit a prominent negative deflection that corresponds in 19 

timing to the N1 component (Berninger, Arden, Hogg, & Frumkes, 1989; Murray, Parry, Carden, & 20 

Kulikowski, 1986). The shape of the  ERP waveform is determined not only by the spatial frequency 21 

and chromoluminance content of the stimulus, but also by the regularity and duration of the 22 

stimulus presentation (Kulikowski, 1977; Rabin, Switkes, Crognale, Schneck, & Adams, 1994). In a 23 

study that used relatively long stimulus presentations and variable intertrial intervals, typical of 24 

object recognition ERP experiments, Martinovic, Mordal and Wuerger (2011) found that the 25 

amplitude of the N1 component correlated with stimulus contrast. The N1 component is thus the 26 

earliest locus of possible contributions of both colour and luminance to the ERP. Martinovic, Mordal 27 

and Wuerger (2011) also observed object-sensitive modulations of the N1 only for images that 28 

contained luminance contrast, in addition to chromatic contrast. But the N1 is not always sensitive 29 

to the presence of objects (e.g., Gruber & Müller, 2005), implying that object-sensitive N1 effects are 30 

likely to be reliant on stimulus and task characteristics. Object sensitivity is found much more reliably 31 

in the late posterior positivity (LPP) component of the ERP, known to be robustly modulated by 32 

semantic content of stimuli, e.g., their familiarity and nameability (Gruber & Müller, 2005; 33 

Martinovic, Gruber, Ohla, & Muller, 2009).  34 
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 In order to establish the way in which the time-course of object-related shape processing is 1 

influenced by the presence of different contrast types in addition to luminance, we conducted an 2 

ERP study. As in Jennings and Martinovic (2014), our stimuli consisted of Gaborised images of 3 

objects, non-objects and pseudo-random patches. We used stimuli defined by luminance alone, as 4 

well as luminance co-localised with a L-M chromatic signal and luminance co-localised with both a L-5 

M and S-(L+M) chromatic signal. Thus all of our stimuli contained luminance contrast, either on its 6 

own or in combination with chromatic contrast. Comparisons between conditions that excite 7 

different chromoluminant channels are complicated by the necessity to establish a common contrast 8 

metric, which is far from straightforward (for a discussion, see Shevell and Kingdom, 2008). Most 9 

often, contrasts in different channels are matched through multiples of threshold. We opted to set 10 

our contrast levels on the basis of object/non-object discrimination thresholds from Jennings and 11 

Martinovic (2014) since we intended to use the same stimulus set. Contrasts were set at threshold 12 

or suprathreshold, defined as twice threshold. We intended to perform two types of analysis on the 13 

EEG data. First, a traditional ERP analysis, focused on N1 and LPP components, to indicate the level 14 

at which differences emerge between our object, non-object and random patch stimuli, and to 15 

assess if these differences are affected by the contrast content of the stimuli. Second, linear 16 

modelling of the EEG waveforms, in order to identify how three types of contrast (luminance, L-M 17 

and S-(L+M)) affect the stages of processing reflected in the N1 and the LPP components. As 18 

mentioned earlier, Jennings & Martinovic (2014) found that less luminance contrast was required to 19 

reach threshold when it was combined with L-M chromatic contrast. Therefore, our conditions 20 

significantly differed in the amount of luminance, L-M and S-(L+M) contrast they contained, enabling 21 

the modelling approach.  22 

 We expected to find performance and early, perceptual ERP components to be matched at 23 

threshold. At suprathreshold, we predicted that gains in performance should be matched by 24 

increases in both the N1 and the LPP amplitudes. We tested whether the N1 and the LPP were 25 

sensitive to differences between the three classes of stimulus images: (i) familiar, nameable shapes 26 

(objects), (ii) shapes which lack familiarity and nameability (non-objects) and (iii) stimuli which lack 27 

familiarity, nameability as well as any clear shape (pseudo-random patches). We expected to find 28 

such sensitivity, assuming on the basis of Martinovic et al. (2011) that it was mainly driven by the 29 

information derived from luminance contrast. Models that assume that luminance is more relevant 30 

for object representation processes would predict that any object-sensitive ERP markers should be 31 

more pronounced for stimuli which contain significantly more luminance. However, if this is not the 32 

case, it would necessitate models of object recognition to include a shape-processing stage at which 33 

chromatic contrast combines with luminance contrast (for a similar line of research with naturalistic 34 
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and natural images, see Groen, Ghebreab, Lamme, & Scholte, 2012; Groen, Ghebreab, Prins, Lamme, 1 

& Scholte, 2013). Finally, the linear modelling of the EEG using contrast metrics would allow us to 2 

directly examine the degree to which the ERP waveforms are sensitive to each type of contrast: 3 

luminance, L-M or S-(L+M). In order for chromatic contrast to contribute to perceptual and cognitive 4 

processing that is marked by N1 and LPP components, it needs to have a modulatory effect that is 5 

circumscribed to the time-windows of these components.  6 

   7 

  8 

Materials and methods 9 

Participants 10 

22 participants were recruited for the study. Each participant reported normal or corrected-to-11 

normal visual acuity and had normal colour vision as assessed with the Cambridge Colour Test (CCT; 12 

Regan, Reffin, & Mollon, 1994).  Three participants were excluded due to inadequate behavioural 13 

performance, defined as below-chance accuracy on any single condition, and one participant was 14 

rejected due to over 40% trials with artifacts. Excluded participants were replaced with new 15 

participants in order to maintain counterbalancing of button-to-response allocation (see Procedure 16 

section below). The final sample of 18 participants had a mean age of 25 ± 3.9 (mean ± SD, range: 19 17 

- 35 years).  16 were right-handed and 12 were female.  Participants were reimbursed for their time. 18 

The study was approved by the ethics committee of the School of Psychology, University of 19 

Aberdeen.  20 

DKL colour space 21 

The DKL colour space (Derrington, Krauskopf, & Lennie, 1984) was used to describe the chromatic 22 

properties of the stimuli. Figure 1 shows a representation of the DKL colour space indicating the two 23 

chromatic (L-M and S-(L+M)) mechanisms and the luminance mechanism (L+M), along with a vector 24 

(P) defining a particular chromaticity and luminance defined with a radius r, chromatic angle ϕ, and 25 

luminance elevation Ɵ. The DKL space was implemented in the Colour Toolbox (CRS, UK; Westland, 26 

Ripamonti, & Cheung, 2012) using measurements of monitor phosphors’ spectral power 27 

distributions obtained with a SpectroCAL (CRS, UK) and cone fundamentals (Stockman & Sharpe, 28 

2000; Stockman, Sharpe, & Fach, 1999). A uniform mid-grey background located at the adaptation 29 

point DKL(r, ϕ, Ɵ) = (0, 0, 0) was used throughout the experiments, this corresponded to CIE 1931 (x, 30 

y, Y) : (0.30, 0.32, 46.4), where Y has units cd m-2. 31 

 32 
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 1 

 2 

Figure 1.  The DKL colour space with three perpendicular axes corresponding to the L-M, S-(L+M) and 3 
L+M mechanisms was used to specify the chromatic and luminance conditions used in this 4 
experiment and further defined in Figure 2.  The chromaticity and luminance at point P is described 5 
by DKL(r, ϕDKL, ƟDKL)polar, where r is the 3-dimentional Euclidean distance from the centre of the space 6 
located at (0 ,0, 0), ϕDKL is the chromatic angle and ƟDKL is the luminance elevation. The figure also 7 
provides an example Gabor patch on a grey background for each of the three cardinal directions in 8 
DKL space. 9 

 10 

Stimulus contrast settings 11 

Three different conditions were used in the study: (i) the first isolated the luminance contrast (L+M), 12 

the second combined luminance and L-M contrasts, and the third combined luminance, L-M and S-13 

(L+M) contrasts. As explained in the introduction, the choice of conditions was based on object/non-14 

object discrimination results of Jennings and Martinovic (2014). We selected those combined 15 

conditions in which an interaction between luminance and colour was observed, such that less 16 

luminance contrast was needed in the combined condition to achieve threshold. On the other hand, 17 

the two conditions that combined colour and luminance did not differ significantly from each other 18 

in terms of L-M and L+M signals at threshold, reflecting the fact that S-(L+M) signals did not affect 19 

performance. Stimuli in our study were either presented at mean object/non-object discrimination 20 

threshold or at twice the threshold. This provides a range of luminance and chromatic contrasts, 21 

allowing us to use linear modelling of single-trial activity by contrast in L+M, L-M and S-(L+M) 22 

mechanisms.  23 
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 Figure 2 summarises the contrasts, along with the DKL parameters. Mechanism contrasts 1 

shown in Figure 2 were derived from Michelson cone contrasts. These were calculated according to 2 

Equation 1, where Imax and Imin are the maxima and minima cone excitations of the Gabors. 3 

Mechanism contrasts were then computed for L − M, S − (L + M), and L + M.  4 

 5 

 

 6 

 7 

 8 

 9 

Figure  2. Contrasts for the three threshold and three suprathreshold conditions as used in the 10 
experiment. Contrasts are based on mean data of the main experiment in Jennings and Martinovic 11 
(2014). 12 

 13 

 As mentioned earlier, it can be seen from Figure 2 that stimuli at threshold do not contain 14 

exactly the same amount of luminance contrast. If the stimuli did include the same amount of 15 

luminance, on the basis of Jennings and Martinovic's (2014) findings of facilitations between L-M 16 

and L+M signals it would be reasonable to expect improved performance for conditions combining 17 

luminance with a non-negligible amount of L-M information. This would create a problem for 18 

interpreting the results unequivocally in relation to contrast type, as differences in ERPs could also 19 

be ascribed to mismatched performance. An alternative way that would ensure matched 20 



9 
 

performance would have been to fix the luminance contrast at threshold and to add chromatic 1 

contrast that is small enough to not affect performance. This approach would be suitable if our 2 

objective was to study contrast summation without attempting to relate it to performance on a 3 

shape classification task, as these chromatic contrasts would not be contributing to performance in 4 

any way. Differences in contrast-response functions between luminance alone and luminance with 5 

colour would warrant a separate contrast-additivity study with a much simpler stimulus and task (for 6 

some previous work with EEG, see Rabin et al., 1994; Rudvin, 2005; Rudvin & Valberg, 2005). Our 7 

shape discrimination task would not be suited for this purpose, as L-M and S-(L+M) isolating 8 

conditions require relatively high levels of contrast at threshold (see figure 3 in Jennings and 9 

Martinovic, 2014), making it impossible to stay within the CRT gamut if they were to be combined 10 

with any significant levels of other contrast types.  11 

 Last but not least, in order to understand the way in which we matched stimulus contrast for 12 

to account for performance, it is important to note that thresholds in Jennings and Martinovic (2014) 13 

were obtained using a two-interval forced-choice task (2IFC), in which participants had to select the 14 

interval that contained the object, with the other interval containing the non-object. Therefore, 15 

when we say that stimuli were presented at object/non-object discrimination threshold, this implies 16 

that performance in discriminating these two categories of stimuli should be matched at this level of 17 

contrast, but it does not necessarily mean that in a one-interval forced-choice (1IFC) task similar 18 

accuracy rates will be obtained for object and non-object images since 1IFC tasks are additionally 19 

prone to response biases. For example, if there is an overall bias to classify an image as a non-object, 20 

this will lead to higher error rates for objects than non-objects and higher hit rates for non-objects 21 

than objects. In that case, if the hit rate for objects is 41%, with 10% of non-objects misclassified as 22 

objects, the corresponding performance matches a d' of ~1 (thus 75% correct overall); and with the 23 

hit rate for non-objects at 85% and 48% of objects misclassified as objects, the corresponding d' is 24 

again ~1 (matching 75% correct overall). This shows that discriminability can indeed be matched 25 

although hit rates and error rates for individual stimulus classes differ. A similar approach to 26 

stimulus contrast matching was successfully used in Martinovic, Mordal and Wuerger (2011) and 27 

Kosilo, Wuerger, Jennings, Craddock, Hunt and Martinovic (2013). To further quantify the relations 28 

between the three types of stimuli we performed an analysis of response patterns and present them 29 

in Supplementary material 2. These percentages can be used to approximately assess the 30 

discriminability between the different classes o stimuli, although when performing these calculations 31 

it is important to account for the fact that there are three possible responses (object, non-object, 32 

random).  Considering that the stimuli were matched in performance using the 2IFC thresholds from 33 

Jennings and Martinovic (2014), but that this does not necessarily imply that the resulting 34 
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performance will be 75% for each of the three stimulus classes (especially the random patches, 1 

which were added as a control stimulus with no explicit contours), one could alternatively apply the 2 

labels of 'lower contrast match' and 'higher contrast match' for our threshold and suprathreshold 3 

conditions, respectively. We opt to use threshold and suprathreshold, as this reflects that the 4 

contrasts were not chosen provisionally, but on the basis of experimental threshold data from 5 

Jennings and Martinovic (2014). 6 

 7 

Stimuli 8 

The stimulus set from Jennings and Martinovic (2014) was used (available for download at 9 

http://homepages.abdn.ac.uk/j.martinovic/pages/dept/project.htm). This is a set of 377 Gaborised 10 

nameable, familiar objects and their unnameable, unfamiliar “non-object” counterparts, similar to 11 

the image library provided by Sassi and colleagues (Sassi, Machilsen, & Wagemans, 2012; Sassi, 12 

Vancleef, Machilsen, Panis, & Wagemans, 2010). This stimulus set was supplemented by 377 images 13 

with pseudo-randomly scattered Gabor patches, which unlike the non-objects did not consist of iso-14 

oriented contours. All stimuli were composed of a series of centre-symmetric 3 cpd Gabor patches. 15 

This spatial frequency was chosen so that roughly equal contrast dependence of orientation 16 

sensitivity across the mechanisms would be maintained, based on available data for L-M and 17 

luminance mechanisms (Wuerger & Morgan, 1999). An additional benefit is that around 3 cpd, 18 

amplitudes and latencies of S and L-M elicited VEPs are roughly similar (see Figure 9 in Rabin et al., 19 

1994). The creation of the object/non-object stimuli started by selection of suitable line images of 20 

objects from various stimulus sets (Alario & Ferrand, 1999; Bates et al., 2003; Hamm & McMullen, 21 

1998) and also by the manual digital drawing of additional line images of objects that were not 22 

represented in those sets. The lines of these images were replaced with a series of Gabor patches 23 

with the position of each Gabor patch predefined by hand in order to ensure that shape-defining 24 

lines were maintained in the images (for an algorithmic approach to the same problem, see the 25 

Grouping Elements Rendering Toolbox for Matlab, Demeyer & Machilsen, 2012).  The corresponding 26 

non-object images were created by distorting the line images of the objects until they became 27 

unrecognisable using image editing software. The lines were then replaced by Gabor patches, 28 

similarly to the procedure described above. Figure 3(a), (b) and (c) shows an example of an object (a 29 

zebra), a non-object, and a random patch, respectively.  The process of scrambling the object images 30 

into non-object images attempted to preserve some important attributes of the initial object 31 

images, including the visual complexity of the images as reflected in jpeg file size (Szekely and Bates, 32 

2000) and their aspect ratio.  In the process of transforming line-drawings into Gaborised images, 33 
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care was taken to have some of the lines defined by Gabor patches located near the fixation point 1 

(no further than approx. 1 degree away) in order to preclude the need for eye movements to outer 2 

object edges in low-contrast conditions close to threshold.  Finally, the non-objects were also 3 

constrained to have a closed outer contour in order be consistent with that property of objecthood 4 

and preventing them from appearing as random clusters of Gabor patches, which was the added, 5 

third stimulus class. These pseudo-random clusters were created by scattering the same number of 6 

elements that formed the matching object and non-object pair over the approximate area that they 7 

occupied as defined by an ellipse. The patches are pseudo-random as the Gabors were not allowed 8 

to overlap. A pilot naming test was conducted on the stimuli, in which participants had to decide if a 9 

presented shape was an object or a non-object, and then also provide a name if they classified the 10 

image as an object (see Jennings and Martinovic, 2014). The final piloted set of object stimuli 11 

subtended a height and width of 2.9° ± 1.0° and 6.7° ± 1.1° (mean±SD), respectively; whilst the non-12 

object stimuli subtended a height and width of 2.8° ± 0.8° and 7.6° ± 0.9° (mean ± SD), respectively.  13 

For more details on the Gabor properties and the attributes of the stimulus set, see Jennings and 14 

Martinovic (2014). 15 

 16 

 17 

 18 
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Figure  3. Examples of stimulus types; (a) shows an object (a zebra), (b) a non-object and (c) a 1 
random patch. Examples of (d) a luminance defined, (e) a luminance and L-M modulated, and (f) a 2 
luminance, L-M and S-(L+M) (i.e., the ‘full’ condition) modulated Gabor patches. 3 

Procedure 4 

Participants were informed that their task is to discriminate objects, non-objects and random 5 

images. They were shown some examples of images and then performed a practice block of 51 trials 6 

that contained a subset of stimuli not used in the main experiment (17 stimuli per image class). The 7 

intention was to familiarize them with the task. Participants repeated the practice block if their 8 

performance was below 70%. Usually, that criterion was reached after 1 repetition, sometimes no 9 

repetitions were needed and rarely participants repeated the practice twice. The main experiment 10 

consisted of a total of 1080 trials, distributed over ten 108-trial blocks.  A trial started with a variable 11 

period (500-700 ms) during which only the fixation cross was displayed, after which the stimulus was 12 

displayed for 1200 ms, followed by the fixation cross only displayed for a further 1000 ms.  13 

Participants responded with a button press, indicating if the presented stimulus was an object, a 14 

non-object or a pseudo-random patch. Button-to-response allocation was counter-balanced across 15 

participants. Participants were instructed not to make eye movements or blink during the display of 16 

a stimulus or the fixation cross and to try and remain relaxed and refrain from body or head 17 

movements throughout the experiment.  At the end of each trial the fixation cross was replaced with 18 

an “X” for 1000 ms, participants were instructed to blink during this period if required. Figure 4 19 

shows the sequence of one trial.  20 

 21 

 22 

Figure 4. Trial outlook starting with a variable period of fixation that preceded stimulus onset, 23 
followed by the stimulus presentation, and ending in an additional fixation only period during which 24 
observers could still respond. Finally, the fixation “+” changed to an “X” to indicate to the participant 25 
that they could blink if required.  26 
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 1 

Behavioural data analysis 2 

Accuracies and reaction times (RT) between 300 and 2200 ms were analysed.  Percentage of correct 3 

responses was computed for all conditions and subjected to statistical analysis, but incorrect 4 

responses were also taken into consideration in an additional analysis of potential biases in response 5 

patterns. Median RTs for correct items were computed for each participant. Differences in 6 

accuracies and median RTs between the conditions were analysed with a repeated measures ANOVA 7 

with factors contrast level (threshold; suprathreshold), contrast combination (L+M isolating; L+M 8 

combined with L-M; L+M combined with both L-M and S-(L+M)), and stimulus type (object; non-9 

object; random patch).  Greenhouse–Geiser correction was used when necessary. Post-hoc tests 10 

were performed using Tukey's HSD to follow up on interactions and Bonferroni-corrected paired t-11 

tests to further assess sources of main effects.  The suprathreshold data are presented in the Results 12 

section, a comparison of these data with the threshold data are presented as supplementary 13 

material 1.  Biases in response patterns are presented as supplementary material 2. 14 

 15 

EEG data acquisition and analysis 16 

Continuous EEG was recorded from 128 locations using active Ag–AgCl electrodes (Biosemi 17 

ActiveTwo amplifier system, Biosemi, Amsterdam, Netherlands).  The typically used ‘ground’ 18 

electrodes are replaced in the Biosemi system with two additional active electrodes.   In the 128-19 

electrode montage these electrodes are positioned in close proximity to the electrode Cz and are the 20 

Common Mode Sense (CMS), this acts as a recording reference and the Driven Right Leg (DRL) that 21 

serves as the ground (Metting Van Rijn, Peper, & Grimbergen, 1990, 1991).  Vertical and horizontal 22 

electrooculograms were recorded in order to exclude trials with large eye movements and blinks.  23 

 EEG data processing was performed using the EEGlab toolbox (Delorme & Makeig, 2004) 24 

combined with self-written procedures running under Matlab (The Mathworks, Inc, Natick, 25 

Massachusetts). The EEG signal was sampled at a rate of 512 Hz and epochs lasting 2000 ms were 26 

extracted, starting from 500 ms before stimulus onset and incorporating 1500 ms after stimulus 27 

onset. All trials with incorrect responses were excluded from the ERP analysis. Artifact removal was 28 

performed using the FASTER toolbox (Nolan, Whelan, & Reilly, 2010), followed up with a visual 29 

inspection method. This left an average of 36 ± 11 (mean ± SD) trials per condition. Further analyses 30 

were performed using the average reference.  A 40 Hz low-pass filter was applied to the data before 31 

ERP waveform analyses. Signal-to-noise ratio (SNR) analysis was performed using the approach 32 
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recommended by Koenig and Melie-Garcia (2010). This was done to assess if adequate SNR was 1 

reached in our experimental conditions, as ERPs at thresholds may suffer from SNR problems due to 2 

the low number of trials remaining in the analysis and the relatively low amplitude of evoked 3 

responses at relatively low contrast levels (Campbell & Maffei, 1970). This may in turn impact on the 4 

latencies and amplitudes of ERP components. The latencies and amplitudes of the N1 component 5 

and the amplitude of the LPP component at suprathreshold contrast were analysed with a repeated 6 

measures ANOVA with factors contrast combination (L+M isolating; L+M combined with L-M; L+M 7 

combined with both L-M and S-(L+M)), and stimulus type (object; non-object; random patch). As 8 

with the behavioural data, an analysis with the additional factor of contrast level (threshold; 9 

suprathreshold) is presented in supplementary material 1 - this analysis' main purpose was to 10 

confirm that there are no differences between the three contrast combinations at threshold. The 11 

components were defined based on the visual inspection of grand-mean waveforms, separately for 12 

the threshold and suprathreshold components as they were expected to differ in latency (for a 13 

normative study, see Porciatti & Sartucci, 1999). N1 at threshold extended from 180 ms to 380 ms, 14 

while the suprathreshold N1 extended from 150 ms to 270 ms. LPP at threshold was analysed in the 15 

range between 550 and 800 ms, while suprathreshold LPP was analysed between 500-750ms. In line 16 

with previous literature, the N1 for a visual evoked potential with a strong chromatic component 17 

was expected to occur at central occipital sites (Porciatti & Sartucci, 1999) while the LPP was 18 

expected to be maximal at midline parietal sites (Gruber & Müller, 2005). Similarly to the timing of 19 

components, their topographical locations were verified using grand-mean plots. Greenhouse–20 

Geiser correction was used when necessary. Post-hoc tests were performed using Tukey's HSD for 21 

more complex interactions which involved 9 variables and Bonferroni-corrected paired t-tests for 22 

main effects and less complex interactions which involved 6 variables.  Ratios of 23 

suprathreshold/threshold amplitudes were calculated using only those data points with sufficient 24 

SNR. Linear modelling of the first second of the EEG single-trial data was performed using the 25 

LIMO EEG toolbox for Matlab (Pernet, Chauveau, Gaspar, & Rousselet, 2011) in order to establish 26 

more precisely the effect of contrast on the waveforms. For this analysis, all artifact-free trials were 27 

included as per the recommendations made by VanRullen (2011), allowing us to encompass more 28 

broadly how the waveforms were affected by contrast content. Linear regression analysis was 29 

performed at each time-point and for each electrode based on three continuous predictors: the 30 

amount of L+M, L-M and S-(L+M) contrast present in the stimulus on each trial. Following the 31 

approach from Kovalenko, Chaumon and Busch (2012), we orthogonalised sequentially the three 32 

parameters (Gram-Schmidt orthogonalisation method, SPM8; http://www.fil.ion.ucl.ac.uk/spm/). 33 

The outcome of sequential orthogonalisation is that the variance that is explained by a parameter is 34 
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discarded from subsequent ones. This de-correlates the three types of contrast and allows us to 1 

attribute effects that can be explained by more than one contrast type to just one of them.  2 

 3 

Results 4 

The experiment was conducted for stimuli presented at threshold and suprathreshold (i.e., 5 

2*threshold), as outlined in the Stimulus Contrast Settings section and Figure 2.  It was found that 6 

accuracies and ERP amplitudes measured at threshold presentation levels showed no differences 7 

between the different contrast combinations employed, I.e., at threshold the stimuli were matched.  8 

We hence present here only the suprathreshold data. The main differences between ERPs at 9 

threshold and suprathreshold were (1) in terms of their latency, which was faster at suprathreshold, 10 

and (2) in terms of the increases in amplitude with increased contrast, which were present for 11 

luminance alone and L-M with luminance, but absent for the full contrast combination. Detailed 12 

analyses and comparison of threshold control data and suprathreshold data (both behavioural and 13 

ERPs) are presented as supplementary material 1, whilst an analysis of behavioural response biases 14 

is presented as supplementary material 2.  15 

 16 

Behavioural data 17 

 Due to the complexity of the behavioural data analysis, covering accuracies, reaction times 18 

and response patterns, we will first give an overview of the results, and then go into statistical detail. 19 

Figure 5 illustrates the main findings; differences in accuracy and reaction times exist between the 20 

three contrast conditions. Overall, accuracy for a given stimulus type was equal for luminance and L-21 

M with luminance conditions, and better than for the full-information contrast combination. 22 

Responses were fastest for random patches, followed by objects, with non-objects eliciting the 23 

slowest responses, with correct responses being lowest for object stimuli.   A correlation analysis of 24 

accuracy-reaction time combinations revealed no speed-accuracy trade-offs (all ps>0.05). 25 

 A 3x3 (contrast combination by stimulus type) repeated measures ANOVA analysis of 26 

accuracies on suprathreshold data revealed significant main effects of contrast combination and 27 

stimulus type; F(2,34)=12.90, p<.001, Ƞp2=.43 and F(2,34)=41.06, p<.001, Ƞp2=.71, respectively. 28 

There was also a significant interaction (F(4,68)=3.63, p=.01,Ƞp2=.18). 29 

Post Hoc (Tukey’s HSD) tests revealed that luminance only objects were identified with the 30 

same performance as L-M with luminance objects , while both were more accurately identified than 31 
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full-information contrast condition objects. For non-objects, there were no significant differences 1 

between the three contrast combinations.  Finally, for random patch stimuli, again both had equal 2 

performance when defined with luminance only or both L-M and luminance, and both were more 3 

accurately identified than full-information contrast condition random patches. Within each contrast 4 

combination, objects were associated with poorer performance than the other two stimulus types, 5 

whilst performance between non-objects and random patches did not differ significantly.  6 

 7 

Figure 5. Correct responses (top row) and corresponding reaction times (bottom row) for each 8 
chromoluminance condition at both threshold and suprathreshold.  Objects: grey, Non-objects: green 9 
and random patches: purple. Error bars are 2 standard errors. Please note that the Y axis does not 10 
start at 0; the dotted grey line in the top row indicates chance level (33%). 11 

 12 
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 In terms of reaction times, there was a main effect of contrast combination (F(2,34)=69.09, 1 

p<.001, Ƞp
2=.80) and stimulus type (F(2,34)=39.25, p=.001, Ƞp

2=.70).  No significant interaction 2 

existed between these levels (F(4,68)=1.71, p=.092).  3 

Bonferroni-corrected t-tests informed us that performance was fastest for random patches, 4 

followed by objects, with non-objects being responded to most slowly overall (all ps<.001). 5 

Performance was equally fast for luminance defined and L-M with luminance defined objects 6 

(p=.18), and significantly slower for the full contrast combination (both ps<.001). 7 

Signal-to-noise ratios  8 

The SNRs of the ERP waveforms at suprathreshold level were assessed using the global field power 9 

permutation test recommended by Koenig and Melie-Garcia (2010).  A repeated measures ANOVA 10 

revealed no significant differences in time-point of SNR stabilisation between the different stimulus 11 

types (object, non-object, random patch; F(2,26)=1.52,p=.24).  Also no significant differences were 12 

found over the three luminance and colour conditions (F(2,26)=0.62,p=.55; interaction 13 

F(4,52)=0.59,p=.67). On average, an adequate SNR was reached at the following times (median ± SE): 14 

Objects 124±26 ms, non-objects 125±21 ms and random patches 129±28 ms, these values are 15 

collapsed over contrast combinations.  For completeness the non-collapsed data is depicted in 16 

Figure 6.  17 

 18 

 19 

Figure  6. Box plots indicating the time at which the signal-to-noise ratio stabilised for  all of the 20 
conditions at suprathreshold contrast levels.  The stimulus types are colour coded; Objects: grey, 21 
Non-objects: green and random patches: purple.  The first, second and third sub-columns represent 22 
luminance isolating, luminance combined with L-M, and Luminance combined with both L-M and S-23 
(L+M) signals, respectively. The lines represent the median, the edges of boxes represent the 75th 24 
percentile, the ends of lines represent 95th percentile, while red crosses represent outliers. 25 
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Threshold and suprathreshold differences in ERP amplitudes and latencies 1 

Detailed differences between threshold and suprathreshold ERPs, both in terms of their amplitudes 2 

and their latencies, are presented in Supplementary Material 1. Here we give a broad overview of 3 

the main contrast-related differences, which are depicted in Figure 7. This figure collapses the data 4 

across different stimulus types (object, non-object, random) in order to more clearly depict changes 5 

that arise due to the two-fold increase in contrast, from threshold to suprathreshold, for each 6 

stimulated combination of contrasts.7 

 8 

Figure 7. Event related potential at posterior sites (see N1 topography inset), depicting data 9 
collapsed across stimulus class. The full lines depict the three contrast combinations at threshold, 10 
whilst the dotted lines depict them at suprathreshold. Topographies were calculated after data in the 11 
N1 window (see Fig. 8) were collapsed across all conditions for threshold and suprathreshold contrast 12 
levels. The electrodes which were used for data analysis are indicated on the topography plots with 13 
thick black circles. 14 

  15 

Latencies are slower for threshold stimuli, and also somewhat slower for the full 16 

combination of contrasts. Ratios of suprathreshold/threshold amplitudes within the N1 analysis 17 

windows were the following: luminance only, 1.64 ± 0.30; luminance and L-M, 1.69 ± 0.14; 18 

luminance, L-M and S-(L+M), 1.13 ± 0.07 (M ± SE). Ratios were only calculated from data points with 19 

adequate SNR, in order to reduce the noisiness of the calculation. Whilst there is an increase in 20 

amplitude for luminance alone and luminance with L-M, this does not occur for the full contrast 21 

combination. 22 

 23 

 24 
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Event-related potentials: N1 1 

The suprathreshold N1 waveform and topography are depicted in Figure 8(a), while the bar 2 

plot of its amplitudes is presented in the top panel of Figure 9.  There was a main effect of contrast 3 

combination (F(2,34)=30.09,p<.001, Ƞp2=.64) and a trend towards a  main effect of stimulus type 4 

(F(2,34)=3.11, p=.058, Ƞp2=.16).  A significant interaction existed between these levels (F(4,68), 5 

p=.02, Ƞp2=.15). 6 

 7 

 8 

Figure 8. (a) N1 component of the event related potential. Waveforms at occipital sites and 9 
topographies during the N1 window (indicated by the grey box) are depicted for suprathreshold 10 
stimuli. (b) LPP component of the event related potential. Waveforms at parietal sites and 11 
topographies during the LLP window (again indicated by the grey box) are depicted for 12 
suprathreshold stimuli. In both cases, topographies were calculated after data were collapsed across 13 
all conditions . The electrodes which were used for data analysis are indicated on the topography 14 
plots with black circles. 15 

 16 

Post hoc tests for the main effects indicated that the full contrast combination elicited the 17 

least activity compared to both luminance only and L-M with luminance (p<.05),with luminance only 18 

in turn eliciting even less activity than in the  combined L-M with luminance condition (p<.05).  Post 19 

hoc tests for the interaction (Tukey’s HSD) considered all possible combinations, revealing a variety 20 
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of differences. This was to be expected given the large main effect of contrast combination. But 1 

importantly, considering differences between objects, non-objects and random patches within each 2 

of the three contrast combinations, it was found that the only significant difference between 3 

stimulus types existed in the full contrast combination, here objects were found to be significantly 4 

different from non-objects and random images (both ps<.05), which in turn did not differ amongst 5 

each other (p>.05). 6 

 7 

Figure 9. Bar plot of ERP amplitudes. N1 is depicted in the top panel, LPP in the bottom panel. The 8 
stimulus types are colour coded - objects: grey, non-objects: green and random patches: purple. The 9 
contrast combinations are: left three bars – luminance only, middle three bars – luminance and L-M, 10 
and finally, right three bars – luminance, L-M and S-(L+M).  Error bars depict +/- 2 SE. 11 

 12 

Event-related potentials: LPP 13 

The late positive potential (LPP) can be seen in Figure 8(b), while the bar plot of its 14 

amplitudes is presented in the bottom panel of Figure 9.  A 3x3 ANOVA (contrast combination by 15 

stimulus type) was performed and revealed main effects of both contrast combination and stimulus 16 

type (F(2,34)=12.77,p<.001, Ƞp2=.43 and F(1.41,23.93)=4.37,p=-.036, Ƞp2=.20, respectively.  No 17 

significant interaction was discovered (F(2.68,45.58)=0.88,p=.45). 18 

Considering the contrast combination first post hoc tests revealed that the LPP had a lower 19 

amplitude for the full contrast combination as compared to both the luminance only and the 20 
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luminance combined with L-M combination (p=.002 and p<.001, respectively), which did not differ 1 

from each other (p=.85).  Secondly, considering stimulus type the LPP is higher for random patches 2 

than for non-objects (p=.015), but there are no significant differences between objects and random 3 

patches  (p=.14) or objects and non-objects (p=.1).  4 

Linear modelling of single-trial EEG by contrast parameters 5 

 To assess effects of each contrast type (L+M, L-M or S-(L+M)) on the ERP waveforms, we also 6 

conducted a single-trial linear regression analysis using the approach described in Pernet et al. 7 

(2011). We recursively orthogonalised the three contrast levels in order to de-correlate them, and 8 

then entered them simultaneously into the general linear model. The results of the analysis are 9 

presented in Figure 10 for electrodes Oz, exemplifying the N1 component, and Pz, exemplifying the 10 

LPP component. It can be seen that all three types of contrast affect the waveforms. While the 11 

effects of L+M and L-M contrasts are temporally constrained to the windows of the N1 and LPP 12 

components, the effects of S-(L+M) contrast are much broader and less-specific, and although the 13 

onset of contrast modulation is at approximately the same time as in the case of L+M and L-M, its 14 

influence on amplitude extends in a sustained fashion throughout the analysed window and is not 15 

constrained to the period of any specific component.   16 

 17 

Figure 10.  Linear modelling of ERP waveforms by mechanism contrasts. The left panel depicts the 18 
modelling at electrode Oz, representative of the N1 component, whilst the right panel depicts the 19 
modelling at electrode Pz, representative of the LPP component. The blue lines reflect the effects of 20 
the model on the averaged waveform for each contrast type, with bootstrapped confidence intervals 21 
shown in magenta lines. Straight red lines underneath each waveform indicate the period in which 22 
the modelled effect was significant.  23 
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Discussion 1 

 This EEG study examined if the presence of chromatic contrast in luminance-defined images 2 

alters both performance and neural activity during a shape classification task. Participants classified 3 

Gaborised images of objects, non-objects or random patch textures defined by different 4 

combinations of luminance and chromatic signals and set to mean threshold or suprathreshold 5 

contrast levels. The stimuli excited either the luminance channel in isolation, or the luminance and L-6 

M channels, or the luminance and both the L-M and S-(L+M) channels simultaneously. The goal was 7 

to assess the effect of chromatic contrast's presence through behavioural data and EEG markers of 8 

perceptual and cognitive object-related processing (N1, LPP). Classification accuracy for the three 9 

types of stimuli was comparable across channel combinations at threshold, confirming that the 10 

contrasts were at the level that elicits matched performance. However, a mismatch appeared at 11 

suprathreshold: increases in performance were less pronounced for objects defined by the full 12 

combination of signals, resulting in their poorer classification. The first ERP component reliably 13 

observed in the waveforms was an N1 peaking 200-300ms after stimulus onset. It occurred earlier 14 

and had a larger amplitude at suprathreshold for both luminance only and luminance combined with 15 

L-M conditions. The full combination at suprathreshold elicited only a shift in latency but produced 16 

the same amplitude as at threshold. Some sensitivity to stimulus class was found in both N1 and LPP, 17 

but it was mainly driven by different processing of random patch stimuli, which lacked contour-18 

defined shape, with LPP showing a stronger effect than the N1. Linear modelling of the EEG revealed 19 

that whilst luminance and L-M contrasts modulated EEG specifically within the time-windows of the 20 

perceptual and cognitive processing markers N1 and LPP, the S-(L+M) contrast had a more sustained, 21 

temporally non-circumscribed effect on amplitude. The transition to suprathreshold creates 22 

differences in performance for the full information stimuli, which correspond to ERP findings of less 23 

amplitude gain for the full combination of contrasts. We did not find any significant differences 24 

between luminance only and luminance with L-M, although the combination with L-M contained 25 

much less luminance contrast. In fact, luminance and L-M contrast contributed to the amplitudes of 26 

the N1 and LPP in a roughly similar fashion. Based on this, we conclude that L-M chromatic contrast 27 

contributes to shape processing when joined with luminance contrast. Meanwhile, S-(L+M) contrast 28 

does not provide a facilitatory input into these processes.  29 

 The waveforms we observed were characterised by an absence of a P1-like positive 30 

deflection, with the first component being a relatively large N1 akin to those found in studies on 31 

chromatic VEPs (Crognale, Switkes, & Adams, 1997; Murray et al., 1986; Rabin et al., 1994). The 32 

absence of the P1 is likely to be due to the relatively low level of luminance contrast in our stimuli 33 

(for a similar finding, see Mathes & Fahle, 2007), reflected in the late stabilisation of SNR, on average 34 
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between 120 and 130 ms, which is after the standard P1 window. Further, we observed differences 1 

between contrast combinations when contrast level was doubled for suprathreshold stimuli. While 2 

luminance alone and combined with L-M signals produces relatively uniform contrast-related N1 3 

amplitude increases and performance benefits at suprathreshold, the full-channel stimulus which 4 

also contained S-(L+M) information was not associated with an amplitude increase or an equivalent 5 

performance benefit. Meanwhile, the latency benefit from contrast increase was uniformly present 6 

across all contrast combinations, although the N1 elicited by a full combination of contrasts did lag 7 

behind the other two combinations. Linear modelling demonstrated a more general effect of S-8 

(L+M) contrast on amplitude, which was not restricted to the time-window of the N1 and the LPP. 9 

We did not test S-(L+M) and luminance combined nor S-(L+M) and L-M combined, so we cannot 10 

conclude if the addition of S-(L+M) signals selectively suppresses the gain of the luminance 11 

mechanism, of the L-M mechanism, or if it interacts with both L+M and L-M signals in this fashion. 12 

An investigation of detection thresholds for S-cone increments and decrements in the presence of 13 

different types of noise masks found that whilst luminance masks had a similar and weak effect on S 14 

increments and decrements, chromatic masks revealed asymmetries between them by exhibiting a 15 

stronger masking effect on S increments, most likely due to greater contrast gain control in the 16 

unipolar S increment mechanism (Wang, Richters, & Eskew, 2014). Parametric mapping of contrast-17 

response functions for different combinations of luminance and chromatic contrasts conducted 18 

across a range of spatial frequencies would extend our understanding of chromatic mechanisms 19 

themselves, as well as the way in which they interact with luminance. Such experiments should also 20 

attempt to  model for possible contributions of chromatic abberations to these neural signals, as 21 

Forte, Blessing, Buzas and Martin (2006) have demonstrated that chromatic aberrations can produce 22 

neural responses comparable in magnitude to those driven by high-frequency luminance isolating 23 

stimuli.    24 

 Our study also aimed to assess if object-sensitivity would be found. Martinovic et al. (2011) 25 

used full-information or isoluminant stimuli in an object discrimination task and concluded that 26 

object-sensitivity of the N1 is brought about by the addition of an achromatic signal. However, the 27 

current experiment did not find highly reliable and consistent differences between objects and non-28 

objects in the ERPs. The only object-sensitive effect in the N1 was found for the full combination of 29 

contrasts. This is surprising, as luminance information is considered to be the most relevant for 30 

object processing (e.g., Bar, 2003; Peterson & Gibson, 1994). The most parsimonious explanation is 31 

that the full combination of signals does not scale equally with the increase in contrast for different 32 

stimulus classes (see Zele, Cao, & Pokorny, 2007). If object stimuli scaled least favourably of all, this 33 

would result in reduced classification performance for objects, while the larger N1 for objects could 34 
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perhaps be explained through increased difficulty for these stimuli. Still, it is difficult to fathom that 1 

the addition of a relatively small amount of S-(L+M) contrast can have such dramatic effects on both 2 

performance and on the ERP markers of visual processing, especially as the S-(L+M) signals added to 3 

a mixture of L-M and L+M signals at threshold were not found to influence performance in the 4 

psychophysical study of Jennings and Martinovic (2014). 5 

 Another difference in our findings to those of Martinovic et al. (2011) is that they found 6 

differences in both the N1 and the LPP amplitudes elicited by line-drawings of objects as opposed to 7 

non-objects, while in this study the most consistent, general effect of shape-specific processing is 8 

driven by a differential response for random patches (see Fig. 8b). This is most likely to be due to 9 

differences in stimulus material, and the associated difficulties of their classification. Line drawings 10 

and Gaborised images are likely to engage different perceptual processes to different degrees. For 11 

example, studies that compare evoked potentials elicited by greyscale photographic-quality images 12 

of objects and their phase-scrambled versions find larger N1s for object images, arguing that this is 13 

due to the fact that they engage figure-background processes (Schendan & Lucia, 2010). Gaborised 14 

stimuli engage mid-level processes to a much higher level than line-drawings, as they require some 15 

perceptual organisation in order to be correctly perceived. N1 seems to be particularly sensitive to 16 

perceptual context in mid-level vision tasks (e.g., Machilsen, Novitskiy, Vancleef, & Wagemans, 17 

2011). While N1 showed a series of interactions between the perceptual effects of contrast level, 18 

contrast combination and stimulus type, LPP showed independent effects of these factors (for more 19 

detail, see supplementary material 1). We failed to replicate previous findings of more positive late 20 

potentials for non-objects than for objects, which were again obtained with line-drawing stimuli 21 

(e.g., Gruber & Müller, 2005; Martinovic et al., 2009; Martinovic et al., 2011). However, we did find 22 

increased positivity for random patches, the stimulus class that lacked contour-defined shape. It is 23 

likely that the lack of differences between Gaborised objects and non-objects was due to the fact 24 

that they were very closely matched. This is supported by relatively high error rates between these 25 

two stimulus classes in this study (see supplementary material 2), which are much higher than in any 26 

of the previous studies. The LPP was also increased for suprathreshold stimuli compared to 27 

threshold stimuli, and lower for a full combination of channels, confirming its relation to successful 28 

discrimination of contour-defined shapes from contour-less patches.  29 

 In conclusion, our study provides further evidence that signals from different channels 30 

interact in the visual cortex during shape classification. L-M signals are effectively combined with 31 

luminance signals at both perceptual and cognitive stages of processing, whilst S-(L+M) signals seem 32 

to play a different role. Their presence results in a reduced performance benefit at suprathreshold 33 

relative to other conditions, and their effects on EEG amplitude are not circumscribed to the time-34 
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windows of the perceptual N1 or cognitive LPP component. These findings extend psychophysical 1 

evidence that L-M contrast contributes to shape processing provided by Jennings and Martinovic 2 

(2014), demonstrating that these contributions occur early in processing, in line with contrast 3 

pooling studies by Groen and colleagues (2012, 2013). The model of Sowden and Schyns (2006) 4 

would be able to accommodate for these findings by including signals derived from chromatic spatial 5 

frequency channels (for a mathematical definition of these channels, see Zhaoping, 2014). It is 6 

generally thought that S-(L+M) contrast contributes largely to colour appearance and much less to 7 

spatial vision (e.g., Mollon, 1989), but we do find adverse effects on object performance and ERP 8 

response amplitudes for suprathreshold stimuli that contain it. Future studies will need to establish 9 

whether this is simply due to the fact that their presence alters the slopes of related psychometric 10 

functions, or whether they play another, more general role in spatial vision, which would be a very 11 

intriguing prospect. 12 
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